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Abstract. We give a quantitative version of Vainberg’s method relating pole free regions to
propagation of singularities for black box scatterers. In particular, we show that there is a
logarithmic resonance free region near the real axis of size τ with polynomial bounds on the
resolvent if and only if the wave propagator gains derivatives at rate τ . Next we show that if
there exist singularities in the wave trace at times tending to infinity which smooth at rate τ , then
there are resonances in logarithmic strips whose width is given by τ . As our main application
of these results, we give sharp bounds on the size of resonance free regions in scattering on
geometrically nontrapping manifolds with conic points. Moreover, these bounds are generically
optimal on exteriors of nontrapping polygonal domains.

1. Introduction

Let P be a self-adjoint compact perturbation of the Euclidean Laplacian, e.g. −∆ + V where
V ∈ L∞comp, −∆g for some metric gij = δij + hij with h a compactly supported metric, −∆D, the
Dirichlet realization of the Laplacian on Rd \ Ω, etc. In their seminal works Lax–Phillips [9] and
Vainberg [18] understood the relationship between propagation of singularities for the wave group
eit
√
P and pole free regions near the real axis for the meromorphic continuation of the resolvent

(P − λ2)−1 : L2
comp → L2

loc

from Imλ� 1. This relationship was extended to ‘black box’ perturbations in the work of Tang–
Zworski [17]. In the work of Vainberg and Tang-Zworski the authors show that if P is quantum
non-trapping, that is

χe−it
√
Pχ : L2 → C∞, t > T,

then there is an arbitrarily large logarithmic resonance free region. On the other hand Baskin–
Wunsch [1] work in the weakly non-trapping setting where for all N > 0 there exists TN > 0 so
that for all s ∈ R

χe−it
√
Pχ : Hs → Hs+N , t > TN

and show that there exists a logarithmic resonance free region. However, as far as the author is
aware, there has been no quantitative description of the relationship between the rate of smoothing
and the size of resonance free regions. The purpose of this paper is to demonstrate such a
quantitative relationship.

So that we may consider many different types of perturbation of the Euclidean Laplacian at
once, we work in the black box setting originally developed by Sjöstrand–Zworski in [13]. In
particular, the results apply to scattering in the presence of conic points [1, 4], by delta potentials
[5, 6], by bounded obstacles etc.
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1.1. Resonance free regions in the black box setting. We now recall the notion of a black
box Hamiltonian as in [3, Chapter 4]. Let HR0 be a Hilbert space and consider the Hilbert space,
H, with orthogonal decompostion

H := HR0 ⊕ L2(Rd \B(0, R0))
for some R0 > 0. We assume that P : H → H is self-adjoint with domain D ⊂ H satisfying

1Rd\B(0,R0)D = H2(Rd \B(0, R0)), 1Rd\B(0,R0)P = −∆|Rd\B(0,R0))

1Rd\B(0,R0)(P + i)−1 is compact, P ≥ −C.
We denote by

Bloc := B ∩ (HR0 ⊕H2
locB(0, R0)), Bcomp := B ∩ (HR0 ⊕H2

comp(Rd \B(0, R0)))
where B ⊂ H. Next denote for s ≥ 0

Ds := {u ∈ H | (2C + P )(s−2)/2u ∈ D},
so that D0 = H and let
(1) R :=

{
R | R : D−∞ → D∞comp

}
denote the class of residual operator. Here, D−s for s ≥ 0 is defined by duality.

Under these hypotheses,
RP (λ) := (P − λ2)−1 : Hcomp → Hloc

admits a meromorphic continuation from Imλ � 1 to C when d is odd and to the logarithmic
cover of C \ {0} when d is even (see for example [3, Chapter 4]). Let

U(t) := sin t
√
P√

P

where we use the spectral theorem to define U(t). In the context of black box Hamiltonians, when
we write χ ∈ C∞c (Rd), we will implicitly assume that χ ≡ 1 on B(0, R0) and define

χu := χ1Rd\B(0,R0)u⊕ 1B(0,R0)u.

Here, if u = (u1, u2) ∈ H = HR0 ⊕H2(Rd \B(0, R0)),
1B(0,R0)u := (u1, 0)

is the orthogonal projection onto HR0 . With this in mind we have the following quantitative
version of the Vainberg method.

Theorem 1. Let P be a black box Hamiltonian. Fix R1 > R0. Suppose that for all N > 0, there
exists TN > 0 so that for all χ ∈ C∞c (Rd) with suppχ b B(0, R1) and s ≥ 0,

(2) χU(t)χ : Ds → Ds+N+1, t ≥ TN .
Let

TR1,N = inf{T ′N > 0 | (2) holds for TN}
and

T̄ := lim
N→∞

TR1,N

N
= inf

N>0

TR1,N

N
.
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Then for all δ > 0, there exists λ0 > 0 so that for all χ with suppχ b B(0, R1)
Rχ(λ) := χRP (λ)χ

continues analytically from Imλ > 0 to the region

Imλ >

{
−(T̄−1 − δ) log Reλ, |Reλ| > λ0, T̄ 6= 0
−δ−1 log Reλ, |Reλ| > λ0, T̄ = 0.

Moreover, there exist Cj , B > 0,

‖Rχ(λ)‖Dj ≤ Cj |λ|
j−1eB| Imλ|, j = 0, 1

in this region.

Remark 1.

• The sequence 0 ≤ TR1,N is subadditive (see Section 2.1) so the limit T̄ ≥ 0 exists and has

T̄ = inf
N>0

TR1,N

N
.

• Notice also that if there exists χ ∈ C∞c (Rd) so that for all N > 0, there exists TN > 0 so
that for s ≥ 0

χU(t)χ : Ds → Ds+N , t ≥ TN ,
then the assumptions of Theorem 1 are satisfied for any R1 > R0 so that B(0, R1) ⊂
{|χ| ≥ c > 0} with TR1,N = TN .
• It is not hard to see using propagation of singularities on Rd that for R2 ≥ R1, TR2,N ≤
TR1,N +CR1,R2 where CR1,R2 depends only on R1 and R2. Therefore, T̄ is independent of
the choice of R1 and the existence of such a TR1,N for some R1 > R0 implies the existence
for all R1 > R0.

In fact, we also have the following converse theorem.

Theorem 2. Suppose that for some χ ∈ C∞c (Rd), λ0 > 0, L,C, T > 0, M > 0, Rχ(λ) continues
analytically to the region

{|Reλ| > λ0 , Imλ > −L log |Reλ|}
with the estimate
(3) ‖Rχ(λ)‖L2→D1 ≤ C|λ|MeT | Imλ|

in this region.
Then for all N > 0, s > 0,

χU(t)χ : Ds → Ds+N+1, t ≥ TN
where

TN = N +M + T + 2
L

In particular,
T̄ = lim

N→∞

TN
N

= 1
L
.

Combining Theorems 1 and 2 gives the following corollary.
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Corollary 1.1. Suppose that for some χ ∈ C∞c (Rd), λ0 > 0, L,C, T,M > 0, Rχ(λ) continues
analytically to the region

{|Reλ| > λ0 , Imλ > −L log |Reλ|}
with the estimate

‖Rχ(λ)‖L2→D1 ≤ C|λ|MeB| Imλ|

in this region. Then for all δ > 0, there exists λδ, Cδ, Tδ > 0 so that in the region

{|Reλ| > λδ , Imλ > −(L− δ) log |Reλ|}

we have the estimate

‖Rχ(λ)‖L2→Dj ≤ Cδ|λ|j−1eBδ| Imλ|, j = 0, 1

1.2. Existence of resonances in the black box setting. We make assumptions (see for
example [3, Section 4.3] or [16] for d odd and [20, 21] for d even) so that the wave trace is defined
as a distribution and so that there are polynomial bounds on the number of resonances. To do
this, we introduce a reference operator P ] defined as follows. Let

TdR1 := Rd
/
R1Zd , R1 > R0

and
H]R1

:= HR0 ⊕ L2(TdR1 \B(0, R0))
where we identify B(0, R0) with its projection onto the torus. Define
(4)
D]R1

:=
{
u ∈ H]R1

| χ ∈ C∞c (B(0, R1)), χ ≡ 1 near B(0, R0)⇒ χu ∈ D, (1− χ)u ∈ H2(TdR1)
}
.

Then P ]R1
: D]R1

→ H]R1
and for any χ as in (4),

P ]R1
u = P (χu) + (−∆)(1− χ)u.

We assume that there exists n] ≥ d so that

(5)
∣∣∣Spec(P ]) ∩ [−r2, r2]

∣∣∣ ≤ C0r
n] , r ≥ 1.

Now, let
Λ := {z | RP (λ) has a pole at z}.

Then under the assumption (5) we have for any a > 0

# {λ ∈ Λ | |λ| ≤ r, | arg λ| ≤ a} ≤ Crn] .

The following theorem is implicitly proved in [5, Chapter 6] and is a simple consequence of
[12, Theorem 10.1] (see also [14, Theorem 1]) together with the Poisson formulae of [15, 22]. For
simplicity, we use the half-wave propagator

W (t) := e−it
√
P , W0(t) := e−it

√
−∆Rd ,

but all of our results work equally well when W (t) and W0(t) are replaced by U(t) and U0(t).
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Theorem 3. Let

N(r, ρ) := # {λ ∈ Λ | |Reλ| ≤ r, Imλ ≥ −ρ log |Reλ|} .

and as in [22]

u(t) := tr(W (t)− 1Rd\B(0,R0)W0(t)1Rd\B(0,R0)) + tr 1B(0,R0)W0(t)1B(0,R0).

Suppose there exists {Tk}∞k=1, so that Tk →∞, and for each k there exist Nk > 0, Ck > 0 so that
for all ϕ ∈ C∞c (R) supported sufficiently close to Tk with ϕ(Tk) = 1,

|ϕ̂u(τ)| ≥ Ck|τ |−Nk , |τ | ≥ 1.

Let

T̄ := lim inf
k→∞

Tk
Nk

.

Then for all ε, δ > 0 small enough there exist R0 > 0 and c > 0 so that for r > R0

cr1−ε ≤


N(r, T̄−1 + δ) 0 < T̄ <∞
N(r, δ−1) T̄ = 0
N(r, δ) T̄ =∞.

1.3. Applications to scattering on manifolds with conic points. The main application of
our results is to scattering on manifolds with conic points. In [1] and [4] the Baskin–Wunsch and
Ford–Wunsch respectively analyze the singularities of the wave group and the wave trace. We use
these results together with Theorems 1 and 3 to give a generically optimal bound on the size of
the resonance free region for scattering on a manifold with conic singularities. In particular, let
X be a non-compact manifold with conic singularities so that there exists K b X with X \ K
isometric to Rd \B(0, R0) for some R0 > 0. Assume further that

(1) X is geometrically nontrapping
(2) No three cone points are collinear
(3) No two cone points are conjugate

Condition (1) above asserts that for each compact set K ⊂ M , there is a time T ≥ 0 such that
classical particles starting at x0 ∈ K have x(t) /∈ K for t ≥ T . This assumption is non-generic,
but it is the natural situation in which there are logarithmic resonance free regions. Indeed, in
the presence of trapping, there are typically resonances much closer to the real axis [3, Chapter
6]. Conditions (2) and (3) above are generically satisfied for manifolds with cone points and
impose respectively that no geometric geodesic hits three cone points and a certain transversality
condition between manifolds associated to cone points (see Section 5.1 for precise versions of these
assumptions).

Let {xi}Ni=1 be the cone points in X and

Dmax = sup
i,j

sup {t | there is a geometric geodesic of length t connecting xi and xj} .

Then under the assumptions (1)-(3),
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Theorem 4. For all χ ∈ C∞c (X), and δ > 0, there exists λ0 > 0, C > 0, B > 0 so that the
cut-off resolvent

Rχ(λ) := χ(−∆g − λ2)−1χ : L2 → L2

can be analytically continued from Imλ > 0 to{
|Reλ| > λ0 , Imλ > −

(
d− 1

2Dmax
− δ

)
log |Reλ|

}
and

‖Rχ(λ)‖L2→L2 ≤ C|λ|−1eB| Imλ|

in this region.

Moreover, this theorem is optimal. Suppose that in addition to the assumptions above, we
impose the following generic property

(4) the length spectrum of closed diffractive geodesics consists of only simple, isolated points.

We need a few more definitions before stating our next theorem. We denote by SD, the set of
strictly diffractive geodesics (see Definition 5.3) and by SD+ ⊂ SD, the set of strictly diffractive
geodesics whose diffraction coefficient, Dγ , (See equation (19)) is nonzero. Finally, for a closed
geodesic, let Nγ denote the number of cone points through which γ diffracts. Here, if γ ends (and
hence begins) at a cone point, we count that point only once. Then define

D+
max := sup

{
t

N

∣∣∣∣ there exists γ ∈ SD+ closed with length t and Nγ = N

}
.

Let Λ denote the set of poles of Rχ(λ). Under assumptions (1)-(4), we have the following theorem
of Hillairet–Wunsch [8].

Theorem 5 (Hillairet–Wunsch [8]). Suppose that D+
max 6= −∞ and let

N(r, ρ) := # {λ ∈ Λ | |Reλ| ≤ r, Imλ ≥ −ρ log |Reλ|} .

Then for all ε, δ > 0 there exists R0 > 0 and C > 0 so that for R > R0

N

(
r,
d− 1

2D+
max

+ δ

)
> cr1−ε.

In particular, there exists a sequence {λn}∞n=1 ⊂ Λ so that

Reλn →∞,
− Imλn

log |Reλn|
→ d− 1

2D+
max

.

Note that as in [1], Theorems 4 and 5 apply in the setting of scattering in the exterior of a
polygonal domain in R2. In particular,

Corollary 1.2. If X = R2 \ Ω is the exterior of a nontrapping polygon where no three vertices
are colinear and ∆ is the Dirichlet or Neumann extension of the Laplacian, then the results of
Theorem 4 hold for the resolvent on X. If in addition, the length spectrum is simple and discrete,
then the results of Theorem 5 hold.
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A result of Hillairet [7, Section 3.2], shows that generically on Euclidean surfaces with cone
points SD+ = SD and so D+

max = Dmax. In particular, this holds on surfaces none of whose
cone points have cone angles equal to 2π/k for some k ∈ Z+. Thus, when applying Theorem 5
to obtain Corollary 1.2, we see that if none of the angles of the polygons are equal to π/k, then
Dmax = D+

max and hence the corollary gives matching bounds from above and below on the size
of resonance free regions.

More generally, the diffraction coefficient Dγ depends only on the structure of the links of
the cones, (Yα, hα), with which γ diffracts. Thus, the result of Hillairet applies to any manifold
with cone points whose links are circles. As alluded to in [2], one expects that for generic Yα,
|Dγ | 6= 0 and hence that D+

max = Dmax. However, notice that the case D+
max = −∞ may occur.

For example, on Euclidean surfaces with cone points if all cone points have cone angle 2π/k then
D+

max = −∞.
We conjecture that SD+ = SD unless there is a cone point whose link is a circle of length 2π/k

or a sphere of radius 1. However, we do not pursue that in this article and the author is not aware
even of a proof that SD+ = SD generically.

1.4. Application to scattering by delta potentials. Although we will not present the proof
in detail since the results are contained elsewhere, we point out that that one can also recover a
weaker version of [5, Theorem 5.2] from the analysis in [5, Chapter 6]. In particular,

Theorem 6. Let Ω b Rd be strictly convex with smooth boundary and V ∈ C∞(∂Ω) (independent
of λ). Then for all χ ∈ C∞c (Rd) and δ > 0, there exists λ0 > 0, C,B > 0 so that the resolvent

Rχ(λ) := χ(−∆ + δ∂Ω ⊗ V − λ2)χ
has an analytic continuation to the region{

|Reλ| > λ0 , Imλ > −
( 1
DΩ
− δ

)
log |Reλ|

}
where DΩ := diam(Ω) and

‖Rχ(λ)‖L2→L2 ≤ C|λ|−1eB| Imλ|

in this region.

This result is also generically optimal by [5, Theorem 6.1] which we repeat here for the conve-
nience of the reader. For a generic set of Ω and V , letting Λ denote the set of poles of Rχ(λ), we
have the following theorem.

Theorem 7. Let
N(r, ρ) := # {λ ∈ Λ | |Reλ| ≤ r, Imλ ≥ −ρ log |Reλ|} .

Then for all ε, δ > 0 there exists R0 > 0 and C > 0 so that for R > R0

N

(
r,

1
DΩ

+ δ

)
> cr1−ε.

In particular, there exists a sequence {λn}∞n=1 ⊂ Λ so that

Reλn →∞,
− Imλn

log |Reλn|
→ 1

DΩ
.
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1.5. Organization of the paper. The paper is organized as follows. In Sections 2, 3, and 4 we
prove respectively Theorems 1, 2, and 3. We then give the applications to scattering on manifolds
with conic points in Section 5.
Acknowledgemnts. The author would like to thank Andras Vasy and Maciej Zworski for
encouragement and valuable suggestions. Thanks also to Jared Wunsch and Luc Hillairet for
their comments and reading of an earlier version as well as discussion about Theorem 5 and to the
anonymous referees for their careful reading and many helpful comments. The author is grateful
to the National Science Foundation for support under the Mathematical Sciences Postdoctoral
Research Fellowship DMS-1502661.

2. Proof of Theorem 1

All of the essential elements are contained in [1, Proposition 8] [3, Section 4.6] [19]. In order
to prove Theorem 1, one need only keep track of various constants in those arguments.

Let
(Ft→λf)(λ) :=

∫
e−itλf(t)dt

denote the Fourier transform mapping S ′ → S ′. Then the inverse Fourier transform is given by

(F−1
t→λg)(t) := 1

2π

∫
eitλg(λ)dλ.

We will use [1, Lemma 6], repeated here for the convenience of the reader,

Lemma 2.1. Suppose that H1 and H2 are Hilbert spaces and N(t) : H1 → H2 is a family of
bounded operators having k continuous derivatives in t when t ∈ R and being analytic in t for
Re t > T > 0, and equal to 0 on t < 0. Suppose that there are constants j0, k ≥ j0 + 2 and Cj so
that for 0 ≤ j ≤ k,

(6)
∥∥∥∂jtN(t)

∥∥∥ ≤ Cj |t|j0−j , Re t > T.

Then the operator
Ň(λ) = F−1

t→λN(t) : H1 → H2, Imλ > 0
continues analytically to the domain −3π

2 < arg λ < π
2 and when |λ| > 1 has

‖Ň‖ ≤ Cj |λ|−jeT | Imλ|, j = 0, . . . k

Proof. Since Ň grows at most polynomially in t and is supported int {t ≥ 0}, it depends analyti-
cally on Imλ ≥ 0. Moreover, for 0 ≤ j ≤ k,

Ň = (−iλ)−j
∫ ∞

0
eiλt∂jtN(t)dt.

Then, define the contours Γ± in the t- plane consisting of [0, T ]∪[T, T±i∞). Then when j ≥ j0+2,

Ň = (−iλ)−j
∫

Γ+
eiλt∂jtN(t)dt 0 < arg λ < π

2(7)

Ň = (−iλ)−j
∫

Γ−
eiλt∂jtN(t)dt π

2 < arg λ < π(8)
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The equation (7) can be continued to Reλ ≥ 0 and (8) to Reλ < 0. The estimates follow easily
from these equations. �

We now prove Theorem 1

Proof. Fix χ ∈ C∞c (Rd) with χ ≡ 1 on B(0, R0), suppχ b B(0, R1), N > 0. Then by assumption,
there exists TR1,N so that for all s ≥ 0

χU(t)χ : Ds → Ds+N+1, t ≥ TR1,N .

Let χi ∈ C∞c (B(0, R1)), i = 0, . . . 3 with χ1 = χ and χiχi+1 = χi+1. Next, define the cutoff
ρ(t, x) so that ρ|B(0,R0) = ρ(t), 0 ≤ ρ ≤ 1, and

ρ(t, x) =
{

1 t ≤ |x|+ TR1,N

0 t ≥ |x|+ TR1,N +R0 + 1.
Then, since

χ0U(t)χ : Ds → Ds+N+1

for t ≥ TR1,N and any singularities in (1 − χ0)U(t)χ not having the same smoothing property
must be outgoing, the propagation of singularities theorem for the wave equation on Rd implies
that

(1− ρ)U(t)χ : Ds → Ds+N , t ≥ 0.
For g ∈ L2, consider ρU(t)χg. Then, letting � := ∂2

t + P , and �0 := ∂2
t −∆,{

�ρU(t)χg = [�, ρ]U(t)χg,
ρU(0)χg = 0, DtρU(0)χg = χg.

Then define
F (t)g := [�, ρ]U(t)χg = −�(1− ρ)U(t)χg.

Notice that F vanishes identically on t < TR1,N and by our assumption

F (t)g ∈ C0(Rt;DN−1) ∩ CN−1(Rt;D0).
Moreover, F (t)g has compact support in t for any fixed x. In particular,

suppF (t)g ⊂ {|x|+ TR1,N ≤ t ≤ |x|+ TR1,N +R0 + 1}.

Now, define an approximate resolvent
R1(λ) = F−1

t→λ(ρH(t)U(t)χ),
where H(t) denotes the Heavisde function. Then

∂2
t [H(t)U(t)χg] = H(t)∂2

t U(t)χg + δ(t)χg
and hence

(P − λ2)R1(λ)g = F−1(�ρH(t)U(t)χg)
= F−1(H(t)�U(t)χg −�(1− ρ)H(t)U(t)) + χg

= F−1(F (t)g)(λ) + χg

where we have used that suppF (t) ⊂ {t ≥ 0}.
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t

|x|

t = TN

t = TN +R0 +Dχ

|x| = R1|x| = R1

supp ∂ρ

ρ ≡ 0

ρ ≡ 1

U(t)χ ∈ Ds+N+1

U(t)χ /∈ Ds+N+1

suppχ

Figure 2.1. We show support of χ and ρ where suppχ is given by the dashed
box. We also show the propagation of Ds+N singularities for t ≥ TN .

Next, write
Fg = χ2F (t)g + (1− χ2)F (t)g =: F1g + F2g.

R1(λ) is not yet accurate enough to complete the proof. We must add a piece living only on Rd.
For this, let W (t) denote the solution to

�0W (t)g = −F2g, W (0)g = DtW (0)g = 0.
Observe that

−F2g = �0χ3W (t)g +�0(1− χ3)W (t)g = −[∆, χ3]W (t)g +�0(1− χ3)W (t)g
Then, define a better approximation of the resolvent as

R2(λ) = R1(λ) + F−1
t→λ((1− χ3)W (t)).

Then since P = −∆ on supp(1− χ3),
(P − λ2)R2(λ)g = χg + F−1(F (t)g +�0(1− χ3)W (t)g)

= χ
(
I + F−1(χ2F (t) + [∆, χ3]W (t))

)
g

So,

(9) R2(λ) = R(λ)χ
(
I + F−1(χ2F (t) + [∆, χ3]W (t))

)
.

We have the following estimates.
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Lemma 2.2. Let T ′R1,N
= TR1,N +R0 + 2R1 + 3, then

‖χR1(λ)‖L2→Dj ≤ Cj,1|λ|
j−1e

T ′R1,N
| Imλ|

, j = 0, 1(10) ∥∥∥F−1χF
∥∥∥
L2→L2

≤ Cj,2|λ|−je
T ′R1,N

| Imλ|
, j = 0, 1, . . . , N − 1(11) ∥∥∥F−1χ(1− χ3)W

∥∥∥
L2→Dj

≤ Cj,3|λ|j−1e
T ′R1,N

| Imλ|
, j = 0, 1(12) ∥∥∥F−1[∆, χ3]W

∥∥∥
L2→L2

≤ Cj,4|λ|−je
T ′R1,N

| Imλ|
, j = 0, 1, . . . , N − 1(13)

Remark 2. We will also justify taking the Fourier transform in the process of proving Lemma 2.2.

Proof. To obtain estimates (10) and (11), we simply write the inverse Fourier transform,

χR1(λ) = 1
2π

∫ ∞
0

χρU(t)χeitλdt.

Then for t > T ′R1,N
, ρχ = 0 and hence (10) with j = 1 follows from the energy estimate for the

wave equation and with j = 0 follows after an integration by parts in t. The estimate (11) follows
after observing that

suppχF ⊂ {TR1,N ≤ t ≤ T ′R1,N}
and that we can integrate by parts up to N − 1 times.

For the estimates (12) and (13), we write
(14) W (t) = (1− χ2)ρH(t)U(t)χg −H(t)U0(t)(1− χ2)χg + q(t, z)
where U0(t) = sin t

√
−∆/

√
−∆ is the free wave propagator. Then,

�0q = �0W − (1− χ2)�(ρH(t)U(t)χg) + [�0, χ2]ρH(t)U(t)χg +�0H(t)U0(t)(1− χ2)χg
= −F2g − [∆, χ2]ρH(t)U(t)χg − (1− χ2)(�(ρU(t)χg) + δ(t)χg) + δ(t)(1− χ2)χg
= −(1− χ2)Fg + (1− χ2)F − [∆, χ2]ρH(t)U(t)χg
= −[∆, χ2]ρH(t)U(t)χg

and
q(0, x) = Dtq(0, x) = 0

Notice that
(15) supp[∆, χ2]ρH(t)U(t)χ ⊂ (R× suppχ) ∩ {0 ≤ t ≤ TR1,N +R1 +R0 + 1}.

Now, let E+(t) denote a forward fundamental solution for �0 on Rd. Then

χ(x)q(t, x) = −
∫ t

0
χ(x)E+(t− s) ∗ [∆, χ2]ρU(s)χgds.

We first observe that (15) implies that q(t, x) ≡ 0 on t ≤ 0. Moreover, for d odd, the strong
Huygens’ principle implies that suppχq ⊂ {t ≤ T ′R1,N

− 1}.
If d is even, then we no longer have the strong Huygens’ principle. However, for t ≥ T ′R1,N

− 1,
the support of the right hand side is disjoint from the singular support of χE+. Thus

χ(x)q(t, x) = cdχ(x)
∫ ∞

0

∫
Rd

((t− s)2 + |x− y|2)
1−d

2 ([∆, χ2]ρU(s)χg(y))dyds.
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In particular, χq is analytic for t > T ′R1,N
− 1 and has for some j0,

(16)
∥∥∥∂jtχq∥∥∥D1

≤ Cjtj0−j‖g‖H, t ≥ T ′R1,N − 1, j ≥ 0.

Similarly,
χU0(t)(1− χ2)χg = χ(E+ ∗ (1− χ2)χg)

is analytic with polynomial bounds on its first derivative for t > T ′R1,N
− 1. In particular, it

satisfies for some j0,

(17)
∥∥∥∂jtχU0(t)(1− χ2)χg

∥∥∥
D1
≤ Cjtj0−j‖g‖H, t ≥ T ′R1,N − 1, j ≥ 0.

To see (13), observe that [∆, χ3](1 − χ2) ≡ 0 so the first term in (14) vanishes. Moreover, W
has N − 1 continuous derivatives as a map into L2 and we have seen (by (16) and (17)) that the
surviving terms in (14) satisfy (6) with T = T ′R1,N

and any j. Hence, (13) holds by Lemma 2.1.
Finally, we need to obtain (12). For this observe that the first term in (14) has the required

estimate by (10). Next, consider
B(t)g := (1− χ3)(χq + χH(t)U0(t)(1− χ2)χg).

Let ψ ∈ C∞c (R) have ψ ≡ 1 on {|t| ≤ T ′R1,N
− 1} with suppχ ⊂ {|t| ≤ T ′R1,N

}. Then the estimate
for F−1((1−ψ(t))B(t)) follows from Lemma 2.1. The estimate for F−1(ψ(t)B(t)) follows similar
to (10) since ∂jtB(t) : H → D1−j , j = 0, 1 are continuous on t > 0. �

Now, we use estimates (10) to (13) in (9) to complete the proof of Theorem 1. The estimates
(10) and (12) imply

‖χR2(λ)‖L2→Dj ≤ Cj |λ|j−1e
T ′R1,N

| Imλ|
, j = 0, 1.

Fix δ, δ1 > 0. To prove the required estimates on χR(λ)χ, we only need to show that

‖F−1(χ2F (t) + [∆, χ3]W (t))‖L2→L2 < 1− δ1.

For this, we simply look for λ with |λ| ≥ 1 and

(C1,N−2 + C2,N−2)|λ|−N+1e
T ′R1,N

| Imλ|
< 1− δ1.

That is, for |λ| ≥ 1 and

| Imλ| < (N − 1) log |λ| − log(C1,N−2 + C2,N−2) + log(1− δ1)
T ′R1,N

.

(18) ‖χR(λ)χ‖L2→Dj ≤ Cjδ−1
1 |λ|

j−1e
T ′R1,N

| Imλ|
, j = 0, 1.

Now, we can take log λ0 > δ−1(log(C1,N−2 + C2,N−2) + log(1− δ1)) to obtain that on{
|Reλ| > λ0 | | Imλ| <

(
N − 1
T ′R1,N

− δ
)

log |Reλ|
}

(18) holds. Taking N large gives the result since either T̄ = 0 in which case (N − 1)/T ′R1,N
→∞

or T̄ > 0 in which case (N − 1)/T ′R1,N
→ T̄−1. �
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2.1. Subadditivity of TR1,N . Let

U(t) =
(
∂tU(t) U(t)
−PU(t) ∂tU(t)

)
.

Then, U(t) forms a one parameter group of operators.
Let χ2 ∈ C∞c (Rd) (as above) have suppχ ⊂ {χ2 ≡ 1} and suppχ2 b B(0, R1). Then,

U(t)χ = (1− χ2)U(t)χ+ χ2U(t)χ.
So, for t > TR1,N ,

χU(t)χ = χU(t− TR1,N )(1− χ2)U(TR1,N )χ+ χU(t− TR1,N )χ2U(TR1,N )χ.

By propagation of singularities for the wave equation on Rd and the fact that
WF((1− χ2)U(TR1,N )χ) ⊂ {(t, z, τ, ζ) | |z| > R0, 〈z, ζ/τ〉 > 0}.

is outgoing the first term maps into D∞ ⊕ D∞ for t > TR1,N . For the second term, we see that
for t > TR1,N + TR1,M , and s ∈ R,

χ2U(t− TR1,N )χ1 : Ds ⊕Ds−1 → Ds+M ⊕Ds+M−1.

Moreover,
χ2U(TR1,N )χ ∈ mcDs ⊕Ds−1 → Ds+N ⊕Ds+N−1

by assumption. Thus, for t > TR1,N + TR1,M ,

χU(t)χ : mcDs ⊕Ds−1 → Ds+M+N ⊕Ds+M+N−1

and hence
χU(t)χ : Ds → Ds+N+M+1, t > TR1,N + TR1,M

and TR1,N is subadditive.

3. Proof of Theorem 2

We first prove a lemma that allows us to trade powers of λ for regularity. Let RP (λ) :=
(P − λ2)−1 as in the introduction.

Lemma 3.1. Suppose that
‖χ(RP (λ)−RP (−λ))χ‖H→Dj ≤ C〈λ〉M+jeT | Imλ|, j = 0, 1.

Then for all s, r ≥ 0,
‖χ(RP (λ)−RP (−λ))χ‖Ds→Ds+r ≤ C〈λ〉M+reT | Imλ|.

Proof. First, observe that
Pχ(RP (λ)−RP (−λ))χ = λ2χ(RP (λ)−RP (−λ))χ− [∆, χ]χ(RP (λ)−RP (−λ))χ

Notice that [∆, χ] : Ds → Ds−1 so,

‖χ(RP (λ)−RP (−λ))χ‖Ds→Dr+s+2 ≤ C〈λ〉2‖χ(RP (λ)−RP (−λ))χ‖Ds→Dr+s

+ C‖χ(RP (λ)−RP (−λ))χ‖Ds→Dr+s+1 .
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Similarly,

χ(RP (λ)−RP (−λ))χP = λ2χ(RP (λ)−RP (−λ))χ− χ(RP (λ)−RP (−λ))χ[∆, χ]

so,

‖χ(RP (λ)−RP (−λ))χ‖Ds+2→Dr+s ≤ C〈λ〉−2 (‖χ(RP (λ)−RP (−λ))χ‖Ds→Dr+s

+C‖χ(RP (λ)−RP (−λ))χ‖Ds+1→Dr+s) .

The claim then follows by induction and interpolation. �

To prove Theorem 2, we use an argument similar to that used to prove a resonance expansion
in [3, Theorem 2.7, 4.42], [17].

First recall that by the spectral theorem together with the description of the spectrum of black
box Hamiltonians, (see for example [3, Theorem 4.5]) and that by assumption χRP (λ)χ is analytic
in

{Imλ ≥ 0, |Reλ| ≥ R}
we have

U(t)χg =
K∑
k=1

sin tµk
µk

vk〈χg, vk〉+
∫ ∞

0

sin t
√
z√

z
dEz(χg)

=
K∑
k=1

sin tµk
µk

vk〈χg, vk〉+
∫ R2

0

sin t
√
z√

z
dEz(χg) +

∫ ∞
R2

sin t
√
z√

z
dEz(χg)

= I + II + III

where µ2
k are the eigenvalues of P with vk the corresponding normalized eigenfunctions. Here

we choose R > 0 so that there are no poles of (P − λ2)−1 on R \ (−R,R). This is possible by
assumption. Now, notice that since vk ∈ Ds for all s,

‖I‖Ds ≤ CN‖g‖D−N .

Similarly, ∫ R2

0

sin t
√
z√

z
dEz : D−N → D∞

for all N and χ : Ds → Ds for all s. Therefore,

‖II‖Ds ≤ CN‖g‖D−N

and we need only consider III.
Now, using Stone’s formula (see for example [3, Theorem B.8]),

dEz = 1
2πi((P − z − i0)−1 − (P − z + i0)−1)dz.

Then, making the change of variables, z = λ2, we have

dEz = 1
πi

(RP (λ+ i0)−RP (−λ+ i0))λdλ.
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where RP (λ) = (P − λ2)−1. Then

III = 1
2π lim

ε→0+

∫ ∞
R

(
e−itλ − eitλ

)
χ(RP (λ+ iε)−RP (−λ+ iε))χgdλ

= 1
2π

∫
ΣR

e−itλχ(RP (λ)−RP (−λ))χgdλ

where ΣR := R \ (−R,R).
Let

IΣg := 1
2π

∫
Σ
e−itλχ(RP (λ)−RP (−λ))χdλ.

In order to justify the convergence of IΣεg, we take g ∈ DM+2. Then Lemma 3.1 implies the
integral is norm convergent in L2. We will be able to conclude using the fact that DM+2 is dense
in Ds for all s ≤M + 2.

We deform the contour to ΣR,log := γ± ∪ γ± log where

γ± = {±R− it | 0 ≤ t ≤ L log |R|}, γ± log = {±t− iL log |t| | R ≤ t <∞}

Now, we have chosen R > λ0 so that on

{|Reλ| > λ0 , Imλ > −L log |Reλ|}

‖χRPχ‖ ≤ C|λ|MeT | Imλ|.

Then by the norm convergence of the integral over ΣR we can deform the contour to IΣRg =
IΣR,logg. We first estimate

‖Iγ±g‖Ds+N ≤ C
∫ L log |R|

0
〈R〉M+NeTλ‖g‖Dsdλ ≤ CR‖g‖Ds .

Finally,

‖Iγ± logg‖Ds+N ≤ C
∫ ∞
R

e−tL log λλM+NeT log λ‖g‖Ds ≤ C
∫ ∞
R

e(M+N+T−tL) log λdλ‖g‖Ds

This integral converges precisely when

t >
M +N + T

L
= TN −

1
L
.

This completes the proof of the theorem when s ≥ M + 2 and for s ≤ M + 2, the density of
DM+2 ⊂ Ds completes the proof of the theorem.

4. Lower bounds on the number of resonances in logarithmic regions

We now prove Theorem 3. We have made assumptions so that wave trace of our problem,

u(t) = trW (t)−W0(t) ∈ D′(R)

is well defined.

Remark 3. Notice that this is not quite the actual definition of the wave trace since the operators
act on different spaces. See the statement of Theorem 3 for the precise formula.
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By [12, 15, 22], we see that for ϕ ∈ C∞c ((0,∞)),

ϕ(t)u(t) =
∑
λ∈Λγ

m(λ)e−iλ|t|ϕ(t) + OC∞(1) ,

where
Λγ := {λ ∈ Λ | Imλ ≥ −γ|λ|}.

Moreover, by assumption, we have that for any a > 0, there exists C > 0 so that

#{λ ∈ Λ | |λ| ≤ r, | arg λ| ≤ a} ≤ Crn] .
By assumption, for all ϕ ∈ C∞c ((0,∞)) supported sufficiently close to Tk with ϕ(Tk) = 1,

|ϕ̂u(τ)| ≥ Ck|τ |−Nk .
Therefore, by [12, Theorem 10.1] (see also [14, Theorem 1]) for sufficiently small ε > 0, δ > 0 and
any ρ > (n] −Nk)/(Tk − ε2), there exist r0 > 0 such that

N(r, ρ) > r1−δ, r > r0.

Now, letting k →∞ proves the theorem since Tk →∞.

5. Distribution of resonances in scattering in the presence of conic points

We now give the application of Theorems 1 and 3 to scattering in the presence of conic singu-
larities. For this, we recall the notation and results from [1].

5.1. Geometric setup. Let X be a smooth noncompact manifold with boundary, ∂X = Y ,
K a compact subset of X and g a Riemannian metric on Xo such that X \ K is isometric to
Rd \B(0, R0) for some R0 > 0 and such that g has conic singularities at the boundary of X i.e.

g = dx2 + x2h(x, dx, y, dy)
where g is nondegenerate on Xo and h|∂X induces a metric on ∂X. We let P = −∆g be the
Friedrichs extension of −∆g from C∞c (Xo). Then P is a black box Hamiltonian as described in
the introduction and satisfies the assumptions of Theorem 3.

Let Yα, α = 1, . . . N denote the connected components of Y . We call these the cone points of
the manifold since viewed in the manifold X with metric g, they reduce to single points. Then,
let M := R×X denote the spacetime manifold.

Now, let XFsα denote the set of bicharacteristics in T ∗Xo whose continuations forward and
backward in time reach Yα in time |t| ≤ s. It will sometimes be useful to refer to the incoming and
outgoing parts of XFsα where the incoming and outgoing parts are given by the bicharacteristics
whose forward, respectively backward, continuation reaches Yα. We write Fsα for the corresponding
set in T ∗Mo i.e. the time s flow out from the boundary Y . The manifolds XFsα and Fsα are
coisotropic manifolds respectively in T ∗Xo and T ∗Mo.

Next we define the notion of a diffractive geodesic.

Definition 5.1. A diffractive geodesic on X is a union of a finite number of closed, oriented
geodesic segments γ1, . . . , γN in X such that:

(1) all end points except possibly the initial point of γ1 and the final point of γN lie in Y
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(2) γi ends at the same boundary component as γi+1 begins for i = 1, . . . , N − 1.

For such a geodesic, the number of cone points through which γ diffracts is given by
Nγ := N

Next, we define the notion of a geometric geodesic.
Definition 5.2. A geometric geodesic on X is a diffractive geodesic such that in addition the
final point of γi and the initial point of γi+1 for i = 1, . . . , N − 1 are connected by a geodesic of
length π in a boundary component Yα with the metric hα = h|Yα .

Geometric geodesics are those that are locally realizable as limits of of families of geodesics in Xo

as they approach a given boundary component [1, Proposition 1].
Definition 5.3. A diffractive geodesic is strictly diffractive if for i = 1, . . . , N − 1, the final point
of γi, yi and the initial point of γi+1 have dhαi (yi, yi+1) 6= π.

For each component of Y , Yα, let −∆α denote the Laplacian on Yα with respect to the metric
hα := h|Yα . Then define the operators as in [4],

να :=

√
−∆α +

(2− d
2

)2
, Dα := e−iπνα .

Then for a strictly diffractive geodesic, γ, let yi ∈ Yαi be the final point of γi and xi ∈ Yαi be the
initial point of γi+1. We define the diffraction coeffiction of γ by

(19) Dγ :=
N−1∏
i=1
|KDαi (xi, yi)|

where KDαi is the Schwartz kernel of Dαi .
We can now write our assumptions for Theorem 4 more precisely

(1) Let Ω ⊃ K be open with X \ Ω isometric to Rd \ B(0, R1) for some R1 > 0. We assume
that there exists T0 > 0 so that any geometric geodesic starting in S∗KXo leaves Ω in time
less than T0.

(2) No geometric geodesic passes through three cone points.
(3) No two cone points Yα and Yβ are conjugate to one another along geodesics in S∗Xo of

lengths less than T0 in the sense that whenever s+ t ≤ T0, Fsα intersects F tβ transversally
for each α, β.

Remark 4. The third assumption is called non-conjugacy because by [1, Proposition 6] the non-
transversal intersection of Fsα and Fsβ is equivalent to the existence of a geodesic γ with γ(0) ∈ Yα,
γ(t′) ∈ Yβ with (t′ < s+ t) and a normal Jacobi field W along γ so that W is tangent to both Yα
and Yβ.

Throughout this section, it will be crucial to use the propagation of singularities theorem on
manifolds with conic points due to Melrose–Wunsch [11, Theorem 1.1], originally observed in the
case of product cones by Cheeger–Taylor [2] (see also the more general setting of edge manifolds
in Melrose–Vasy–Wunsch [10]). We state this theorem only informally and refer the reader to the
original paper for the precise statement.
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Theorem 8 (Melrose–Wunsch [11]). Suppose that u solves
(∂2
t −∆g)u = 0.

Then WF(u) is contained in a union of maximally extended diffractive geodesics.

5.2. Proof of Theorem 4. Fix χ ∈ C∞c (X) with χ ≡ 1 on K. Then let K1 be a compact
set containing suppχ. By assumption, there exists T0 such that any geometric bicharacteristic
starting in suppχ leaves K1 in time T0.

We now decompose U(t) as in [1, Section 3]. Let
Dmin := min

α,β
d(Yα, Yβ).

Then fix δA � 1, δψ � Dmin and let ψα ∈ C∞c (X) with
ψα ≡ 1 on {d(x, Yα) < δψ/4}, suppψα ⊂ {d(x, Yα) < δψ}.

Next, let ϕ ∈ C∞(X) equal to 1 outside of Ω and have ϕ ≡ 0 on suppχ. Finally, let Aj (j =
1, . . . , N) be a pseudodifferential partition of I−

∑
ψα−ϕ in which each Aj has diam(WF(Ai)) <

δA with respect to some metric on S∗X and WF(Ai) ⊂ K1. In particular, so that we have

I −
∑
α

ψα − ϕ−
∑
i

Ai ∈ Ψ−∞comp(Xo)

where Ψ−∞comp denotes the set of compactly supported smoothing pseudodifferential operators.
We first consider the wave propagator precomposed with a cutoff away from the cone points.

To do this, we decompose U(t) into operators of the form
TJ := Aj0U(t0)Aj1U(t1) . . . AjkU(tk)Ajk+1

where J = (j0, . . . jk+1) is a word. We say that J is diffractively realizeable (DR) if there are points
pl ∈ WF(Al), pl+1 ∈ WF(Al+1), j = 1, . . . k so that pl and pl+1 are connected by a diffractive
geodesic of length tl. Similarly, we say that J is geometrically realizeable (GR) if there are points
pl ∈WF(Al) and pl+1 ∈WF(Al+1), j = 1, . . . k so that pl and pl+1 are connected by a geometric
geodesic of length tl.

Recall the definition of the space R given in (1). Then we have the following properties of TJ
[1, Section 3]

Lemma 5.1. (1) If the word J is not DR then TJ ∈ R.
(2) There exists δA small enough so that if t0 + t1 + . . . dk > 2T0, then the word J =

(j0, . . . , jk+1) is not GR.

(3) If δA is sufficiently small and J = ijkl where jk is GR and ij, jk, and kl all interact with
cone points then TJ ∈ R.

It will be convenient to have notation for singularities that leave K1 and never return. For this
let

O := {(t, z, τ, ζ) ∈ T ∗(M \ (R× Ω)) | 〈z, ζ/τ〉 > 0}
be the outgoing set. It is not hard to see that the set O is mapped to itself by the positive time
geodesic flow and any bicharacteristic starting in suppχ that escapes Ω lies in O over X \Ω. We
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define L2Hs(O) to be the set of distributions whose wavefront set lies in O and lie in L2([0, T ];Hs).
We now prove our main lemma which is a slight improvement on [1, Lemma 5]. Let

Dmax := max
α,β

sup{t | Yα, Yβ are connected by a geometric geodesic of length t}.

Note that Dmax < ∞ since it is clearly bounded by T0. Thus, by [1, Proposition 3], Dmax is
achieved by some geometric geodesic connecting Yα and Yβ for some α, β.

Lemma 5.2. For all N > 0, there exist δA, δψ sufficiently small so that for each m and s and
all t > (N + 3)Dmax + 2T0 + 100 =: TN

U(t)Am : Ds → L2Ds+N(d−1)/2−0 + L2Hs(O).

Here u ∈ Dr−0, we mean that u ∈ Dr−ε for any ε > 0.

Proof. First note that if all diffractive geodesics starting from WF(Am) leave Ω in time t <
2T0 +NDmax, then the result holds by Lemma 5.1.

Remark 5. Note that since Am is a pseudodifferential operator, we are abusing notation slightly
and writing WF(Am) ⊂ T ∗Xo (rather than WF′(Am) ⊂ T ∗Xo × T ∗Xo) for the wavefront set of
such an operator.

Therefore, we may assume this is not the case and hence that some geodesic hits a cone point
within time T0. Let s0 denote the first time at which a cone point is reached from WF(Am).
Then in time s0 + 3δψ, this bicharacteristic is at least 2δψ away from ∂X (here we may take
δψ smaller if necessary). Therefore, taking δA small enough, and applying the propagation of
singularities (Theorem 8) we see that any singularity starting within δA of this one is propagated
by U(s0 + 3δψ) to a distance greater than δψ and less than 4δψ from the boundary and hence
either U(TN )Am has range in Hs(O) or there exists t0 < T0 such that

U(t0)Am =
∑
l

AlU(t0)Am mod R.

Now, we may remove all of the A′ls so that lm is not DR since they produce terms in R. For
those that are DR, we have seen that d(Yα,WF(Al)) < 4δψ. Now, repeating this argument, we
have
(20) U(TN )Am =

∑
U(TN − t0 − t1 − · · · − tk)Ajk+1U(tk)AjkU(tk−1) . . . Aj1U(t0)Am + E +R

where all of the words J = (m, j1, . . . , jk+1) are DR with
δψ < d(Yα,WF(Ajk)) < sup{d(Yα, y) | y ∈WF(Ajk)} < 4δψ

for some α, E : Ds → Hs(O) and R ∈ R.
Fix ε > 0. Then for δψ small enough each ti < Dmax +ε. Indeed, if ti ≥ Dmax +ε, then there are

two cases. Either jiji+1. interacts with more than one cone point or all bicharacteristics starting
in WF(Aji) leave Ω. By construction jiji+1 interacts with only one cone point. Therefore, we
must have that all bicharacteristics starting in WF(Aji) leave Ω and hence terms like this can be
absorbed into the operator E.

Now, as in [1], we associate a string of D’s and G’s to each word signifying a diffractive
interaction and geometric interaction respectively.
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Lemma 5.3. Suppose that J is a word containing containing k + 1 consecutive D′s. Then
TJ : Ds → Ds+k(d−1)/2−0

where we say that u ∈ Ds−0 if u ∈ Ds−ε for all ε > 0.

Proof. For k = 1, this lemma is proved in the course of the proof of [1, Lemma 5]. Since proving
it for k > 1 involves only small adjustments, we omit the proof here.

�

We now show that the sum (20) contains only words with N + 1 consecutive D’s. To see this,
first observe that by Lemma 5.1, no strings of the form DGD, GGD, DGG, GGG occur in the
sum. Therefore, a word of length N + 3 occurring in (20) must contain at least N + 1 consecutive
D’s and all that remains to show is no words of length less than N + 3 may occur.

Suppose that there is a word J , in (20) so that |J | = k + 1 < N + 4. Then, since each of
ti < Dmax + ε,

TN − t0 − t1 − · · · − tk > 2T0 + 100 + (N + 3− k − 1)Dmax − kε > 2T0 + 100.
Hence, since singularities in TJ do not interact with another cone point (or there would be another
letter in J), U(TN − t0 − t1 − · · · − tk)TJ maps singularities to O.

This completes the proof of Lemma 5.2 since every term in U(TN )Am either sends singularities
to O or smooths them by N(d− 1)/2− 0 derivatives. �

We now complete the proof of Theorem 4 by showing
Lemma 5.4. Fix N > 0 and let TN be as in Lemma 5.2. Then for all t > TN + 1 and s ∈ R,

χU(t)χ : Ds → Ds+N(d−1)/2−0.

Note that then applying Theorem 1 gives Theorem 4.

Proof. First, write
(21) χU(t)χ =

∑
j

χU(t)χAj +
∑
α

χU(t)χψα.

Then the first term has the desired mapping properties by Lemma 5.2. To handle the second
term, we pick

2δψ < τ < min(Dmin/50, 1).
Then by the propagation of singularities (Theorem 8), if WF(v) ⊂WF(ψα), then for all β,

ψβU(τ)v ∈ D∞.
Thus,

U(τ)v −
∑
j

AjU(τ)v ∈ L2D∞ + L2Ds(O)

and the second term in (21) has∑
α

∑
j

χU(t− τ)(AjU(τ)χψα) mod R.

Then, applying Lemma 5.2 with t > τ + TN completes the proof. �
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5.3. Proof of Theorem 5. To prove Theorem 5, we simply apply [4, Main Theorem] together
with Theorem 3. Fix δ > 0 and let ε > 0 to be chosen small enough (depending on δ). Since
D+

max 6= −∞, 0 < D+
max ≤ Dmax < ∞ and there exists a closed strictly diffractive geodesic

γ ∈ SD+ with Nγ = k ≥ 2, with length l > k(D+
max − ε). Hence, there exists γ1 ∈ SD+ with

Nγ = Nk and length Nl. Thus, by [4, Main Theorem] for ϕ ∈ C∞c (R) supported sufficiently near
t = Nl with ϕ(Nl) = 1, and |τ | ≥ 1,

| ̂ϕ(t)u(t)(τ)| ≥ c|τ |−Nk(d−1)/2

where u(t) is as in Theorem 3. Applying Theorem 3 gives that for any ε1 > 0 there exists c > 0
such that

N

(
r,

d− 1
2(D+

max − ε)
+ ε

)
≥ N

(
r,

(d− 1)k
2l + ε

)
≥ r1−ε1 .

Hence, taking ε small enough depending on δ proves Theorem 5.
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[15] J. Sjöstrand and M. Zworski. Lower bounds on the number of scattering poles. II. J. Funct. Anal., 123(2):336–
367, 1994.

[16] P. Stefanov. Sharp upper bounds on the number of the scattering poles. J. Funct. Anal., 231(1):111–142, 2006.
[17] S.-H. Tang and M. Zworski. Resonance expansions of scattered waves. Comm. Pure Appl. Math., 53(10):1305–

1334, 2000.
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