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We introduce two models of taxation, the latent and natural tax processes,
which have both been used to represent loss-carry-forward taxation on the
capital of an insurance company. In the natural tax process, the tax rate is a
function of the current level of capital, whereas in the latent tax process, the
tax rate is a function of the capital that would have resulted if no tax had
been paid. Whereas up to now these two types of tax processes have been
treated separately, we show that, in fact, they are essentially equivalent. This
allows a unified treatment, translating results from one model to the other.
Significantly, we solve the question of existence and uniqueness for the natural
tax process, which is defined via an integral equation. Our results clarify the
existing literature on processes with tax.
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1 Introduction and main results
Risk processes are a model for the evolution in time of the (economic) capital or surplus
of an insurance company. Suppose that we have some model X = (Xt)t≥0 for the risk
process, in which Xt represents the capital of the company at time t; for instance, a
common choice is for X to be a Lévy process with negative jumps. Any such model can
be modified in order to incorporate desirable features. For instance, reflecting the path at
a given barrier models the situation where the insurance company pays out any capital
in excess of the barrier as dividends to shareholders. Similarly, ‘refracting’ the path at a
given level and with a given angle corresponds to the case where dividends are paid out at
a certain fixed rate whenever the capital is above the level or, equivalently, corresponds to
a two-step premium rate. These modifications are described in more detail in Chapter 10
of Kyprianou [8], in the Lévy process case.
Between the reflected and refracted processes are a class of processes where partial

reflection occurs whenever the process reaches a new maximum. The motivation in risk
theory for these processes is that the times of partial reflection can be understood to
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correspond to tax payments associated with a so-called loss-carry-forward regime in which
taxes are paid only when the insurance company is in a profitable situation. In this paper
we study tax processes of this kind.
Before we define rigorously the type of tax processes that we are interested in, we make

some assumptions on X that are in place throughout the paper. We assume that X is
a stochastic process with càdlàg paths (i.e., right-continuous paths with left-limits) and
without upward jumps (that is, Xt − lims↑tXs ≤ 0 for all t ≥ 0). We also assume X0 = x
for some fixed x ∈ R.
For example, these conditions are satisfied if X is a Lévy process without upward jumps.

In fact, the main results presented in this work hold pathwise, in the sense that they apply
to each individual path of the stochastic process. A random model is strictly only required
for the study of specific examples; however, given the applications we have in mind, it
seems appropriate to phrase everything in terms of stochastic processes.
One way to incorporate a loss-carry-forward taxation regime for the risk process X is to
introduce the tax process Uγ := (Uγ

t )t≥0 with

Uγ
t = Xt −

∫ t

0+
γ(Xs) dXs, t ≥ 0, (1)

where γ : [x,∞) → [0, 1) is a measurable function and X t = sups≤tXs is the running
maximum of X. Note that, here and later,

∫ t
0+ =

∫
(0,t] denotes the integral over (0, t].

Since every path t 7→ X t is increasing (in the weak sense), and is further continuous due to
the assumptions on X, the integral in (1) is a well-defined Lebesgue-Stieltjes integral. We
call Uγ a latent tax process or the tax process with latent tax rate γ. For this latent tax
process we have that, roughly speaking, in the time interval [t, t + h] with h > 0 small, a
fraction γ(X t) of the increment X t+h −X t is paid as tax. In particular, tax contributions
are made whenever X reaches a new maximum (which is whenever Uγ reaches a new
maximum; see Lemma 4 below), which is why the taxation structure in (1) can be seen
to be of the loss-carry-forward type. Since γ < 1, this can be seen as partial reflection;
setting γ = 1[b,∞) would correspond to fully reflecting the path at the barrier b.
A great deal of literature has emerged in the study of this tax process. It was introduced

by Albrecher and Hipp [1] in the case where X is a Cramér–Lundberg process and γ is a
constant, and in that work the authors studied the ruin probabilities, proving a strikingly
simple relation between ruin probabilities with and without tax, the so-called tax identity.
This work was extended by Albrecher, Renaud and Zhou [2], using excursion theory, to
the case where X is a general spectrally negative Lévy process, with γ still constant. In
[10], Kyprianou and Zhou took γ to be a function, and studied problems related to the
two-sided exit problem and the net present value of the taxes paid before ruin. In the
same setting Renaud [13] provided results on the distribution of the (present) value of the
taxes paid before ruin. Wang and Hu [15] studied a problem of optimal control of latent
tax processes in which one seeks to maximise the net present value of the taxes paid before
ruin. A variation of the latent tax process in which the tax rate exceeds the value 1 can
be found in Kyprianou and Ott [9].
An unusual property of the process Uγ is that the taxation at time t depends, not on the
running maximum U

γ
t = sups≤t Uγ

s of the process Uγ itself, but on the running maximum
of X, i.e., X t. In other words, the amount of tax the company pays out at time t is not
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determined by the amount of capital the company has at that time but it depends on a
latent capital level, namely X t, which is the amount of capital that the company would
have at time t if no taxes were paid out at all. Besides being somewhat unnatural, this
also means that in the common case where X is modelled by a Markov process, the process
(Uγ, U

γ) is not Markov (see the first paragraph of Section 2). In order to maintain the
Markov property, one would need to consider to the three-dimensional process (Uγ, U

γ
, X).

For these reasons, it may be more suitable to use another tax process V δ = (V δ
t )t≥0,

satisfying the equation
V δ
t = Xt −

∫ t

0+
δ(V δ

s) dXs, (2)

where V δ

t = sups≤t V δ
s and δ : [x,∞)→ [0, 1) is a measurable function. We call V δ a natural

tax process or a tax process with natural tax rate δ. Since (2) is an integral equation, it is
not immediately clear whether such a process V δ exists and if so if it is uniquely defined.
We will shortly give a simple condition for existence and uniqueness. Assuming that
existence and uniqueness holds and that X is a Markov process, the natural tax process
V δ has the advantage that the two-dimensional process (V δ, V

δ) is Markov. For the reason
that we retain X as the integrator in (2), instead of using V δ, see the second paragraph
of Section 2.
Albrecher, Borst, Boxma and Resing [3] looked at tax processes with a natural tax rate

in the case where X is a Cramér-Lundberg risk process and studied the ruin probability,
though they do not provide a definition of the tax process in terms of an integral equation
and in particular do not discuss existence and uniqueness. In the setting where X is a
Cramér-Lundberg risk process, Wei [16] and Cheung and Landriault [6] considered a more
general class of natural tax processes than ours in which the associated premium rate is
allowed to be surplus-dependent. Although [16] and [6] do contain the definition (2) for
the natural tax process in the case where X is a Cramér-Lundberg risk process (see [16,
Section 1] with δ = 0 and [6, Equation (1.2)] with the function c(·) being constant), neither
paper addresses the question of existence and uniqueness.
The purpose of this work is to clarify the relationship between these two tax processes.
Whereas latent and natural tax processes appear quite different when considering their
definitions, it emerges that these two classes of tax processes are essentially equivalent, an
observation which has seemingly gone unnoticed in the literature. This equivalence allows
us to deal in a rather straightforward way with the existence and uniqueness of the natural
tax process, which is something that has not been dealt with before.
Before presenting our main theorem, we emphasise that our results hold true for a large

class of stochastic processes for X that includes, amongst others, spectrally negative Lévy
processes, spectrally negative Markov additive processes (see [4]), diffusion processes (see
[11]) and fractional Brownian motion. However, practically, (1) and (2) may not in all cases
be the right way to define a taxed process. For instance, when one considers a Cramér-
Lundberg risk process where the company earns interest on its capital as well as pays tax
according to a loss-carry-forward scheme, then one should not work with a process of the
form (1) or (2), but define the tax process differently, as in [16]. Our definitions (1) and
(2) are practically suitable for modelling tax processes when the underlying risk process
without tax X has a spatial homogeneity property, which is the case for, for instance,
spectrally negative Lévy processes, spectrally negative Markov additive processes or Sparre
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Andersen risk processes.
In order to present our main result, we will need to consider the following ordinary

differential equation, for a given measurable function δ : [x,∞)→ [0, 1):

dyδx(t)
dt = 1− δ

(
yδx(t)

)
, t ≥ 0,

yδx(0) = x.

(3)

We say that yδx : [0,∞) → R is a solution of this ODE if it is an absolutely continuous
function and satisfies (3) for almost every t.

Theorem 1. Recall that X0 = x.

(i) Let Uγ be the tax process with latent tax rate γ, where γ : [x,∞)→ [0, 1) is a meas-
urable function. Define γ̄x : [x,∞)→ R by

γ̄x(s) = x+
∫ s

x
(1− γ(y))dy, s ≥ x, (4)

and consider its inverse γ̄−1
x : [x,∞]→ [x,∞], with the convention that γ̄−1

x (s) =∞
when s ≥ γ̄x(∞). Define δγx : [x, γ̄x(∞))→ [0, 1) by δγx(s) = γ(γ̄−1

x (s)). Then,

U
γ

t = γ̄x(X t), t ≥ 0, (5)

and Uγ is a natural tax process with natural tax rate δγx.

(ii) Let δ : [x,∞)→ [0, 1) be a measurable function and assume that there exists a unique
solution yδx(t) of (3). Define γδx : [x,∞)→ [0, 1) by γδx(s) = δ

(
yδx(s− x)

)
.

Then, the integral equation (2) defining the natural tax process has a unique solution
V δ = (V δ

t )t≥0. Moreover,

V
δ

t = yδx(X t − x), t ≥ 0, (6)

and so the solution V δ to (2) is a latent tax process with latent tax rate given by γδx.

This theorem is the main contribution of the article. It states that a sufficient condition
for existence and uniqueness of solutions to (2) can be given in terms of a simple ODE.
From the proofs given in Section 3 below, it is not difficult to see that the existence and
uniqueness of the ODE (3) is also a necessary condition for existence and uniqueness of a
solution to (2). Theorem 1 also gives a precise relationship between the two types of tax
processes. In particular, every latent tax process is a natural tax process, though the cor-
responding latent and natural tax rates may differ. Conversely, every well-defined natural
tax process is also a latent tax process. The next example illustrates this equivalence for
piecewise constant tax rates.

Example 2. Define the piecewise constant function f b by

f b(z) =

α, z ≤ b,

β, z > b,
(7)
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(a) x = 7, b = 20 and b′ = 14.8.
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(b) x = 10, b = 20 and b′ = 16.

Figure 1: Plots of the risk process X (dashed line) and the associated latent tax process
U fb or equivalently natural tax process V fb′ (solid line), where f b is the piecewise
constant function defined by (7) with α = 0.4 and β = 0.9. The dashed-dot lines
mark the values of b and b′.

where b > x = X0 and 0 ≤ α ≤ β < 1. Note that the ODE (3) with δ = f b has a
unique solution, see e.g. Section 2. It is clear that the tax process with latent tax rate f b
differs from the tax process with natural tax rate f b, unless α = β or α = 0. However,
from Theorem 1 we deduce that the tax process with latent tax rate f b is equal to the tax
process with natural tax rate f b′ for

b′ = (1− α)b+ αx.

Note that b′ depends on the starting point x, unless α = 0. Figure 1 contains two plots in
which an example of X and the corresponding tax process U fb , or equivalently V fb′ , are
drawn. From this figure we see that indeed the first time X reaches the level b is equal to
the first time the tax process reaches the level b′.

The theorem allows us to very easily translate results derived for the latent tax process to
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results on the natural tax process, or vice versa. As an example, by using the corresponding
result derived in [10] for the latent tax processes, we provide below an analytical expression
of the so-called two-sided exit problem of the natural tax process in the case where X is a
spectrally negative Lévy process. For an introduction to spectrally negative Lévy processes
and their scale functions we refer to Chapter 8 in [8].

Corollary 3. Let X be a spectrally negative Lévy process on the probability space (Ω,F ,Px)
such that Px(X0 = x) = 1. Let δ : [x,∞)→ [0, 1) be a measurable function such that there
exists a unique solution yδx to (3). Let V δ be the tax process with natural rate δ associated
with the spectrally negative Lévy process X. Define the first passage times

τ−a = inf{t ≥ 0 : V δ
t < a} and τ+

a = inf{t ≥ 0 : V δ
t > a},

where a ∈ R. Let q ≥ 0 and let W (q) : R → [0,∞) be the q-scale function of X, defined
by W (q)(z) = 0 for z < 0 and characterised on [0,∞) as the continuous function whose
Laplace transform is given by∫ ∞

0
e−λyW (q)(z) dz =

(
log

(
E
[
eλX1

])
− q

)−1
, for λ > 0 sufficiently large.

Then, for 0 ≤ x < a < yδx(∞), we have

Ex
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= exp
{
−
∫ a

x

W (q)′(y)
W (q)(y)(1− δ(y)) dy

}
, (8)

where W (q)′ denotes a density of W (q) on (0,∞). On the other hand, if a ≥ yδx(∞), then
Ex
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= 0.

The rest of this article is organised as follows. In Section 2, we explain the consequences
of our results and make further connections with the literature. Section 3 is devoted to
the proofs of Theorem 1 and Corollary 3.

2 Related work and further applications
Markov property Assume X is a Markov process. As we have already commented in the
previous section, it follows from the integral equation (2) for the natural tax process V δ that
the process (V δ, V

δ) is Markov. One might expect that the equivalence between the two
types of tax processes should imply the same for (Uγ, U

γ) where Uγ is an arbitrary latent
tax process, since we know by Theorem 1(i) that Uγ is also a natural tax process. However,
the corresponding natural tax rate is δγx = δγX0 , which depends upon the initial value of X.
Looked at another way, although one can recover X from the formula X t = γ̄−1

x (Uγ
t ), this

too depends on knowledge of the initial value X0. For this reason, we do not obtain the
Markov property for (Uγ, U

γ) in general.
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An alternative definition of the natural tax process It would also appear to be reas-
onable to define a natural type of tax process as a solution to the SDE

Wt = Xt −
∫ t

0+
κ(W s) dW s, (9)

where κ : [x,∞) → [0,∞). Define δ = κ
1+κ . The process V δ, when it exists, is a solution

to (9), as can be shown using Lemma 4. The natural tax rate δ describes the tax rate as
a proportion of the increments of capital prior to taxation rather than after taxation, and
therefore appears to us to be preferable to κ as a parameter.

Existence of the tax process with progressive natural tax rates When the tax rate
increases with the amount of capital one has, the taxation regime is typically called pro-
gressive. We will show that, when δ is an increasing (in the weak sense) measurable
function δ : [x,∞) → [0, 1), then the ODE (3) has a unique solution, which implies the
existence and uniqueness of the natural tax process with tax rate δ.
For existence, since δ is an increasing function, we have that

g(z) := 1
1− δ(z) , z ≥ x,

is a strictly positive, increasing measurable function, and hence integrable, so

G(y) :=
∫ y

x
g(z) dz, y ≥ x,

is absolutely continuous. Moreover, since G is continuous and strictly increasing, G−1

exists and, as G′ > 0 a.e., G−1 is absolutely continuous [5, Vol. I, p. 389]. Thus, (G−1)′(t)
exists for almost every t, and it follows that a solution to (3) is given by yx(t) = G−1(t).
This is because, by the inverse function theorem [12, Theorem 31.1], it holds that

dG−1(t)
dt = 1

g(G−1(t)) = 1− δ(G−1(t)), for a.e. t > 0,

and since G(x) = 0, we have G−1(0) = x.
For uniqueness, since δ is increasing, the right hand side of (3) is decreasing. This

guarantees uniqueness, as can be proved using, for instance, [7, Theorem 1.3.8].

Optimal control In the case where X is a spectrally negative Lévy process, Wang and
Hu [15] studied a very interesting optimal control problem for the latent tax process Uγ,
given by

sup
γ∈Π

Ex
[∫ σ−0

0
e−qtγ(X t) dX t

]
, (10)

where σ−0 = inf{t ≥ 0 : Uγ
t < 0}, and Π is the set of measurable functions γ : [0,∞) →

[α, β], where 0 ≤ α ≤ β < 1 are fixed. Denote by γ∗ the function γ ∈ Π which maximises
(10), if it exists. A remarkable feature of Wang and Hu’s work is that they obtain a natural
tax process as the optimal solution to the problem of controlling a latent tax process, as
we will now explain.

7



In their Theorem 3.1, Wang and Hu state that γ∗ should satisfy the equation

γ∗(X t) = η

(
x+

∫ Xt

x
(1− γ∗(y)) dy

)
= η(Uγ∗

t ),

for some function η which they call the optimal decision rule. On the other hand, let δ
be a function satisfying the assumptions of Theorem 1(ii), and define γδx as in that result.
If we write ξ = γδx, then, by the definition of γδx together with (5) and (6), we have the
relation

ξ(X t) = δ

(
x+

∫ Xt

x
(1− ξ(y)) dy

)
= δ(U ξ

t ).

It follows from Theorem 1 that the relationship between Wang and Hu’s optimal decision
rule η and optimal tax rate γ∗ is nothing other than the relationship between a particular
natural tax rate δ and the equivalent latent tax rate γδx. Our results clarify that this
connection is a sensible one even outside of the optimal control context, and make clear
under exactly which conditions this connection is valid.
Wang and Hu go on to show that η must be piecewise constant, and in particular η = f b,

as defined in (7), where b is specified in terms of scale functions of the Lévy process but
is independent of x; see section 4 and equation (5.15) in their work (in which b is denoted
u0). Combining this with our result, we see that Wang and Hu’s solution of the optimal
control problem (10) is actually a tax process with the piecewise constant natural tax rate
f b, or equivalently the piecewise constant latent tax rate f b̃(x), where b̃(x) depends on x
as in Example 2.

Tax identity Assume we are in the setting of Corollary 3 where in particular X is a
spectrally negative Lévy process. We are interested here in the tax identity: a relationship
between the survival probability of the natural tax process V δ and the one of the risk
process with out tax X. To this end, let

φδ(x) = Px
(

inf
t≥0

V δ
t ≥ 0

)
and φ0(x) = Px

(
inf
t≥0

Xt ≥ 0
)

be the survival probability in the risk model with and without taxation, respectively.
If yδx(∞) <∞, the process V δ cannot exceed the level yδx(∞). Since from every starting

level (and thus in particular from yδx(∞)), there is a strictly positive probability of V going
below zero, a standard renewal argument shows that the survival probability φδ(x) is zero
in this case.
On the other hand, if yx(∞) = ∞, then we can apply Corollary 3 to get a relation

between the two survival probabilities. Namely, by letting q → 0 and a → ∞ in (8) and
using the well-known expression for φ0(x) (see, e.g., [8, equation (8.10)]), we have that

φδ(x) = exp
{
−
∫ ∞
x

W ′(y)
W (y)(1− δ(y))dy

}
= exp

{
−
∫ ∞
x

d ln(φ0(y))
dy · 1

(1− δ(y))dy
}
.

This agrees with [3, Proposition 3.1] for the special case where X is a Cramér-Lundberg
risk process, which confirms that in [3] natural tax processes are considered.
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3 Proofs
We start with a lemma generalising a result from [10].

Lemma 4. Let K = (Kt)t≥0 be a stochastic process for which every path is measurable as
a function of time and such that Kt < 1 for every t ≥ 0. Define

Ht = Xt −
∫ t

0+
KsdXs, t ≥ 0.

Then,
H t = X t −

∫ t

0+
KsdXs,

where H t = sups≤tHs. Moreover, {t ≥ 0 : Ht = H t} = {t ≥ 0 : Xt = X t}.

Proof. SinceKt < 1 for all t ≥ 0, the proof in [10, Lemma 2.1] works without alteration.

Next we prove part (ii) of Theorem 1 except for the existence of the integral equation.

Lemma 5. Let δ : [x,∞) → [0, 1) be a measurable function and assume that there exists
a unique solution yδx of (3). Define γδx : [x,∞) → [0, 1) by γδx(s) = δ

(
yδx(s− x)

)
. If there

exists a solution V δ = (V δ
t )t≥0 to the integral equation

V δ
t = Xt −

∫ t

0+
δ(V δ

r)dXr, t ≥ 0, (11)

then V δ
t = yδx(X t−x) and hence V δ is a latent tax process with latent tax rate given by γδx.

Proof. Suppose that V δ solves (11). By Lemma 4,

V
δ
t = X t −

∫ t

0+
δ(V δ

r) dXr, t ≥ 0. (12)

We define Lt = X t − x and we let L−1
a be its right-inverse, i.e.

L−1
a :=

inf{t > 0 : Lt > a} = inf{t > 0 : X t > a+ x}, if 0 ≤ a < L∞,

∞, if a ≥ L∞.

As X does not have upward jumps, t 7→ X t is continuous, which implies

XL−1
a

= x+ (a ∧ L∞). (13)

Using respectively (12) for t = L−1
a = L−1

a∧L∞ , (13) and the change of variables formula
with r = L−1

b (see, for instance, [14, footer of p. 8]), we have for a ≥ 0,

V
δ

L−1
a∧L∞

= XL−1
a∧L∞

−
∫ L−1

a∧L∞

0+
δ(V δ

r) dXr

= x+ (a ∧ L∞)−
∫ ∞

0+
1{r≤L−1

a∧L∞}δ(V
δ
r) dXr

= x+ (a ∧ L∞)−
∫ ∞

0
1{0<L−1

b
≤L−1

a∧L∞}δ(V
δ
L−1

b
) db

= x+
∫ a∧L∞

0

(
1− δ

(
V
δ
L−1

b

))
db,
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where for the last equality we used that L−1
b is strictly increasing on [0, L∞], which follows

because t 7→ X t is continuous. By the hypothesis that (3) has a unique solution yδx, we
deduce,

V
δ
L−1

a∧L∞
= yδx (a ∧ L∞) = yδx

(
XL−1

a∧L∞
− x

)
, a ≥ 0, (14)

where the last equality follows by (13). As t 7→ X t does not jump upwards, XL−1
Lt

= X t

for all t ≥ 0, which implies via (12) that V δ
L−1

Lt

= V
δ
t for all t ≥ 0. So by invoking (14) for

a = Lt, we conclude that V δ

t = yδx(X t − x) for all t ≥ 0.

We are now ready to prove Theorem 1 and Corollary 3.

Proof of Theorem 1. (i) Fix t ≥ 0. By Lemma 4, we have

U
γ

t = X t −
∫ t

0+
γ(Xr)dXr.

By applying the change of variable y = Xr, we obtain

U
γ
t = X t −

∫ Xt

x
γ(y)dy = γ̄x(X t),

where we recall that γ̄x(s) = x +
∫ s
x (1 − γ(y)) dy. Hence, γ̄−1

x (Uγ
t ) = X t, and so

γ(X t) = γ(γ̄−1
x (Uγ

t )) = δγx(Uγ
t ). It follows that Uγ is a natural tax process with

natural tax rate δγx .

(ii) The uniqueness of a solution to (2), and the equality (6), follow directly from Lemma
5. So it remains to prove the existence of a solution to (2). By the hypothesis
there exists a unique solution yδx to (3). With γδx(z) = δ

(
yδx(z − x)

)
, we define

δ̄ : [x,∞)→ [0, 1) by

δ̄(z) = γδx
(
(γ̄δx)−1(z)

)
= δ

(
yδx

((
γ̄δx
)−1

(z)− x
))

,

where (γ̄δx)−1 is the inverse function of

γ̄δx(z) = x+
∫ z

x
(1− γδx(y))dy. (15)

By part (i) of Theorem 1, the tax process with latent tax rate γδx is a natural tax
process with natural tax rate δ̄. Thus, it remains to show that δ̄(z) = δ(z) for z ≥ x.
Note that γ̄δx is an absolutely continuous function and hence (γ̄δx)′ exists almost
everywhere. By (3) we have that, for z such that (γ̄δx)′(z) exists,

d
dz
(
yδx((γ̄δx)−1(z)− x)

)
=
[
1− δ

(
yδx
(
(γ̄δx)−1(z)− x

))] d
dz
(
(γ̄δx)−1(z)

)
=
[
1− γδx

(
(γ̄δx)−1(z)

)] d
dz
(
(γ̄δx)−1(z)

)
.
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Since by the inverse function theorem [12, Theorem 31.1],

d
dz
(
(γ̄δx)−1(z)

)
= 1

(γ̄δx)′ ((γ̄δx)−1(z)) = 1
1− γδx ((γ̄δx)−1(z)) ,

we see that
d
dz
(
yδx((γ̄δx)−1(z)− x)

)
= 1 a.e.,

and therefore, by the absolute continuity, for some constant c, we have that

yδx((γ̄δx)−1(z)− x) = z + c, z ≥ x.

Since (γ̄δx(x))−1 = x = yδx(0), we get that c = 0. We conclude that δ̄(z) = δ(z) for
z ≥ x, and this completes the proof.

Proof of Corollary 3. From (6) we see that τ+
a = ∞ when a ≥ yx(∞). Hence we can

assume without loss of generality that a < yδx(∞). By part (ii) of Theorem 1 we know that
V δ is a latent tax process with latent tax rate γδx. Hence we can use Theorem 1.1 in [10]
to conclude that,

Ex
[
e−qτ

+
a 1{τ+

a <τ
−
0 }
]

= exp
{
−
∫ a

x

W (q)′(y)
W (q)(y) (1− γδx ((γ̄δx)−1(y)))dy

}
,

where (γ̄δx)−1 is the inverse of the function γ̄δx given by (15). Note that in [10] the additional
assumption

∫∞
0 (1 − γδx(z))dz = ∞ is made on the latent tax rate, but from the proof of

Theorem 1.1 in [10] it is clear that this assumption is unnecessary when a < yδx(∞). In the
proof of Theorem 1(ii) we showed that γδx

(
(γ̄δx)−1(y)

)
= δ(y) for all y ≥ x, which finishes

the proof.
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