
Scaling Static Analyses at Facebook

Dino Distefano, Manuel Fähndrich, Francesco Logozzo and Peter W. O’Hearn
Facebook

1. Introduction
Static analysis tools are programs that examine, and attempt to
draw conclusions about, the source of other programs, without run-
ning them. At Facebook we have been investing in advanced static
analysis tools that employ reasoning techniques similar to those
from program verification. The tools we describe (Infer and Zon-
colan) target issues related to crashes and to the security of our ser-
vices, they perform sometimes complex reasoning spanning many
procedures or files, and they are integrated into engineering work-
flows in a way that attempts to bring value while minimizing fric-
tion. They run on code modifications, participating as bots during
the code review process. Infer targets our mobile apps as well as
our backend C++ code, codebases with 10s of millions of lines;
it has seen over 100 thousand reported issues fixed by developers
before code reaches production. Zoncolan targets the 100 million
lines of Hack code, and is additionally integrated in the workflow
used by security engineers; it has led to thousands of fixes of se-
curity and privacy bugs, outperforming any other detection method
used at Facebook for such vulnerabilities. We describe the human
and technical challenges encountered and lessons we have learned
in developing and deploying these analyses.

There has been a tremendous amount of work on static analysis,
both in industry and academia, and we will not attempt to survey
that material here. Rather, we present our rationale for, and results
from, using techniques similar to ones that might be encountered
at the edge of the research literature, not only simple techniques
which are much easier to make scale. We intend that this should
complement other reports on industrial static analysis and formal
methods (e.g., [17, 6, 1, 13]), and hope that such perspectives can
provide input both to future research and to further industrial use
of static analysis.

We continue in the next section by discussing the three di-
mensions (bugs that matter, people, and actioned/missed bugs) that
drive our work. The rest of the paper describes our experience de-
veloping and deploying the analyses, their impact, and the tech-
niques that underpin our tools.

2. Context for Static Analysis at Facebook
Bugs that Matter We use static analysis to prevent bugs that
would affect our products, and we rely on our engineers’ judgement
as well as data from production to tell us the bugs that matter the
most.

Communications of the ACM, 2019 (to appear)

It is important for a static analysis developer to realize that not
all bugs are the same: different bugs can have different levels of
importance or severity depending on the context and the nature. A
memory leak on a seldom used service might not be as important
as a vulnerability that would allow attackers to gain access to
unauthorized information. Additionally, the frequency of a bug type
can affect the decision of how important it is to go after. If a certain
kind of crash, such as a null pointer error in Java, were happening
hourly, then it might be more important to target than a bug of
similar severity that occurs only once a year.

We have several means to collect data on the bugs that matter.
First of all, the company maintains statistics on crashes and other
errors that happen in production. Second, we have a “bug bounty”
program, where people outside the company can report vulnerabil-
ities on Facebook, or on apps of the Facebook family, e.g., Mes-
senger, Instagram or WhatsApp. Third, we have an internal SEV
initiative for tracking the most severe bugs that occur.

Our understanding of Bugs that Matter at Facebook drives our
focus on advanced analyses. For contrast, a recent paper states: “All
of the static analyses deployed widely at Google are relatively sim-
ple, although some teams work on project-specific analysis frame-
works for limited domains (such as Android apps) that do interpro-
cedural analysis [17]” and they give their entirely logical reasons,
where we will explain why at Facebook we have made the decision
to deploy interprocedural analysis (spanning multiple procedures)
widely.

People and Deployments While not all bugs are the same, neither
are all users, and we use different deployment models, depending
on who intended audience (the people are that the analysis tool will
be deployed to) is.

For classes of bugs that are intended for all or a wide variety of
engineers on a given platform, we have gravitated towards a “diff
time” deployment. In this deployment the analyzers participate as
bots in code review, making automatic comments when an engineer
submits a code modification. In Section 4 we recount a striking
situation where the diff time deployment saw a 70% fix rate, where
a more traditional “off line” or “batch” deployment (where bug lists
are presented to engineers, outside their workflow) saw a 0% fix
rate.

In case the intended audience is the much smaller collection of
domain security experts in the company, we use two additional de-
ployment models. At “diff time”, security related issues are pushed
to the security engineer on-call, so she can comment on an in-
progress code change when necessary. Additionally, for finding all
instances of a given bug in the codebase, or historical exploration,
“off line” inspection provides a user interface for querying, filter-
ing, and triaging all alarms.

In all cases, our deployments focus on the people that our tools
serve and the way that they work.

Actioned Reports and Missed Bugs The goal of an industrial
static analysis tool is to help people: at Facebook this is the engi-

neers, directly, and the people who use our products, indirectly. We
have seen above how the deployment model can influence whether
a tool is successful. Two concepts we use to understand this in more
detail, and to help us improve our tools, are actioned reports and
observable missed bugs.

The kind of action taken as a result of a reported bug depends
on the deployment model as well as the type of bug. At diff time
an action is an update to the diff that removes a static analysis
report. In Zoncolan’s off line deployment a report can trigger the
security expert to create a task for the product engineer if the
issue is important enough to follow up with the product team.
Zoncolan catches more severe bugs than either manual security
reviews or bug bounty reports. We measured that 43.3% of the
severe security bugs are detected via Zoncolan. At the moment
of writing, Zoncolan “action rate” is above 80% and we observed
about 11 “missed bugs”.

A “missed bug” is one that has been observed in some way, but
that was not reported by an analysis. The means of observation can
depend on the kind of bug. For security vulnerabilities we have bug
bounty reports, security reviews or SEV reviews. For our mobile
apps we log crashes and app not-responding events that occur on
mobile devices.

The actioned reports and missed bugs are related to the classic
concepts of true positives and false negatives from the academic
static analysis literature. A true positive is a report of a potential
bug that can happen in a run of the program in question (whether
or not it will happen in practice); a false positive is one that cannot
happen. Common wisdom in static analysis is that it is important
to keep control of the false positives because they can negatively
impact engineers who use the tools, as they tend to lead to apathy
towards reported alarms. This has been emphasized, for instance, in
previous CACM articles on industrial static analysis [1, 17]. False
negatives, on the other hand, are potentially harmful bugs that may
remain undetected for a long time. An undetected bug affecting
security or privacy can lead to undetected exploits. In practice,
fewer false positives often (though not always) implies more false
negatives, and vice versa, fewer false negatives implies more false
positives. For instance, one way to reign in false positives is to
fail to report when you are less than sure that a bug will be real;
but silencing an analysis in this way (say, by ignoring paths or by
heuristic filtering) has the effect of missing bugs. And, if you want
to discover and report more bugs you might also add more spurious
behaviors.

The reason we are interested in advanced static analyses at
Facebook might be understood in classic terms as saying: false
negatives matter to us. However, it is important to note that the
number of false negatives is notoriously difficult to quantify (how
many unknown bugs are there?). Equally, though less recognized,
the false positive rate is challenging to measure for a large, rapidly
changing codebase: it would be extremely time consuming for
humans to judge all reports as false or true as the code is changing.

Although true positives and false negatives are valuable con-
cepts, we don’t make claims about their rates and pay more atten-
tion to the action rate and the (observed) missed bugs.

Challenges: Speed, Scale and Accuracy A first challenge is pre-
sented by the sheer scale of Facebook’s codebases, and the rate of
change that they see. For the server-side we have over 100 mil-
lion lines of Hack code, which Zoncolan can process in less than
30 minutes. Additionally, we have tens of millions of both mobile
(Android and Objective C) code and backend C++ code. Infer pro-
cesses the code modifications quickly (within 15 minutes on av-
erage) in its diff time deployment. All codebases see thousands of
code modifications each day and our tools run on each code change.
For Zoncolan, this can amount to analyzing 1 trillion lines of code
per day.

• Advanced static analysis techniques performing deep reasoning
about source code can scale to large industrial codebases, e.g.
with 100 million lines.

• Static analyses should strike a balance between missed bugs
(false negatives) and un-actioned reports (false positives).

• A “diff time” deployment, where issues are given to developers
promptly as part of code review is important to catching bugs
early and getting high fix rates.

Key Insights

It is relatively straightforward to scale program analyses that
do simple checks on a procedure-local basis only. The simplest
form are linters which give syntactic style advice (e.g. “the method
you called is to be deprecated, please consider rewriting”). Such
simple checks provide value and are in wide deployment in major
companies including Facebook; we won’t comment on them further
in this article. But for more reasoning going beyond local checks,
such as one would find in the academic literature on static analysis,
scaling to 10s or 100s of millions of LOC is a challenge, as is the
incremental scalability needed to support diff time reporting.

Infer and Zoncolan both deploy techniques similar to some of
what one might find at the edge of the research literature. Infer
(Section 4) deploys one analysis based on the theory of Separation
Logic [16], with a novel theorem prover that implements an infer-
ence technique that guesses assumptions [5]. Another Infer analysis
involves recently published research results on concurrency analy-
sis [2, 10]. Zoncolan implements a new modular parallel taint anal-
ysis algorithm.

But how can Infer and Zoncolan scale? The core technical fea-
tures they share are compositionality and carefully crafted abstrac-
tions. For most of the paper we will concentrate on what one gets
from applying Infer and Zoncolan, rather than on their technical
properties, but we outline their foundations in Section 6, and we in-
clude an appendix with additional material for the interested reader.

The challenge related to accuracy is intimately related to ac-
tioned reports and missed bugs. We try to strike a balance between
these issues, informed by the desires based on the class of bugs and
the intended audience. The more severe a potentially missed issue
is, the lower the tolerance for missed bugs. Thus for issues that in-
dicate a potential crash or performance regression in a mobile app
such as Messenger, WhatsApp, Instagram, or Facebook, our toler-
ance for missed bugs is lower than for, e.g., stylistic lint suggestions
(e.g., don’t use deprecated method). For issues that could affect the
security of our infrastructure or the privacy of the people using our
products, our tolerance for false positives is higher still.

3. Software Development at Facebook
Facebook practices continuous software development [9], where a
main codebase (master) is altered by thousands of programmers
submitting code modifications (diffs). Master and diffs are the ana-
logues of, respectively, GitHub master branch and pull requests.
The developers share access to a codebase and they land, or com-
mit, a diff to the codebase after passing code review. A continuous
integration system (CI system) is used to ensure that code contin-
ues to build and passes certain tests. At this point, analyses run on
the code modification and participate by commenting their findings
directly in the code review tool.

The Facebook website was originally written in PHP, and then
ported to Hack, a gradually typed version of PHP developed at
Facebook (https://hacklang.org/). The Hack codebase spans
over 100 million lines. It includes the web frontend, the internal
web tools, the APIs to access the social graph from 1st and 3rd

party apps, the privacy-aware data abstractions, and the privacy-
control logic for viewers and apps. Mobile apps – for Facebook,
Messenger, Instagram and WhatsApp – are mostly written in
Objective-C and Java. C++ is the main language of choice for
backend services. There are tens of millions of lines each of mobile
and backend code.

While they use the same development models, the website and
mobile products are deployed differently. This affects: (i) what
bugs are considered most important, and (ii) the way that bugs
can be fixed. For the website, Facebook directly deploys new code
to its own data centers, and bug fixes can be deployed directly to
our data centers frequently, several times daily and immediately
when necessary. For the mobile apps, Facebook relies on people to
download new versions to from the Android or the Apple store; new
versions are shipped weekly, but mobile bugs are less under our
control because even if a fix is shipped it might not be downloaded
to some people’s phones.

Common runtime errors – e.g. null pointer exceptions, division
by zero – are more difficult to get fixed on mobile than on the
server. On the other hand, server-side security and privacy bugs can
severely impact both the users of the Web version of Facebook as
well as our mobile users, since the privacy checks are performed
on the server-side. As a consequence, Facebook invests in tools
to make the mobile apps more reliable and server-side code more
secure.

4. Moving Fast with Infer
Infer is a static analysis tool applied to Java, Objective C and C++
code at Facebook [4]. It reports errors related to memory safety,
to concurrency, to security (information flow), and many more
specialized errors suggested by Facebook developers. Infer is run
internally on the Android and iOS apps for Facebook, Instagram,
Messenger and WhatsApp, as well as on our backend C++ and Java
code.

Infer has its roots in academic research on program analysis
with separation logic [5], research which led to a startup company
(Monoidics Ltd) that was acquired by Facebook in 2013. Infer was
open sourced in 2015 (www.fbinfer.com) and is used at Amazon,
Spotify, Mozilla, and other companies.

Diff-time Continuous Reasoning Infer’s main deployment model
is based on fast incremental analysis of code changes. When a diff
is submitted to code review an instance of Infer is run in Face-
book’s internal CI system (Figure 1). Infer does not need to process
the entire code base in order to analyze a diff, and so is fast.

An aim has been for Infer to run in 15-20min on a diff on av-
erage, and this includes time to check out the source repository, to
build the diff, and to run on base and (possibly) parent commits.
It has typically done so, but we constantly monitor performance
to detect regressions that makes it look longer, in which case we
work to bring the running time back down. After running on a
diff Infer then writes comments to the code review system. In the
default mode used most often it reports only regressions: new is-
sues introduced by a diff. The “new” issues are calculated using a
bug equivalence notion which uses a hash involving the bug type
and location-independent information about the error message, and
which is sensitive to file moves and line number changes cause by
refactoring, deleting or adding code; the aim is to avoid present-
ing warnings that developers might regard as pre-existing. Fast re-
porting is important to keep in tune with developers’ workflows.
In contrast, when Infer is run in whole-program mode it can take
more than an hour (depending on the app), too slow for diff-time at
Facebook.

Human Factors The significance of the diff-time reasoning of
Infer is best understood by contrast with a failure. The first deploy-

Figure 1: Continuous Development

ment was batch rather than continuous. In this mode Infer would be
run once per night on the entire Facebook Android codebase, and
it would generate a list of issues. We manually looked at the issues,
and assigned them to the developers we thought best able to resolve
them.

The response was stunning: we were greeted by near silence. We
assigned 20-30 issues to developers, and almost none of them were
acted on. We had worked hard to get the false positive rate down
to what we thought was less than 20%, and yet the fix rate—the
proportion of reported issues that developers resolved—was near
zero.

Next, we switched Infer on at diff time. The response of engi-
neers was just as stunning: the fix rate rocketed to over 70%. The
same program analysis, with same false positive rate, had much
greater impact when deployed at diff time.

While this situation was surprising to the static analysis experts
on the Infer team, it came as no surprise to Facebook’s developers.
Explanations that they offered to us may be summarized in the
following terms.

One problem that diff-time deployment addresses is the men-
tal effort of context switch. If a developer is working on one prob-
lem, and they are confronted with a report on a separate problem,
then they must swap out the mental context of the first problem and
swap in the second, and this can be time consuming and disrup-
tive. By participating as a bot in code review, the context switch
problem is largely solved: programmers come to the review tool to
discuss their code with human reviewers, with mental context al-
ready swapped in. This illustrates as well how important timeliness
is: if a bot were to run for an hour or more on a diff it could be too
late to participate well.

A second problem that diff-time deployment addresses is rele-
vance. When an issue is discovered in the codebase, it can be non-
trivial to assign it to the right person. In the extreme, the issue might
have been caused by somebody who has left the company. Further-
more, even if you think you have found someone familiar with the
codebase, the issue might not be relevant to any of their past or
current work. But, if we comment on a diff that introduces an issue
then there is a pretty good (but not perfect) chance that it is relevant.

Mental context switch has been the subject of psychological
studies [12], and it and the importance of relevance are part of
the received collective wisdom impressed upon us by Facebook’s
engineers. Note that others have also remarked on the benefits of
reporting during code review [17].

At Facebook we are working actively on moving other testing
technologies to diff time when possible. We are also supporting
academics on researching incremental fuzzing and symbolic exe-
cution techniques for diff time reporting.

Interprocedural Bugs Many of the bugs that Infer finds involve
reasoning that spans multiple procedures or files. An example from
OpenSSL illustrates.

1 @ThreadSafe
2 class RaceWithMainThread {
3 int mCount;
4 void protectedWriteOnMainThread_OK () {
5 OurThreadUtils.assertMainThread ();
6 synchronized (this) { mCount = 1; }
7 }

8 int unprotectedReadOnMainThread_OK () {
9 OurThreadUtils.assertMainThread ();

10 return mCount;
11 }
12 synchronized int protectedReadOffMainThread_OK () {
13 return mCount;
14 }

15 synchronized void
16 protectedWriteOffMainThread_BAD () {
17 mCount = 2;
18 }

19 int unprotectedReadOffMainThread_BAD () {
20 return mCount;
21 }

Figure 2: Top: simple example capturing a common safety pattern used in Android apps: threading information is used to limit the amount of
synchronization required. As a comment from the original code explains: “mCount is written to only by the main thread with the lock held, read
from the main thread with no lock held, or read from any other thread with the lock held.” Bottom: unsafe additions to RaceWithMainThread

.java.

apps/ca.c:2780: error: NULL_DEREFERENCE
pointer ‘revtm‘ last assigned on line 2778 could be null
and is dereferenced at line 2780, column 6

2778. revtm = X509_gmtime_adj(NULL, 0);
2779.
2780. i = revtm->length + 1;

The issue is that the procedure X509_gmtime_adj() can return
null in some circumstances. Overall, the error trace found by Infer
has 61 steps, and the source of null, the call to X509_gmtime_adj

goes five procedures deep and it eventually encounters a return of
null at call-depth 4. This bug was one of 15 that we reported to
OpenSSL which were all fixed.

Infer finds this bug by performing compositional reasoning,
which allows covering interprocedural bugs while still scaling to
millions of lines of code. It deduces a precondition/postcondition
specification approximating the behaviour of X509_gmtime_adj,
and then uses that specification when reasoning about its calls. The
specification includes 0 as one of the return values, and this triggers
the error.

In 2017 we looked at bug fixes in several categories and found
that for some (null dereferences, data races, and security issues)
over 50% of the fixes were for bugs with traces that were inter-
procedural1. The interprocedural bugs would be missed bugs if we
only deployed procedure-local analyses.

Concurrency A concurrency capability recently added to Infer,
the RacerD analysis, provides an example of the benefit of feed-
back between program analysis researchers and product engineers
[2, 15]. Development of the analysis started in early 2016, mo-
tivated by Concurrent Separation Logic [3]. After 10 months of
work on the project, engineers from News Feed on Android caught
wind of what we were doing and reached out. They were plan-
ning to convert part of Facebook’s Android app from a sequen-
tial to a multi-threaded architecture. Hundreds of classes written
for a single-threaded architecture had to be used now in a concur-
rent context: the transformation could introduce concurrency er-
rors. They asked for interprocedural capabilities because Android
UI is arranged in trees with one class per node. Races could happen
via interprocedural call chains sometimes spanning several classes,
and mutations almost never happened at the top level: procedural-
local analysis would miss most races.

We had been planning to launch the proof tool we were work-
ing on in a year’s time, but the Android engineers were starting

1 https://code.facebook.com/posts/1537144479682247/
finding-interprocedural-bugs-at-scale-with-infer-static-
analyzer/

their project and needed help sooner. So we pivoted to a minimum
viable product which would serve the engineers – it had to be fast,
with actionable reports, and not too many missed bugs on product
code (but not on infrastructure code) [2, 15]. The tool borrowed
ideas from Concurrent Separation Logic, but we gave up on the
ideal of proving absolute race freedom. Instead, we established a
‘completeness’ theorem saying that, under certain assumptions, a
theoretical variant of the analyzer reports only true positives [10].
The analysis checks for data races in Java programs; two concurrent
memory accesses, one of which is a write. The example in Figure 2
(top) illustrates: If we run the Infer on this code it doesn’t find a
problem. The unprotected read and the protected write do not race
because they are on the same thread. But, if we include additional
methods that do conflict, then Infer will report races, as in Figure 2,
bottom.

Impact. Since 2014 over 100,000 issues flagged by Infer have
been resolved by Facebook’s developers. The majority of Infer’s
impact comes from the diff-time deployment, but it is also run batch
to track issues in master, issues addressed in fixathons and other
periodic initiatives.

The RacerD data race detector saw over 2500 fixes in the year
to March 2018. It supported the conversion of Facebook’s An-
droid app from a single-threaded to a multi-threaded architecture
by searching for potential data races, without the programmers
needing to insert annotations for saying which pieces of memory
are guarded by what locks. This conversion led to an improve-
ment in scroll performance and, speaking about the role of the ana-
lyzer, Benjamin Jaeger, an Android engineers at Facebook, stated2:
“without Infer, multithreading in News Feed would not have been
tenable”. As of March 2018, no Android data race bugs missed by
Infer had been observed in the previous year (modulo 3 analyzer
implementation errors [2]).

The fix rate for the concurrency analysis to March 2018 was
roughly 50%, lower than for the general diff analysis previously.
Our developers have emphasized that they appreciate the reports
because concurrency errors are difficult to debug. This illustrates
our earlier points about balancing action rates and bug severity. See
[2] for more discussion on fix rates.

Overall, Infer reports on over 30 types of issue, ranging from
deep inter-procedural checks to simple procedure-local checks and
lint rules. Concurrency support includes checks for deadlocks and
starvation, with hundreds of “app not-responding”’ bugs being
fixed in the past year. Infer has also recently implemented a security
analysis (a ‘taint’ analysis), which has been applied to Java and

2 https://code.facebook.com/posts/1985913448333055/
multithreaded-rendering-on-android-with-litho-and-infer/

C++ code; it gained this facility by borrowing ideas from Zoncolan,
which we describe next.

5. Staying Secure with Zoncolan
One of the original reasons for the development and adoption of
Hack was to enable more powerful analysis of the core Facebook
codebase. Zoncolan is the static analysis tool we built to find code
and data paths that may cause a security or a privacy violation in
our Hack codebase.

The code in Fig. 3 is an example of a vulnerability prevented
by Zoncolan. If the member_id variable on line 21 contains the
value ../../users/delete_user/ it is possible to redirect this
form into any other form on Facebook. On submission of the
form, it will invoke a request to https://facebook.com/groups

/add_member/../../users/delete_user/, which will delete the
user’s account. The root cause of the vulnerability in Fig. 3 is that
the attacker controls the value of the member_id variable which is
used in the action field of the <form> element. Zoncolan follows
the interprocedural flow of untrusted data (e.g., user-input) to sen-
sitive parts of the codebase. Virtual calls do make interprocedural
analysis hard since the tool in general does not know the precise
type of an object. To avoid missing paths (and thus bugs), Zon-
colan must consider all the possible functions a call may resolve
to.

SEV-Oriented Static Analysis Development We designed and
developed Zoncolan in collaboration with the Facebook App Se-
curity team. Alarms reported by Zoncolan are inspired by security
bugs that the App Security team uncovered.

The initial design of Zoncolan began with a list of severe bugs
(SEV in Facebook terminology) that were provided to us by secu-
rity engineers. For each bug we asked ourselves: “How could we
have caught it with static analysis?”. Most of those historical bugs
were no longer relevant because the programming language or a se-
cure framework prevented them from recurring—for instance, the
widespread adoption of XHP made it possible to build XSS-free
web pages by construction. We realized that the remaining bugs
involved interprocedural flows of untrusted data, either directly or
indirectly, into some privileged APIs. Detecting such bugs can be
automated with static taint flow analysis [18] which tracks how the
data originating from some untrusted sources reaches or influences
the data reaching some sensitive parts of the codebase (sinks).

When a security engineer discovers a new vulnerability we
evaluate whether that class of vulnerability is amenable to static
analysis. If it is, we prototype the new rule, iterating with the
feedback of the engineer in order to refine results to strike the right
balance of false postives/false negatives. When we together believe
the rule is good enough, it is enabled on all runs of Zoncolan in
production. We adopt the standard Facebook App Security severity
framework, which associates to each vulnerability an impact level,
in a scale from 1 (best-practice) to 5 (SEV-worthy). A security
impact level of 3 or more is considered as severe.

Scaling the analysis A main challenge was to scale Zoncolan to
a codebase of more than 100 millions of lines of code. Thanks to
a new parallel, compositional, non-uniform static analysis that we
designed, Zoncolan performs the full analysis of the code base in
less than 30 minutes, on a 24 core server.

Zoncolan builds a dependency graph that relates methods to
their potential callers. It uses this graph to schedule parallel analy-
ses of individual methods. In the case of mutually recursive meth-
ods, the scheduler iterates the analysis of the methods until it stabi-
lizes, i.e., no more flows are discovered. Suitable operators (called
widenings in the static analysis literature, [7]) ensure the conver-
gence of the iterations. It is worth mentioning that, even though
the concept of taint analysis is well established in Academia, we

had to develop new algorithms in order to scale to the size of our
codebase.

Funneled Deployment Figure 4 provides a graphical represen-
tation of the Zoncolan deployment model. This funneled deploy-
ment model optimizes bug detection with the goal of supporting
security of Facebook: The Zoncolan master analysis finds all ex-
isting instances of a newly discovered vulnerability. The Zoncolan
diff analysis avoids vulnerabilities from being (re-)introduced in
the codebase.

Zoncolan periodically analyzes the entire Facebook Hack code-
base to update the master list. The target audience is security en-
gineers performing security reviews. In the master analysis, we ex-
pose all alarms found. Security engineers are interested in all ex-
isting alarms for a given project or a given category. They triage
alarms via a dashboard which enables filtering by project, code lo-
cation, source and/or destination of the data, length or features of
the trace. When a security engineer finds a bug, he/she files a task
for the product group and provides guidance on how to make the
code secure. When an alarm is a false positive, he/she files a task for
the developers of Zoncolan with an explanation of why the alarm
is false. The Zoncolan developers then refine the tool to improve
the precision of the analysis. After a category has been extensively
tested, the Zoncolan team, in conjunction with the App security
team, evaluates if it can be promoted for diff analysis. Often promo-
tion involves improving the signal by filtering the output according
to e.g., the length of the inter-procedutal trace, the visibility of the
endpoint (external or internal?), etc. At the moment of writing circa
1/3 of the Zoncolan categories are enabled for diff analysis.

Zoncolan analyzes every Hack code modification and reports
alarms if a diff introduces new security vulnerabilities. The target
audience is: (i) the author and the reviewers of the diff (Facebook
software engineers who are not security experts), and (ii) the secu-
rity engineer in the on-call rotation (who has a limited time budget).
When appropriate, the on-call validates the alarm reported, blocks
the diff, and provides support to write the code in a secure way. For
categories with very high signal, Zoncolan acts as a security bot: it
by-passes the security on-call and instead comments directly on the
diff. It provides a detailed explanation on the security vulnerability,
how it can be exploited, and it includes references to past incidents,
e.g. SEVs.

Finally, note that the funneled deployment model makes it pos-
sible to scale up the security fixes, without reducing the overall
coverage Zoncolan achieves (i.e., without missing bugs): If Zon-
colan determines a new issue is not high-signal enough for auto-
commenting on the diff, but needs to be looked at by an expert, it
pushes it to the on-call queue. If the alarm makes neither of these
cuts, the issue will end up in the Zoncolan master analysis after the
diff is committed.

Impact Zoncolan has been deployed for more than two years at
Facebook, first to security engineers, then to software engineers. It
has prevented thousands of vulnerabilities from being introduced
to Facebook’s codebase. Figure 5 compares the number of severe
bugs, i.e. bugs of severity 3 to 5, prevented by Zoncolan, in a
6 months period, to the traditional programs adopted by security
engineers, such as manual code reviews/pentesting and bug bounty
reports. The bars show that at Facebook, Zoncolan catches more
severe bugs than either manual security reviews or bug bounty
reports. We measured that 43.3% of the severe security bugs are
detected via Zoncolan.

The graph in Fig. 6 shows the distribution of the actioned bugs
found by Zoncolan at different stages of the deployment funnel,
according to the security impact level. The largest number of cat-
egories are enabled for the master analysis, so it is not unexpected
that it is the largest bucket. However, when restricting to severe

1 <?hh
2 class AddMemberToGroup extends FacebookEndpoint {
3 private function getIDs (): (string , int) {
4 // User input , untrusted
5 return tuple ((string) $this ->getRequest(’member_id ’),
6 (int) $this ->getRequest(’gid ’));
7 }
8
9 public function render (): :xhp {

10 list($member_id , $group_id) = $this ->getIDs ();
11 return this ->getConfirmationForm($group_id , $member_id);
12 }
13
14 public function getConfirmationForm
15 (int $group_id , string $member_id): :xhp {
16 $url = "https :// facebook.com/groups/add_member /" .
17 $member_id;
18
19 return
20 <form method ="post" action ={$url}>
21 <input name="gid" value ={ $group_id}/>
22 <input name=" action" value="add"/>
23 </form >;
24 }
25 }

Figure 3: Example of a bug that Zoncolan prevents. It may cause the attacker to delete a user account. The attacker can provide an input on
line 5 that causes a redirection to any other form on Facebook at line 20.

Figure 4: Funneled Deployment of Zoncolan

Figure 5: Comparison of severe bugs reported by Zoncolan
w.r.t. Security reviews and Bug Bounty, in a 6 months period
(darker implies more severe).

bugs the diff analysis largely overtakes the master analysis: 211 se-
vere issues are prevented at diff-time, versus 122 detected on mas-
ter. Overall, we measured the ratio of Zoncolan actioned bugs to be
close to 80%.

We also use the traditional security programs to measure missed
bugs, i.e., the vulnerabilities for which there is a Zoncolan category,
but the tool failed to report them. To date, we have had about
11 missed bugs, some of them caused by a bug in the tool or
incomplete modelling.

6. Compositionality and Abstraction
The technical features that underpin our analyses are composition-
ality and abstraction.

The notion of compositionality comes from language semantics:
A semantics is compositional if the meaning of a compound phrase

Figure 6: Distribution of all the bugs fixed, in a 6 months pe-
riod, based on Zoncolan’s Funneled Deployment and bug severity
(darker implies more severe).

is defined in terms of the meanings of its parts and a means of com-
bining them. The same idea can be applied to program analysis
[8, 5]. A program analysis is compositional if the analysis result of
a composite program is defined in terms of the analysis results of
its parts and a means of combining them. When applying composi-
tionality in program analysis, there are two key questions:

a) How to represent the meaning of a procedure concisely

b) How to combine the meanings in an effective way

For a) we need to approximate the meaning of a component by ab-
stracting away the full behavior of the procedure and to focus only
on the properties relevant for the analysis. For instance, for secu-
rity analysis, one may be only interested that a function returns
a user-controlled value, when the input argument contains a user-
controlled string, discarding the effective value of the string. More
formally, the designer of the static analysis defines an appropri-
ate mathematical structure, called the abstract domain [7], which
allows to approximate this large function space much more suc-
cinctly. The design of a static analysis relies on abstract domains
which are precise enough to capture the properties of interest and
coarse enough to make the problem computationally tractable. The
‘abstraction of a procedure meaning’ is often called a procedure
summary in the analysis literature [19].

The answer to question b) mostly depends on the specific ab-
stract domain chosen for the representation of summaries. Further
information on the abstractions supported by Infer and Zoncolan,
as well as brief information on recursion, fixpoints, and analysis

algorithms, may be found in the technical appendix. It is worth
discussing the intuitive reason for why compositional analysis to-
gether with crafted abstract domains can scale: each procedure only
needs to be visited a few times, and furthermore many of the pro-
cedures in a codebase can be analyzed independently, thus opening
up opportunities for parallelism. A compositional analysis can even
have a runtime that is (modulo mutual recursion) a linear combina-
tion of the times to analyze the individual procedures. For this to
be effective, the cost of analyzing a single procedure should also
be contained by a suitable abstract domain, for instance limiting or
avoiding disjunctions.

Finally, compositional analyses are naturally incremental: chang-
ing one procedure does not necessitate re-analyzing all other pro-
cedures. This is important for fast diff-time analysis.

7. Conclusion
In this paper we have described how, as static analysis people work-
ing inside Facebook, we have developed program analyses in re-
sponse to the needs that arise from production code and engineers’
requests. This presents different constraints and opportunities than
situations where an analysis is developed to be marketed to other
companies. Facebook has enough important code and problems that
it is worthwhile to have embedded teams of analysis experts, and
we have seen (e.g., in the use of Infer to support multi-threaded
Android News Feed, and in the evolution of Zoncolan to detect
SEV-worthy issues) how this can lead to impact for the company.
Although our primary responsibilty is to serve the company, we be-
lieve that our learnings and techniques can generalize beyond the
specific industrial context. E.g., Infer is used at other companies
such as Amazon, Mozilla and Spotify, we have produced new scien-
tific results [2, 10], and proposed new scientific problems [14, 11].
Indeed, our impression as (former) researchers working in an engi-
neering org is that having science and engineering playing off one
another in a tight feedback loop is possible, even advantageous,
when practicing static analysis in industry at present.

In closing, to people in industry we say: advanced static analy-
ses, like those found in the research literature, can be deployed at
scale and deliver value for general code. And to academics we say:
from an industrial point of view the subject appears to have many
unexplored avenues, and this provides opportunities for research to
inform future tools.

Acknowledgements
Special thanks to Ibrahim Mohamed for being a tireless advocate
for Zoncolan among security engineers, to Cristiano Calcagno for
leading Infer’s technical development for several years, and to our
many teammates and other collaborators art Facebook for their
contributions to our collective work on scaling static analysis.

References
[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, A. Hallem, C.-H.

Gros, A. Kamsky, A. McPeak, and D. R. Engler. A few billion lines of
code later: using static analysis to find bugs in the real world. CACM,
53(2):66–75, 2010.

[2] S. Blackshear, N. Gorogiannis, I. Sergey, and P. O’Hearn. Racerd:
Compositional static race detection. In OOPSLA, 2018.

[3] S. Brookes and P. W. O’Hearn. Concurrent separation logic. SIGLOG
News, 3(3):47–65, 2016.

[4] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer,
M. Luca, P.W. O’Hearn, I. Papakonstantinou, J. Purbrick, and
D. Rodriguez. Moving fast with software verification. In NASA
Formal Methods Symposium, pages 3–11, 2015.

[5] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Composi-
tional shape analysis by means of bi-abduction. J. ACM, 58(6):26,
2011.

[6] B. Cook. Formal reasoning about the security of amazon web
services. In LICS, pages 38–47, 2018.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. 4th POPL, pp238-252, 1977.

[8] P. Cousot and R. Cousot. Modular static program analysis. In CC,
pages 159–178, 2002.

[9] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and
deployment at Facebook. Internet Computing, IEEE, 17(4):8–17,
2013.

[10] N. Gorogiannis, I. Sergey, and P. O’Hearn. A true positives theorem
for a static race detector. In POPL, 2019.

[11] M. Harman and P. O’Hearn. From start-ups to scale-ups: Open
problems and challenges in static and dynamic program analysis for
testing and verification). In SCAM, 2018.

[12] S. T. Iqbal and E. Horvitz. Disruption and recovery of computing
tasks: field study, analysis, and directions. In CHI, pages 677–686,
2007.

[13] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fähndrich, J. D. Pincus,
S. K. Rajamani, and R. Venkatapathy. Righting software. IEEE
Software, 21(3):92–100, 2004.

[14] P. O’Hearn. Continuous reasoning: Scaling the impact of formal
methods. In LICS, 2018.

[15] P. W. O’Hearn. Experience developing and deploying concurrency
analysis at facebook. In SAS, pages 56–70, 2018.

[16] P. W. O’Hearn. Separation logic. Comm. ACM, 62(2):86–95, 2019.

[17] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan. Lessons from building static analysis tools at Google.
CACM, 2018.

[18] Y. Xie and A. Aiken. Static detection of security vulnerabilities in
scripting languages. In USENIX Security Symposium, 2006.

[19] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise
procedure summaries. In POPL, 2008.

A. Appendix
In the main body of the paper we explained how our anlayzers scale
because of their foundation based on compositionality and crafted
abstract domains. This technical appendix provides some informa-
tion on our crafted abstractions, and on the analysis algorithms we
use.

A.1. Infer
Infer.Classic The original version of Infer, which we dub In-
fer.Classic in this section, sprung out of academic research on pro-
gram analysis with separation logic [5], where the program ana-
lyzer manipulates logical assertions called symbolic heaps describ-
ing computer memory.

Infer.Classic finds memory safety issues spanning multiple pro-
cedures/files, as it attempts to construct program proofs that stitch
the results together for the constituent procedures. The summaries
are precondition/postcondition specifications, where the precondi-
tions attempt to describe the footprint of a procedure: the memory
cells it accesses [16]. Note that there will in general be a great many
pre/post specs that are true for a procedure; considering footprints
instead of arbitrary preconditions greatly cuts down the possibili-
ties.

The focus on the footprint, rather than the global state of the
program, provides an approach to question a) in Section 6, which
concerns concise representations of procedure meanings. Part b),
the stitching together of results, is implemented using a novel
logical principle, bi-abduction; see [5].

Let’s consider the C code in Figure 7. malloc int wrapper,
by mimicking the behaviour of malloc, gets as summary a dis-
junction in the post-condition:

{emp} malloc int wrapper() {return == 0} ∨ {return 7→ −}.

By knowing that an assignment to *x requires the memory pointed-
to by x to be allocated, Infer computes the following summary for
set:

{x 7→ −} set(int *x, int n) {x 7→ n}
The summary says that to run the procedure without crashing, x
must point to an allocated cell (i.e., x 7→ −) and, at the end, the
value of that cell will be n.

Infer uses and composes these summaries for the analysis of the
procedure caller. After line 6 the analysis obtains two assertions,
resulting form the disjuncitons in the post of malloc int wrapper:

y 7→ − and y == 0

If we unify y with the x parameter of set(int *x, int n), then
the first of these assertions is equivalent to the precondition of its
summary, x 7→ −. However, the second assertion after unification
becomes x == 0 which is inconsistent with the required precon-
dition x 7→ −. We cannot safely call the set procedure from the
symbolic heap y == 0, and cannot complete the proof of the over-
all procedure caller. Infer uses this failed proof information to
issue an error message3.

If we uncomment line 7 then no error is reported and the proof
goes through.

The use of malloc int wrapper in this example is instructive:
Accurate memory analysis at scale tends to need disjunctions for
precise-enough summaries. On one hand, it is not uncommon to
find malloc wrappers in the wild; for instance, we reported several
issues to openssl which involved a much more complex malloc

3 In fact, Infer records somewhat more than the bare pre/post information
in summaries, to be able to report the line of the dereference in set when
showing the user an error trace

1 void set(int *x, int n) { *x =n; }
2
3 int* malloc_int_wrapper () { return malloc(sizeof(int)); }
4
5 int caller () {
6 int* y = malloc_int_wrapper ();
7 // if (!y) {return 42;};
8 set(y, 3);
9 free(y);

10 }

Infer error message:
pointer y last assigned on line 6 could be null and is
dereferenced by call to set() at line 8, column 5

Figure 7: Infer.Classic example

wrapper, OPENSSL MALLOC4, and both the discovered summaries
need to be expressive enough to handle such examples. On the other
hand, even when one does not literally have a malloc wrapper it is
not uncommon for a procedure to return valid allocated pointers in
some circumstances and 0 in others.

RacerD: an Infer.AI While Infer.Classic produced impact, per-
haps its greater contribution was to establish that advanced reason-
ing techniques would survive and even thrive in Facebook’s high
momentum software development environment. This emboldened
us to move forward with other techniques. Sam Blackshear created
an analysis framework, Infer.AI, which facilitates building compo-
sitional abstract interpreters as in Section 6. This section discusses
a specific Infer.AI, RacerD.

RacerD detects data races in Java programs; two concurrent
memory accesses, one of which is a write. The example in Figure 2
(top) illustrates some of RacerD’s ideas. If we run the analyzer
on this code it doesn’t find a problem. The unprotected read and
the protected write do not race with one another because they are
known to be on the same thread. This is one way that developers
try to write thread safe code while avoiding synchronization for
performance reasons.

Technically, RacerD works by first computing a summary for
each method in a class, which records potential accesses together
with information such as whether they are protected by a lock or
confined to a thread. Next, RacerD looks through all the summaries
for the class in question checking for potential conflicts. In this ex-
ample, the summaries record an approximation of the information
that the accesses to mCount are both protected by being on the same
thread:

protectedWriteOnMainThread_OK()
Thread: true, Lock: true, Write to this.RaceWithMainThread.mCount:6
unprotectedReadOnMainThread_OK()
Thread: true, Lock: false, Read of this.RaceWithMainThread.mCount:10
protectedReadOffMainThread_OK()
Thread: false, Lock: true, Read of this.RaceWithMainThread.mCount:13

RacerD concludes that a race is not possible because the threading
information indicate mutual exclusion.

On the other hand, if we include additional methods that do con-
flict, then RacerD will report potential races, as in Figure 2, bot-
tom. The summaries for the additional methods record information
about the accesses as follows:

protectedWriteOffMainThread_BAD()
Thread: false, Lock: true, Write to this.RaceWithMainThread.mCount:17
unprotectedReadOffMainThread_BAD()
Thread: false, Lock: false, Read of this.RaceWithMainThread.mCount:20

4 rt.openssl.org/Ticket/Display.html?id=3403&user=guest&
pass=guest

rt.openssl.org/Ticket/Display.html?id=3403&user=guest&pass=guest
rt.openssl.org/Ticket/Display.html?id=3403&user=guest&pass=guest

The summary for protectedWriteOffMainThread_BAD shows the
potential conflict with the unprotected read on the main thread.
One is protected by a lock, and the other is protected by knowl-
edge that it is on the main thread, but these are not sufficient
to provide mutual exclusion: RacerD reports a race between this
access and the one at line 8. Similarly, the access at line 20 in
unprotectedReadOffMainThread_BAD is protected by neither a lock
nor a thread. RacerD reports races with both the access at line 6 and
the access at line 17.

RacerD employs a crafted abstraction oriented to finding races
rather than memory safety (as with Infer.Classic). (i) it uses sets of
accesses rather than pre/post specs as the summaries; (ii) it does not
maintain any disjunctions, taking the union of accesses in branches
of if statements. A consequence of using this crafted abstraction is
that RacerD is blazingly fast: e.g., it can analyze 10k LOC in under
2 seconds [2].

The choice to avoid disjunctions entails a precision loss, and
leads to false positives. Programs that race or not depending on
boolean conditions can trip up the analysis. A typical example is
the implementation of ownership transfer, where (say) you set a
value to indicate that you are going to access an object outside of
synchronization, code in other synchronization blocks then avoids
to access the object: RacerD can easily report false positive races in
such cases. In Facebook’s Android code, fine-grained idioms like
this are present in infrastructure code, but much less so in product
code. For instance, Facebook’s Litho UI library has fine-grained
examples that lead to false positives of this variety in Infer, but
the Litho authors advised us not to concentrate on the fine-grained
idioms, to in a sense go against our first instincts as analysis experts
to pursue subtle examples: they advised to do a better job with
the coarser uses of concurrency typical in our product code (the
majority), for which the precision loss was found to be acceptable.
See [2, 15] for further discussion.

A.2. Zoncolan
Zoncolan performs a full program analysis of 100 million lines of
Hack code in less than 30 minutes. To scale up to such a code base,
Zoncolan uses a parallel compositional analysis in conjunction with
a non-uniform abstract domain to approximate the flow of danger-
ous information. The code in Fig. 3 is an example of a vulnera-
bility prevented by Zoncolan. Zoncolan needs to follow the inter-
procedural flow of untrusted data (e.g., user-input) to sensitive parts
of the code base, approximating virtual calls. Zoncolan utilizes a
dependency graph to resolve the virtual calls and to schedule the
analysis of individual functions, that will be analyzed in parallel.

For each function, Zoncolan performs a forward analysis, to
propagate tainted data to the exit point of the method, and a back-
ward analysis to propagate sinks to the entry arguments.

The forward analysis of getIDs (Fig. 8) infers that the user input
at lines 5 and 6 flows to the first and second component of the pair
returned by that method.

The backward analysis of getConfirmationForm (Fig. 9) states
that a tainted value for the argument $member_id will reach the
action field of <form> at line 20 after a string concatenation, and
the argument $group_id since values reaching the input::value

field do not pose any security threat.
The summary also illustrates the non-uniform abstraction being

used: The exact literal string being concatenated with $member_id

is abstracted to a single bit “via stringconcat” and unlike what
we do for sources and sinks, Zoncolan does not retain the program
location where the concatenation happens (i.e., line 16). Finally,
in the function render Zoncolan utilizes compositional reasoning
to stich together the pieces of the flow from the input to the form
action, obtaining the trace in Fig. 10. The summaries computed by

Zoncolan contain just enough call-edge information to be able to
reproduce full traces when displaying the alarms.

A.3. Recursion, Fixpoints, etc.
The early versions of Infer, which was derived from [5], worked
by constructing a call graph, which which was used to schedule
a bottom-up analysis algorithm where called are analyzed before
callers. Cycles in the graph were broken arbitrarily to find a starting
point. Summaries were stored in cache, which was consulted when
analyzing a code modification in incremental fashion. This version
of Infer implemented a shape analysis, one of the more expensive
forms of analysis even intra-procedurally, and timeouts were used
to ensure that the local analyses terminated (in that case, delivering
a > result in the jargon).

In 2015, Cristiano Calcagno replaced the bottom-up Infer back-
end with one that works “on demand” instead of bottom up, and
which does not require prior computation of a call graph. The anal-
ysis has a “begin anywhere” property, where can start anywhere in
the codebase, irrespective of caching. In case the analysis needs a
procedure summary and it is not in cache, the analyzer is called re-
cursively to produce the summary. The on demand mode allowed
for additional parallelism, and led to non-trivial performance gains
over the bottom-up implementation. Infer.Classic and Infer.AI both
use on-demand, presently.

Infer has used a bounded approach to (possibly mutual) recur-
sion. We have experimented with different amounts of recursive un-
winding, and at present Infer stops after one iteration. This choice
is consistent with Infer’s use to prevent regressions (like a testing
tool), but not full proof. (For cognoscenti, mathematically this is
like saying to calculate F i(⊥) for a given i and take that as the
summary whether or not it is a fixpoint of F , with a slight modifica-
tion for mutual recursion. This can be seen as a version of bounded
symbolic model checking, which calculates an over-approximation
of a finite unwinding of a program.)

As we indicated in the main body of the paper, in the case of
mutually recursive functions Zoncolan iterates the analysis until
the function summaries reach a fixpoint. To enforce convergence,
Zoncolan uses a widening operator [7].

Infer and Zoncolan build on basic ideas from the research liter-
ature on compositional program analysis [8, 5], but there appears to
be much valuable work to be done in both the theory and practice
of algorithms in this area, especially when it comes to the scaling
properties of compositional algorithms.

〈5, user − input〉
[1]

++

〈6, user − input〉
[2]

ss
getIDs

Figure 8: Summary for GenericGroupForm::getIDs

$member id

��
, via stringconcat

〈20, form :: action〉

Figure 9: Summary for getConfirmationForm

〈5, user − input〉

��
〈10,GenericGroupForm :: getIDs〉

��
$member id

��
〈11,AddMemberToGroup :: getConfirmationForm〉, 2

via stringconcat
��

〈20, form :: action〉

Figure 10: Trace to the vulnerability

	Introduction
	Context for Static Analysis at Facebook
	Software Development at Facebook
	Moving Fast with Infer
	Staying Secure with Zoncolan
	Compositionality and Abstraction
	Conclusion

