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Abstract. We study the relationship between L∞ growth of eigenfunctions and their L2 con-
centration as measured by defect measures. In particular, we show that scarring in the sense of
concentration of defect measure on certain submanifolds is incompatible with maximal L∞ growth.
In addition, we show that a defect measure which is too diffuse, such as the Liouville measure, is
also incompatible with maximal eigenfunction growth.

1. Introduction

Let (M, g) be a C∞ compact manifold of dimension n without boundary. Consider the eigen-
functions

(−∆g − λ2
j )uλj = 0, ‖uλj‖L2 = 1 (1.1)

as λj → ∞. It is well known [Ava56, Lev52, Hör68] (see also [Zwo12, Chapter 7]) that solutions
to (1.1) satisfy

‖uλj‖L∞(M) ≤ Cλ
n−1

2
j (1.2)

and that this bound is saturated e.g. on the sphere. It is natural to consider the situations which
produce sharp examples for (1.2). In many cases, one expects polynomial improvements to (1.2),
but rigorous results along these lines are few and far between [IS95]. In the case of negatively curved
manifolds, log improvements can be obtained [Bér77]. However, at present, under general dynamical
assumptions, known results involve o-improvements to (1.2) [TZ02, SZ02, TZ03, STZ11, SZ16a,
SZ16b]. These papers all study the connections between the growth of L∞ norms of eigenfunctions
and the global geometry of the manifold (M, g). In this note, we examine the relationship between
L∞ growth and L2 concentration of eigenfunctions. We measure L2 concentration using the concept
of a defect measure - a sequence {uλj} has defect measure µ if for any a ∈ S0

hom(T ∗M \ {0}),〈
a(x,D)uλj , uλj

〉
→
∫
S∗M

a(x, ξ)dµ. (1.3)

By an elementary compactness/diagonalization argument it follows that any sequence of eigen-
functions uλj solving (1.1) possesses a further subsequence that has a defect measure in the sense
of (1.3) ([Zwo12, Chapter 5],[Gér91]). Moreover, a standard commutator argument shows that if
{uλj} is any sequence of L2-normalized Laplace eigenfunctions, the associated defect measure µ
is invariant under the geodesic flow; that is, if Gt : S∗M → S∗M is the geodesic flow i.e. the
hamiltonian flow of p = 1

2 |ξ|
2
g, (Gt)∗µ = µ, ∀t ∈ R.

Definition 1.1. We say that an eigenfunction subsequence is strongly scarring provided that for
any defect measure µ associated to the sequence, suppµ is a finite union of periodic geodesics.

Theorem 1. Let {uλj} be a strongly scarring sequence of solutions to (1.1). Then

‖uλj‖L∞ = o(λ
n−1

2
j ).
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We also have improved L∞ bounds when eigenfunctions are quantum ergodic, that is, their defect
measure is the Liouville measure on S∗M , µL (see e.g. [Sni74, CdV85, Zel87] for the standard
quantum ergodicity theorem).

Theorem 2. Let {uλj} be a quantum ergodic sequence of solutions to (1.1). Then

‖uλj‖L∞ = o(λ
n−1

2
j ).

Theorems 1 and 2 are corollaries of our next theorem where we relax the assumptions on µ and
make the following definitions. Define the time T flow out by

Λx,T :=
T⋃

t=−T
Gt(S

∗
xM).

Definition 1.2. Let Hn be n-dimensional Hausdorff measure on S∗M induced by the Sasaki metric
on T ∗M (see for example [Bla10, Chapter 9] for a treatment of the Sasaki metric). We say that
the subsequence uλj ; j = 1, 2, ... is admissible at x if for any defect measure µ associated to the
sequence there exists T > 0 such that

Hn( supp µ|Λx,T ) = 0. (1.4)

We say that the subsequence is admissible if it is admissible at x for every x ∈M .

We note that in (1.4) µ|Λx,T denotes the defect measure restricted to the flow out Λx,T ; for any
A that is µ-measurable,

µ|Λx,T (A) := µ(A ∩ Λx,T ).

Theorem 3. Let {uλj} be a sequence of L2-normalized Laplace eigenfunctions that is admissible
in the sense of (1.4). Then

‖uλj‖L∞ = o(λ
n−1

2
j ).

Remark 1.3: We choose to use the Sasaki metric to define Hn for concreteness, but this is not
important and we could replace the Sasaki metric by any other metric on S∗M .

Theorem 3 can be interpreted as saying that eigenfunctions which strongly scar are too concen-
trated to have maximal L∞ growth, while diffuse eigenfunctions are too spread out to have maximal
growth. However, the reason the adimissiblity assumption is satisfied differs in these cases. In the
diffuse case (see Theorem 2), one has µ|Λx,T = 0, so that the admissibility assumption is trivially
verified. In the case where the eigenfunctions strongly scar (see Theorem 1), µ|Λx,T 6= 0 but the
Hausdorff dimension of supp µ|Λx,T is < n; so again, (1.4) is satisfied. The zonal harmonics on

the sphere S2, which saturate the L∞ bound (1.2), lie precisely between being diffuse and strongly
scarring (see section 4).

Observe that the condition µ is diffuse is much more general than µ = µL. Jakobson–Zelditch [JZ99]
show that any invariant measure on S∗Sn where Sn is the round sphere can be obtained as a defect
measure for a sequence of eigenfunctions and in particular many non-Liouville but diffuse measures
occur.

Remark 1.4: We note that the results here hold for any o(λ) quasimode of (−∆g − λ2) that is
compactly microlocalized in frequency (see [Gal17]).
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1.1. Relation with previous results. Theorem 2 is related to [STZ11, Theorem 3], where the

o(h
1−n

2 ) sup bound is proved for all Laplace eigenfunctions on a Cω surface with ergodic geodesic
flow. However, in Theorem 2, we make no analyticity or dynamical assumptions on (M, g) what-
soever, only an assumption on the particular defect measure associated with the eigenfunction
sequence. Recently, Hezari [Hez16] and Sogge [Sog16] gave independent proofs of Theorem 2.

One consequence of the work of Sogge is the relation between Lp norms for eigenfunctions and
the push forward of defect measures to the base manifold M . In particular, he shows [Sog16, (3.3)]
that

‖uλ‖L∞(M) ≤ Cλ
n−1

2 sup
x∈M

δ−1/2‖uλ‖L2(Bδ(x)) (1.5)

when λ−1 ≤ δ ≤ inj(M, g) and λ ≥ 1. We note that when uλ are quantum ergodic, ‖uλ‖L2(Bδ(x) ≈
δ
n
2 and so the o(λ

n−1
2 )-bound in Theorem 2 follows from (1.5) as well (see also Corollary 1.2 in

[Sog16]).
However, neither the scarring result in Theorem 1 nor the more general bound in Theorem 3

follow from (1.5). To compare and contrast with (1.5), we observe that (1.5) implies for any δ > 0
independent of λ,

lim sup
λ→∞

λ
1−n

2 ‖uλ‖L∞(M) ≤ C sup
x∈M

δ−1/2
(
µ(S∗Bδ(x))

) 1
2
.

Our main estimate in (3.12) says that for any x(λ) with d(x(λ), x) = o(1),

lim sup
λ→∞

λ
1−n

2 |uλ(x(λ))| ≤ C ′δ
(
Hn(suppµ|Ax(δ/2,3δ))

)1/2
(1.6)

where for δ2 > δ1 the Ax(δ1, δ2) = Λx,δ2 \ Λx,δ1 . This microlocalized bound allows us to deal with
the more general scarring-type cases as well. In particular, the key differences are that we have
replaced S∗Bδ(x) by Ax(δ/2, 2δ) ⊂ Λx and the defect measure by Hausdorff n measure. We note
however that unlike (1.5), δ > 0 can be arbitrarily small but is fixed independent of λ in (1.6).

In [SZ02], Sogge–Zelditch prove that any manifold on which (1.2) is sharp must have a self focal
point. That is, a point x such that |Lx| > 0 where

Lx := {ξ ∈ S∗xM | there exists T such that expx Tξ = x}

and |·| denotes the normalized surface measure on the sphere. Subsequently, in [STZ11] the authors
showed that one can replace Lx by the set of recurrent directions Rx ⊂ Lx and the assumption
|Rx| > 0 for some x ∈M is necessary to saturate the maximal bound in (1.2). Here,

Rx :=
{
ξ ∈ S∗xM | ξ ∈

( ⋂
T>0

⋃
t≥T

Gt(x, ξ) ∩ S∗xM
)⋂( ⋂

T>0

⋃
t≤−T

Gt(x, ξ) ∩ S∗xM
)}
.

The example of the triaxial ellipsoid with x equal to an umbilic point shows that latter assumption
is weaker than the former. Indeed, in such a case |Lx| = 1 whereas |Rx| = 0. Most recently, in
[SZ16a, SZ16b], it was proved that for real-analytic surfaces, the maximal L∞ bound can only
achieved if there exists a periodic point x ∈ M for the geodesic flow, i.e. a point (x, ξ) so that all
geodesics starting at (x, ξ) ∈ S∗M close up smoothly after some finite time T > 0.

Together with our analysis, the results of [STZ11] imply that any sequence of eigenfunctions,
{uλ} having maximal L∞ growth near x and defect measure µ must have µ(Λx,T ) > 0 for all T > 0
and |Rx| > 0. In particular, the results of [STZ11] show that uλ can only have maximal L∞ growth
near a point with a positive measure set of recurrent points and Theorem 3 shows that a point
with maximal L∞ growth must have µ(Λx,T ) > 0. As far as the authors are aware, the results in
[STZ11] and in [SZ16a, SZ16b] do not give additional information about µ.
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On the other hand, under an additional regularity assumption on the measure µ, Theorem 3 can
be used to show that when uλ has maximal growth near x, µ|Λx.T is not mutually singular with re-
spect to Hn. Since the measure for a zonal harmonic is a smooth multiple of Hn (see Section 4), this
implies that the measure µ resembles the defect measure of a zonal harmonic . In [Gal17], the first
author removes the necessity for any additional regularity assumption and gives a full characteriza-
tion of defect measures for eigenfunctions with maximal L∞ growth, in particular proving that if uλ
has maximal growth near x and defect measure µ, then µ|Λx,T is not mutually singular with respect
to Hn. Finally, we note that unlike [SZ02, STZ11, SZ16a, SZ16b], the analysis here is entirely local.

Acknowledgemnts. The authors would like to thank the anonymous referees for their detailed
reading and many helpful comments. J.G. is grateful to the National Science Foundation for support
under the Mathematical Sciences Postdoctoral Research Fellowship DMS-1502661. The research of
J.T. was partially supported by NSERC Discovery Grant # OGP0170280 and an FRQNT Team
Grant. J.T. was also supported by the French National Research Agency project Gerasic-ANR-
13-BS01-0007-0.

2. A local version of 3

In the following, we will freely use semiclassical pseudodifferential calculus where the semiclassical
parameter is h with h−1 = λ ∈ Spec

√
−∆g. We write r(x, y) : M ×M → R for the Riemannian

distance from x to y and write B(x, δ) for the geodesic ball of radius δ around x. We start with a
local result:

Theorem 4. Let {uh} be sequence of Laplace eigenfunctions that is admissible at x. Then for any
δ(h) = o(1),

‖uh‖L∞(B(x,δ(h)) = o(h
1−n

2 ).

Theorem 3 is an easy consequence of Theorem 4.

Proof that Theorem 4 implies Theorem 3. Suppose that u is admissible and

lim sup
h→0

h
n−1

2 ‖uh‖L∞ 6= 0.

Then, there exist c > 0, hk → 0, xhk so that

|uhk(xhk)| ≥ ch−
n−1

2
k .

Since M is compact, by taking a subsequence, we may assume xhk → x. But then r(x, xhk) = o(1)
and since u is admissible at x, Theorem 4 implies

lim sup
k→∞

h
n−1

2
k |uhk(xhk)| = 0.

�

3. Proof of Theorem 4

In view of the above, it suffices to prove the local result: Theorem 4.

Proof. Fix T > 3δ > 0 and let ρ ∈ S(R) with ρ(0) = 1 and supp ρ̂ ⊂ (δ, 2δ). Let

S∗M(ε) := {(x, ξ); ||ξ|x − 1| ≤ ε}
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and χ(x, ξ) ∈ C∞0 (T ∗M) be a cutoff near the cosphere S∗M with χ(x, ξ) = 1 for (x, ξ) ∈ S∗M(ε) and
χ(x, ξ) = 0 when (x, ξ) ∈ T ∗M \ S∗M(2ε). Let χ(x, hD) ∈ Oph(C∞0 (T ∗M)) be the corresponding
h-pseudodifferential cutoff. Also, in the following, we will use the notation

Γx := supp µ|Λx,T
to denote the support of the restricted defect measure corresponding to the eigenfunction sequence
{uhj} in Theorem 3.

Then, we have

uh = ρ
( 1

2h
[−h2∆− 1]

)
uh =

∫
R
ρ̂(t)ei

t
2

[−h2∆−1]/hχ(y, hDy)uh dt+Oε(h
∞). (3.1)

3.1. Microlocalization to the flow out Λx. Set

V (t, x, y, h) :=
(
ρ̂(t)ei

t
2

[−h2∆−1]/hχ(y, hDy)
)

(t, x, y).

Then, by Egorov’s Theorem [Zwo12, Theorem 11.1]

WF ′h(V (t, ·, ·, h)) ⊂ {(x, ξ, y, η); (x, ξ) = Gt(y, η), ||ξ|x − 1| ≤ 2ε }. (3.2)

(see e.g. [DZ16, Definition E.37] for a definition of WF ′h).
Let bx,ε(x, hD) ∈ Oph(C∞0 (T ∗M)) be a family of h-pseudodifferential cutoffs with principal symbols

bx,ε ∈ C∞0 ({(y, η) | (y, η) = Gt(x0, ξ) for some (x0, ξ) ∈ S∗x0
M(3ε) with r(x, x0) < 2ε,

δ

2
< t < 3δ},

with

bx,ε ≡ 1 on {(y, η) | (y, η) = Gt(x0, ξ) for some (x0, ξ) ∈ S∗x0
M(2ε) with r(x, x0) < ε, δ < t < 2δ}.

By the definition of WF ′h together with (3.1) and (3.2), it follows that for r(x(h), x) = o(1),

uh(x(h)) =

∫
M
V̄ (x(h), y, h) bx,ε(y, hDy)uh(y)dy +Oε(h

∞), (3.3)

where,

V̄ (x(h), y, h) :=

∫
R
ρ̂(t)

(
ei
t
2

[−h2∆−1]/hχ(y, hDy)
)
(t, x(h), y) dt.

By a standard stationary phase argument,

V̄ (x, y, h) = h
1−n

2 e−ir(x,y))/ha(x, y, h) ρ̂(r(x, y)) +Oε(h
∞), (3.4)

where a(x, y, h) ∈ S0(1).

To see this, observe that by [Zwo12, Theorem 10.4]

V̄ (x, y, h) = (2πh)−n
∫
eiϕ(t,x,y,η)/h α(t, x, y, η, h)ρ̂(t)dηdt+O(h∞)

where b ∈ C∞c and ϕ solves

∂tϕ =
1

2
(|∂xϕ|2g(x) − 1), ϕ(0, x, y, η) = 〈x− y, η〉 (3.5)

In particular, for all (t, x, y, η), exp(tH 1
2
|ξ|2g)(∂ηϕ+ y, η) = (x, ∂xϕ). The phase function

ϕ(t, x, y, η) = 〈exp−1
y (x), η〉+

t

2
(|η|2y − 1)

satisfies (3.5).
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We next perform stationary phase in (t, η). First, observe that the phase is stationary at

exp(tH 1
2
|ξ|2g)(y, η) = (x, ∂xϕ), |∂xϕ|g(x) = 1.

In particular, t = r(x, y) and the geodesic through (y, η) passes through x. Since supp ρ̂ ⊂ (δ, 2δ),
by performing non-stationary phase, we may assume t ∈ (δ, 2δ) and hence δ < r(x, y) < 2δ. Then,
we observe that ∂2

(t,η)ϕ is non-degenerate for t ∈ (δ, 2δ). The solutions (tc, ηc) of the critical point

equations ∂tϕ = 0 and ∂ηϕ = 0 are given by

tc = | exp−1
y (x)| = r(x, y), ηc = −

exp−1
y (x)

r(x, y)
.

Consequently, (3.4) follows from an application of stationary phase. (see also [Sog93, Lemma 5.1.3]
or [BGT07, Theorem 4]).

Then, in view of (3.4) and (3.3),

uh(x(h)) = vh(x(h)) +Oε(h
∞)

vh(x(h)) = h
1−n

2

∫
δ
2
<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y, h)ρ̂(r(x(h), y)) bx,ε(y, hDy)uh(y)dy.

(3.6)

Now, note that for any ψ ∈ C∞0 (M),

vh(x(h)) = I1(x(h), h) + I2(x(h), h) (3.7)

where

I1 := (2πh)
1−n

2

∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y, h)ρ̂(r(x(h), y))ψ(y) (bx,ε(y, hDy)uh) dy

I2 := (2πh)
1−n

2

∫
δ/2<r(x,y)<2δ

e−ir(x(h),y)/ha(x(h), y, h)ρ̂(r(x(h), y)) (1− ψ(y)) (bx,ε(y, hDy)uh) dy.

Therefore, by Cauchy-Schwarz applied to I1 and I2,

|h
n−1

2 vh(x(h))| ≤ Cδ(‖ψ‖L2‖bx,ε(y, hDy)uh(y)‖L2 + ‖(1− ψ(y))[bx,ε(y, hDy)uh]‖L2).

Hence letting h→ 0 then ε→ 0, and using that (see for example [Zwo12, Theorem 5.1])

‖bx,ε(y, hDy)uh(y)‖L2 ≤ (sup |bx,ε|+ oε(1))‖uh‖L2

we have

lim sup
h→0

h
n−1

2 |uh(x(h))| ≤ Cδ
(
‖ψ‖L2 +

(∫
Λx,3δ\Λx,δ/2

(1− ψ(y))2dµ
) 1

2
)

(3.8)

3.2. Further microlocalization along suppµ|Λx. Let Hn be the n-dimensional Hausdorff mea-
sure on the flow out Λx. By assumption, Hn(supp µ|Λx) = 0. In view of the microlocalization above,
we are only interested in the annular subset

Ax(δ/2, 3δ) := Λx,3δ \ Λx,δ/2.

Since Hn is Radon, for any ε1 > 0, there exist n-dimensional balls B(rj) ⊂ Ax(δ/4, 4δ); j = 1, 2, ...
with radii rj > 0, j = 1, 2, ... such that

supp µ|Ax(δ/2,3δ) ⊂
∞⋃
j=1

B(rj), Hn
( ∞⋃
j=1

B(rj)
)
< Hn(supp µ|Ax(δ/2,3δ))+ε1.
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Note that for δ > 0 small enough, the canonical projection π : T ∗M → M restricts to a
diffeomorphism

π : Ax(δ/4, 4δ)→ {y ∈M ; δ/4 < r(x, y) < 4δ}.

Consider the closed set

K = π(supp µ|Ax(δ/2,3δ)) ⊂M

with open covering

G := π
( ∞⋃
j=1

B(rj)
)
, satisfying Hn(G) = Hn(K) +O(ε1). (3.9)

By the C∞ Urysohn lemma, there exists χΓx ∈ C∞0 (M ; [0, 1]) with

χΓx |K = 1, suppχΓx ⊂ G. (3.10)

(Note that χΓx depends on ε1, but we suppress this dependence to simplify notation.) We now
apply (3.8) with ψ = χΓx . First, observe that by (3.9) and (3.10)

‖χΓx‖L2 ≤
(
Hn(G)

)1/2 ≤ (Hn(K)
)1/2

+O(ε
1/2
1 ). (3.11)

Next, by construction, for all ε1 > 0,

(1− χΓx)(y) = 0, ∀y ∈ π( supp µ|Λx,4δ\Λx,δ/4)

and hence ∫
Λx,3δ\Λx,δ/2

(1− χΓx)2dµ = 0.

Using this together with (3.11) in (3.8) and sending ε1 → 0 gives

lim sup
h→0

h
n−1

2 |uh(x(h))| ≤ Cδ
(
Hn(π(supp µ|Ax(δ/2,3δ)))

) 1
2 ≤ C ′δ

(
Hn(suppµ|Ax(δ/2,3δ))

)1/2
. (3.12)

where the last inequality follows from the fact that π|A(δ/2,3δ) is a diffeomorphism. Finally, since
uh is admissible at x,

Hn(suppµ|Ax(δ/2,3δ)) = 0

finishing the proof.

Remark 3.1: For r(x(h), x) = o(1), the estimate

lim sup
h→0

h
n−1

2 |uh(x(h))| ≤ C ′δ
(
Hn(suppµ|Ax(δ/2,3δ))

)1/2

in (3.12) holds for any sequence of eigenfunctions with defect measure µ. It gives a quantitative
estimate relating the behavior of the defect measure to L∞ norms of eigenfunctions. This estimate
can also be obtained as a consequence of [Gal17, Theorem 2] by replacing the absolutely continuous
part of µ with 1suppµ|ΛxdH

n. �
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4. The example of zonal harmonics

Let (S2, gcan) be the round sphere and (r, θ) be polar variables centered at the north pole p =
(0, 0, 1) ∈ R3. The geodesic flow is a completely integrable system with Hamiltonian

H = |ξ|2g = ξ2
r + (sin r)−2ξ2

θ , r ∈ (0, π) (4.1)

and Claurault integral p = ξθ satisfying {H, p} = 0. The associated moment mapping is P =
(H, p) : T ∗S2 → R2 and the connected components of the level sets are, by the Liouville-Arnold
Theorem, Lagrangian tori Λc indexed by the values of the moment map (1, c) ∈ P(T ∗S2).

The associated quantum integrable system is given by the Laplacian ∆g and the rotation operator
hDθ. The corresponding L2-normalized joint eigenfunctions are the standard spherical harmonics
Y k
m with

−∆gY
k
m = k(k + 1)Y k

m, hDθY
k
m = mY k

m.

These eigenfunctions can be separated into various sequences (i.e. ladders ) associated with different
values (∈ P(T ∗S2); specifically, the correspondence is given by c = limm→∞

m
k ). The eigenfunctions

with maximal L∞ blow-up are the sequence of zonal harmonics given by

uh(r, θ) = Y k
0 (r, θ) =

√
2k + 1

2π

∫ 2π

0
(cos r + i sin r cos τ)kdτ ; h = k−1, k = 1, 2, 3, ... (4.2)

It is obvious from (4.2) that

|Y k
0 (p)| ≈ k1/2

and thus attains the maximal sup growth at p (similarily, at the south pole). At the classical level,
the zonals uh = Y k

0 concentrate microlocally on the Lagrangian tori Λ0 = P−1(1, 0). From the
formula (4.1) it is clear that away from the poles (where (r, θ) are honest coordinates),

Λ0 \ {±p} = {(r, θ, ξr = ±1, ξθ = 0), r ∈ (0, π)} ∼= S2 \ {±p}. (4.3)

The choice of ξr = ±1 determines the Lagrangian torus (there are two of them) and also, either
torus clearly covers the entire sphere. At the poles themselves, the projection πΛ0 : Λ0 → S2 has a
blowdown singularity with

π−1
Λ0

(±p) = S∗±(S2) ∼= S1. (4.4)

To see this, consider the behaviour at p (with a similar computation at −p). Rewriting the integral
in involution in Euclidean coordinates (x, y, z) ∈ R3 one has H = (xξy − yξx)2 + (xξz − zξx)2 +
(yξz − zξy)2 and ξθ = xξy − yξx. Setting H = 1, xξy − yξx = 0 and (x, y, z) = (0, 0, 1) gives

π−1
Λ0

(p) ∼= {(ξx, ξy) ∈ R2; ξ2
x + ξ2

y = 1}.

It is then clear from (4.3) and (4.4) that πΛ0 : Λ0 → S2 is surjective and a diffeomorphism away from
the poles (modulo choice of Lagrangian cover) and the fibres above the poles are S∗±(S2) ∼= S1. We
also note that the Lagrangian Λ0 = Λp,2π is the 2π-flowout Lagrangian of S∗p(S2) and the cylinder
Ap(δ/2, 3δ) is just a local slice of this Lagrangian.

The defect measure µ associated with the zonals is

dµ = |dθ1dθ2|,
where (θ1, θ2; I1, I2) ∈ R2/Z2×R2 are symplectic action-angle variables defined in a neighbourhood
of the Lagrangian torus Λ0 [TZ03]. One can choose one of the angle variables θ1 ∈ S∗p(S2) to
parametrize the circle fibre above p (a homology generator of the torus). Then, by the Liouville-
Arnold Theorem, the geodesic flow on the torus Λ0 = {I1 = c1, I2 = c2} is affine with

θj(t) = θj(0) + αjt, αj =
∂H

∂Ij
6= 0.
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It is then clear that

µ(Λp,δ) =

∫ 2π

0
dθ1 ·

∫
|t|<δ

α2dt ≈ δ 6= 0

and suppµ|Λp = Λp. Therefore, this case violates the assumption in Theorem 3 and that is of
course consistent with the maximal L∞ growth of zonal harmonics.

The analysis above extends in a straightforward fashion to the case of a more general sphere of
rotation [TZ03].

5. Eigenfunctions of Schrödinger operators

Consider a Schrödinger operator P (h) = −h2∆g + V with V ∈ C∞(M ;R) on a compact, closed
Riemannian manifold (M, g) and let uh be L2-normalized eigenfunction with

P (h)uh = E(h)uh, E(h) = E + o(1), E > minV, ‖uh‖L2 = 1. (5.1)

Any sequence uh of solutions to (5.1) has a subsequence uhk with a defect measure µ in the sense
that for a ∈ C∞0 (T ∗M)

〈a(x, hD)uh, uh〉 →
∫
T ∗M

adµ.

Such a measure µ is supported on {p = 0} and is invariant under the bicharacteristic flow Gt :=
exp(tHp).

In analogy with the homogeneous case, we define for x ∈M the time T flow out by

Λx,T,V :=
T⋃

t=−T
Gt(Σx)

where

Σx = {ξ ∈ T ∗xM | |ξ|2g + V (x) = E}.

Definition 5.1. Let Hn be n-dimensional Hausdorff measure on {|ξ|2g + V (x) = E} induced by
the Sasaki metric on T ∗M . We say that the sequence uh of solutions to (5.1) is admissible at x if
for any defect measure µ associated to the sequence, there exists T > 0 so that

Hn( supp µ|Λx,T,V ) = 0. (5.2)

With these definitions we have the analog of Theorem 3

Theorem 5. Let B ⊂ V −1(E) be a closed ball in the classically allowable region and µ be a
defect measure associated with the eigenfunction sequence uh. Then, if the eigenfunction sequence
is admissible for all x ∈ B in the sense of (5.2),

sup
x∈B
|uh(x)| = o(h

1−n
2 ).

Proof. In analogy with the homogeneous case [CHT15, Lemma 5.1], we have

ρ(h−1[P (h)− E]))(x, y) = h
1−n

2 a(x, y, h)e−iA(x,y)/h +R(x, y, h)

where A(x, y) ∈ [(2C0)−1ε, 2C0ε] for some C0 > 1 and is the action function defined to be the
integral of the Lagrangian L(x, ξ) = |ξ|2g − V (x) along the bicharacteristic in {p = E} starting at
(y, η) and ending at (x, ξ). For (x, y) in a small neighborhood of the diagonal, there is a unique such
η satisfying this condition. The remainder R(x, y, h) = O(h∞) pointwise and with all derivatives.
The proof then follows using the same argument as in the homogeneous case. �



10 JEFFREY GALKOWSKI AND JOHN A. TOTH

References
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