THE L? BEHAVIOR OF EIGENFUNCTIONS NEAR THE GLANCING SET
JEFFREY GALKOWSKI

ABSTRACT. Let M be a compact manifold with or without boundary and H C M be a smooth, interior
hypersurface. We study the restriction of Laplace eigenfunctions solving (—h2Ag — 1)u = 0 to H. In
particular, we study the degeneration of u|f as one microlocally approaches the glancing set by finding
the optimal power sg so that (1 +h2AH)j_O u| g remains uniformly bounded in L2(H) as h — 0. Moreover,
we show that this bound is saturated at every h-dependent scale near glancing using examples on the disk
and sphere. We give an application of our estimates to quantum ergodic restriction theorems.

1. INTRODUCTION

Let (M, g) be a compact Riemannian manifold with or without boundary. We consider the eigenvalue
problem

(=Ay = X)u; =0 on M

(uj, uk) = bjk

Bu; =0 on OM.
Here, A, is the negative Laplacian, (u,v) denotes the L? inner product on M, and either Bu = u for Dirich-
let eigenvalues or Bu = 0, u for Neumann eigenvalues. Our main goal is to give a precise understanding of
the concentration of such eigenfunctions on hypersurfaces. We say that H C M is an interior hypersurface

if it is a smooth embedded hypersurface with d(H,0M) > 0. For convenience, we write \; = h;l and
U; = Uhj~

Sharp LP bounds for eigenfunctions restricted to hypersurfaces have been studied by Burq—Gerard—
Tzvetkov, Hassell-Tacy, Tacy, and Tataru [BGT07, [HT12, [Tacl0, [Tat98|]. In particular, these works show
that

h=/* H general

) 20y < C
(1) lulerllzz ey < {hl/6 H is curved

where we say H is curved if it has positive definite second fundamental form. Optimal bounds for restric-
tions of normal derivatives of eigenfunctions of the form

2) 180y ul a2y < ©

were given by Christianson-Hassell-Toth and Tacy in [CHT14, [Tacl4]. Heuristically, h0,,u ~ (1 +

thH)i/ 2u, where Ay denotes the (negative definite) Laplace—Beltrami operator on H, so the bound
roughly says that

(3) (1 + thH)—li-/QMH”L?(H) <C
and in fact, the bound is an easy consequence of [CHT14l Section 4]. Here,

(x)i _ {xs x>0

0 x<0.
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When H = OM, concentration questions have been addressed in Barnett—Hassell-Tacy and Hassell-Tao
[BHT15, HT02, [HTI10]. In particular, for respectively Dirichlet and Neumann eigenfunctions we have the
sharp estimates

ROy ulonr|l L2 onr) < C, [uloar || L2 oary < CR™Y3.
Moreover, in [BHT15] the authors show that for Neumann eigenfunctions

(4) (1 + h2 Do)y *ulonl| L2 oary < C.

The authors also show that the power 1/2 in is optimal in the sense that manifolds M with Neumann
eigenfunctions such that replacing 1/2 by p < 1/2 may result in an L? norm that is not uniformly bounded.
In particular, they prove this for certain Q € R? with smooth boundary.

1.1. Results. This raises the question of whether the power 1/2 in is optimal. We will see that the
optimal power is 1/4 for interior hypersurfaces. Throughout the rest of the paper, we use the notation a+
or a— to mean that a statement holds respectively with a replaced by a + € and a — € for any € > 0. When
we use this notation, all constants may depend on the € chosen. Throughout, we will also assume that H
is closed in order to define Ay and functions thereof. However, notice that if H is not closed, we may
extend it to a closed interior hypersurface H and do our analysis there.

Theorem 1. Let M be a manifold with or without boundary and H C M be an interior hypersurface.
Then if H is curved or H is totally geodesic

H(1 + hQAH)L/‘”mH‘ < Cy.

L2(H) ~

For the definition of a totally geodesic hypersurface see . Theorem [1] is actually a consequence of our
next theorem (together with ) which applies to more general hypersurfaces.

Before stating our next theorem, we introduce some notation for a regularization of (1 + h2A )% Let
X1, X2 € C°(R) with x; =1 on [2,00), supp x1 C [1,00) and x1 + x2 = 1. Let
S S g yS e S g
(5) G5 (0) =i (15) . G5 (0) = h"xa (1)
G"*(0) =G (0) + G5 (o).
We define G£*(1 + h?Ap) using the functional calculus.

Theorem 2. Let M be a manifold with or without boundary and H C M be an interior hypersurface.
Then

|| @+ m2am)ulu| < Cullogh™)/?

L?(H)

|[G351 4 1+ w2 < Oy

ul
L2(H)
and

H [Gi“*v*l/‘*(l + hQAH)] ha,,Hu|H‘ < Cr(logh~1)1/?

L2(H)
|[G2/5 74 1+ w2 bl |

< Ch.
L?(H)

If H is nowhere tangent to the geodesic flow to infinite order,

e O eV "

H [Gf/?’_’l/‘l(l +h2AH)} hE)VHu|HH + H {Gf/?”l/‘”(l +h2AH)}hayHu|HH <Oy,
L2(H) L2(H)
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Moreover, if H is totally geodesic, then

et st 6174 0 28],

L2(H) ~

<Cy.

H [G}7771/4(1 + hQAH)} ha”Hu|HHL2(H) * H [G}ﬁl/ﬁ(l + hQAH)]ha”HulH‘ L2(H)

The power 1/4 in Theorem [2| is optimal in the sense that replacing 1/4 by s < 1/4 may result in an
L? norm that is not uniformly bounded as h — 0. Moreover, the power 1/4 is optimal at every scale. In
particular, letting p = 2/3 if H is not totally geodesic and 1 otherwise, for each 0 < p; < pa < p, we give
examples (H,uy) so that

||Glf’s(1 + hQAH)l[l,hm,17}1/72](—hQAH)uh‘HHLz(H) > Chp2(8_1/4).
Since 1/4 in Theorem [2] is strictly less than the power 1/2 in , just as with unweighted L? bounds,

weighted L? bounds are less singular on interior hypersurfaces than on boundaries.

Remark 1. We conjecture that for general H,
IGHY 41+ W Ap)ul gl 2 < Cr,

but our techniques showing the equivalence of microlocalization on H and microlocalization on M fail at
scale h?/3 unless H is totally bicharacteristic.

More generally, we consider a semiclassical pseudodifferential operator P with real principal symbol,
p(z,§). Let
Ly = {€ | p(20,€) = 0} C T M}
We assume that

p(20,€0) =0 = 9ep(wo,&0) # 0, lim |p(z,§)] = o0
(6) [€]g—o0

Yz, has positive definite second fundamental form and is connected for each .

Remark 2. The assumption that ¥, be connected is not essential, but we make it to simplify the presen-
tation.

Furthermore, we say that H is curved if the projection of the bicharacteristic flow is at most simply
tangent to H. That is, for any defining function r for H,

(7) p(xo,80) = r(w0) = Hpr(zo,&) =0 = Hr(xzo,&) # 0
where H), denotes the Hamiltonian vector field of p. We say that H, is tangent to H to infinite order at
(z0,&o) if for all k > 0,

p(x0,&) = r(z0) = HYr(x0,%0) = 0.
Finally, let ®, : T*M — T*M be the Hamiltonian flow of p given by ®,(z,§) = exp(tH,)(x,&). We say
that H is totally bicharacteristic near (xq,&o) if

(8)  plxo,&0) = r(zo) = Hpr(zo,&) =0 = ®yr(xg,&) = 0 for ¢t in a neighborhood of 0.

Let m: Tj; M — T* H be given by orthogonal projection and v denote a fixed normal to H. Let
¥ :={p=0}, G:=Xn{d,p=0}, Yo :=m(X2), Go :=m(G) = 0%.
(For the fact that under (6)), 0¥ = Gy, see Section [d])

Recall that a defining function for a submanifold N is a function, » which has N = {r = 0} and dr # 0
on N.
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Definition 1.1. We say that b € S™(T*H;R) defines G if b is a defining function for Gy, b > 0 on 3¢ \ Go,
and [b] > ¢(¢')™ > 0on ||, > M.

Let vy : u — u|g denote the restriction operator. Theorem [2| is then an easy consequence of the
following theorem.

Theorem 3. Let M be a manifold with or without boundary, Suppose that H C M is an interior hyper-
surface and that P has principal symbol p satisfying @ Suppose that b € S™(T*H) defines Gyo. Then
there exists € > 0 small enough so that for ¥ € S with ¥(0) =1 and supp ¢ C [—¢, €] we have

a_ P
HG?“ YA (b(a!, hDy ) )yt () < Cy(logh™1)'/2

h L2(M)—L?(H)
P
HG?/371/4+(b(I/’th/))va <h> < CH,
L2(M)—L2(H)

< Cp(logh™)'?,

_ P
HG?“ VA, hDy )y Byp(a hD) ()
L2(M)—L?(H)

h

< (Cy.

_ P
|67 0 D)yt e (1)
L2(M)—L?(H)

If H is nowhere tangent to H, to infinite order, then

HG?/ S b WD) Yy (5 )

+
L2(M)—L2(H)

o P
HG?”’ YA (b2, hDy )y 0up(a, RD )W (h>

<Cuy,

P
‘G?/3,1/4+ (b($l7 hDT/))’YHw (h)
L2(M)—L2(H)

<CH7

L2(M)—L2(H)

P

HGi/ SV (42! WD, )y Dyl hD)Y () < Cu,

h )\ 2= L2

and if H is totally bicharacteristic, then

HG%‘” "(b(a’, hDa)yyar (f )

+ et o npae (1)

< Chy,
L2(M)—L?(H) L2(M)—L?(H)

S CH7
L2(M)—L2(H)

|6t ot wp )y mo e 0y ()

<Cy.

_ P
HG}’ VA (o, kD)) v Dopla, DY ( ) <
L?2(M)—L?(H)

h

Furthermore, the power 1/4 is sharp in the sense for any power less than 1/4, examples exists where these
operators are not uniformly bounded in h.

We say that u is compactly microlocalized if there exists x € C2°(R) such that
w = x(hD],)u + O (h).
Here, x(|hD|y) denotes a quantization of x(|¢]) (see Section [2). We say that w is a quasimode for P if
[ Pullp2(ary = O(h)||ull L2(ar).-

Combining Theorem [3| with the the analog of the estimates (I}) for quasimodes gives
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Corollary 1.1. Let M be a manifold with or without boundary and H C M be an interior hypersurface.
Then if H is curved,

P
‘G2/3’1/4+(b(a:’, hDa)) v () < Cu,
b )\ 2oy L2
and if H is totally bicharacteristic,
P
GHY Y (b(2!, hDy ) )y <) < Cy.
h )1l L2 ()= L2 (m)

Finally, we give an application of our estimates to quantum ergodic restriction theorems. Let ¥ (M)
denote the set of semiclassical pseudodifferential operators (see Section . We say that a sequence of
eigenfunctions of the Laplacian, uy, is quantum ergodic if for all A € ¥ (M),

) = s [ (W) (e s

where g, is the Liouville measure on S* M. By the now classical quantum ergodicity theorem of Shnirelman
ISni74], Colin de Verdiere [CAV8H], Zelditch [Zel87], and Zelditch-Zworski [ZZ96], if the (broken) geodesic
flow on M is ergodic, than there is a full density subsequence of eigenfunctions which is quantum ergodic.

More recently, there has been interest in quantum ergodic properties of restrictions of eigenfunctions.
Dyatlov—Zworski [DZ13], and Toth—Zelditch [TZ12] [TZ13] showed that, under an asymmetry condition on
H, there is a further full density subsequence of uy, such that for A € U(H),

o [ e )0 - ) e
B*H

9) (Aup|m, un|m) — m

Moreover, Christianson—Toth—Zelditch [CTZ13] show that without the need to make an additional asym-
metry condition or to take a further full density subsequence

4
(10) (AR, i, By unlar) + (1 + B2 A ) Aun i, wnl) — W/B*HJ(A),/I—K’@dxdg’.

One should notice that there is an extra factor of (1 +h%Ag) in the second term of when compared
to @ This is due to the fact that (even quantum ergodic) eigenfunctions may have bad concentration
properties near trajectories tangent to the hypersurface H. However, Theorem [3| gives us uniform control
over how bad this concentration may be and as a consequence, we can reduce the number of factors of
(1 + h%2Apg) required.

Theorem 4. Suppose that uy, is quantum ergodic and A € W (H). Then for all s < 1/2,

(G2375(1 4+ B2 A ) ARy, un, hOy, un) + (G235 (1 4+ W2 A ) Aup| i, un | 1)

. / / /2—s /
o [ o - e

1.2. Outline of the proof of Theorem To prove Theorem we start by proving estimates on

restrictions of normal frequency bands of ¢)(P/h). In particular, let v be a fixed conormal to H. Then we
use [Tacl4] to obtain estimates on

(522 1)

Observe that P
P’(/) (h) == OL2—>L2(h‘)

L2(M)—L2(H) '



6 JEFFREY GALKOWSKI

and since {£ | p(xo,&) = 0} is compact for all zg, there exist x € C°(R) such that

(1= 2101 (7 ) = Oc= (1)

Therefore, to obtain the estimates on , we need only prove estimates for quasimodes.

Our next task is to give restriction estimates on normal frequency bands of u. In particular, let x €
C(R) with supp x C [1/2,4]. Using [Tacl4l Proposition 1.1], we show that for h > h,

(avp(xa hD)) u = 0L2(H)(B71/4)~

(12) hl/2

To deduce Theorem 3| from , we need to show that for a quasimode of P, microlocalization at scale
h'/? away from G in the ambient manifold passes to i microlocalization away from the Gy after composition
with g . Because of the square root singularity in 7 : 3 — ¥ near Gy, we need to use the second microlocal
calculus from [SZ99| [SZ07]. More precisely, we show that for x, € C°(R) with suppx, C [1,2], there
exists x € C°(R) such that

a (1 x (2772 o (P55 0 ()

is negligible (see Figure for a schematic view of the various microsupports). This will only be possible
when h > h?/3 unless H is totally bicharacteristic. Finally, to complete the proof of Theorem [3| we use
an almost orthogonality argument.

{p=0}— b(a',¢)

>
>
=
Il
—

> Vp($7 5)

Vi Vi

-— —>

Supp Xv Supp Xv

FIGURE 1.1. The figure shows the supports of the various pseudodifferential cutoffs in .

1.3. Organization of the paper. In Section [2| we review some facts from the second microlocal calculus
of [SZ99, [SZ07]. In Section [3} we adapt Tacy’s methods [Tacl4] for our purposes. Next, in Section [4] we
examine the geometry of Gy, G, 3, and ¥ for general Hamiltonians p. Then, in Section |5, we prove that
small scale microlocalization in T* M|y away from G passes to small scale microlocalization in T* H away
from Gy. Next, in Section [6] we complete the proof of the main theorem. In Section [7] we show that
the power 1/4 cannot be improved. Finally, in Section (8] we prove Theorem |4| as an application for our
estimates.

ACKNOWLEDGEMNTS. The author would like to thank Suresh Eswarathasan for the many stimulating
discussions that started this project and for his careful reading of an earlier version of this paper. Thanks
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to the National Science Foundation for support under the Mathematical Sciences Postdoctoral Research
Fellowship DMS-1502661.

2. SECOND MICROLOCALIZATION AT A HYPERSURFACE

In this section, we review the necessary results from the second microlocal calculus associated to a
hypersurface from [SZ99, [SZ07] where one can find more details. Throughout, let (M, g) be a compact
Riemannian manifold of dimension d with T*M its cotangent bundle.

2.1. The basic calculus. Here, we collect some facts from the standard semiclassical calculus (see [Zwol2]

Chapter 4], [DS99| Chapter 7] for more details). We first introduce symbol classes. For § < 1/2,
SFHT*M) := {a € C®(T*M) | 020 a] < Cagh™2UeIHIED ()11}

where () := (1+ |£|3)1/2. We also define an & class of symbols when § = 1/2.

Sm

Doi(T™M) i= {a € C(T"M) | |070; a] < Cagh™ 3 (AHEDRI 3l (gym =121},

Remark 3. Note that throughout this paper symbols may implicitly on h.

Then, the corresponding h-Weyl pseudodifferential operators are operators that in local coordinates
have Schwartz kernels of the form

1 [ ey, (T
Kq(z,y) = (QWh)d/eh< J7£>a< y,g h) dg.

Here, the integral is defined as an oscillatory integral (see [Zwol2l Section 3.6]). We write Opppa(a) for
the operator with Schwartz kernel K.

Then we have the following lemma in local coordinates [Zwol2, Theorems 4.11,4.12,9.5]
Lemma 2.1. For 0 <§<1/2, a € Sy (T*R?), and b € S{"*(T*R?)
Othd (a) Othd (b) = Othd (C)

where
c= eihU(Dng,Dy,Dn)ﬂa(m,g)b(y’ n) omy € Sg%1+m2 (T*Rd)
§=n
o(z,&y,m) Zyzfz L;1);.
Moreover, for § <1/2, or a € ST be ST | ¢ has an asymptotic expansion

1/2 R’ 1/2,h

e~ 3 (0D, De, Dy D) fal, 00y, 1) =

|
r g127
In particular, if suppa Nsuppb = 0, then
c=0(h=({)™®),  e¢=0(R>(E)).

respectively for a,b € S* and a,b € S§ for § < 1/2.

1/2,h

Moreover, we have the following boundedness lemma [Zwo12, Theorems 4.23, 8.10]
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Lemma 2.2. There exists a constant M, such that for all s, a € S?}Q(T*Rd)

| Opnga(a)ullas < C | Y hl/Zsup|o®a(x, £)(€) | [l grgm
la|<Md

where
[ull ey == [IhD) ul| 2.

For 0 <6 <1/2, let U5(M) denote the class of pseudodifferential operators with symbol in S§*(T*M)
(see for example [DZ, Appendix E] [Zwol2, Chapter 14]) and define a global quantization procedure and
symbol map

Opn(a) : S§* — W (M), o : WP (M) — Sy (T*M)/h' =2 hST—1(T* M)
so that for b real, Opy(b) is symmetric, and
Opu(1) =Td, ooOp, =7

where 7 is the natural projection map. When it is convenient, we will sometimes write a(x, hD) for Opy(a).

2.2. Second microlocal operators along a hypersurface, ¥. We now review calculus of second mi-
crolocal pseudodifferential operators associated to a hypersurface (see [SZ99, [SZ07] for a more complete
treatment). Let ¥ C T*M be a compact embedded hypersurface with M a manifold of dimension d. For

0<§<1, wesay that a € S;lt’ski(T*M) if

near X : Vi ...V, Wi ... Wiya = O(h=%2hk2(h—hd(%,-))*),
(14) where V; ...V}, are tangent to X

and Wi ... W, are any vector fields

away from ¥ : 9907 a(z, £) = O((h=°h)k (§)k=~181),
k1,k2
” 2.8,k
on h for § = 1. To define a class of operators associated to these symbol classes, we proceed locally and
put ¥ into the normal form ¥ = {& = 0}. Let a = a(z, £, \; h), A = hh~%¢; be defined near (0,0) so that

near g becomes
(15) 0508 05a = (A k.
If holds, we write

where we take h = 1 if § < 1 and write S (T*M) and h small with A chosen small enough depending

a=O0(NM).
For such a, we define the quantization
P~ 1 Tty oz i
Opy, (a)u(z) := ) /a ( o &R h) e Yy (y)dyde.

Then, using Lemma [2.1} we see that

Lemma 2.3. For 0 <46 <1, a=0O((\*), and b= O((\)*2). Then,
Oph,ﬁ(a)OPh,ﬁ(b) = Oph,ﬁ(c)
where

. T =6 73 —6
¢ — @tho(De,hh™°Da4De, D¢, Dy b Dw+Dn1,Dn/)/2a(1,7£’)\)b(

Yo, w)|a=y = O((A)FH52)).

=y
§=n
A=w



THE L? BEHAVIOR OF EIGENFUNCTIONS NEAR THE GLANCING SET 9
Moreover, ¢ has an asymptotic expansion

i hi . S .
¢~ Z ol [(0(Dy, hh™°Dy + D¢, , D¢r, Dy, hh™° Dy, + Dy, , D)) (a(z, €)b(y, n))] yz
A

10
g3

J
In particular, if suppa Nsuppb = 0, then
c=O(h™(R'=0)=(X)~).

—~—

For an operator Ophﬁ(a), we define its principal symbol by the equivalence class of a in
O((N*) /ORI 2 ()81,
The L? boundedness for second microlocal operators follows easily from Lemma

Lemma 2.4. For a = O((\)¥') with bounded support in &, there exists C > 0 such that

10y 1 (@)ull 2 < Ch=3maxEL0) ||

Proof. We have
10y, i (@)llz2- 2 < [ Op((aly, hg, B0 R&1)) |2 e
< S 10%a(y, hn, bR
la]<Md

where the last line follows by Lemma [2.2 applied with h = 1. O

The class
k —_ ~
Uy s(RY) = {Opy(a) [ a = O((N)™)}
is invariant under conjugation by h-Fourier integral operators preserving 3.

We say that A = B microlocally on an open set U C T*M if for any a,a’ € C2°(T*M) supported in a
small enough neighborhood of U,

Oph(a)(A - B) Oph(b) = OD,*)COQ (}'Loo(hl—é)oo)

Now, we define the global class of operators \I!];éki (M) by saying A € \IJ’;;;L (M) if and only if for any
point p € ¥ and elliptic h-FIO, U : C®(M) — C*(R%) quantizing a symplectomorphism, &, with
k(p) = (0,0), and k(ZNV)C3
where V is some neighborhood of p, microlocally near (0,0),

UAU™! = Op, (O((N)*))

and for any point p ¢ X, A € (h=0h)¥1W*2 (M) microlocally near p.

For a € Sglt’sks (T* M), we define a quantization procedure using the normal form. Let ¢p € C°(T*M)

have ¢ = 1 on 7{d(p, Y) < e} and supp ¢ C {d(p,X) < 2¢} for some € > 0 to be chosen small enough. We
then find a finite cover W; of supp ¢ such that there exists a neighborhood V of (0,0) € T*R? such that
for each j there is a symplectomorphism x;

HjIV—>Wj, lij(VﬁEo)ZEﬂWj.
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Then choose elliptic h—FIO’s U; quantizing ~; defined microlocally in a neighborhood of V' x W;. Let ¢;
be a partition of unity on {d(p, ) < 2¢} subordinate to W} and define a; as the unique symbol of the form
a; = a;j(x, &, A h) such that

(aj)‘A:ﬁh—égl = (Yoja) o Ky,
and define
Op} () = Opy, (1 = ¥)a) + Y U; ' Op, 1(a;)U;.

J

By adjusting the U;, we may arrange so that

Then we have the following lemma [SZ99, Proposition 4.1].

Lemma 2.5. There exists maps

Op>; + SEUR2 (T M) — W2 ()

,8,h ,8,h
and
k1,k k1,k AL —87 ak1—1,ka— %
oy U2 (M) — S5 (T M) /b ‘ShSzf&g =N (T M).
Such that

o5 (AB) = ox(A)os(B),

0= WP PR (M) — W (M) — SO (T M) /00 hsSg 5 (M)
is a short exact sequence,

k1,k * k1,k M —07 gk1—1,ka— *
50 Opp g : Sey 2 (T M) — SJ52(T*M) /bt %52’5’5 =L M)

is the natural projection map and if a € S;lt’sk;(T*M) is supported away from X, then Opﬁﬁ(a) €

h=0k1Wk2 (M. Finally, if suppa Nsuppb = 0, then
Op;’:(a) Opy (b)) = Opr oo (R ~0R)™).
Remark 4. When 6 = 1, we will take the residual class to be operators which are Ops_, oo (7L°°) microlocally

near Y. The residual class actually has addition properties which are often convenient (see [SZ07), Section
5.4]), but this will be enough for our purposes.

Our last task will be to show that the operators G?**(b(z, hD)) are pseudodifferential operators in the
second microlocal calculus. Let b(z, &) € S™(T*M;R) with

b(z,&)] 2 (€)™ >0, [§lg = M,

P(t) € CX(R) and x € C*(R) with x = 1 near 0. Notice that under these assumptions, Opy(b) is self
adjoint with domain H™.
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We consider 4(Opy,(b)hh~%) microlocally near a point (zg,&p). We have

/ tOph(b 7 1h5_1t)dt

P [ erton @G o
h6
2rhh

= [ HOM OGRS ) (0t + O (1))
2whh

h6
T (@2rh)d,
+ Opr oo ((i]hlié)oo)

Y(Opu(B)h ez

2ﬂhh

[ erom O 1) - xe)ar

/ e%‘(ga(t,ac,e)—(yﬂ).;_(héiﬁlt,r))a(t7 x,0)(1)x(t)dtdrdo

where
Opp = b(x,0pp),  ©(0,2,0) = (x,0), a(0,z,0) =1+ O(h).

Then, performing stationary phase in the ¢, 7 variables gives

(@rh)d / et v fa, (2, 6)d6
Y8

where

ay(z,0) ~ p(hh=b(z,0)) + Y (W' °h) Lyj(ap)|
=1 T=hh™%b(x,0)

and Lo, is a differential operator of order 2j in ¢ and s. Now, changing coordinates so that b(x,&) = &
and using a microlocal partition of unity, proves the following lemma

Lemma 2.6. Let b(x,&) € S™(T*M;R) define ¥ and have
[b(z, )| = (O™, on [¢|g > M.
Then for ¢ € C°(R),
»(Opn(b)hh™") € W T

and

o5 ((Opn(b)hh~°)) = ¢ (b(x, &)hh~°).
Now, let ¥, 1 € C°(R) with ¢ = 1 on [1,2] and supp v C [1/2,4] such that
DY@ =1 ) =),
Then, a
GP* (b(x, hD)) = G (b(z, hD)) (wo(b(x, hD)h~") + iw@jb(x, hD)hp)) .

Lemma, [2.6] implies that if p < 1,
GP*(b(x, hD));(b(z, hD)h™") € hpszjsngj’;j’;‘”,
G5 (b(x, hD))y;(b(z, hD)h™") € hP* W17,
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Then, the orthogonality of ¢;(b(z, hRD)h=") and ¢y (b(x, RD)h=") for |j — k| > 2 implies that

GP*(b(w, hD)) € ™™ 0PwG= - GL*(b(x, hD)) € P W5 ¥

In addition, if p = 1, then

G1* (b(w, hD))tb; (b(x, AD)h ™) € WP 27° U T,

Gy* (b, hD)); (b(x, hD)h ") € hP* TS TH 5.

and hence for J > 0,

Gy (b(x, hD)) € ™™ OWLTT | + Opa,2(h*),

1,2-7

Gy (b(x, hD)) € h*UL S, + Opay 2 (h®).

3. ESTIMATES ON NORMAL FREQUENCY BANDS

We start by giving a quantitative estimate on the restriction of quasimodes when microlocalized at a
certain scale from the glancing set.

Lemma 3.1. Let u be compactly microlocalized and let h > h'/2. Suppose that x € C°(R) has support in

[1,4]. Then,
O,p(x, hD = _

h LQ(H)

In particular, if u is a quasimode for P, then

[ ({22222,

< Ch™V2|ul| 2 (ar)-
L2(H)

Proof. We deduce the lemma from the work of Tacy [Tacl4, Proposition 1.1], which we recall here
Lemma 3.2 ([Tacid]). Let ¢ € C°(R) have supp( C [1,4]. Then for h > h/?,
78 (0up), ¢ (@, BD)ul| < CRM?(|lull p2(ary + b7 Pull 2 (ary)

where

(00 ¢ (2, €) = C(h™HDup(, €))Dyp(, £).

Write

Then, x € C*(R) with supp x C [1,4] and

h=H0up)s ¢ = X(h™HOup(,€))).
Therefore, Lemma [3.2] implies

e (100,

4 < Cﬁilﬂ(”uHL?(M) + B Pull 2 (ar))

L>(H)

as desired. 0O
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4. THE STRUCTURE OF Gy AND Y

Our goal for this section is to show that near the glancing set Gy, general Hamiltonians, p, have roughly
the same structure as the Laplacian, p = [£ \3 —1. We will do this using the Malgrange preparation theorem
together with similar ideas to those used in [KTZ07, [Mel76] to put Hamiltonians in a normal form. We
first recall this structure for the Laplacian.

4.1. Structure of Gy and ¥( for the Laplacian. In this section, we work in Fermi normal coordinates.
That is, H = {x4 = 0} and
—h?A, = (hD,,)? + R(2',hDy) + 224Q (24, 7', hDy) + hr(x, hD,)

where R(z',¢') = |€'|2, where gy is the metric induced on H from M, Q is a quadratic function of £’ such

that Q(0, -, -) is the symbol of the second fundamental form of H and r € S*(T*M). In these coordinates,
b= 0(_h2Ag - 1) = 53 + R(xlvfl) + Qde(xdal'/agl) - 13 avp(xag) = 2§d

Therefore,
%= {2, 24,8, €a) | €5 + R(z', &) + 224Q (g, 2", &) = 1}, Yo = {(=",¢§') | R(z",¢") <1},
G ={(a",24,¢,0) | R(2', &) + 224Q (4,2, ') = 1}, Go = {(«",¢') | R(2",&") = 1}.

In particular, notice that Go = 0%, 1 — R(2',¢’) defines Gy, and
= {(8,,p(1‘, g))Z = 4(1 - R(zlv 5/) - 2de(xd’ '1:/’ gl))} :

We will show that these three facts continue to hold for a general Hamiltonian p and b defining G.

4.2. Structure of Gy, and X, for general Hamiltonians. We will show that 0¥y = Gy and examine
the structure of ¥ near G. Choose coordinates so that H = {z4 = 0}. We start by considering

there exists & with p(x’,0,£,&4) =0
for all &, either p(a’,0,&',&4) # 0 or Og,p(x',0,&,4) Z0[

Consider a point (z(,&)) € 3o \ Go. Then either p(xf,0,&),&q) # 0 for all &; or there exists &; such that
with (z0,&0) = (20, 0,£),8a), P(x0, &) = 0 and J¢,p(z0,&o) # 0. In the first case (x5,&)) ¢ Xo. Therefore,
we need only consider the second case.

EO \ go = {(.’El,f/) ceT*H

In the second case, by the implicit function theorem near (z, &),

p(x7€) = e(]"7§)(§d - CL(Z‘,EI))
with |e(z,£)| > ¢ > 0. Therefore, there exists a neighborhood, U of (z(,&)) € T*H such that U C Xy.
Hence, (z(, &) is in the interior of X.

Now, consider a point (z(,§)) € Go. Then there exists &; such that p(z(), 0, £, {q) = 0 and g, p(xy, 0, &, &a) =
0. Let (20, &0) = (20,0,&),&q). By assumption O¢p # 0 on X. Therefore, we may assume that J¢, p(zo, o) #
0, Oevp = 0 where & = (&,£"”). By the implicit function theorem, near (z¢,&), with = (zq,2"),
£=(&,¢"),

(16) p(ﬂ:,f) - 6(.%,5)(51 - a(xlax//7§//))

with |e(z,€&)] > ¢ > 0. Now, 0¢,p(xo,&) = 0 implies that O¢,a(zo,£)) = 0. By @, Y., has positive
definite second fundamental form at &. Therefore, since Ocvp(xo,&o) = 0, 6§2dp(xo,§0) # 0 and hence

agda(xo, o) #£0.
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Now, we assume without loss that 8§2dp(x0,£0) > 0, otherwise take p — —p. Then by the Malgrange
preparation theorem

(17) p(xag) = 6(1’,5)((&1 - aO(xvgl))Q - a’l(xag/))

where e > ¢ > 0. Now, since O¢, p(z0,&o) # 0, ¢, a1 (o, &,) # 0 and hence by the implicit function theorem,
there exists |e1(z,&")| > ¢ > 0, ag(z,£") where € = (£1,£",&4) such that

ar(z, &) = er(z, &) (&1 — az(z,&")).

We will assume again that Og, p(xo,&o) > 0 ( here we can write 1 — —x; if necessary) without loss so that
e1 > ¢ > 0. Therefore,

(18) b= e(l‘,f)((fd - ao(x,§’))2 — 61(1‘,5,)(51 — (12(3;’5’”)))
and, near (zo,&),

Y ={& > ax(z, &)}

Now, by @, for all zp, £, has everywhere positive definite second fundamental form and is connected.
Therefore, it is the boundary of a strictly convex set. Moreover, 3., is closed since p is continuous. Thus,
for any line

L= {(20,&,8a) | €1 € R},
there are three options, #L NX;, =2, #L N X;, =0, or L is tangent to ¥, and #L N X,, = 1.
Now, by for each (zo,&)) with
o1 — az(z0, &) > 0,
we have found two solutions &g to p(zo,£0,1,£)’,€a) = 0 and hence there are no other solutions.

Next, by we see that if §o1 — aa(x0, ;") = 0, then Jg,p = 0 on X, N L and hence L is tangent to
Y4, and there is one point in the intersection, (zo,&p). Moreover, J¢, p(z0,&0) # 0. Therefore, there is a
hyperplane A, supporting ¥, so that O, is transverse to A at (zo,&p), so for

€01 — az(wo, &) <0,

there are no solutions &;. Together, this implies that 0%y = Gy.

Moreover, for any defining function b of Gy, near (z, &), there exists +es5 > ¢ > 0 such that

b=es(z',&,¢") (& — a2(0,27,¢"))
and hence for some eg > ¢ > 0,
(19) % = {(&a — ao(2,€))? = es(w, )b, €") = 0}
where b is given by
b(x, &) = es(a’,£1,8") (&1 — ag(w1,27,€"))

and hence b(0,2’,£") = bz, €').

Summarizing, we have

Lemma 4.1. Let p satisfy @ and H C M a smooth hypersurface with defining function r, Then Gy = 0%
and for any b defining Go, there exist € > 0, b : (—€,¢) = C*(T"H), e € C*(T"H), ¢ > 0 such that
e>c>0,b(0,)=0b(), and for v the dual variable to r, (i.e. conormal to H)

S0 {lr] < e} ={(0vp)® = eb(r(), ) }-
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5. MICROLOCALIZATION

We now prove a lemma that allows us to pass from microlocalization in d,p on M to microlocalization
on H. (See Figure for a schematic of the various microlocalizers in the following lemma.)

Lemma 5.1. Let ¢ € S such that supp ) C [—e, €], ¥(0) = 1, x € C°(R) with supp x C [1,4] and x = 1
on [2,3], p >0, Q € V(M) with

lo(Q)] < [0vp(z,8)[*,  on|p[<1
and b define G. Then there exists 0 < a; < as so that for h > h?/3, and x,, € C2°(R) with supp x,, C [a1,as],

(1 - X (W)) YHXv (W) QY (i) = (’)LQHLQ(h—ﬁ—1/4+u/2(hh_3/2)oo).

Proof. Recall that by Lemma there exists e > ¢ > 0 such that
(20) ={p=0}={(0p)*=eb}

with (0, -) = b(-). Without loss of generality, we assume that e = 1 since otherwise we can simply absorb
e into b and adjust a1, as appropriately. To prove the lemma, we will use the normal form for second
microlocal operators twice. Once before restriction to H and once after. By doing this and using , we
reduce ¥ to the form {£2 —n; = 0} where we are able to easily analyze the necessary integration by parts.

We may use a partition of unity in a neighborhood of H to reduce to a single coordinate chart. First,

write
Y (1;) - %/e%tpiﬁ(t)dt.

Then, by [Zwo12, Theorem 10.4], for a pseudodifferential operator, Ag with wavefront set in a small enough
neighborhood of a point (zg, &) € T*M

P 1 i z.0)— n 00
'l/) <h> AO = 271-(27-[-h)d/6h ((p(t, ’0) <y’9>)a(t,:r,y,9)1/)(t)dtd9 + O\I;foo(h )
where
(21) at@(taxae) :p<xvaw90)7 QO(O,.Z‘,Q) = <$79>

Next, let A; with wavefront set in a small neighborhood of (x),&)). Let x; : T*R4™1 — T*H be a
symplectomorphism so that x}(b) = n;. Then by the definition of second microlocal operators, there exists
T1 unitary and quantizing x; so that

’
TflAl (1 - X <b<x 7£‘D;p’))) Ty

is a second microlocal pseudodifferential operator with respect to the hypersurface {r; = 0}. Similarly, for
Ao with wavefront set in a small neighborhood of (zg,&p) and T unitary and quantizing a symplectomor-
phism, kg : T*RY — T*M such that k5(0,p) = &4

T2_1A2Xy (aup(xa hD)) 112

h1/2
is a second microlocal pseudodifferential operator with respect to the hypersurface {£; = 0}.

Let ®1(y;, yh,01) € C®°(H x R¥~! x RM) quantize ;" in a neighborhood of (z{,&}) in the sense that
(22) dﬁlq)l(ylla yé, 91) =0 = ’il(ylla dyiq)l) = (y/27 *dyéq)l)
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and @y (y1,y2,02) € C°(R? x M x RN2) quantize s, ' in a neighborhood of (g, &) in the sense that
(23) d92 (I)Q(yh Y2, 92) =0 = KQ(ylv dy1 (1)2) = (yQa _dyz (I)Q)'
Then there exist M; > 0, e; € C*°(R??~!) independent of h, so that

b ! hD ’ i ’ ’ ’ ’ 7 ~
A (1 X <(xhx))> u(a’) = h= /ei(@ TR e ey (' /R ulyh)

dybdyydn'dfy + Opa_ycoe (RA™H) )0

with e (2',7',\) supported in A € supp(l — x). Similarly, there exists My > 0 and ey € C>®(R24+1)
independent of h so that

dy3dy2dy1d§d91d01d92 4+ Or2_0% (h°°)u
with ez (y, &, A) supported in A € supp x,.
Thus, modulo negligible terms,
_ b(a’',hD,) |0,p(x, hD)] P
1 ) T 17 )
(24) Ty As <1 - X <f~1>> Y A2Xy (W QY W A

Ch—M-Nfp/2 / e%((ﬂf—yﬁ )+ 21 (Y1,95,01) —y2,aCa—P2(y3,Y2,02)+(y3 —y4,€) +(Ya—ys ,.w) + P2 (y5,y6,03) +9(t,y6,04) — (y,04))

a2, yi,m' vt vh, 01, Y2, Y3, 02, Y4, 03, 1, Y5, O, s, w, Eah™ /2 b= ) (1)
dy' dn’' d0y dyodCqdysdfsdysdEdysdOzdtdldyedw
with
(25) suppa C {mh~! € supp(1 — x), £E4h™? € supp x,. }.
Now, let ¥ denote the phase function in the above integral. Then,
dy ¥ =dy, e — n dy W =dy®1—dy P dy, ,¥=—Ci—dy,, P2 d¢,¥ =—y24

oy TP AV = oty =Pt dyg Y = dip
do, U = dy, 1 o, U = —dg, ®s do, ¥ = dg, Py do, U = dg,p —y
deV =ys — ya do¥ =ys —ys5 dy,V =w —§.

So, setting

dgl\IJngl(I)l ZO, dyE\I’Zdyllq)l—U/:O, dyé\IJZdyé(I)l—dyé(I)QZO
and using gives
w1(y1, 1) = (—ya, —dy, P2(ys, y2, 02)).
Next, setting

d92\Ij == d92q)2(y3a y2792) = Oa dyz,d(bQ + gd = 07 dy3\Il = dy3<b2 - E =0

and using gives
Kk2(y3,€) = (Y2, (—dy, P2(y3, Y2, 02), Ca))-

Next, setting d¢, ¥ = —y2 g = 0 gives
KQ(y?n 6) = ((?/27 0)7 (_dyé q)2(93, (yIQa 0)) 92)a Cd))

Next, setting
deV=y3—ya=0, dy,¥=w—-¢=0
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gives
HZ(?M» f) = ((3/27 O)a (_dyé (I)Q(yi% (y/27 O)a 02)7 Cd))
Next, setting

dwquy4—y5:0, dgs‘l)g(y5,y6,93)=0, dyS\I/:dys‘EQ—w:O, dyG\II:dyG<I>2+dy6(p:0

and using gives
52(y47 g) = (y67 dyssa)‘
Finally, setting d; ¥ = d;¢ = 0 and using gives
P(Ys, Oy p(t, Y6, 04)) = 0.

Summarizing

p(ye, 3y690) =0 (y67ay6(p) = 52(1/475)
((yév O)a (_dy§¢2(y4a (?/27 0)7 02)’ Cd)) = "{2<y47 5) K1 (yIZ’ _dyéq)2<y47 yé> 0, 02)) = (yl17 77/)'

In particular, we have that

plry (2, €) = 0, (W' (w1 (41:1)), 0), € (ky My 1')s Ca) = g (9, €.
Putting this together and letting d denote the differential in all variables listed in and using the
definition of k1, and k5, we have that

dv =0 = 1 =¢&.
Together, this implies that for some 7; smooth and independent of h,

& —m=>_ vdV
i

where d; runs over the variables in .
Now, we integrate by parts. In particular, we write
Bod¥ o _ oo,
? fd -
Now, for a1 = 5,a2 =7, in the support of the integrand, 5h <y < 7Th and |¢4] ¢ h'/?[4,9]. Therefore, the
denominator is larger than h. Integration by parts in all variables except £; does not cause any difficulty.

However, integration by parts in §; requires closer analysis. The §; derivative can fall on a, producing
hh=3/2 or it can fall on the denominator. In this case,

1 284

O, .
¢ E—m (& —m)?

Suppose that 52 < Ch, then the numerator is bounded by h'/2 and hence the overall bound is h=3/2.
Furthermore, if 53 > Ch, then we also have the bound A~3/2. For higher order derivatives, the derivative
can fall on @, (53 —n1)~ Y, or &;. We have already seen that the first two cases result in terms of size h=3/2.
For the last case, observe that we replace

&a 1
GEE G NE

and hence replace a factor which we bounded by h=3/2 with one bounded by h=3. Thus, after each
integration by parts, we gain hh~3/2 and the integrand is bounded by

CN],LNE73N/2.
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Hence, there exists M > 0 such that

|1 (MDY ), () o ()

where r = 0.
By the results of Lemma [3.2] applied to Qv)(P/h), the operator

[ (Dl hD) W) QuiP )|

< CNiL;,L/Qh—MiL—ThNiL—SN/Q

L2—L2

_ E71/4+p,/2
2,72

and
(1— ( (J) hD )/h)):OLz_,Lz(l)
Therefore, applying Cauchy Schwarz we have that

(<) (5222 ()

Thus, with M implies the same bound Wlth h=Mp=" replaced by h~ ¥h~—%5 and hence is
proved With (M, r) replaced by (M2~ ,1/4(1 —27N)) by iterating this procedure finitely many times. [J

< Bu/2021]/v2h—M/2h—(4r+1)/8(hﬁ—3/2)N
L2—L2 N

Lemma 5.2. Suppose H is totally bicharacteristic. Let 1) € S such that supplﬁ C [—e €], ¥(0) =1,x, €
C2°(R) with supp x C [1,4] and x =1 on [2,3], n >0, Q € V(M) with

0(Q) < |0up(z, &), onp| <1,
and b define G. Then there exists 0 < a1 < as so that for h > h, and x, € C°(R) with supp x, C [a1,az],

(1 - X (W)) YH Xv (W) Qv (5) — OLQHLQ(h_h_1/4+u/2(hh_1)oo)

Proof. We modify the proof of Lemma in the case that H is totally bicharacteristic. Consider
without the d¢, ¥ information. Then we arrive at
P(Ys, Oysp) = 0, k2(Y6, Oyep) = (Y4, §)
KQ(yI27 07 _dyéq)Q(yﬁp Y3,d, ylza 07 92)7 Cd) = (yz/lv Y3.d, 5)7

ko1 (Yo, —dy @2 (Yl y3,d, Y5, 0,62)) = (y1, 1)

In particular,
0= p(ry ' (y2,€)) = p(r3 (Y3 y3,0:€) + p(ra (U4, y3,4,€)) — PR3 ' (Yh, ¥3,0,€))

= 53 —m + p(K‘Q_l(yila Ys.ds g)) - p(K’Z_l(yilv Y3,d, 5))

Now, since ko is a symplectomorphism,
Oypory’ = Hpe,p = O(0,p).
But, since H is totally bicharacteristic (in particular, nowhere curved), on Hy,0¢,pls,=0 = 0 and
PRy (Uhs 3.0, €)) — PR3 (Y4, y3.0,€)) = O(Calys.a — yaa) + (y3.a — ya,a)®)-

Therefore, there exists v;,v € C* such that

& —m= <’Y(€d + (ys.a — yaa)de, + ) ’Yidz) v
where the second term does not contain a term with d¢,. Moreover,

thde%\Ij = (ys,d - y4,d)€%‘ll
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Therefore,

V(€ahDe, + (hDea)*) + 32,760 Di sw _ sw
fﬁ - .

So, as in Lemma [5.1]integrating by parts in all variables except &, results in terms of the form O((hh~1)N).

Following the analysis there, when we integrate by parts twice in &; and divide by &2 — 11 once, we lose

h=2. Similarly, integrating by parts in &; once, dividing by &2 — my once, and multiplying by &; we lose

h='. Therefore, all the integrand is O((hh~")") for any N. Together with the same analysis as at the end

of Lemma [5.1] this implies the lemma O

6. ALMOST ORTHOGONALITY AND THE COMPLETION OF THE PROOF

We will need two lemmas on almost orthogonality to complete the proof.

Lemma 6.1. Suppose that supp x C [1,4]. Then for j,k >0
b(x',hD,) b(a',hD)
o () (5

Proof. The proof follows from the functional calculus. O

C -kl <2
22y |0 7=kl >2

Lemma 6.2. Suppose that H, is nowhere tangent to H to infinite order or is totally bicharacteristic. Then
there exists € > 0 small enough so that for v € S with ¥ C [—€, €], x € C° with suppx C [1,4], j,k >0,
and A, B € U1 (M)

|0,p|(x, hD) r Ovpl(z, hD)Y , .
H”HBX (Qh/ vAn) T )

< h-1/2-9-Gi+R)1/2-) J © . j—kl<2
- Cn2-UHRIN |5 — k| > 2.

L2(H)—L2(H)

To prove Lemma we need the following dynamical lemma.

Lemma 6.3. Suppose that H = {xq = 0} is either nowhere tangent to Hy, to infinite order or totally
bicharacteristic. Let ®, = exp(tH,) denote the Hamiltonian flow of p. For all M > 0, there exists € > 0
small enough so that

it <e,  0<|Op(a’,0,8)| <M,  &4(a!,0,8) € T"M|n
implies
C|al/p($/7 07 f)‘ S ‘6,/]) ° (I)t(.f/, 07 §)| S O|8Vp(x/’ O? §)|
Remark 5. One can see using the example
0. (z,e V) >0 c R?
(z,0) <0
with P = —h2A — 1 that if H is tangent to H, to infinite order but is not totally bicharacteristic then the

conclusion of Lemma [6.3] may not hold.

Proof. We may assume t > 0, the proof of the opposite case being identical. Let
(x(t),8(t)) = exp(tHp)(2",0,).
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Then

Lq(t) = Og,p(a(t),§(1)).
First, observe that for any fixed § > 0, if |£4(0)| > J, then there exists € small enough so that |x4(t)] > 0
for 0 < t < e. Hence, the claim is trivial for |24(0)| > § for any fixed 4.

H is nowhere tangent to H, to infinite order.

There exists dg > 0 small enough, C' > 0 large enough so that if § < §y and
Tq = Oa 0< |85dp($67 07€0>| < 60

then there exists (y',n) with d((xy, 0, &0), (v,1)) < C|0¢,p(x(,0, &o)| such that O, p(y’, 0,1) = 0. Therefore,
there exists a > 0, K > 0 such that if x4(0) = 0, and |&4(t)| < o, then there exists 2 < k < K and
|A] > a > 0 such that

A
z4(t) = O¢e,p(0)t + Etk + O(t**1) + O(t20¢,p(0))
De,p(t) = 9e,p(0) + At* 1 + O(t*) + O(t0e,p(0)).
Therefore, suppose x4(t) = 0, t # 0. Then

0e,p(t) = 9, p(0)(1 — k + O(t)) + O(t").

Now, since [t| < €, if [t|¥ > 1]0¢,p(0)| then [¢t[F~! > %\8&1;0( )| and hence for € > 0 small enough,

o) = 1] ( (5 = 1) 672 = (4 CIDIaEs(O]) = 1o Beap(0)] 20

Therefore,
|0e,p(0)(|(1 = k)| = 1/2) < |0¢,p(t)] < [0e,p(0)|(|(1 — k)| + 1/2)
when 0 < |0¢,p(0)| < do. In particular,

1
5106.p(0)] < |0¢,p(t)] < 10¢,p(0)|2K

H is totally bicharacteristic
When H is totally bicharacteristic,
Fa = Hplg,p = O(3 + 9¢,p))-
Now, if 4(0) = 0,

t

|Za(t) — 2a(0)] = xd( )ds

<C/ x3(5) 4 |iq(s)|ds

—C’/ </ Zaq(w dw> +C/ |Za(s)|ds
<C//asd sdwds—i—C/ |Za(s)|ds

:Cf/xd( )t — )dw+C/ |ia(s)|ds

< C/ —t%35(s) + |da(s)|ds
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Now, let

to := inf {|xd(t) —4(0)] > |xd2(0)|} .

t>0

If to > € then we are done. If not, then |Z4(to) — £4(0)] = M. Therefore,

: . 1 3
|Za(to) — 2a(0)] = 5124(0)] < *C/ S1023(0) + |£4(0) ds
3 .
=051 L334(0)] + to ) [¢a(0)]
So,
3
C71 < tilEa(0)] + 3t

and choosing € > 0 small enough finishes the proof of the lemma. ]

Proof of Lemma[6.3 We assume that H is given by {z4 = 0}. Then the kernel of
|0up| (2, hD) p |0up|(z,hD)\ .,
X <2h/ O\ )X ) i

is given microlocally near a point (zg,&y) € T*H by

Ch*?’d/e;%((I/*uﬁ;n'>*W1,dnd+s&(t;W1;9) (w2,0)+w2,aéa+(ws—y',E") 1;( t)adw, dwydtdddedn

where

—kh—1/2

suppa C {9,p(z’,0,1)2 € supp X, dyp(ws, €)277h 2 € supp x}

and
10%G| < Cp2~ minGk)lalp=lal/2,

Let ®; denote the Hamiltonian flow of p. Then the phase is stationary when
p(z,6) =0,  ®(y,0,¢) = (a',0,¢)

and by Lemmathere exist €, > 0 so that for |t| <€, and 0 < |9,p(z’,0,£)| < &, there exist ¢,C > 0
so that when ®,(y’,0,¢) € T*M| g,

cl0up| < |0yp e @] < C|0,p).
In particular, on the support of the integrand,
|(I)t(y/, 0,5) _ (Z‘/, 075)‘ > 2max(k>j)h1/2.

Therefore, integration by parts proves the estimate with h=1/2-2-(1/2-)(+k) replaced by h~™. To obtain
the lemma, we then repeat the argument at the end of Lemma [5.1] using the fact that

|0y p|(x, hD) P
P (U557 (7)

Now, let p <1, s € R, u € R, GI'® be as in the introduction, A € ¥ (M) have
lo(A)| < Clopl*, on [p[ <1,

< Oh~1/49-9/2,

L2—L?

and x € C°(R) so that

Zx(2*jz)zl for x € [1/8, 0).



22 JEFFREY GALKOWSKI

Define
Xo=1-> x.
§=0
Let Mh~! > 27 > h=L. Then, since 9,p is uniformly bounded above on {p = 0},

P 0up(2, kD) | = (10,p(x,hD,)] P
a (5) = (o (P55 )+ S (M5 ) ) 4 ()

Jj=0

T; =GP (b(2', hDar ) )y x (la”p(m’ th)) Ay <];>

Define

27 hr/2
so that
J
P Ope z(hoo) p<l1
G*(b(a', hDy )y A <) =T+ P
05 (b(a’, hDar)) 2 g Y O pa(hH012) p— 1.

The h* error is clearly negligible. To see that the h¥T#/2 error is negligible, we use the estimate

e (2

to see that for s > 1/4 — /2, the error term is uniformly bounded in h.
Now, by Lemmas [5.1] and [5.2]

s b(x',hD,) Oup(z, hD) rP
T; = GY°(b(x',hDy))x; (W) YHXv (2j/2hP/2 Ay i

+Or2_yge (h*hp(sfl/4+u/2)Qj(871/4+u/2) (hlfapzfaj)OO)

L2(M)—L2(H)

where o = 3/2 unless H is totally bicharacteristic, in which case a = 1. So, taking p < a1t ors > 1/4—pu/2,
the remainder term is summable with sum bounded uniformly in h. Therefore, we may analyze only

N s b(x',hD,) Oyp(z, hD) P
T; = G7*(b(2', hDy))x; (W) YHXv (WW Arp A

In this case, Lemmas and show that if H,, is nowhere tangent to H to infinite order or
totally bicharacteristic then for € > 0 small enough, and |j — k| > 2,
T T3 | 2 + ||:i7TkHL2_>L2 < O 22Uk (s+u/2-1/4=) pp(2s+p=1/2=) p (1=p)N9=(j+k)N

Moreover,
||TJ.||2L2HL2 < 02 (Zstn=1/2) pp(2s+n—1/2)
Then by the Cotlar-Knapp-Stein lemma (see for example [Zwol2, Theorem C.5]) if s > 1/4 — p/2 and
p<lors>1/4—pu/2and p<1
” Z Tj”L2HL2 <C.
J

If H, is somewhere tangent to infinite order, then Lemma does not apply and therefore we instead
estimate for p < 1,

) ) logh™" s=1/4—p/2
2
< Ej Tju, Ek Tku> < C||UHL2(M) {1 s>1/4—p/2 ’

Hence,
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Lemma 6.4. Let o = 1 if H is totally bicharacteristic, and 3/2 otherwise, p > 0, 0 < p < a~l and
s>1/4— /2, and A € W (M) have
lo(A)| < Cloyp(x, §)[", on [p| < 1.

Then if p < o~ or s > 1/4— /2, and either H,, is nowhere tangent to infinite order to H or H is totally
bicharacteristic,

P
HG’f’S(b@cc hD )y Ad (h) <c
L2(M)—L2(H)

If instead H,, is somewhere tangent to infinite order to H but not totally bicharacteristic, then

(logh™1)Y/2 s=1/4— /2

P
GYP(b(z' hDy )y Ay <> <C .
H ' L2(M)—L2(H) 1 s>1/4—p/2

h

7. OPTIMALITY OF THE POWER 1/4.

We will show that the power 1/4 is optimal for curved H and for totally geodesic H. In fact, we will
show that the power 1/4 is sharp at every scale. More precisely, letting p = 2/3 if H is curved, and 1 if it
is totally geodesic, for all 0 < p; < p2 < u, we give examples of eigenfunctions u, with

(G =GP (1 + WD) un | ar || p2 ey = ch?2 =1/,

7.1. H curved. Consider the unit disk B(0,1) C R2. Then the Dirichlet eigenfunctions are given by
u = cpJp(Ar)e™?, JIn(A) =0.

Let H = {|z| = 1/2} and fix o < 2/3. By the uniform asymptotics for zeroes of Bessel functions ([OLBCI0,
Section 10.20,10.21] ), the m'™® zero of the n'® Bessel function is given by

Jnm =nz(Q) + O(n™1), ¢ =n"%1a,,
where a,, is the m*™ zero of the Airy function and ¢ solves
d¢\? 122
dz) (22

and is infinitely differentiable on 0 < z < co. The zeroes of the airy function have

= — (:W(Zlm - 1))2/3 +Om3).

Now, since z(0) = 1 and lim¢_, o 2(¢) = oo, there exists (o < 0 with 2({y) = 2 and, moreover, there
exists ¢ > 0 so that {y < —c < 0. Hence, for any 8 < 1, M > 0 there exists m > cn, such that

n"2Bay, € Co— [Mn=P, (M +1)n"?].
In particular,
2(n"3ay,) € 24 [Mn~%, (M + 1)n~?]
which implies there exists
(29) Ap €20+ [Mn'= (M 4 1)n* ]
such that
Un = cne™ Jn(A(n)r)
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is a Dirichlet eigenfunction. One can see that to L? normalize u,, ¢, ~ cn'/2. Moreover,

Jn(nz):( A )1/4(“”(”2/30+0(n—2/3)>.

1 — 22 nl/3

So, evaluating at %)\n and using the asymptotics for the Airy function gives, since 0 < a < 2/3,

JIn <1)\n)‘ > en~1/37(2/3=a)/4,
3 >

Therefore,
(30) un|H = Anein07 |An| > cn—1/3—(2/3—a)/47

and, taking M large enough in , p1 < a < po,

2

s — n
GT% (1 +)\n2AH)un|H = <1 74)\*2

S
> Up|g ~en™“uy g
n

(31)
G (1+ A2 Ap)un|g =0
Hence, for a < 2/3 and p; < a < pa, using and ,
(G2 = GE) (1 + A 2 Ap unla | 2y > en®0/479) > axo(/4=9)

for some ¢ > 0. In particular, for s < 1/4, this unbounded.

7.2. H totally geodesic. Consider the unit sphere, S C R3. Let
[0,27) x [0,7] 3 (0, ¢) — (cos B sin ¢, sin O sin ¢, cos @) € S>
be coordinates on S2. Then an orthonormal basis of Laplace eigenfunctions is given by

(1 —m)!(2l +1

/2
Y,"(0,9) = < (i +m)! )> ™% P (cos ¢), —1<m<l,

where P/™ is an associated Legendre function (see for example [OLBC10, Section 14.30]). For the definition
of P see [OLBCI10), Section 14.2]. Note that

(Agz =AY =0, N :=I(+1).

Let H := {¢ = i}, fix @ <1 and let

(32) my €1 —[M, M +1)1*~
so that [ + m; € 27Z (i.e. is even). Then by [OLBC10l Section 14.30ii],
_1)(+m)/2 —m) | 2 _
}/lml <97 171.) _ 5 ( 1) . ((l ml)(l + ml)(2l + 1) ezmle — Alelmlﬂ.

After some straightforward, but tedious computations, one finds that for some a > 0, |4;| > cl®/*. Hence,
(33) Ylml |H == Aleimlo, ‘Al| Z Cla/4.

Now, for p; < a < pg, using and taking M large enough,
s —2 m ml2 ’
G (L+ N Am)Y, " g = (1 - /\2> Y™
l
G (L+ X\ 2Ap)Y,™ g = 0.

(34)
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Hence, for a < 1 and p; < a < pg, using and @,
H(GP = G YA+ AP A 2y 2 anl /) > any

for some a > 0. In particular, for s < 1/4, this is unbounded.

8. APPLICATION TO CAUCHY QUANTUM ERGODIC RESTRICTIONS

We now prove Theorem [d] Let u;, be a quantum ergodic sequence of Laplace eigenfunctions. Then by
the quantum ergodic restriction theorem for Cauchy data [CTZ13] (see also (10)), for A € V(H),

(Ahd,ulpr, ho,ulg) + (1 + W2 Ap) Aulg, ulg) — ﬁ*m /B*H o(A)\/1— |¢'|2dxde.
Let x5 € C°(R) with xs =1 on {|z| < 1—26}, with suppx C {|z] < 1—46} and ¢5 = 1 — xs. Then denote
xs(h) = xs(—h*Ap), Ys(h) :=s(—h*Ap), G (h) == GP*(1+ h*Ap).
Let A€ U(H), s < 1/2, and consider
(GY* 5 (h) ARD,u, hO,u) + (1 + B Ap) G ™" (h) Aul i, ul )
(s (k) + s ()G (h) AhD,u, hOu) + ((xs (k) + s ()G (h) Aul i, ul )

— s [ xR A O~ € e+ as(1)
(35) + <¢5(h)G§/3’7s(h)Ah&,u7 ho,u) + <w5(h)G§/3’1is(h)Au\H,u|H>

The proof of Theorem [4| will be complete after we estimate the term in .

Let (?f/:?’ﬁ be defined as in but with X1 replacing x1 so that Xix1 = x1 and suppx C [1/2,00).
Next, let s have supp¢s C {|z| > 1 — 33} and 9515 = 1s5. Then,

Gs ()G P4 (h) = s ()G P (h)ds ()G (h)
and hence
b5 (WGP P2 () A = s (h) G (h) Adds (h) G2 () + s ()G > () [ihs () G/> 72 (h), A]
:w(s(h)G?/S,ﬂl(h)Aié(h)é?/&Bz(h)_|_OL2_>L2(h172/3(17min(ﬁ1,0)7min(ﬂ2,0))).
Therefore,
(W5 (M)G > (h) Aul g, ulm) = (Ws(R)GY > (h) Aul g, D5 () GT> 2 (h)ulir)
= (s (RG> (h) A5 (RG> )2 (hyul g, Ds () G52 (hyul ar)
+(Opa 2 (W23l g, D5 (R) G072 () )

Vs (G237 (h) Ahd,ul i1, hdyu| s
1
= (s (WG > (h) Ahd,ul r, Bs ()G ()R, ul )
= (s(W)GY*° () AGs (WGP (W)hd,ul i, s ()G () hdul )
+ (022 (W23 00, ul By ()G (R) RO, ul )
Now, by the functional calculus of self adjoint operators,

s (WGP (B) = Zobs (WGP ™(R),  Zo = Opayr2(5%).
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By Theorem [3] for 8 < 1/4,
1G22 (hyal |y + 1G> (W) hdyul | 2y < C.
Hence, we have
s ()G (hyu| gy + 195 ()G () ul| Laary < C8°/>H0
In particular, using (1)) and (2) to see that ||u|g || 2 < Ch~'* and ||hO,u|| 2 < C, together with
(H) (H)
B3/A-203 — o(1) and h1-2/305) — (1),
(Ws(h)GY> ™ () AhD,u, hd,u) + (Ws(h)GY > (h) Aul g, uli) = o5(1) + O(8Y/2757).

Therefore,
(G375 (h) Ahdyu, hdu) + (1 + W2 Ag)G2> 7% (h) Aul i, ulg)

B M/X&(f'@)a(A)(x,f)(l — €122 dwde’ + 05(1) + O(8/2757).

So, since s < 1/2, letting h — 0 and then § — 0, we have
(G371 4+ K2 A ) Ahd,u, ho,u) + (G317 (1 + W2 Ay )ul i, ulw)

4 e
%HL(S*M)/B*HU(A)(x’g)O €' 12) /2 dxdg’,

completing the proof of Theorem [4]

REFERENCES

[BGTO07] N. Burq, P. Gérard, and N. Tzvetkov. Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds. Duke
Math. J., 138(3):445-486, 2007.

[BHT15] A. Barnett, A. Hassell, and M. Tacy. Comparable upper and lower bounds for boundary values of neumann
eigenfunctions and tight inclusion of eigenvalues. arXiv preprint, arziv : 1512.04165, 2015.

[CdV85] Y. Colin de Verdiere. Ergodicité et fonctions propres du laplacien. Comm. Math. Phys., 102(3):497-502, 1985.

[CHT14] H. Christianson, A. Hassell, and J. Toth. Exterior mass estimates and 12-restriction bounds for neumann data
along hypersurfaces. International Mathematics Research Notices, page rnt342, 2014.

[CTZ13] H. Christianson, J. A. Toth, and S. Zelditch. Quantum ergodic restriction for Cauchy data: interior que and
restricted que. Math. Res. Lett., 20(3):465-475, 2013.

[DS99] M. Dimassi and J. Sjostrand. Spectral asymptotics in the semi-classical limit, volume 268 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.
[DZ] S. Dyatlov and M. Zworski. Mathematical theory of scattering resonances.

[DZ13] S. Dyatlov and M. Zworski. Quantum ergodicity for restrictions to hypersurfaces. Nonlinearity, 26(1):35-52, 2013.
[HT02] A. Hassell and T. Tao. Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions. Math. Res.
Lett., 9(2-3):289-305, 2002.

. Hassell and T. Tao. Erratum for “Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions

HT10 A. H 1l and T. Tao. E for “U d 1 bounds f 1 derivati f Dirichlet eigenf; ions”
[mr1909646]. Math. Res. Lett., 17(4):793-794, 2010.

[HT12] A. Hassell and M. Tacy. Semiclassical LP estimates of quasimodes on curved hypersurfaces. J. Geom. Anal.,

22(1):74-89, 2012.

[KTZ07] H. Koch, D. Tataru, and M. Zworski. Semiclassical L? estimates. Ann. Henri Poincaré, 8(5):885-916, 2007.

[Mel76] R. B. Melrose. Equivalence of glancing hypersurfaces. Invent. Math., 37(3):165-191, 1976.

[OLBC10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST handbook of mathematical functions.
U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge
University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX).

[Sni74] A. I Snirel’'man. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181-182, 1974.

[SZ99] J. Sjostrand and M. Zworski. Asymptotic distribution of resonances for convex obstacles. Acta Math., 183(2):191—
253, 1999.

[SZ07] J. Sjostrand and M. Zworski. Fractal upper bounds on the density of semiclassical resonances. Duke Math. J.,
137(3):381-459, 2007.



[Tac10]
[Tac14]
[Tat98]
(TZ12]
[TZ13]
(Ze187]
[Zwo12]

(ZZ96]

THE L? BEHAVIOR OF EIGENFUNCTIONS NEAR THE GLANCING SET 27

M. Tacy. Semiclassical LP estimates of quasimodes on submanifolds. Comm. Partial Differential Equations,
35(8):1538-1562, 2010.

M Tacy. Semiclassical L2 estimates for restrictions of the quantisation of normal velocity to interior hypersurfaces.
arXiv preprint, arziv @ 1403.6575, 2014.

D. Tataru. On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4),
26(1):185-206, 1998.

J. A. Toth and S. Zelditch. Quantum ergodic restriction theorems. I: Interior hypersurfaces in domains wth ergodic
billiards. Ann. Henri Poincaré, 13(4):599-670, 2012.

J. A. Toth and S. Zelditch. Quantum ergodic restriction theorems: manifolds without boundary. Geom. Funct.
Anal., 23(2):715-775, 2013.

S. Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55(4):919-941,
1987.

M. Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2012.

S. Zelditch and M. Zworski. Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys., 175(3):673-682,
1996.

E-mail address: jeffrey.galkowski@stanford.edu

MATHEMATICS DEPARTMENT, STANFORD UNIVERSITY, 380 SERRA MALL, STANFORD, CA 94305, USA



	1. Introduction
	1.1. Results
	1.2. Outline of the proof of Theorem 3
	1.3. Organization of the paper

	2. Second microlocalization at a hypersurface
	2.1. The basic calculus
	2.2. Second microlocal operators along a hypersurface, 

	3. Estimates on normal frequency bands
	4. The structure of G0 and 0
	4.1. Structure of G0 and 0 for the Laplacian
	4.2. Structure of G0 and 0 for general Hamiltonians

	5. Microlocalization
	6. Almost orthogonality and the completion of the proof
	7. Optimality of the power 1/4.
	7.1. H curved
	7.2. H totally geodesic

	8. Application to Cauchy Quantum Ergodic Restrictions
	References

