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A PRIMER ON PAC-BAYESIAN LEARNING

by

Benjamin Guedj

Abstract. — Generalised Bayesian learning algorithms are increasingly popular
in machine learning, due to their PAC generalisation properties and flexibility. The
present paper aims at providing a self-contained survey on the resulting PAC-Bayes
framework and some of its main theoretical and algorithmic developments.
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1. Introduction

Artificial intelligence (AI) appears as the workhorse of a striking number of rev-
olutions in several domains. As neurosciences, robotics, or ethics—to name but a
few—shape new products, ways of living or trigger new digital rights, machine learn-
ing plays a more central role than ever in the rise of AI.

In the visionary words of Arthur Samuel (Samuel, 1959), machine learning is the
field of study about computers’ ability to learn without being explicitly programmed.
As such, a long-term goal is to mimic the inductive functioning of the human brain,
and most machine learning algorithms build up on statistical models to devise au-
tomatic procedures to infer general rules from data. This effort paved the way to a
mathematical theory of learning, at the crossroads of computer science, optimisation
and statistics (Shalev-Shwartz and Ben-David, 2014). The interest in machine learn-
ing has been considerably powered by the emergence of the so-called big data era
(an abundance of data collected, and the alignement of the corresponding required
computing resources), and attempts at unifying these research efforts have shaped
the emerging field of data science.

Among several paradigms, the present paper focuses on a Bayesian perspective to
machine learning. As in Bayesian statistics literature, Bayesian machine learning is a
principled way of managing randomness and uncertainty in machine learning tasks.
Bayes reasoning is all about the shift from inferring unknown deterministic quantities
to studying distributions (of which the previous deterministic quantities are just an
instance), and has proven increasingly powerful in a series of applications. We refer
to the monograph Robert (2007) for a thorough introduction to Bayesian statistics.

Over the past years, several authors have investigated extensions of the celebrated
Bayes paradigm. While these extensions no longer abide by the canonical Bayesian
rules and may be harder to interpret by practitioners, they have been enjoying a
growing popularity and interest from the machine learning community, where the
focus is sometimes more on pure predictive performance than it is on estimation and
explainability.

As an illustration, consider a supervised learning problem, with a regression in-
stance: Y = f(X) + W where X ∈ R

d (input), Y ∈ R (output) and W ∈ R (noise)
are random variables. A typical Bayesian inference procedure for f (unknown – may
be parametric, semiparametric or nonparametric) would focus on the posterior dis-
tribution given by

(1) posterior(f |X,Y ) ∝ likelihood(X,Y |f) × prior(f).

Note that when f(X) = fθ(X) = θX (with θ ∈ R
d), one recovers the classical linear

regression model (typically worked out under a Gaussian assumption for the noise
W ). To improve the model’s flexibility and ability to capture a larger spectrum of
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phenomena, it has been suggested by Zhang (2006a) to replace the likelihood by its
tempered counterpart:

(2) target(f |X,Y ) ∝ likelihood(X,Y |f)λ × prior(f),

where λ ≥ 0 is a new parameter which controls the tradeoff between the a priori

knowledge (given by the prior) and the data-driven term (the tempered likelihood).
The resulting distribution (target) defines a different statistical modelling (possibly
not in an explicit form). Note that (2) still defines a proper posterior: if λ ≤ 1,

likelihood(X,Y |f)λ × prior(f)

≤ likelihood(X,Y |f)λ × prior(f) × 1[likelihood(X,Y |f) ≥ 1]

+ prior(f) × 1[likelihood(X,Y |f) < 1]

≤ likelihood(X,Y |f) × prior(f) × 1[likelihood(X,Y |f) ≥ 1]

+ prior(f) × 1[likelihood(X,Y |f) < 1]

≤ likelihood(X,Y |f) × prior(f),

hence∫
likelihood(X,Y |f)λ × prior(df) ≤

∫
likelihood(X,Y |f) × prior(df) + 1.

So the tempered posterior is proper as soon as the (non-tempered) posterior is. As
for the case λ ≥ 1,

likelihood(X,Y |f)λ × prior(f) ≤

[
sup
g∈F

likelihood(X,Y |g)
]λ

× prior(f),

which yields, as soon as the likelihood is upper bounded (which is equivalent to assume
that the MLE—maximum likelihood estimator—exists),

∫
likelihood(X,Y |f)λ × prior(df) ≤

[
sup
g∈F

likelihood(X,Y |g)
]λ

which makes the tempered posterior proper.

This tempered posterior notion(1) is at the core of the "safe Bayesian" paradigm
(Grünwald, 2011, 2012, 2018; Grünwald and Van Ommen, 2017), where the parame-
ter λ is integrated and marginalised out to yield more robust and automatic Bayesian
inference procedures.

In machine learning, the emphasis on prediction ability is usually stronger than
on inference (compared to the statistical literature). With that fact in mind, it is
then only natural to go even further than the tempered likelihood: one can replace
it by a purely arbitrary loss term, which only serves as a measure of the quality of
prediction (i.e., what loss is suffered when using the predictor g instead of f in the

(1)Interestingly, the multiplicative algorithm introduced by Vovk (1990) in online forecasting was

later interpreted as an online version of such pseudo-posteriors.
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previous example) and might not be supported by an explicit statistical modelling.
This loss term is typically driven by information-theoretic arguments and therefore,
substituting a loss term to the likelihood term achieves the shift from a model-based
procedure to a purely data-driven procedure (which could arguably be described as
model-free). Purely data-driven or model-free procedures may not assume an under-
lying probabilistic model to be inferred, but rather focus on an agnostic measure of
performance.

In the sequel, we bundle under the term generalised Bayes such extensions towards
tempered likelihoods or loss terms replacing likelihoods.

PAC-Bayesian inequalities were introduced by McAllester (1999a,b) based on ear-
lier remarks by Shawe-Taylor and Williamson (1997). They have been further for-
malised by Seeger (2002), McAllester (2003a,b), Maurer (2004) and others. The goal
was to produce PAC performance bounds (in the sense of a loss function) for Bayesian-
flavored estimators – the term PAC-Bayes now refers to the theory delivering PAC
bounds for generalised Bayesian algorithms (whether with a tempered likelihood or a
loss term).

The acronym PAC stands for Probably Approximately Correct and may be traced
back to Valiant (1984). A PAC inequality states that with an arbitrarily high probabil-
ity (hence "probably"), the performance (as provided by a loss function) of a learning
algorithm is upper-bounded by a term decaying to an optimal value as more data
is collected (hence "approximately correct"). When applied to a Bayesian (or rather
generalised Bayesian) learning algorithm, the theory is referred to as PAC-Bayesian.
PAC-Bayes has proven over the past two decades to be a principled machinery to ad-
dress learning problems in a striking variety of situations (sequential or batch learning,
dependent or heavy-tailed data, etc.), and is now quickly re-emerging as a powerful
and relevant toolbox to derive theoretical guarantees on the most recent learning
topics, such as deep learning with neural networks or domain adaptation.

The rest of the paper is organised as follows. Section 2 introduces our nota-
tion, while Section 3 presents in more details generalised Bayesian learning meth-
ods. Section 4 contains a self-contained presentation of the PAC-Bayesian theory.
Section 5 focuses on several practical implementations of PAC-Bayes and Section 6
illustrates the use of the PAC-Bayesian theory in several learning paradigms and some
of its recent breakthroughs. Section 7 closes the paper.

2. Notation

The PAC-Bayesian theory has been successfully used in a variety of topics, includ-
ing sequential learning (Gerchinovitz, 2011; Li et al., 2018), dependent or heavy-tailed
data (Alquier and Guedj, 2018; Ralaivola et al., 2010; Seldin et al., 2012), classifica-
tion (Lacasse et al., 2007; Langford and Shawe-Taylor, 2003; Parrado-Hernández et al.,
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2012) and many others (see Section 6). To keep notation simple and still bear a fair
amount of generality, we consider a simplified setting – let us stress however that
results mentioned in this paper have been obtained in far more complex settings.

Let us assume that data comes in the form of a list of pairs Dn = (Xi, Yi)ni=1 where
each (Xi, Yi) is a copy of some random variable (X,Y ) ∈ R

d × R whose underlying
distribution is denoted by P. The goal is to build a functional object φ̂ (which depends
on Dn) called a predictor such that for any new query X ′, φ̂(X ′) ≈ Y ′ in a certain
sense. In other words, learning is to be able to generalise to unseen data: this remark
leads to generalisation bounds, also referred to as risk bounds, which are presented in
Section 4. Note that predictors are functions R

d → R; we call a learning algorithm a
functional ∪∞

j=1(Rd × R)j → F which maps data samples to predictors (where F is
the set of predictors). As such, we follow the notation used by Devroye et al. (1996)
and focus on predictors in the sequel.

To assess the generalisation ability, we resort to a loss function ℓ : R × R → R+.
Popular loss functions are the squared loss ℓ : (a, b) 7→ (a−b)2, absolute loss ℓ : (a, b) 7→

|a− b|, 0-1 loss ℓ : (a, b) 7→ 1[a 6= b], and so on. We then let

(3) R : φ̂ 7→ E

[
ℓ

(
φ̂(X), Y

)]

define the risk of the predictor φ̂ (where the expectation is taken with respect to the
underlying distribution of the data P). As this underlying distribution is obviously
unknown, the risk is not computable and is replaced by its empirical counterpart

(4) rn : φ̂ 7→
1
n

n∑

i=1

ℓ
(
φ̂(Xi), Yi

)
.

As

E

[
rn

(
φ̂

)]
= R

(
φ̂

)
,

we will see in Section 4 that obtaining PAC inequalities relies on how the process
rn concentrates to its mean R. Concentration inequalities such as Hoeffding’s or
Bernstein’s are a key ingredient: we refer to the monograph Boucheron et al. (2013)
for a thorough overview of concentration inequalities.

Let us now focus on the case where φ̂ is a Bayesian predictor. The predictor
φ̂ may be of parametric, semiparametric, or nonparametric nature: in any case, a
Bayesian approach would consider a prior distribution on such φ̂: let us denote such
a distribution π0. Let us emphasise here that this prior operates on the collection of
candidate predictors F =

{
f : Rd → R, f mesurable

}
, or rather on a subspace F0 of

it (e.g., all linear functions from R
d to R). A rich literature on model selection (ei-

ther Bayesian or frequentist) studies refined inference techniques: see the monograph
Massart (2007) for a solid introduction. One would materialise a statistical modelling
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with a likelihood probability density function L and form the posterior distribution
π of the model:

(5) π
(
φ̂|Dn

)
∝ L

(
Dn|φ̂

)
× π0

(
φ̂

)
.

Several inference techniques could then be derived from the posterior. For example,
the mean of the posterior

φ̂mean = Eπ φ =
∫

F0

φπ(dφ),

its median

φ̂median = median(π),

the maximum a posteriori (MAP)

φ̂MAP ∈ arg max
φ∈F0

π(φ),

or a single realisation

φ̂draw ∼ π,

are all popular choices (with a slight abuse of notation, π refers to a probability mea-
sure or its density function, depending on context). The actual implementation of
such predictors is discussed in Section 5. Theoretical results on Bayesian learning
algorithms typically involve a thorough study of the way the posterior distribution
concentrates as more data is collected. We refer the reader to the seminal papers
Ghosal et al. (2000, iid case) and Ghosal and Van Der Vaart (2007, non-iid case).
While Bayesian learning is a well established framework and is supported by theo-
retical and practical successes, a legitimate criticism is that its performance (both
theoretical and practical) actually massively depends on the statistical modelling in-
duced by the choice of the likelihood, the choice of the prior and possible hyperpa-
rameters, and any additional assumptions (such as an additive Gaussian noise, iid
data, bounded functional, etc.). As famously stated by George Box(2), all modelling
efforts form a subjective and constrained vision of the underlying phenomenon, which
may prove herself of poor quality, if any. The past few decades have thus seen an
increasing gap between the Bayesian statistical literature, and the machine learning
community embracing the Bayesian paradigm – for which the Bayesian probabilistic
model was too much of a constraint and had to be toned down in its influence over the
learning mechanism. This movement gave rise to a series of works which laid down
the extensions of Bayesian learning which are discussed in the next section.

(2)"Essentially, all models are wrong, but some are useful" (1976).
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3. Generalised Bayesian learning

A first strategy consists in modulating the influence of the likelihood term, by con-
sidering a tempered version of it: from (5), the posterior now becomes the tempered
posterior πλ:

(6) πλ

(
φ̂|Dn

)
∝ L

(
Dn|φ̂

)λ
× π0

(
φ̂

)
,

where λ ≥ 0. The former Bayesian model is now a particular case (λ = 1) of a con-
tinuum of distributions. Different values for λ will achieve different tradeoffs between
the prior π0 and the tempered likelihood Lλ. Let us stress here that Lλ may no longer
explicitly refer to a canonical probabilistic model.

This notion of tempered likelihood has been investigated, among others, by a strik-
ing series of paper (Grünwald, 2011, 2012, 2018; Grünwald and Van Ommen, 2017)
which develop a "safe Bayesian" framework. These papers prove that the tempered
posterior concentrates to the best approximation of the truth in the set of predictors
F , while this might not be the case for the non-tempered posterior: as such, tem-
pering provides robustness guarantees when the chosen predictor, while being wrong,
still captures some aspects of the truth.

We now rather focus on a second strategy which falls within generalised Bayes.
Using an information-theoretic framework (see Csiszár and Shields, 2004, for an in-
troduction) in which the "likelihood" of a predictor φ̂ is no longer assessed by the
probability mass from some specified model, but rather by the loss encountered when
predicting φ̂(X) instead of Y , the actual output value we wish to predict.

In other words, the posterior from (5) or the tempered posterior from (6) are
replaced with the generalised posterior

(7) πλ

(
φ̂|Dn

)
∝ ℓλ,n

(
φ̂

)
× π0

(
φ̂

)
,

where ℓλ,n is a loss term measuring the quality of the predictor φ̂ on the collected
data Dn (the training data, on which φ̂ is built upon). To set ideas, one could think
of ℓλ,n as a functional of the empirical risk rn.

As the loss term is merely an instrument to guide oneself towards better performing
algorithms but is no longer explicitly motivated by statistical modelling, the gener-
alised Bayesian framework may be described as model-free, as no such assumption is
required. Other terms appear in the statistical and machine learning literature, with
occurrences of "generalised posterior", "pseudo-posterior" or "quasi-posterior" succeed-
ing one another. Similarly, the terms "prior" and "posterior" have been consistently
used as they "surcharge" the existing terms in Bayesian statistics, however the distri-
butions in (7) are now different objects. Consider for example the prior π0: rather
than incorporating prior knowledge (which might not be available), π0 serves as a way
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to structure the set of predictors F0, by putting more mass towards predictors enjoy-
ing any other desirable property (suggested by the context, CPU / storage resources,
etc.) such as sparsity.

From (7), the story goes on as in Bayesian learning: any mechanism yielding a
predictor from the generalised posterior is admissible. As above, the mean, median,
realisation or mode (MAP) are popular choices.

Among all possible loss functions ℓλ,n, a most typical choice is the so-called Gibbs
posterior (or measure):

(8) πλ

(
φ̂|Dn

)
∝ exp

[
−λrn

(
φ̂

)]
× π0

(
φ̂

)
.

The loss term exponentially penalises the performance of a predictor φ̂ on the training
data, and the parameter λ ≥ 0 (often referred to as an inverse temperature, by
analogy with the Boltzmann distribution in statistical mechanics) controls the tradeoff
between the prior term and the loss term. Let us examine both extremes cases: when
λ = 0, the loss term vanishes and the generalised posterior amounts to the prior: the
predictor is blind to data. When λ → ∞, the influence of data becomes overwhelming
and the probability mass accumulates around the predictor(3) which achieves the
best empirical error, i.e., the generalised Bayesian predictor reduces to the celebrated
empirical risk minimiser (ERM—see Vapnik, 1995, for a survey on statistical learning
theory).

Why is the Gibbs measure so popular in machine learning? It arises in several
contexts in statistics and statistical physics: let us illustrate this with a variational
perspective. Let (A,A) denote a measurable space and consider µ, ν two probability
measures on (A,A). We note µ ≪ ν when µ is absolutely continuous with respect
to ν, and we let Mν(A,A) denote the space of probability measures on (A,A) which
are absolutely continuous with respect to ν:

Mν(A,A) = {µ : µ ≪ ν} .

We denote by K the Kullback-Leibler divergence between two probability measures:

(9) K(µ, ν) =





∫
F0

log
(

dµ
dν

)
dµ when µ ≪ ν,

+∞ otherwise.

Let us consider the optimisation problem

(10) arg inf
µ∈Mπ0

(A,A)

{∫

F0

rn(φ)µ(dφ) +
K(µ, π0)

λ

}
.

This problem amounts to minimising the integrated (with respect to any measure
µ) empirical risk plus a divergence term between the generalised posterior and the

(3)There may be several predictors minimising the empirical risk.
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prior. In other words, minimising a criterion of performance plus a divergence from
the initial distribution, which is the analogous of penalised regression (such as Lasso).
When F0 is finite and the loss is the squared loss ℓ : (a, b) 7→ (a− b)2, one can easily
deduce from the Karush-Kuhn-Tucker (KKT) conditions that the Gibbs measure πλ
in (8) is the only solution to the problem (10) (as proven by Rigollet and Tsybakov,
2012). In the general case, the proof is given by Lemma 2 in Section 4.

Let us also stress that the Gibbs posterior arises in other domains of statistics.
Consider the case where the set of candidates F0 is finite. The mean of the Gibbs
posterior is given by

φ̂mean := Eπλ
φ =

∫

F0

φπλ(dφ)

=
∫

F0

φ exp [−λrn(φ)] π0(dφ)

=
#F0∑

i=1

exp [−λrn(φi)]π(φi)∑#F0

j=1 exp [−λrn(φj)]π(φj)︸ ︷︷ ︸
=:ωλ,i

φi =
#F0∑

i=1

ωλ,iφi,

which is the celebrated exponentially weighted aggregate (EWA, see for example
Leung and Barron, 2006). EWA forms a convex weighted average of predictors, where
each predictor has a weight which exponentially penalises its performance on the train-
ing data. Statistical aggregation (Nemirovski, 2000) may thus be revisited as a special
case of generalised Bayesian posterior distributions (as studied in Guedj, 2013).

4. The PAC-Bayesian theory

The PAC learning framework has been initiated by Valiant (1984) and has been
at the core of a great number of breakthroughs in statistical learning theory. In its
simplest form, a PAC inequality states, for any predictor φ̂ and any ǫ > 0

(11) P

[
R

(
φ̂

)
≤ δ

]
≥ 1 − ǫ,

where δ is a threshold usually depending on data and ǫ. These risk bounds are of
central importance in statistical learning theory as they give crucial guarantee on the
performance of predictors, with an upper-bound and a confidence level ǫ which can
be made arbitrarily small. When a matching lower bound is found, the predictor φ̂ is
said to be minimax optimal (see Tsybakov, 2003, and references therein). Note that
in the original definition from Valiant (1984), the acronym PAC was used to refer
to any bound valid with arbitrarily high probability together with the constraint
that the predictor must be calculable in polynomial time with respect to n and 1/ǫ.
The acronym now has a broader meaning as it covers any risk bound holding with
arbitrarily high probability.
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PAC-Bayesian inequalities date back to Shawe-Taylor and Williamson (1997) and
McAllester (1999a,b). McAllester’s PAC-Bayesian bounds are empirical bounds, in
the sense that the upper bound only depends on known computable quantities linked
to the data.

Theorem 1 (McAllester’s bound). — For any measure µ ∈ Mπ0
(A,A), and any

ǫ > 0,

(12) P




∫
R

(
φ̂

)
dµ

(
φ̂

)
≤

∫
rn

(
φ̂

)
dµ

(
φ̂

)
+

√
K(µ, π0) + log 2

√
n
ǫ

2n


 ≥ 1 − ǫ.

The Kullback-Leibler term K(µ, π0) captures the complexity of the set of predictors
F0. In the simplest case where F0 is a finite set of M predictors, this term basically
reduces to M . If F0 is the set of linear functions, the complexity boils down to the
intrinsic dimension d. More favorable regimes (of order log d, under a sparsity assump-
tion) have been obtained in the literature (see Guedj, 2013, for a survey). Overall,
McAllester’s bound expresses a tradeoff between empirical accuracy and complexity
(in the sense of how far the posterior is from the prior).

This kind of bounds yields guarantees on the ("true") quality of the predictor φ̂,
with no need to evaluate or estimate its performance on some test data. This is a
salient advantage of the PAC-Bayesian approach, as labelling and / or collecting test
data might be cumbersome in some settings. Another key asset is that bounds of the
form (12) are natural incentives to design new learning algorithms as minimisers of
the right-hand side term (see Germain, 2015, for a discussion). By integrating out the
whole expression over φ̂, the constrained problem (10) appears once again and the
Gibbs measure is deduced as the natural optimal generalised posterior distribution.
McAllester’s bounds have been improved by Seeger (2002, 2003) and Maurer (2004).

While of great practical use, McAllester’s bounds did not hint about the rate of
convergence of predictors, due to their empirical nature. Catoni (2004, 2007) there-
fore extended McAllester’s PAC-Bayesian bounds to prove oracle-type inequalities,
specifically on aggregated predictors (typically the mean of the Gibbs measure - see
also Tsybakov, 2003, Yang, 2003, and Yang, 2004 for earlier works on aggregation and
oracle inequalities in other settings than PAC-Bayes).

Catoni’s technique consists of two ingredients:
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1. A deviation inequality is used to upper bound the distance between R
(
φ̂

)
and

its empirical counterpart rn
(
φ̂

)
for a fixed φ̂ ∈ F0. In most of the rich PAC-

Bayesian literature which followed Catoni’s work, inequalities such as Bern-
stein’s, Hoeffding’s, Hoeffding-Azuma’s or Bennett’s have been used. More de-
tails can be found about these inequalities in the monographs Massart (2007)
and Boucheron et al. (2013).

2. Then, the resulting bound is made valid for any φ̂ ∈ F0 simultaneously. Catoni
suggests to consider the set of all probability distributions on F0 equipped with
some suitable σ−algebra and make the deviation inequality uniform on this
set with the following variational formula, presented in Lemma 1 (Legendre
transform of the Kullback-Leibler divergence).

Lemma 1 (Csiszár, 1975 ; Donsker and Varadhan, 1976 ; Catoni, 2004)

Let (A,A) be a measurable space. For any probability ν on (A,A) and any

measurable function h : A → R such that
∫

(exp ◦ h)dν < ∞,

log
∫

(exp ◦ h)dν = sup
µ∈Mν (A,A)

{∫
hdµ− K(µ, ν)

}
,

with the convention ∞ − ∞ = −∞. Moreover, as soon as h is upper-bounded on the

support of ν, the supremum with respect to µ on the right-hand side is reached for the

Gibbs distribution g given by

dg
dν

(a) =
exp ◦h(a)∫
(exp ◦ h)dν

, a ∈ A.

Proof. — Let µ ∈ Mν(A,A). Since K(·, ·) is non-negative, µ 7→ −K(µ, g) reaches its
supremum (equal to 0) for µ = g. Then

−K(µ, g) = −

∫
log

(
dµ
dν

dν
dg

)
dµ

= −

∫
log

(
dµ
dν

)
dµ+

∫
log

(
dg
dν

)
dµ

= −K(µ, ν) +
∫
hdµ− log

∫
(exp ◦ h) dν.

Taking the supremum on all µ yields the desired result:

log
∫

(exp ◦ h)dν = sup
µ∈Mν (A,A)

{∫
hdµ− K(µ, ν)

}
,

Lemma 2. — In Lemma 1, taking ν = π0 and h = −λrn yields

(13) −
1
λ

log
∫

exp [−λrn(φ)] π0(dφ) = inf
µ∈Mπ0

(A,A)

{∫
rn(φ)µ(dφ) +

K(µ, π0)
λ

}
.
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The unique distribution which achieves the minimum of the right-hand side is the

Gibbs posterior given by (8), which solves problem (10).

Note that the second step in Catoni’s technique requires to fix a reference measure
ν on F0. The reference measure is used to control the complexity of set of predic-
tors F0, however it kept being referred to as the "prior" to consistently extend the
Bayesian setting (see Germain et al., 2016a, for a discussion on the links between
Bayesian inference and PAC-Bayes). Catoni (2007) also makes connections with in-
formation theory and Rissanen’s Minimum Description Length (MDL) principle (see
Grünwald, 2007, for a solid introduction, and Zhang, 2006b, for the corresponding
lower bounds). Other links have been studied between Catoni’s bounds and generic
chaining (Audibert and Bousquet, 2007) and fast rates (Audibert, 2009).

We can now state a general form for Catoni’s bound (introduced in Catoni, 2003,
2004, 2007 and further extended by Audibert, 2004, 2010, Alquier, 2006, 2008, and
Guedj, 2013, among others).

Theorem 2 (Catoni, 2007). — Assume that the loss ℓ is upper bounded by some

constant B. Consider the Gibbs measure defined in (8). For any λ > 0, any ǫ > 0,

(14)

P

[∫
R (φ) πλ (dφ) ≤ inf

µ∈Mπ0
(A,A)

{∫
R (φ)µ (dφ) +

λB

n
+

2
λ

(
K(µ, π0) + log

2
ǫ

)} ]

≥ 1 − ǫ.

As (14) holds for any λ > 0, we can now optimise the right-hand side to make
the bound tighter, by using a union bound argument (as advised by Catoni, 2007,
Sections 1.2 and 1.3, and Audibert, 2010, Section 2.2). The optimal value for λ in
the right-hand side is given by

(15) λ =

√
2n

[
K(µ, π0) + log 2

ǫ

]

B

and denoting λ⋆ the optimal value in the left-hand side, and C a numerical constant,
(14) becomes

(16)

P




∫
R (φ) πλ⋆ (dφ) ≤ inf

µ∈Mπ0
(A,A)





∫
R (φ)µ (dφ) +

√√√√8B
(

K(µ, π0) + log 2 log(nC)
ǫ

)

n








≥ 1 − ǫ.

Note that this calibration of λ is purely theoretical and is useless in practice, as it
depends on unknown terms: this is further discussed in Section 5.
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Finally, note that assuming that the loss ℓ is convex yields a bound on the risk of
the aggregated predictor φ̂mean by a straightforward use of Jensen’s inequality: (14)
becomes

(17)

P

[
R

(
φ̂mean

)
≤ inf

µ∈Mπ0
(A,A)

{∫
R (φ)µ (dφ) +

λB

n
+

2
λ

(
K(µ, π0) + log

2
ǫ

)} ]

≥ 1 − ǫ.

Similar results have been obtained by Dalalyan and Tsybakov (2008), Alquier and Lounici
(2011), Alquier and Biau (2013), Guedj and Alquier (2013) to derive PAC-Bayesian
oracle inequalities for several sparse regression models. The key is to devise a prior π0

which enforces sparsity, i.e., gives larger mass to elements φ̂ ∈ F0 of small dimension
(with respect to the sample size n).

The explicit tradeoff between accuracy and complexity brought by PAC-Bayesian
bounds may be further controlled, with the notion of localisation (introduced by
Catoni, 2004, formalised by Catoni, 2003 and further elaborated by Catoni, 2007,
Section 1.3). Localisation consists in finely choosing the prior so as to reduce the
Kullback-Leibler term. Two strategies have been investigated: data-dependent priors
and distribution-dependent priors.

– As the prior cannot depend on the training data used to compute the empirical
risk, one could split the initial data sample in two parts: one of them is then used
to learn a relevant prior. This strategy has been applied by Ambroladze et al.
(2007) and Germain et al. (2009), among others.

– Rather than depending on data, the prior can be made distribution-dependent,
by directly upper-bounding the Kullback-Leibler divergence (Catoni, 2003,
Ambroladze et al., 2007, Lever et al., 2010, 2013).

In particular, the localisation technique allows to remove the extra log(n) term in
(16).

The PAC-Bayesian theory consists in producing PAC risk bounds (either empirical
or oracle) of generalised Bayesian learning algorithms.

A slightly different line of work has also investigated similar results, holding in
expectation rather than with high probability. While obviously weaker, such results
have proven important in dealing with some settings (e.g., with unbounded losses).
Following a method initiated by Leung and Barron (2006), Dalalyan and Tsybakov
(2007, 2008) replaced the first step in Catoni’s technique (the deviation inequal-
ity) with Stein’s formula. This technique was further investigated and improved
in a series of papers (Dalalyan and Tsybakov, 2012a, Rigollet and Tsybakov, 2012,
Alquier and Guedj, 2017).
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Finally, let us mention that faster rates of convergence, of magnitude O (1/n), have
been obtained by Audibert (2009); Audibert and Catoni (2011); Dinh et al. (2016);
Grünwald and Mehta (2016); van Erven et al. (2015), to name but a few.

5. Algorithms: PAC-Bayes in the real world

In conclusion, the PAC-Bayesian framework enjoys strong theoretical guarantees
in machine learning, in the form of (possibly minimax optimal) oracle generalisation
bounds. However, the practical use of PAC-Bayes turns out to be a computational
challenge when facing complex, high-dimensional data. As a matter of fact, PAC-
Bayes faces the exact same issues as Bayesian learning, as in both cases one is often
required to sample from a possibly complex distribution. In Bayesian learning, sam-
pling from the posterior; in PAC-Bayes, sampling from the generalised posterior. Let
us focus on the Gibbs posterior given by (8), as it is one of the most popular choices
in PAC-Bayes. As in Bayesian learning, we often resort to a d−dimensional projec-
tion of the predictor φ̂ or its development onto a functional basis (up to term K, for
example). Monte Carlo Markov Chains (MCMC) are a popular choice for sampling
from such a distribution. We refer to Andrieu et al. (2003) and Robert (2007) for an
introduction to this (rich) topic, and to Bardenet et al. (2016) for a survey on most
recent techniques for massive datasets.

The goal is to sample from the Gibbs measure

πλ

(
φ̂|Dn

)
∝ exp

[
−λrn

(
φ̂

)]
× π0

(
φ̂

)
.

The analytical form of this distribution is known (as the prior π0, the loss ℓ and
the parameter λ are chosen). Three main techniques have been investigated in the
literature.

1. The most popular one, by far, is MCMC. A naive pick is a Metropolis-Hastings
algorithm (see Algorithm 1). However, due to the possibly high dimensionality
of the generalised posterior πλ, a nested model strategy coupled with a transdi-
mensional MCMC is often a much better choice (as it could avoid sampling from
a too high dimensional proposal distribution, for example). In that setting, the
proposal distribution may yield states of different dimensions at each iteration.
A simplified form of such a transdimensional algorithm (which was successfully
applied to additive regression in Guedj and Alquier, 2013, binary ranking in
Guedj and Robbiano, 2018 and online clustering in Li et al., 2018) is given by
Algorithm 2. Other MCMC algorithms, such as Langevin Monte Carlo, have
also been investigated (Dalalyan and Tsybakov, 2012b). MCMC algorithms (as
in Algorithm 1 and Algorithm 2) output a sequence of points, whose stationary
distribution is asymptotically the target p. Wether this property is reached for
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Algorithm 1: Metropolis-Hastings algorithm
Input: Proposal q, target p, horizon T , initialisation x0

Output: A sequence (xi)Ti=0

1 for t = 1, . . . , T do

2 x ∼ q // Sample a candidate state

3 α := min
(

1, p(x)
p(xt−1) · q(xt−1)

q(x)

)
// acceptance ratio

4 U ∼ B(α) // draw a Bernoulli trial

5 if U ≡ 1 then

6 xt := x

7 else

8 xt := xt−1

a given number of iterations, or the quality of the approximation at a finite
horizon, are central questions in the MCMC literature.

2. When using the mode of the Gibbs measure, i.e.,

φ̂mode ∈ arg sup
φ∈F0

πλ = arg sup
φ∈F0

{exp [−λrn (φ)]π0 (φ)} ,

it is often more efficient to resort to stochastic optimisation, such as gradient de-
scent or its many variants (stochastic gradient descent, block gradient descent,
to name a few). Gradient descent is one of the main workhorses of machine
learning and we refer to Shalev-Shwartz and Ben-David (2014, Chapter 14)
and references therein. A gradient-descent-based strategy has been applied in
Alquier and Guedj (2017) for PAC-Bayesian-flavored non-negative matrix fac-
torisation.

3. The third option which has been investigated in the literature is variational
Bayes, which has gained a tremendous popularity in machine learning (see
Wainwright and Jordan, 2008 ; also Blei et al., 2017, for a recent survey). It
amounts to finding the best approximation of the Gibbs measure within a fam-
ily of known measures, typically much easier to sample from. Alquier et al.
(2016) propose an algorithm to find the best Gaussian approximation to the
Gibbs measure (under assumptions on the prior and loss which make this ap-
proximation reasonably good).

Several works have contributed to bridging the gap between theory and implemen-
tations for PAC-Bayes.

1. For variational Bayes (Gaussian) approximation to the Gibbs measure,
Alquier et al. (2016) show that whenever a PAC-Bayesian inequality holds
for the Gibbs measure, a similar one (with the same rate of convergence) holds
for the approximate generalised posterior (at the price of technical assumptions
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Algorithm 2: A transdimensional MCMC algorithm adapted from
Guedj and Alquier (2013)

Input: Family of proposals (qj), target p, horizon T , initialisation x0

/* As many proposal distributions as nested models. A model is

determined by which covariates from 1, . . . , d are selected. Two

models sharing the same number of selected covariates are said

to be neighbors. */

Output: A sequence (xi)Ti=0

1 for t=1,. . . ,T do

2 Dimension shift: add one, remove one, or do nothing (each with probability
1/3)

3 neighbors := set of models obtained from adding or substracting one unit
to the dimension of the current model.

4 for each j in neighbors do

5 yj ∼ qj // e.g., a Gaussian

6 Pick model j with probability p(yj)/qj(yj)∑
k∈neighbors

p(yk)/qk(yk)

7 α := min
(

1, p(yj)
p(xt−1

· q(xt−1)
qj (yj)

)
// acceptance ratio

8 U ∼ B(α) // draw a Bernoulli trial

9 if U ≡ 1 then

10 xt := yj

11 else

12 xt := xt−1

which control the quality of the approximation in a Kullback-Leibler sense).
This leads to a non-asymptotic control of the approximation error. This break-
through allows for PAC-Bayesian oracle generalisation bounds on the actual
algorithm which is implemented rather than on the theoretical object, and as
such, echoes the celebrated statistical and computational tradeoff.

2. MCMC has been the most used sampling scheme in the PAC-Bayes literature,
however very few results were available to guarantee its validity and quality in
that setting. Li et al. (2018) proved that the stationary distribution is indeed
the Gibbs measure for a particular model (online clustering). Note however that
this is an asymptotic result: up to our knowledge, there is no non-asymptotic
control of the approximation for Metropolis-Hastings-based algorithms. The
Langevin Monte Carlo however, leads to a non-asymptotic control of the quality
of the estimation error (see Dalalyan, 2017; Durmus et al., 2018).
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As a concluding remark, let us examine how one should calibrate the parameter λ
in practice. Two strategies are possible: cross-validation (yielding good results in
practice, yet quite computationally demanding) and integration and marginalisation
of λ similarly to what is proposed in the "safe Bayesian" framework (Grünwald, 2012).

6. Some recent breakthroughs in PAC-Bayes

Over the past years, the PAC-Bayesian approach has been applied to a large
spectrum of settings. In addition to aforecited papers, let us mention classifica-
tion (Germain et al., 2009), high-dimensional sparse regression (Alquier and Biau,
2013; Alquier and Lounici, 2011; Guedj and Alquier, 2013), image denoising
(Salmon and Le Pennec, 2009), completion and factorisation of large random
matrices (Alquier and Guedj, 2017; Mai and Alquier, 2015), recommendation
systems, reinforcement learning and collaborative filtering (Ghavamzadeh et al.,
2015), dependent or heavy-tailed data (Alquier and Guedj, 2018; Ralaivola et al.,
2010; Seldin et al., 2012), co-clustering (Seldin and Tishby, 2010), meta-learning
(Amit and Meir, 2018), binary ranking (Guedj and Robbiano, 2018; Li et al., 2013),
transfer learning and domain adaptation (Germain et al., 2016b), online clustering
(Li et al., 2018), algorithmic stability (London, 2017; London et al., 2014), multi-
view learning (Sun, 2013; Zhao et al., 2017), variational inference in mixture models
(Chérief-Abdellatif and Alquier, 2018), multiple testing (Blanchard and Fleuret,
2007), tailored density estimation (Higgs and Shawe-Taylor, 2010), etc.

A salient advantage of PAC-Bayes is its flexibility: the theory requires little as-
sumptions to be applied to new topics and problems. The use of generalised Bayesian
learning algorithms requires the definition of a loss, and of a prior (i.e., a heuristics to
navigate throughout the set of candidate predictors F0), which explains how it could
have been applied to so many different learning settings.

Most recent works on PAC-Bayes have seen a growing interest in data-
dependent priors (Dziugaite and Roy, 2018a,b) and distribution-dependent priors
(Rivasplata et al., 2018). This movement can be seen as an additional layer of
generalisation: since the model-based likelihood has been replaced by an agnostic
data-driven loss term, why not shift from a model-constrained prior to a purely
data-driven measure which captures elementary knowledge about the underlying
phenomenon?

In the deep learning tide wave, the machine learning community (at large) has
demonstrated the impressive empirical successes of neural networks in some tasks.
However voices have risen to orient some of the research effort to obtain theoreti-
cal guarantees and bounds which would explain those successes. Very few results
have been published, however a significant fraction of existing work massively re-
lies on PAC-Bayes. Dziugaite and Roy (2017) and Neyshabur et al. (2017) prove
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generalisation bounds for neural networks, with computable bounds (inherited from
McAllester’s initial bound) and numerical experiments proving the generalisation abil-
ity of (small) networks.

Last but not least, a few research efforts in the past years have focused on more ag-
nostic and generic perspectives to obtain PAC-Bayes bounds, and to get rid of handy
yet unrealistic assumptions such as boundedness of the loss function, or independence
of data. Such assumptions allow for an extensive use of powerful mathematical re-
sults, and yet are hardly met in practice. Bégin et al. (2016) replaced the classical
Kullback-Leibler divergence by the more general Rényi divergence, allowing to derive
bounds in new settings. Alquier and Guedj (2018) then proposed an even more gen-
eral divergence class, the f -divergences (of which the Rényi divergence is a special
case).

PAC bounds for heavy-tailed random variables have been studied by Catoni
(2004) under strong exponential moments assumptions. In a striking series of papers,
several authors have taken over and improved those bounds with different tools:
the small ball property (Grünwald and Mehta, 2016; Mendelson, 2015), robust loss
functions (Catoni, 2016) and median-of-means tournaments (Devroye et al., 2016;
Lugosi and Mendelson, 2016). However those papers mostly focus on linear regres-
sion (for predictors including the ERM, a minimiser of a modified loss function, or
median-of-means–MoM). Alquier and Guedj (2018) derived PAC bounds with similar
rates of convergence, holding for generalised Bayesian predictors. As for dependent
data, several PAC or PAC-Bayesian bounds have been proven (Agarwal and Duchi,
2013; Ralaivola et al., 2010; Seldin et al., 2012) under boundedness or exponential
moments assumptions.

Let us conclude this section by sketching the proof of the main result in
Alquier and Guedj (2018). Note that data points are not required to be inde-
pendent nor identically distributed. For the sake of concision we shall now omit the
argument φ when no confusion can arise. We will use the notation ψp(x) = xp.

Definition 1. — For any p ∈ N, let

Mψp,n :=
∫

F0

E (ψp (|rn(φ) −R(φ)|))π0(dφ)

=
∫

F0

E (|rn(φ) −R(φ)|p)π0(dφ).

Definition 2. — Let f be a convex function with f(1) = 0. Csiszár’s f -divergence

between two measures µ and ν is given by

Df (µ, ν) =





∫
f

(
dµ
dν

)
dν when µ ≪ ν,

+∞ otherwise.
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Note that the Kullback-Leibler divergence in (9) is given by K(µ, ν) = Dx log(x)(µ, ν).

Theorem 3 (Alquier and Guedj, 2018). — Fix p > 1, q = p
p−1 and ǫ ∈ (0, 1).

With probability at least 1 − ǫ we have for any distribution µ

∣∣∣∣
∫
Rdµ−

∫
rndµ

∣∣∣∣ ≤

(
Mψq,n

ǫ

) 1
q (
Dψp−1(µ, π0) + 1

) 1
p .

Proof. — Let ∆n(φ) := |rn(φ) −R(φ)|. From Bégin et al. (2016), we derive:
∣∣∣∣
∫
Rdµ−

∫
rndµ

∣∣∣∣ ≤

∫
∆ndµ =

∫
∆n

dµ
dπ0

dπ0

≤

(∫
∆q
ndπ0

) 1
q

(∫ (
dµ
dπ0

)p

dπ0

) 1
p

(Hölder ineq.)

≤

(
E

∫
∆q
ndπ0

ǫ

) 1
q

(∫ (
dµ
dπ0

)p

dπ0

) 1
p

(Markov, w.p. 1 − ǫ)

=
(

Mψq,n

ǫ

) 1
q (
Dψp−1(µ, π0) + 1

) 1
p .

The message from Theorem 3 is that we can compare
∫
rndµ (observable) to

∫
Rdµ

(unknown, the objective) in terms of

– the moment Mψq,n (which depends on the distribution of the data)
– the divergence Dψp−1(µ, π0) (which measures the complexity of the set F0).

As a straightforward consequence, we have with probability at least 1 − ǫ, for any µ,

∫
Rdµ ≤

∫
rndµ+

(
Mψq,n

ǫ

) 1
q (
Dψp−1(µ, π0) + 1

) 1
p ,

which is a strong incitement to deduce the optimal generalised posterior as the min-
imiser of the right-hand side.

Definition 3. — Define rn = rn(ǫ, p) as

rn = min
{
u ∈ R,

∫
[u− rn(φ)]q+ π0(dφ) =

Mψq,n

ǫ

}
.

The minimum always exists as the integral is a continuous function of u, is equal to 0
when u = 0 and → ∞ when u → ∞. We then define the optimal generalised posterior

µ̂n as

dµ̂n
dπ0

(φ) =
[rn − rn(φ)]

1
p−1

+
∫

[rn − rn(ψ)]
1

p−1

+ π0(dψ)
.
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Alquier and Guedj (2018) then focus on the explicit computation of the two terms
Mψq,n and Dψp−1(µ, π0) in several cases: bounded and unbounded losses, iid or
dependent observations, and prove the first PAC-Bayesian bound for a time series
without any boundedness nor exponential moment assumption. As Theorem 3 is a
completely generic result and holds under no assumption whatsoever, it may serve as
a starting point to derive existing PAC-Bayesian bounds (by adding assumptions).

7. Conclusion

As developed throughout the present paper, PAC-Bayesian learning is a flexible and
powerful machinery, as it yields state-of-the-art oracle generalisation bounds under
little assumptions for numerous learning problems.

A NIPS (now NeurIPS) 2017 workshop(4), an ICML 2019 tutorial(5) and the "PAC-
Bayes" query on arXiv(6) illustrate how PAC-Bayes is quickly re-emerging as a princi-
pled theory to efficiently address modern machine learning topics, such as leaning with
heavy-tailed and dependent data, or deep neural networks generalisation abilities.
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