
Interaction Patterns in Exploratory Learning Environments for 

Mathematics: a Sequential Analysis of Feedback and External 

Representations in Chinese Schools 

Feedback in intelligent tutoring systems has been depicted as an important 

contributor to encourage exploration. However, few studies have explored 

learners’ interaction patterns associated with feedback and the use of 

external representations in exploratory learning environments. This study 

used Fractions Lab, an exploratory learning environment for mathematics, 

to facilitate children’s conceptual understanding of fractions in three 

Chinese schools. Students (n = 189) from six different classes were invited 

to use Fractions Lab, and 260,000 event logs were collected. Beyond 

demonstrating the overall efficacy of the approach, lag sequential analysis 

supported us in approaching a deeper understanding of patterns of 

interaction. The findings highlight that the design of three-levels of 

feedback (Socratic, guidance, and didactic-procedural feedback) played 

different roles in supporting students to use external representations to 

perform mathematical tasks in an exploratory learning environment. This 

study sheds light on how these interaction patterns might be applied to the 

Fractions Lab system in order to provide increasingly tailored support, 

based on cultural differences, to enhance students’ technology-mediated 

learning experiences. 
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Introduction 

Research in the learning sciences emphasises the important role of feedback in using 

external representations to aid reasoning and problem solving (Johnson, Reisslein, & 

Reisslein, 2015). Of particular interest in this age of artificial intelligence, is the 

application of feedback to exploratory or discovery learning that is supported by 

exploratory learning systems (ELEs). To be most effective in ELEs, students usually 

require some form of support, such as feedback, scaffolding, or elicited explanations, to 

aid their use of external representations (such as diagrams). This need has been 

established in various domains, including analogical reasoning, vector arithmetic, algebra 

word problems, and logical and analytical reasoning (e.g., Cox, 1997; Larkin & Simon, 

1987; Stenning, 2002; Ainsworth, Bibby, & Wood, 2002). 

Although Shanghai (China) topped the PISA 2015 list, mathematics is not taught 

through an exploratory approach in China. With an emphasis on ‘mastery learning’, direct 

instruction has been identified as the most effective teaching approach for success in final 

examinations (Boylan et al., 2016). This is one of the important reasons why instructive 



feedback is used widely in China’s classrooms, while reflective prompts, affect boosts, 

and affirmation prompts are not frequently used. The core mathematics topics are first 

taught by teachers and then practised rigidly by students so that they master the topics 

rather than being involved in self-directed inquiry (An, Kulm, & Wu, 2004). Mathematics 

teaching in the Chinese context is still traditional in nature, as the Confucian culture 

regards the teacher as the source of knowledge (Zhang, 2009). Due to the fact that teachers 

dominate the delivery of knowledge, which means an unequal relationship between 

teachers and students, explorative learning is rarely carried out in Chinese classrooms. 

With such teacher-led practices, teachers provide instructive feedback to help their 

students to understand or complete quizzes that are prepared before class (Cai & Wang, 

2010). Teachers tend to teach students how to solve problems directly, using verbal 

communication (Li, Cao, & Mok, 2016), or by telling them what is wrong when they 

cannot identify their mistakes. Chinese students are under high pressure to compete in 

examinations and therefore exploratory learning, which can require more time than the 

traditional approach (i.e. direct instruction) (Kong, 2008), is rarely prioritised. However, 

although direct instruction can help students to solve similar problems, such approaches 



do not help them to develop more general mathematical thinking skills that can be used 

to solve real-world problems (Kapur, 2014). 

Rather than focusing on mathematics problem solving, mathematics education in 

China emphasises the practice of arithmetical computation (Zhou et al., 2018). As the 

goal of mathematics education is not to develop student competencies to solve real-world 

problems, there is also a lack of emphasis on the role of external representations. In 

schools, students are trained to solve mathematical problems by mimicking what they are 

told in class. Tasks are repeated after class to develop the quick triggering of internal 

representations to help answer questions. For example, fractions, a core mathematics 

topic that can prove to be difficult for young students to master, is taught by developing 

procedural and conceptual knowledge through traditional, more rigid practices, instead 

of by designing activities to promote creativity and inquiry to develop students’ 

understanding of the fraction concepts (An et al., 2004). Although Suthers (2001) showed 

how the choice of representation can influence an individual’s conception of a problem, 

and how it triggers an internal representation (and therefore makes it easier to find a 

solution to the problem), external representations are not adopted widely in the Chinese 



culture, which is oriented towards score-based learning. This is perhaps due to the fact 

that the mathematics is viewed as the absolute truth, hence it is thought to be unnecessary 

to use external representations to facilitate discussing or reflecting upon the truth of 

knowledge (Zhang, 2009). Direct instruction, direct memorising, and drills and practice, 

rather than mathematical problem solving, are designed to enhance arithmetical 

computation (Zhou et al., 2018). In fact, it has been argued that mathematics education in 

China has, unfortunately, failed to develop students’ passion and enthusiasm towards the 

subject. Research has also shown that, although Chinese students perform better on exams 

or in PISA than their counterparts elsewhere in the world, they lack creative problem-

solving skills to solve real-world problems (Cai, 2000; Cai & Silver, 1995; Wang & Lin, 

2005).  

Accordingly, the collaborative research that is reported in this paper has 

introduced Fractions Lab to Chinese schools. Fractions Lab is a virtual manipulative ELE 

(Hansen, Mavrikis, & Geraniou, 2016) with exploratory tasks and intelligent feedback. 

Students are provided with a range of different external representations that they can 

manipulate to solve fraction problems. The current version of Fractions Lab provides a 



range of feedback to students (including instructive feedback, reflective prompts, affect 

boosts, and affirmation prompts). The study builds on earlier research in the UK and 

Germany (Rummel et al., 2016) by investigating the use of Fractions Lab in three schools 

in Beijing, China, with 189 children. In particular, beyond learning gains, we examined 

the learning trajectories associated with feedback interactions and the use of external 

representations. In China, it remains unclear how students’ interactions with the 

exploratory learning environment through the use of mathematical representations is 

linked to feedback, and how this kind of information can be used to improve this 

environment. Thus, this research attempted to answer the following three research 

questions: (1) How do learners interact with Fractions Lab? (2) Are there any patterns in 

the interactions and do learners engage in certain interaction sequences repeatedly? 

(3) Which kinds of external representations dominate in explorative tasks after learners 

have received feedback? Understanding the role of multiple external representations and 

intelligent feedback in students’ learning trajectories has the potential to provide 

increasingly tailored support based on individual student behaviours, to improve students’ 

learning experiences. 



The strengths and challenges of Exploratory Learning Environments 

Exploratory Learning Environments are used to support exploratory or discovery learning, 

with some offering learners multiple representations that help them identify their own 

routes to achieving the learning goals. External representations (such as diagrams) can be 

powerful aids to reasoning and problem-solving. For example, Zhang (2002) described 

how external representations are able to guide, constrain, and determine cognitive 

behaviour. ELEs have also been used in multiple disciplines to support students’ 

knowledge construction, especially in science education, which is typically exploratory 

in nature. For example, Chang, Chen, Lin, and Sung (2008) found that students who used 

an exploratory learning simulation to learn the abstract reasoning abilities of physics 

performed better than those who did not use the simultion. Pyatt and Sims (2012) 

compared the attitudes towards, performance in, and access to inquiry investigation that 

occurs in inquiry-based (i.e., exploratory) science labs in first-year secondary school 

chemistry classes. These authors reported that the students showed a preference for the 

inquiry-based learning environments.  



Research has also shown that learning in such environments raises challenges 

associated with the cognitive and metacognitive complexities of the learning experience 

that these environments offer (Azevedo, 2005; Scheiter & Gerjets, 2007). Kirschner, 

Sweller, and Clark (2006) reported that unguided open-ended discovery might lead to 

unproductive floundering, and thus be less effective than direct instruction. According to 

Davis (2000), one way to help students overcome these challenges is by providing some 

form of support, such as feedback, scaffolding, or elicited explanations. Feedback, in 

particular, is thought to be especially important. However, while feedback has been 

researched extensively over the decades (e.g. Aleven, Stahl, Schworm, Fischer, & 

Wallace, 2003), further work is needed to operationalise it in exploratory learning 

environments. For example, as suggested by Carenini et al. (2014), any systematic 

approach to operationalising feedback in an exploratory learning environment needs to 

address the 'when', 'what', and 'how' questions: when it should  be provided; what it 

should contain; and how it should be presented. A range of different kinds of feedback 

(including instructive feedback, reflective prompts, affect boosts, and affirmation 

prompts) can maximise the potential of ELEs to foster enhanced learning experience in 



schools (Holmes, Mavrikis, Hansen, & Grawemeyer, 2015; Grawemeyer et al., 2016). As 

the levels of learners’ precognition differ, feedback should be tailored to individuals, 

instead of providing exactly the same learning experiences for everyone (Nazemi, Breyer, 

Stab, Burkhardt, & Fellner, 2010). To achieve this, artificial intelligence techniques 

drawn from Intelligent Tutoring Systems (ITSs) (Mousavinasab et al., 2018) have 

sometimes been employed (e.g., Rummel et al., 2016). In addition, researchers have 

realised that it is important to shift from measuring the learning outcomes of, in the case 

of this study, fraction knowledge, to interpreting the learning process where learning 

occurs (Kong, 2008; Mavrikis, Holmes, Zhang, & Ma, 2018).   

Learning Analytics and Lag Sequential Analysis 

The widespread use of ITSs and ELEs generate increasingly large set of data, 

including interaction data, personal data, and academic achievements (Romero et al., 

2008). The built-in analytics are often basic or non-existent in these systems, incapable 

of enhancing the depth of extraction aggregation, reporting and visualization (Dawson, 

2009). The fields of learning analytics (LA) and educational data mining (EDM) have 

been challenged by how to take value out of these big sets of learning-related data to 

optimize opportunities for learning (Ferguson, 2012) In particularly, as Siemens (2013) 



proposed, it is important to push learning analytics as a discipline to better understand 

teaching, learning, “intelligent content”, and personalisation and adaption. This 

perspective particularly applies to measure and analyse the pre-existing and machine-

readable data stored in ITSs and ELEs, where teaching and learning are facilitated via 

“intelligent content”.  

Technical approaches to LA/EDM can be classified in this way include: prediction, 

clustering, relationship mining, distillation of data for human judgment, and discovery 

with models (Baker & Yacef, 2009). Also, Bienkowski, Feng, and Means (2012) 

proposed five areas of LA/EDM application: modelling user knowledge, behaviour, and 

experience; creating profiles of users; modelling knowledge domains; Trend analysis; 

personalization and adaptation. One particular approach, lag sequential analysis (LSA), 

is situated within the technical domain of discovery with models, and the application area 

of modelling user knowledge and experience. A significant development has been the 

integration of LSA within the temporality perspective of learning analytics, as the 

temporal nature of learning (hidden within high-resolution temporal data) is arguably 



situated in the central of learning analytics, which is previously underexamined (Knight, 

Wise, Chen, 2017).   

The use of LSA, a method proposed by Sackett (1978), allows researchers to carry 

out detailed investigation of learning behaviours or event chains that occur at frequencies 

greater than chance. In the educational domain, LSA takes transitional relationships into 

consideration to identify temporal differences in learning behaviours (Chen, Resendes, 

Chai, & Hong, 2017). In fact, the use of LSA (e.g. Putnam, 1983;  Gunter, Jack, Shores, 

Carrell, & Flowers, 1993; Jeong,2003) predates the emergence of AL and EDM. From 

2013, LSA has been used for a variety of purposes: to identify common patterns that 

potentially help instructors provide personalised feedback as needed, which involves 

identifying patterns of student learning behaviour transitions (Hou, 2012; Hwang, & Chen, 

2017; Yin, Uosaki, Chu, Hwang, Hwang, Hatono, & Tabata, 2017); to explore the content 

and patterns of teacher discussions (Hou, Sung, & Chang, 2009); to explore interaction 

patterns during knowledge construction (Lan, Tsai, Yang, & Hung, 2012; Lin, Duh, Li, 

Wang, & Tsai, 2013; Yang, Li, Guo, & Li, 2015); and to investigate the learning 

behaviours of high-achievement or low-achievement students or to confirm the 



relationship between student interaction transitions and learning outcomes (Lai & Hwang, 

2015; Yang, Guo, & Yu, 2016; Cheng, Wang, Cheng & Chen, 2019). 

Fractions Lab 

Fractions Lab is an exploratory learning environment that is intended to facilitate 

children’s conceptual understanding of fractions via the direct manipulation of 

representations. It originated in the EU-funded iTalk2Learn project’s intelligent tutoring 

platform that aims to support mathematics learning for children aged 5 to 11 years. The 

overall efficacy of the platform has been verified through instructional evidence from the 

UK, Germany, and China (Grawemeyer et al., 2017; Mavrikis et al., 2018; Rummel et al., 

2016). 

With the aim of fostering conceptual knowledge, some external representations, 

affordances (tools), and constraints were designed (Hansen et al., 2016). As shown in 

Figure 1(a), seven different external representations, i.e. liquid in a beaker shape (Liquid), 

Number Line (Line), Horizontal Rectangle (Hrect), Vertical Rectangle (Vrect), a Set of 

Stars (Starset), a Set of Moons (Moonset), and a Set of Hearts (Heartset), can be selected 

to perform mathematical tasks in part A. Students can also use tools (indicated in part B) 

to check their hypotheses and adopt a constructivist stance to learning. The trashcan 



shown in part C allows representations to be deleted. Three different levels of feedback 

were designed, to be flexible and to help students to learn from their errors (Holmes et 

al., 2015). The feedback is delivered automatically in response to the students’ 

interactions, or it can appear when the student clicks on the question mark shown in part 

D (Grawemeyer et al., 2017). The first level of feedback, Socratic feedback, encourages 

students to verbalise possible solutions (such as “What do you need to do to the 

denominators and numerators?”). The second level, guidance, reminds the students of 

key domain-specific rules and the system’s affordances (such as “To compare the 

fractions easily, the denominators of each fraction need to be the same”). The third level, 

didactic-procedural, specifies a possible next step in terms of the fraction concepts that 

are currently being explored (such as “Multiply the top and bottom of one fraction with 

the bottom of the other fraction. Do the same with the other fraction. Then you can 

compare the fractions.”) (Holmes et al., 2015). The description of the present task and 

the manner of resetting can be attained by clicking on the area marked E. Some 

affordances or tools provide functions to copy the fraction, find the equivalent fraction, 

or highlight some parts, as shown in Figure 1(b). 



Methodology 

Participants and data collection 

The study involved three primary/elementary schools (inner-city and suburban contexts) 

that were all in Beijing. One-hundred-and-eighty-nine students (aged between 9 and 10 

years) participated. All of them were new to Fractions Lab. In each class, the students 

engaged with it for approximately 45 minutes to complete the 18 provided tasks. The 

tasks were grouped into four: creation, comparison, addition, and subtraction.  

 

Figure 1. Screenshots of the Fractions Lab interface. 

As the students interacted with the system, Fractions Lab automatically generated 

a comprehensive range of data (e.g., student interaction data and data about feedback), all 

of which were saved in a database with unique student IDs and time stamps. The 

interaction data included the mathematical task on which the student was currently 
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working, the representation that the student selected to perform the mathematical task, 

and the fraction that the student generated or changed (e.g., change the numerator or 

denominator of a fraction). The feedback data included when and what type of feedback 

was provided to the student. As few students managed to perform the last two tasks, only 

the event logs generated from 16 tasks were included in the data analysis. In total, 

approximately 260,000 event logs were collected. We also recorded the affect states and 

task difficulty using self-reports. 

The pre- and post-tests were developed by two experts who had more than 10 

years’ experience of teaching mathematics and were validated by Chinese mathematics 

teachers. The tests were designed to assess the students’ prior and subsequent procedural 

and conceptual knowledge of fractions. Both tests were comprised of six single-choice 

items, with one point for each item.  

 

Data cleaning and categorisation 

As all participants were new to Fractions Lab, they were guided by teachers and used 

Task 1 to explore the environment. Thus, for our data analysis, Task 1 was removed. The 

data for non-productive repeated behaviours (such as repeatedly changing the 



denominator or numerator) were also removed. In total, approximately 46,000 event logs 

were used for the sequential analysis. The behaviour logs were grouped into nine activity 

categories based on the types of interactions, as shown in Table 1.  

Table 1. Activity categories and associated events. 

Code Activity Contains event 

GenF Generating fraction FractionGenerated (contains using 

different external representations) 

ChaF Changing the denominator or 

numerator of a fraction 

FractionChange (contains 

different external representations) 

TraF Deleting the fraction  FractionTrashed, 

EquivalenceTrashed, CutTrashed,  

LabC Dragging fractions to balance to 

compare, add, or subtract 

OperationResult, FractionPlaced, 

ClickButton_OperationSwitchMin

us, ClickButton_3OperandTab, 

ClickButton_2OperandTab, 

ClickButton_OperationSwitchPlus 

TasO Opening the description of the present 

task 

ClickButton_OpenTaskDescriptio

n 

TasR Resetting the present task TaskReset 

SeeS Seeking scaffolding to solve the 

problem, such as creating the 

equivalent fraction, changing the 

colour of the numerator part, etc. 

EquivalenceGenerated, 

ChangeColour, HighlightFraction, 

DehighlightFraction, 

SystemHighlight 

StaR Completing the task (true, false, or 

unfinished) 

EndStateReached, 

TaskChange_warningMessage,  

FeeB Requesting feedback to resolve the 

task 

Feedback (contains three levels) 

Data analysis 

To gain an understanding of how the participants used Fractions Lab, descriptive analyses 

of their learning behaviours (e.g. the number and levels of feedback requested, the 

different types of external representations generated) were carried out. A one-way 

analysis of variance (ANOVA) was used to compare the differences among the three 



schools in the pre- and post-tests, and paired samples t-tests were used to analyse student 

learning gains.  

As shown in Table 1, the event logs were grouped into nine activities according 

to the design of Fractions Lab. The transitional probabilities, which represent the 

likelihood of moving from one activity to another or staying with the same activity, were 

calculated. An extensive applied lag sequential analysis method (Sackett, 1978) was used 

to identify activity chains that occurred at frequencies greater than chance. As is the usual 

practice, the z-score, which is attained from the adjusted residual of each transition 

(Bakeman and Gottman, 1997), was used to estimate the statistical significance of a 

sequence. That is, if a sequence’s total transition adjusted residual was greater than 1.96, 

then it was significant at the level of 0.05. However, it is also important to point out that 

a single z-score is insufficient to indicate the degree to which a pattern is present 

(McComas et al., 2009; Wampold, 1992). Yule’s Q, a strengthening association 

measurement, has been suggested for use in combination with the z-score. This is a 

transformation of the odds ratio in the range of -1 to +1. A sequence can be seen as having 

a moderate association when its Q-value is at least 0.3 (Davis, 1971). Thus, we associated 



the z-value and Q-value to verify the significant sequence. Version 5.1 of the generalised 

sequential querier (GSEQ 5.1), which contains the above two measurements, was adopted 

to analyse the activity sequences of the students in our study. 

Results 

Learning experiences in Fractions Lab 

The three different types of tasks were used to investigate the students’ perceptions of 

task difficulty (using the self-reports completed between each task). The data showed that 

the level of difficulty was perceived as moderate, which implies that the students were 

capable of undertaking the learning tasks with the support of feedback in this exploratory 

learning environment.  

There was a general tendency towards help-avoidance, which is consistent with 

previous studies (Mavrikis, Grawemeyer, Hansen, & Gutierrez-Santos, 2014; Roll, Baker, 

Aleven, & Koedinger, 2014). Moreover, although we did not observe extensive gaming, 

perhaps due to the novelty effects and the engaging nature of the exploratory tasks, a 

paired t-test showed statistically significant differences (a large effect size and a Cohen’s 

d of 1.85) in the post-test grades of a group of students who attempted to abandon the 

tasks without spending time interacting (M = 2.935, SD = 0.245), when compared with a 



group who did not attempt to game the system (M = 3.287, SD = 0.109; t (195) = 1.292, 

P < 0.05). 

Table 2. Description of the external representations generated. 

School Class No. of external 

representations 

created 

Top three types of 

external 

representations 

No. (%) of 

external 

representations 

School A 

Class 

A1 
668 

Liquid 322 (48.2%) 

Number line 207 (31.0%) 

Heartset 44 (6.6%) 

Class 

A2 
566 

Vertical rectangle 168 (29.7%) 

Liquid 142 (25.1%) 

Number line 112 (19.8%) 

School B 

Class 

B1 
830 

Liquid 228 (27.5%) 

Vertical rectangle 223 (26.9%) 

Number line 187 (22.5%) 

Class 

B2 
975 

Liquid 395 (40.5%) 

Number line 225 (23.1%) 

Vertical rectangle 163 (16.7%) 

School C 

Class 

C1 
1,026 

Vertical rectangle 446 (43.5%) 

Liquid 252 (24.6%) 

Horizontal 

Rectangle 

98 (9.6%) 

Class 

C2 
830 

Liquid 270 (32.5%) 

Vertical rectangle 185 (22.3%) 

Number line 111 (13.4%) 

 

The most frequently used external representations were Liquid, Vertical rectangle, 

Number line, Horizontal rectangle, and Heartset (see Table 2). Although seven different 

external representations are provided in Fractions Lab, the students tended to use the 

‘Liquid’ representation (liquid in a beaker shape) most frequently. This suggests that the 



students found the ‘Liquid’ representation most helpful to understand the meaning of 

fractions and to see the relationship between value and volume.  

Learning gains in Fractions Lab 

A one-way ANOVA was used to analyse the differences among the three schools’ pre-

test and post-test scores. The results show that there was a significant difference among 

the three schools in the pre-test scores (F(2, 194) = 11.294, p < 0.001), and there was no 

significant difference among the three schools in the post-test scores (F(2, 194) = 1.828, 

p > 0.05). Further analysis showed that there was a statistically significant difference 

between School C (in a suburb of Beijing) and the other two schools (p<0.001), but no 

significant difference was found between School A and School B, both located in the 

inner city (p=0.638). The students from School C (in a suburb of Beijing) scored the 

lowest in the pre-test (M =1.69, SD = 1.207), while School A (M = 2.53, SD = 1.268) and 

School B scored relatively higher (M = 2.63, SD = 1.180). Paired samples t-tests show 

statistically significant differences between the pre- and post-tests (Table 3) for all three 

schools, with effect sizes (Cohen’s d) of 0.44 (School A), 0.70 (School B), and 1.00 

(School C). As shown in Table 3, students with lower ability (who scored low in the pre-

test) from the suburb appear to have gained more by using Fractions Lab (M = 3.11, SD 

= 1.575, t = 7.102, df = 63, p <0.05).  

Table 3. Pre- and post-test scores (each out of a possible 6) of students in Chinese 

schools. 



School   n   Pre-test   Post-test   t-test 

School 

A 

64 M=2.53, SD = 

1.268 

M=3.11, SD = 

1.326 

T (65) = 3.470, p = 

0.01 

School 

B 

63 M=2.63, SD = 

1.180 

M=3.48, SD = 

1.239 

T (64) = 4.308, p < 

0.05 

School 

C 

62 M=1.69, SD = 

1.207 

M=3.11, SD = 

1.575 

T (63) = 7.102, p < 

0.05 

 

How did students interact with Fractions Lab? 

As shown in Figure 2, the frequencies of the students’ interaction in nine activities 

differed greatly. 

 

Figure 2. Frequency distribution of the nine learning activities.  

The most common activities were changing the denominator or numerator of a 

fraction (ChaF,  46.4%, 21,404) and dragging fractions to the balance tool in order to 



compare, add, or subtract (LabC, 17.6%, 8,121). The results indicated that students 

frequently used the function of the ‘lab’ area (indicated in part B of Figure 1 (a)) to help 

them verify hypotheses by comparing, adding, or subtracting fractions. After creating the 

fractions, the students tended to set their values first, to make another attempt, before 

requesting feedback. Activities, such as requesting feedback (FeeB, 2.1%, 989) and 

seeking scaffolding (SeeS, 1.2%, 569), were carried out less frequently. The students 

appeared to have explored more often than they asked for help.  

Interaction patterns 

There was a total of 81 activity transitions. The probabilities of transitions from one 

activity to another activity or remaining on the same activity are shown in Figure 3. The 

y-axis shows the activities that were initiated by students; the x-axis represents the 

activities that the students sequentially followed. The depth of colour represents the 

transitional probability value. 

After creating a fraction, the students had a higher tendency to set the value of the 

fractions than to perform other activities (which is indicated by the darkest colour box in 

the row of GenF that crosses the ChaF column). After changing the fractions, the students 



were more likely to change their values again (ChaF), drag the fraction to the balance 

(LabC), and reach some state (StaR). This is illustrated in the darker colour box in the 

row of ChaF that crosses the ChaF, LabC, and StaR columns. After trashing the fractions 

and resetting the tasks, the students tended to create a new fraction, as illustrated in the 

dark colour box in the row of TraF and TasR that crosses the GenF column. 

 

Figure 3. Transition probability between activities 

As mentioned earlier, the sequences were considered statistically significant only 

if the z-value was greater than 1.96 and the Q-value was at least 0.30. The lag sequential 



analysis shows that 21 activity sequences were statistically significant, as illustrated in 

Figure 4. The arrows represent the transitional direction from one activity to another 

(including itself). The statistically significant sequential relationship between GenF and 

ChaF indicates that the students typically set the value of a fraction immediately after 

creating it. In terms of using scaffolding (e.g. creating the equivalent fraction, changing 

the colour of the numerator part) to assist a task, SeeS had sequential relationships with 

TraF (trashing the fraction) and itself. To a large extent, the students tended to use 

different kinds of scaffolding to help them explore the learning tasks. After trying out 

different kinds of scaffolding repeatedly, they deleted the fraction and generated a new 

one. 

 



Figure 4. Activity transition diagram of significance (z-score > 1.96, Q > = 0.30). The 

boldness of the links indicates their z-score. 

The amount of learning activities that were statistically significantly associated 

with feedback was the largest, including both directional sequential relationships from 

feedback or to feedback (i.e., FeeBGenF, TasRFeeB, TraFFeeB, LabCFeeB) 

and bi-directional sequential relationships (i.e., FeeBTasO, TasOFeeB). After 

receiving feedback, the students were more likely to generate a new fraction with the 

same or different external representations to explore, or simply to go back to open the 

task descriptions for clarification. 

Feedback, external representation generated, and fraction value changed 

To explore more deeply the ways in which the use of different levels of feedback 

affected the use of different external representations, the GenF activity was further 

divided into seven sub-activities, in which each distinctive external representation was 

generated by students (GenFline, GenFhrect, GenFvrect, GenFstarsets, GenFheartsets, 

GenFmoonsets, and GenFliquid). By doing so, it is possible to examine how students 

manipulate these seven external representations (i.e. Liquid, Number Line, Horizontal 

Rectangle, Vertical Rectangle, a Set of Stars, a Set of Moons, and a Set of Hearts) to solve 

fraction problems. The FeeB was separated into three sub-activities regarding the levels 



of feedback requested (FeeBl1, FeeBl2, and FeeBl3); while the ChaF was divided into 

two sub-activities based on the external representation of the fraction used (ChaFS, 

changing the fraction by using the same external representation; and ChaFO, changing 

the fraction by using a different external representation). By examining these sub-

categories of GenF and FeeB further in great detail, 11 new activity categories were 

generated. In total, 18 activities (including the original SeeS, TraF, StaR, TasR, LabC, 

and TasO) were analysed by lag sequential analysis to test the significance of the 

transitions among these activities.  

As shown in Figure 5, the activity of changing the fraction by using the same 

external representation (ChaFS) usually occurred after the fraction was generated with all 

types of external representations. The sequential relationship that links ChaFS and the 

activity of dragging fractions to balance to compare, add or substract (LabC) indicates 

that the students tended to drag fractions to the balance to verify their hypothesis after the 

values of the fraction had been set. The activity of changing the fraction by using a 

different external representations (ChaFO) was commonly followed by the activity of 

seeking scaffoldings (SeeS), deleting the fraction (TraF), requesting the third-level 



feedback (FeeBl3), and ChaFO activities. In addition, the line boldness shows a higher 

sequential relationship within ChaFO (ChaFO ->ChaFO), and this indicates that the 

students frequently changed a fraction from one representation to a different one. 

Moreover, there was a tendency to seek scaffolding (SeeS) after they had changed the 

value of a different representation. 

  

Figure 5. Significant transitions that relate to ChaF activities (the top shows the 

transitional relationships of ChaFO, and the bottom shows the transitional relationships 

of ChaFS). 

As shown in Figure 6, after receiving the first-level feedback, the students tended 

to generate a new fraction with different types of external representations or to open the 

task description for clarification. The first-level feedback (FeeBl1) was commonly 



requested after the students had explored Fractions Lab themselves by using the balance 

(LabC). 

 

Figure 6. Significant transitions that relate to FeeBl1 activity. 

 



Figure 7. Significant transitions that relate to FeeBl2 activity. 

In contrast to FeeBl1, after receiving the second-level feedback, the students 

tended to generate a new fraction to keep working. However, the most commonly used 

representation ‘Liquid’ did not appear to be significant (See Figure 7). Second-level 

feedback (FeeBl2) was requested after opening the task description or trashing the 

fraction. Interestingly, the students tended to request the second-level feedback 

repeatedly; this did not occur commonly when they requested the first-level feedback.  

As shown in Figure 8, there were fewer significant transitions between FeeBl3 

and other activities. Similar to the first level of feedback requests, the students were more 

likely to request the third-level feedback (FeeBl3) after using the balance. However, there 

were only two significant transitions after they received the third-level feedback. In 

contrast to the first-level and second-level of feedback requests, they tended to change 

the value of the representational fraction, instead of generating different types of external 

representations. 



 

Figure 8. Significant transitions that relate to FeeBl3 activity. 

 

Discussion 

This study has explored how Chinese students interacted with an exploratory learning 

environment through the use of mathematical representations and how this was linked to 

feedback interactions. The study showed that there was a significant transition from 

requesting feedback (FeeB) to generating fractions with representations (GenF), and this 

implies that feedback provided in Fractions Lab, to some extent, did guide students to use 

representations in order to learn. The findings highlight that the design of three-level 

feedback (i.e. Socratic, guidance, and didactic-procedural feedback) indeed played 



different roles in supporting students to perform mathematical tasks in an exploratory 

learning environment, which is consistent with the proposal stated in Holmes et al. (2015). 

In Fractions Lab, the students did tend to use representations to explore and to 

complete the learning tasks, which is evidenced by the fact that the activities of seeking 

scaffoldings to solve the problem (SeeS) were commonly used before or after changing 

the fraction by using a different external presentation (ChaFO). The students also tended 

to explore different types of external representations to make sense of fractions, which is 

evident from a higher sequential relationship within ChaFO. In a culture where students 

are trained by classroom instruction to complete learning tasks efficiently in examinations 

to ensure high scores (Cai & Nie, 2007), it is encouraging to see that they slowed down 

the process of completing a task by engaging in some exploration using Fractions Lab. 

AI-supported ELEs, such as Fractions Lab, might function as open and flexible learning 

environments to allow students to explore, and in this way, further develop their problem-

solving skills, which are unlikely to be developed in classroom instruction. 

First-level feedback was usually requested after carrying out the activities of 

dragging fractions to balance to compare, add or subtract (LabC), and this further 



demonstrates that students need some form of support to complete their learning tasks in 

exploratory learning. Such significant transition highlights the importance of feedback, 

which is also emphasised in the literature (e.g. Alfieri, Brooks, Aldrich, & Tenenbaum, 

2011, Holmes et al., 2015). It is interesting to point out that, before requesting the first-

level feedback, the students were still in the exploratory mood (e.g. using LabC). After 

requesting the first-level feedback, they tended to generate different forms of external 

representations to explore, with the Liquid form seeming to be the most frequently used 

representation. Nevertheless, when they requested the second-level feedback, they rarely 

used LabC for exploration, and fewer external presentations were used. First-level 

(Socratic) feedback did not help them to complete the learning task, and it appears that 

second-level feedback (guidance feedback) might have lead them to be more confused 

because of the increased cognitive load (Grawemeyer et al., 2015), as illustrated by the 

significant transitions from requesting the second level of feedback again and again, as 

well as by the fact that they switched frequently between opening the task and requesting 

the second-level feedback. These behaviour tendencies perhaps imply that students failed 

to obtain insights about the problem (Cox, 1996). Also, in a culture where the Confucian 



approach proposes that education is about cultivating oneself (Zhang, 2009), Chinese 

students are very keen to accomplish a task with as little help as possible. Furthermore, 

to be more effective in instruction, instructive feedback is used commonly in Chinese 

schools; Chinese students may not be very receptive to open and reflective feedback 

intended to encourage them to further explore to accomplish the task; instead they are 

more likely to be frustrated, confused, or bored if they are unable to complete the learning 

task after requesting feedback twice or more (Zhang et al., 2019). With regard to this 

perspective, specific instructive feedback is more effective when students are confused 

(Grawemeyer et al., 2015). 

This is further confirmed by the significant transitions identified in the third level 

of feedback. The findings showed that only after requesting the third-level feedback were 

students likely to use a different external representation to solve the task (ChaFS). 

Considering the effects of different levels of feedback, Grawemeyer et al. (2015) reported 

that instructive feedback appears to guide students to follow what needs to be done in the 

next step, whereas other types of feedback are less successful. Chinese students are more 



comfortable with instructive feedback, which stimulates them to build abstractions about 

the concept of fractions in their minds, under direct and explicit guidance. 

Another important finding is that the students were more likely to generate new 

fractions or to open the task description again after receiving Socratic and guidance 

feedback. There were no significant transitions to other activities, such as changing the 

fraction values, using a different representation, computing fractions, or seeking 

scaffolding to help them solve the problem. Only after receiving the third-level feedback 

did the students change the fraction values with a different representation. The difficulties 

that students faced in utilising the first-level and second-level feedback are mainly 

attributed to the culture of viewing participation in learning tasks as being a competition 

to prove that one is intellectually elite; this deserves further investigation. It is undeniable 

that the eagerness to achieve good scores plays an important role in motivating students 

to undertake mathematics education seriously in China. However, simply taking the 

perspective of achieving a high score constrains the potential of feedback to use external 

representations to support exploratory learning. In addition, the findings also imply that 

serious consideration needs to be given to adapting prompts that have proved to be 



effective in Western countries to the local culture when introducing foreign-developed 

ITSs to China. 

Conclusion 

This study attempted to use pattern-finding analytical techniques (e.g., Amershi 

& Conati, 2009; Mavrikis, 2010) to improve our understanding of the impacts of feedback 

and choice of mathematical representations on learning fractions. Each of these important 

correlates of learning has been researched extensively (e.g., Aleven, Stahl, Schworm, 

Fischer, & Wallace, 2003; Porayska-Pomsta, Mavrikis, & Pain, 2008; Ainsworth et al., 

2002), but the outcomes remain conjectural. Learning analytics provide a unique 

perspective and can inform both future teaching practice in technology-mediated 

classrooms and system design. In this study, we analysed students’ feedback interaction 

patterns and learning trajectories in choosing particular mathematical representations, and 

in working with these representations to perform a particular mathematical task. Given 

the limited scope of this research (the analysed data was generated by students each 

engaging with the Fractions Lab system for only approximately 45 minutes), we cannot 

generalise. Nevertheless, this work is novel in that it uses interaction patterns to gain 

insights into students’ reasoning processes, and warrants further research. These patterns 



can then be used as visualisations or summarised insights for learning analytics tools for 

teachers (Mavrikis et al., 2016). Longitudinal studies using Fraction Labs with additional 

mathematics tasks and improved mechanisms of intelligent feedback, based on this first 

study, would also be welcome. Further investigation of how these interaction patterns 

might be applied to the Fractions Lab system in order to provide increasingly tailored 

support based on individual student needs and capabilities can further enhance students’ 

technology-mediated learning experiences. 
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