
Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 957

ValoMC: a Monte Carlo software and MATLAB
toolbox for simulating light transport in
biological tissue

ALEKSI A LEINO,* AKI PULKKINEN, AND TANJA TARVAINEN

Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
*Corresponding author: aleksi.leino@uef.fi

Abstract: AMonte Carlo method for photon transport has gained wide popularity in biomedical
optics for studying light behaviour in tissue. Nowadays, typical computation times range from
a few minutes to hours. Although various implementations of the Monte Carlo algorithm
exist, there is only a limited number of free software available. In addition, these packages
may require substantial learning efforts. To address these issues, we present a new Monte
Carlo software with a user-friendly interface. The simulation geometry is defined using an
unstructured (triangular or tetrahedral) mesh. The program solves the photon fluence in the
computation domain and the exitance at the domain boundary. It is capable of simulating complex
measurement geometries with spatially varying optical parameter distributions and supports
several types of light sources as well as intensity modulated light. Furthermore, attention is
given to ease of use and fast problem set up with a MATLAB (The MathWorks Inc., Natick, MA)
interface. The simulation code is written in C++ and parallelized using OpenMP. The simulation
code has been validated against analytical and numerical solutions of radiative transfer equation
and other Monte Carlo software in good agreement. The software is available for download
from the homepage https://inverselight.github.io/ValoMC/ and the source code from GitHub
https://github.com/InverseLight/ValoMC.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Monte Carlo method for photon transport (hereafter referred to as ’Monte Carlo’) is used for
simulating how photons are scattered and absorbed within a medium. It has been used to
simulate light propagation in tissue for a variety of biomedical applications, e. g. near-infrared
spectroscopy, diffuse optical imaging, photoacoustic tomography and light-based therapies [1,2].
A key feature of the method, as the nameMonte Carlo implies, is utilisation of random numbers in
propagating photons in a stochastic manner. Due to its reliability, Monte Carlo has been regarded
as the ’gold standard’ for simulating light transport in biological tissue. It is generally used as the
reference approach for deterministic methods which are typically analytical or numerical solutions
of the radiative transfer equation or its approximations such as the diffusion approximation.
Numerous implementations of the Monte Carlo algorithm exist [1,2]. One of the first widely

utilised Monte Carlo method in biomedical optical imaging was the photon packet method,
introduced for biomedical optics by Prahl et al. [3]. In photon packet method, the efficiency of a
Monte Carlo program is increased by propagating many photons, i.e. a photon packet, along
each pathway. Instead of considering the absorption of a single photon as a stochastic event, it
is treated by reducing the weight (size) of the photon packet. Various implementations of the
photon packet method followed.
In the early implementations, photon fluence was computed in geometries with a predefined

shape such as layered spheres [4] and multi-layered slab geometries [5]. Later, implementations
in other predefined shapes [6,7] and in more general complex geometries followed [8–10].
Typically in complex geometries, Monte Carlo implementations have been implemented using

#345566 https://doi.org/10.1364/OSAC.2.000957
Journal © 2019 Received 11 Sep 2018; revised 1 Feb 2019; accepted 4 Feb 2019; published 13 Mar 2019

https://orcid.org/0000-0003-2997-5728
https://inverselight.github.io/ValoMC/
https://github.com/InverseLight/ValoMC
https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/OSAC.2.000957&domain=pdf&date_stamp=2019-03-13

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 958

two-dimensional (2D) pixel or three-dimensional (3D) voxel discretisations [8–15]. It has been
shown that approximating boundaries in voxel basis may lead to large errors in the solution
of light transport simulation [16]. Therefore, Monte Carlo implementations in unstructured
meshes consisting of triangles or tetrahedra have been constructed for better and more accurate
solutions in complex heterogeneous geometries [17–24]. In addition to the discretisation, Monte
Carlo implementations differ also depending on how they sample scattering length and reduce
the weight of the photon packet. For more information on the comparison of different Monte
Carlo implementations see e. g. articles [1,25] where it has also been shown that these different
implementations are statistically equivalent.
During the past decades, the huge development of computers has enabled parallised and

Graphics Processing Unit (GPU) advanced Monte Carlo implementations that can be used to
obtain solutions to complex three-dimensional simulation problems in a time-frame from few
seconds to a few minutes [12,26–30]. Thus, unlike at the early 1990s, when the available
computational resources limited stochastic simulation methods such as Monte Carlo as a reference
approach which took hours or even weeks to run, the current Monte Carlo implementations can
be easily utilised for various problems. This has made them a tempting alternative for other
type of problems as well. Monte Carlo simulations have been used, for example, in studying
photoacoustics [31,32], fluorescence tomography [33,34], time resolved diffuse spectroscopy
[35,36], statistical models for photon transport [37], biophotonics of corals [38], dose optimization
for photodynamic therapy [39] and laser treatment of port-wine stains [40]. Furthermore, the
first studies in which Monte Carlo is utilised in the solution of the inverse problem of an optical
imaging problem have been implemented [15,41–46].
Although various implementations of Monte Carlo algorithm exists, there is only a limited

number of free software available, see e. g. [5,12,14,17,22,29]. In this paper, our Monte
Carlo software ValoMC is described. The geometry is defined using unstructured meshes, i. e.
triangles in 2D and tetrahedra in 3D. The software consists of the main simulation code, written
in C++, and auxiliary MATLAB (The MathWorks Inc., Natick, MA) functions. These functions
serve as an easy to use interface for anyone who wants to run Monte Carlo simulations for their
problem but are not comfortable with technical programming. The simulation code is based on
our earlier Monte Carlo software that has previously been utilised in simulating light propagation
for example in [20,23,47–51]. A summary of other Monte Carlo simulation software that have
MATLAB interface can be found in Ref. [52].

The rest of the paper is organised as follows. First, the theory is shortly reviewed in Section 2.
Then, program description and usage guidelines for the MATLAB interface are given in Section
3, followed by usage examples and validation studies in Section 4. Software and hardware
specifications and availability are discussed in Section 5. A summary is given in Section 6.

2. Theory and computational methods

Four parameters are used to represent the optical properties of medium [53]: absorption coefficient
µa, scattering coefficient µs, scattering anisotropy in the Henyey-Greenstein phase function g
and refractive index n, and are all function of the position within the medium. Absorption µa
and scattering µs are defined so that the probability for the photon to be absorbed or scattered
within an infinitesimal length dx along the propagation direction are µadx and µsdx, respectively,
and assumed to be independent. Further, the Henyey-Greenstein phase function represents the
directionality of the scattering [54]. In contrast to e. g. Rayleigh and Mie phase functions, it is
not derived from a physical theory. Rather it simply serves as mathematical representation of
the scattering medium. For example, when g = 0 the scattering is isotropic and when it is close
to 1, the photon scattering angles become small. Its numerical value can be determined using
experimental data or fits to theoretical considerations. Henyey-Greenstein is the most commonly
used phase function for biological tissue but other functions are used as well [55]. The refractive

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 959

index determines the amount of light that is reflected or refracted on tissue interface. In this
work, the spatial dependence of all the parameters is described using a triangular or tetrahedral
mesh, and considering them as piecewise constant values.

2.1. Geometry description

A coordinate matrix r, a topology matrix H and a boundary topology matrix BH represent a
triangular or a tetrahedral mesh. Examples of such 2D and 3D meshes are shown in Fig. 1.
Although we consider here very simple shapes for illustration purposes, general complicated
shapes can be constructed and utilised in ValoMC. Let us consider a simple example geometry
shown in Fig. 1(b). To set up a quadrilateral region in 2D that consists of two triangles, the
following coordinate matrix can be used

r =

©«

r1

r2

r3

r4

ª®®®®®®®¬
=

©«

−0.8 −0.7
−0.2 1.4

1.6 1.2

1.8 −1

ª®®®®®®®¬
(1)

where each row represent a coordinate. To define the two triangles using the coordinate matrix,
an accompanying topology matrix is supplied

H = ©«
H1

H2

ª®¬ = ©«
1 2 3

3 4 1
ª®¬ . (2)

Here, each row refers to a single triangle, and each element to a row in r. In addition, the region
must be enclosed by boundary elements. In 2D, these are simply lines that are defined in matrix
BH . The structure is similar to that of H. In the current example,

BH =

©«

BH1

BH2

BH3

BH4

ª®®®®®®®¬
=

©«

1 2

2 3

3 4

4 1

ª®®®®®®®¬
(3)

i. e. each row in BH refers to a single line segment and each element refers to a row in r. The
lines form a quad that encloses the region formed by the two triangles.

A neighbourhood matrix HN is used to make finding the neighbouring elements and boundary
elements for a given element more efficient. This matrix is only used internally and the description
is provided here for completeness. Along the same lines, each row in HN refers to a single
element and each element to a neighbouring element.
Negative indices are used to distinguish boundary elements from regular elements. The

neighbourhood matrix for the current example is

HN =
©«
−1 −2 2

−3 −4 1
ª®¬ (4)

i. e. the first triangle (r1, r2, r3) is surrounded by boundary elements 1, 2 and element 2.
The generalization to a cube in 3D is straightforward, as visualised in Fig. 1. In 3D, the

fundamental element is a tetrahedron. The four corners of the tetrahedron are similarly defined
using a four-columned matrix H while the boundary elements are triangles. They can be set up
using a three column BH matrix which has the same structure as H in 2D.

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 960

Fig. 1. Illustration of the matrices r (coordinates), H (element topology) and BH (boundary
element topology). (a) Shown is a 2D circle constructed from triangles. (b) The geometry for
the simple example discussed in the text. (c) 3D half-sphere constructed from tetrahedrons.
(d) A tetrahedron H1 = (1 3 5 2) indicated with coloured region and a boundary element
BH1 = (1 3 5) indicated with a dashed line.

2.2. Algorithm

The flowchart of the algorithm is shown in Fig. 2. Our implementation follows Ref. [3] with
additions due to the mesh based geometry and difference in path weighting. Random numbers
are generated using the Mersenne-Twister algorithm [56].

Create a photon packet (a)

Draw a scattering length s s = − log u
µs,curr

, u =]0, 1]

Compute the distance d
to the boundary of the current element (b)

Propagate the photon by Δs = min(d, s)
i.e. either to the boundary of the element

or to the end of the leap (c,d)

Deposit weight to the current element
Update packet phase and weight

s ← s−Δs

w exp(−µaΔs)

Scatter the photon
calculate a new

propagation direction (c)

s > 0?

at boundary
element?

no,
photon has propagated

the entire scattering length

Fresnel
transmission or
reflection (f)

Adjust the remaining length
s ← s

µs,curr

µs,next

Deposit weight to
the boundary element

Fresnel
transmission or
reflection (e)

w < wth?

no

yes

Survival
roulette

Terminate

no, interface
of two volume

elements
yes transmits

reflects

doesn’t
survive

survives

w ← mw

yes, photon is
at a boundary

a) b)

d

c)
s

d)

d
e) f)

Fig. 2. Flowchart of the algorithm.

The algorithm starts with the creation of a photon packet (Fig. 2(a)). A random location from
those boundary elements that act as a light source is selected. Further, the propagation direction
(angle) is drawn from a probability density distribution that can be defined for each boundary
element independently (see Section 3). The photon packet is initialised with a given weight
w = 1. This number describes the relative number of photons in the packet.
After the photon packet is initiated, the program enters in the main loop that ends in the

termination of the packet. In the loop, a random scattering length s, is drawn so that the drawn

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 961

lengths follow an exponential probability density distribution

P(s) = µs,curr exp(−µs,currs) (5)
where µs,curr refers to the scattering coefficient of element the packet is located. The trajectory of
the packet is not affected by the absorption coefficient. Instead, absorption coefficient along the
path is used only to calculate a weight for the trajectory by Beer-Lambert law. This approach can
be formally motivated by considering the solution of the radiative transfer equation for a ray-like
initial condition (see e. g. ’microscopic Beer-Lambert law’ in Ref. [1]) and noticing that the
absorption coefficient enters in an exponential weighting factor for the intensity along the ray.

The scattering length s is exhausted by moving the packet at a straight line either to the interface
of the next element or, if the distance to the interface is greater than the remaining length, to the
end of the distance (Fig. 2(c,d)). While the packet moves within the medium, it is affected by
the optical coefficients in each element on its path. If the scattering coefficient changes along
the path, the remaining length is adjusted to account for the change by scaling the remaining
length by µs,curr/µs,next where µs,next refers to the scattering coefficient of the element the packet
is entering. At the interface of two elements, the photon packet may undergo Fresnel reflection
or be transmitted to the neighbouring element with a modified propagation direction due to a
change in the refractive index (Fig. 2(e)). Throughout the propagation, the weight of the photon
packet is reduced to

w← w exp(−µa,curr∆s) (6)
where µa,curr is the absorption coefficient of element the packet is located, ∆s is the distance
propagated during the current step.
After the photon packet has propagated the distance s, a new scattering event occurs. In the

scattering event, the packet obtains a new direction that is drawn so that the probability of the
direction follows Henyey-Greenstein phase function. This is achieved by using the inversion
method [57], i.e. uniformly distributed random numbers in the inverse of the Henyey-Greenstein
phase function. The current implementation draws the scattering angle in 2D and the cosine of
the scattering angle in 3D (similarly as in Ref. [3]). Then, a new scattering length is drawn, and
the main loop of the simulation continues.
The photon packet is terminated if the packet exits the computation domain. In addition,

the packet can be terminated in a procedure known as ’survival roulette’ [3] before drawing
a new scattering length. The survival roulette is performed in order to avoid the computation
of excessively long propagation paths with a low influence on the computation results. Once
the photon packet weight has decreased below a threshold value (by default 10−3), it is either
terminated with a probability of 1 − 1/m (by default m = 10) or its weight is promoted to mw
with probability 1/m. Thereby, the total weight of all photon packets is well conserved despite
the terminations.
The main outcome of the simulation is the fluence distribution in the elements of the

computation domain and the exitance at the boundary elements. As discussed previously, an
initial weight of one is assigned to each packet, and throughout the propagation, the weight
of the packet is reduced. Conversely, a weight of w(1 − exp(−µa∆s)) is added to the element
through which the packet propagates. When the packet reaches a boundary element and exits the
computation domain (i.e. does not undergo Fresnel reflection at the boundary, c.f. Fig. 2(f)), the
remaining weight is added to the boundary element. Since a photon packet has an initial weight
of one, the total weight that is deposited in the computational domain (including its boundary) is
equal to the number of photon packets N. The piecewise constant values obtained in this way
represent the weightWi absorbed into the element i and the weightWj escaped through boundary
element j, per unit time. At the end of the simulation, the fluence Φi at element i is obtained from

Φi =
Wi

µa,iNVi
(7)

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 962

and the exitance J+j for boundary element j

J+j =
Wj

NAj
(8)

where Vi and Aj refer volume and area (or area and length in 2D) of the elements. This
normalisation fixes the sum of the total absorbed and escaped power to be one unit, in other
words, the total power emitted by all light sources is 1W.

2.3. Frequency domain calculation

Frequency domain Monte Carlo (i.e. intensity modulated light sources) are implemented by
using a complex weight for the photon packet [2]. This approach is motivated by noticing that
the radiative transfer equation in the frequency domain can be interpreted as time-independent
one but with a complex absorption coefficient µa + iω

c where ω is the angular frequency of the
intensity modulation, c is the speed of light in the medium and i is the imaginary unit. Therefore,
given an initial weight w and a distance ∆s propagated within an element, the new weight is
computed according to

w← w exp
[
−

(
µa,curr +

iωncurr
c0

)
∆s

]
(9)

where c0 is the speed of light in vacuum, ncurr is the refractive index of the element and ω the
angular frequency of the light modulation. The weight that is deposited to the elements and
boundary elements follow the same formulae as in the previous section, while a complex number
is deposited. Likewise, the normalisation of the complex fluence and exitance is done as in
Eqs. (7) and (8) while Ni, Nj and µa,i are complex numbers. The resulting complex fluence and
exitance depict their amplitude and relative phase to the source with an angular frequency ω, and
the normalization fixes the boundary integral of the source amplitude to be 1W.

3. Program description

The program consists of two parts: the simulation code (written in C++) and the MATLAB
interface. While the C++ program can be used independently without MATLAB, this section
focuses on describing the MATLAB interface part that is intended to facilitate the initialisation
of the simulations and the visualisation of the results. Documentation for the C++ code can be
found in ”cpp/README”.
A summary of the currently implemented features of the software is given Table 1. It should

be noted ValoMC does not provide a fixed pipeline from meshing to plotting the results. It
focuses only on the simulation part. Usage examples on how to construct a custom pipeline are
provided. ValoMC stores the mesh and the results in a format that is directly compatible with
the plotting tools in MATLAB. Functions to import meshes and export results to specialized
software are, in addition, provided. As an output, the computation returns the exitance at each
boundary element and the fluence at each element in the computation domain. Therefore, in
the current version, detectors (or light sources) with a more complicated spatial or angular
dependence can be implemented by making the mesh finer or extending the mesh. Spatial
sensitivity profiles of detectors can be implemented by weighting the boundary solution from
a finer mesh in post-processing. Angular sensitivity can be implemented by creating vacuum
extensions (µs = 0, µa = 0) to the mesh at the detector locations. Since photons propagate in
straight lines in vacuum, the extension can be adjusted so that the boundary elements at the end
of the extension collect photons at desired angles only.

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 963

Table 1. A summary of currently implemented features in ValoMC.Table 1. A summary of currently implemented features in ValoMC.

Implementation

Method the photon packet method Programming language C++ (simulation code)
MATLAB (user interface)

Operating modes continuous wave
intesity modulated

Parallelisation CPU (OpenMP)

Mesh type triangular (2D)
tetrahedral (3D)

Support for other tool-
boxes

k-Wave, Toast++

Runs without MATLAB yes Results reproducible us-
ing a fixed seed

yes

Input parameters

Mesh generation functions provided for
simple mesh types
NetGen VOL file import
for complex meshes

Detectors implemented by meshing

Material parameters
(set for each element indi-
vidually)

µa - absorption coefficient
µs - scattering coefficient
g - anisotropy parameter
of the Henyey-Greenstein
scattering phase function
n - refractive index

Boundary conditions
(set for each boundary el-
ement individually)

light source directivity pat-
terns

• unidirectional
• isotropic
• gaussian
• cosinic

light source intensity
n - refractive index

Output

Volumetric solution Piecewise constant value
for fluence

Export file formats ASCII, X3D

Boundary solution Piecewise constant value
for exitance

element j, per unit time. At the end of the simulation, the fluence Φi at element i is obtained
from

Φi =
Wi

µa,iNVi
(7)

and the exitance J+j for boundary element j

J+j =
Wj

N Aj
(8)

where Vi and Aj refer volume and area (or area and length in 2D) of the elements. This
normalisation fixes the sum of the total absorbed and escaped power to be one unit, in other
words, the total power emitted by all light sources is 1 W.

2.3. Frequency domain calculation

Frequency domain Monte Carlo (i.e. intensity modulated light sources) are implemented by
using a complex weight for the photon packet [2]. This approach is motivated by noticing that
the radiative transfer equation in the frequency domain can be interpreted as time-independent
one but with a complex absorption coefficient µa + iω

c where ω is the angular frequency of the
intensity modulation, c is the speed of light in the medium and i is the imaginary unit. Therefore,
given an initial weight w and a distance ∆s propagated within an element, the new weight is

In MATLAB, the simulations are initiated with the command

solution = ValoMC (vmcmesh, vmcmedium, vmcboundary, vmcoptions)

The MATLAB interface consists of auxiliary functions that help to set up the input structures.
These structures are documented in Table 2 while a more detailed description with additional
features can be found from the homepage. The fields of vmcmesh are the same matrices as
described in Section 2.1, vmcmedium contains the optical coefficients for each element and
vmcboundary the boundary conditions for each boundary element. A typical modelling task
consists of creating a suitable mesh and setting up the optical coefficients of each element
in vmcmedium and light sources or other boundary conditions of each boundary element in
vmcboundary. The fields of vmcoptions can be used to set a number of global options, for
example, to adjust the total number of photon packets launched (106 by default) or to enable a
frequency domain calculation. If the options structure is not provided, default values will be
used.
Simulations can also be run outside MATLAB by using the functions exportValoMC and

importValoMC. These functions write an input file for the C++ program or read its output
for analysis in MATLAB, respectively, and enable computations, for example, on a computing
cluster without MATLAB.

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 964

Table 2. List of the mandatory fields in the input and output of the main function of ValoMC. More
detailed options are provided in the homepage and documentation.

Table 2. List of the mandatory fields in the input and output of the main function of ValoMC.
More detailed options are provided in the homepage and documentation.

Field name Description Unit Array size
2D/3D

vmcmesh

r node coordinates mm Nr × 2 / Nr × 3

H element topology (indices to nodes) dimensionless Ne × 3 / Ne × 4

BH boundary element topology (indices to
nodes)

dimensionless Nb × 2 / Nb × 3

vmcmedium

refractive_index n dimensionless Ne × 1*

absorption_coefficient µa 1/mm Ne × 1*

scattering_coefficient µs 1/mm Ne × 1*

scattering_anisotropy g dimensionless Ne × 1*

vmcboundary

lightsource Cell array of strings that determines the light source type in the
element e. g. {’gaussian’} or {’direct’}.

Nb × 1

solution

element_fluence Piecewise constant value for fluence Φ W/mm2 Ne × 1

boundary_exitance Piecewise constant value for exitance J+ W/mm2 Nb × 1

*When the mesh has been created with createGridMesh, these values can be also given as two or three dimensional
pixel or voxel maps. In that case, solution will be returned in solution.grid_fluence.

3.1. Creating a mesh, a medium and a boundary

ValoMC comes with a few convenient functions to create simple meshes for prototyping
purposes, such as createRectangularMesh. For creating more complicated meshes,
multiple dedicated freeware tools are available, such as iso2mesh [58] and NetGen [59]. It
is possible to import NetGen ’.vol’ ASCII files using importNetGenMesh. The importer
returns the region and boundary definitions in addition to the mesh. Commercial software are
available [60] that produce meshes in a format easily convertible for ValoMC (c.f. table 2) within
MATLAB. It should be noted that meshing tools often introduce multiply defined boundaries
between different regions of the mesh (i.e. boundaries between connected elements) as a part of
the boundary definition. Currently, the overlapping parts must be removed before using them as
BH . Alternatively, the function createBH can be used to create a BH matrix for a given H
matrix and overwrite the boundary given by the meshing tool. Furthermore, ValoMC has been
made compatible to mesh formats used in some biomedical optics simulation software such as
Toast++ [61] and k-Wave [62].

Function createGridMesh is provided for working with pixel or voxel format data. It
creates a structured mesh from a grid so that the mesh pixels or voxels can be filled by two triangles
or six tetrahedrons, respectively. When the mesh has been created with createGridMesh, the
fields of vmcmedium can be introduced as 2D or 3D arrays. Furthermore, the resulting fluence
field is returned as a 2D/3D array in solution.grid_fluence.
Once the mesh has been created, functions createMedium and createBoundary

can be used to create an accompanying vmcmedium (used to set material parameters) and
vmcboundary (used to set boundary conditions) structure, respectively. They take vmcmesh
as an input. If createMedium is given a vmcmedium as the second input parameter, it will

*When the mesh has been created with createGridMesh, these values can be also given as two or three dimensional
pixel or voxel maps. In that case, solution will be returned in solution.grid_fluence.

3.1. Creating a mesh, a medium, and a boundary

ValoMC comes with a few convenient functions to create simple meshes for prototyping purposes,
such as createRectangularMesh. For creating more complicated meshes, multiple
dedicated freeware tools are available, such as iso2mesh [58] and NetGen [59]. It is possible
to import NetGen ’.vol’ ASCII files using importNetGenMesh. The importer returns the
region and boundary definitions in addition to the mesh. Commercial software are available [60]
that produce meshes in a format easily convertible for ValoMC (c.f. Table 2) within MATLAB.
It should be noted that meshing tools often introduce multiply defined boundaries between
different regions of the mesh (i.e. boundaries between connected elements) as a part of the
boundary definition. Currently, the overlapping parts must be removed before using them as BH .
Alternatively, the function createBH can be used to create a BH matrix for a given H matrix
and overwrite the boundary given by the meshing tool. Furthermore, ValoMC has been made
compatible to mesh formats used in some biomedical optics simulation software such as Toast++
[61] and k-Wave [62].
Function createGridMesh is provided for working with pixel or voxel format data. It

creates a structured mesh from a grid so that the mesh pixels or voxels can be filled by two triangles
or six tetrahedrons, respectively. When the mesh has been created with createGridMesh, the
fields of vmcmedium can be introduced as 2D or 3D arrays. Furthermore, the resulting fluence
field is returned as a 2D/3D array in solution.grid_fluence.
Once the mesh has been created, functions createMedium and createBoundary

can be used to create an accompanying vmcmedium (used to set material parameters) and
vmcboundary (used to set boundary conditions) structure, respectively. They take vmcmesh
as an input. If createMedium is given a vmcmedium as the second input parameter, it will

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 965

repeat the arrays so that they match in size with the mesh. A convenient way to initialise all
elements to uniform values is to give a structure with scalar optical coefficients as an input.
createMedium will set the refractive index at the boundary so that there is no mismatch at the
boundary (see Section 3.3).

3.2. Finding boundaries and regions

All material parameters and boundary conditions are set individually for all elements and boundary
elements, respectively. However, it is often convenient to group elements for setting material
parameters and boundary conditions using a single instruction. This is done by creating vectors
that hold indices to BH (boundary conditions) or to H (material parameters). These matrices
were introduced in Fig. 1(b). If such vectors are not provided by the meshing tool, functions
findBoundaries and findElements can be used. These functions take the mesh as an
input, a keyword such as ’circle’ and optional arguments. A list of keywords is provided in
the code documentation and by invoking ’help findElements’. For example, in 2D all
elements within a circle of r<10mm with a centre at the origin (0 0) can be retrieved by invoking

circle = findElements (vmcmesh, ’circle’, [0 0], 10);

The return value, circle, is a vector that holds indices to vmcmesh.H. These indices could
be now used to set e.g. absorption coefficient for the elements within the circle by

vmcmedium.absorption_coefficient (circle) = 0.02;

Note that circle can be a single number as well to set the properties of an individual element.
Similarly, findBoundaries returns indices to vmcmesh.BH, i.e. boundary elements. Using
command

lightsource1 = findBoundaries (vmcmesh, ’direction’,...
[0 0], [5 0], 1); will return boundary

elements that fall within a rectangle defined by a line from (0 0) to (5 0) that intesects it in the
middle and has a width of 1.

3.3. Light sources and other boundary conditions

Light emitting boundary elements in vmcboundary are defined by a cell array lightsource.
Each element of the array is a string that determines the type of the light source. For exam-
ple, vmcboundary.lightsource (lightsource1) = ’direct’; will set a light
source with a type ’direct’ on each boundary element whose index is contained in vector
lightsource1. All photons in ’direct’ light sources are launched in the same direction (by
default, in the direction of the normal).

Light sources can be directed using the field lightsource_direction. This is a Nb × 2
/ Nb × 3 size matrix where each row contains a direction vector (Nb is the number of boundary
elements). The direction can be given either as an absolute direction or relative to the normal.
The light source types affect the distribution of initial propagation angles with respect to the
direction vector. For example, in a {’cosinic’} light source initial angles are random but
follow a cosine distribution and in a {’gaussian’}, a Gaussian.

By default, the initial position of the photon packet is selected from all light emitting boundary
elements with a uniform probability. This means that all boundary elements that contain a
light source have an equal irradiance. Alternatively, the relative strength of each light source
element can be determined using the field lightsource_irradiance. This field adjusts
the probability for a particular boundary element to be selected. For example, if the value of the

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 966

field on a single boundary element is set to 2 and the rest of the elements are 1, the element will
emit twice as many photons per unit length than the rest of the elements.
The refractive index at the boundary of the computation domain (i.e. the refractive index

of the material surrounding the computation domain) can be set for each boundary element
individually using the field exterior_refractive_index. Only the photon packets that
are exiting the computation domain can be reflected at the boundary. In other words, light sources
are considered to lie inside the computation domain (a convention that varies among different
software).

3.4. Simulation output and visualisation

The solution of a simulation (fluence at each element and exitance at each boundary element)
is returned in solution.element_fluence and solution.boundary_fluence.
Visualisation of the solution arrays is straightforward with MATLAB built-in functions such
as patch, trimesh and tetramesh. Various usage examples are provided with the code.
Visualisation of large tetrahedral meshes can be inefficient using tetramesh. For this purpose,
the function exportX3D is provided. It converts tetrahedral meshes into triangular meshes so
that each four triangular face of tetrahedron will have the same value. The resulting X3D file
can be opened and post-processed for example in MeshLab [63]. The triangular representation
is also convenient for making even cuts to the mesh for visualisation purposes, e. g. using the
Geometry Processing Toolbox [64] for MATLAB.

4. Simulations

The simulation code has been validated against analytical and numerical solutions of the radiative
transfer equation and other Monte Carlo software. Below, three example studies are described.
We have used

E = 100% ·
√√√∫

R(f (r) − fref(r))2dr∫
R fref(r)2dr

(10)

to quantify the error or the difference E to a reference solution fref (exitance or fluence). R is
the computation domain (volume or a boundary) and r is the integration variable (volume or a
length).

4.1. Validation of the 2D code

The results of the simulation code were compared against analytical solution of the radiative
transfer equation in a 2D semi-infinite layered media. The analytical solution is presented in
the article by A. Liemert and A. Kienle [65]. The geometry of the problem and the optical
parameters are illustrated in the inset of Fig. 3 (see also Figs. 1 and 5 of Ref. [65]). The slab
consisted of two layers with different optical coefficients: the first layer was 5mm thick while the
second was infinite. The optical properties of the medium were µa = 0.08mm−1, µs = 5mm−1,
g = 0.9 within the first layer and µa = 0.01mm−1, µs = 12mm−1, g = 0.9 within the second
layer. A beam with a spatially Gaussian profile was incident on the slab with an incident angle θ0
which had the values 0, 45 and 70 degrees.

The incident power per unit length through a line that is perpedicular to θ0 is S(y⊥) where S
is a Gaussian function (width σ = 0.4mm) and y⊥ is a position along that line. Therefore, we
computed the strength of the light source (given by the field lightsource_irradiance)
at y as S(cos(θ0)y)) cos(θ0), where y is a position of the boundary element at the edge (x=0) of
the domain. This expression follows from the geometry and preserves the beam profile in the
perpendicular direction when tilted. Note that the light source type was {’direct’} and not
{’gaussian’} since all photons have the same initial propagation direction.

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 967

Fig. 3. Comparison of ValoMC against the analytical solution of the radiative transfer
equation in a semi-infinte layered medium. The unit of exitance (1/mm) is used for
consistency with Ref. [65]. The data for the analytical solution was provided by A. Liemert
and A. Kienle [65].

Since infinite domains are not supported in ValoMC, the finite size error was made small by
creating a suitably large computation domain with thickness of 55mm and width of 200mm.
Element width of the rectangular mesh (createGridMesh) was 0.1mm in y-direction and
1mm in x-direction. 108 photon packets were launched into the medium. The relative errors
of the Monte Carlo exitance computed according to Eqn. (10) in the domain y = −5 · · · 5 mm
were E(0◦) ≈ 0.46 %, E(45◦) ≈ 0.35 %, E(70◦) ≈ 0.17 %. The resulting exitance, given by
the field boundary_exitance is shown in Fig. 3. The simulations demonstrate an excellent
agreement with the analytical solution.

4.2. Validation of the 3D code

The performance of ValoMC was tested in a 3D cubic simulation domain and compared against
MMC (mesh-based Monte Carlo) software by Q. Fang et al. [19]. The geometry of the calculation
is illustrated in Fig. 4(a) (see also Fig. 3 of Ref. [19]). The domain consisted of a cube as a
background (edge length 60mm, µa = 0.005mm−1, µs = 1mm−1, g = 0.01, n = 1.37) with a
sphere inside of the cube (radius 10mm, µa = 0.05mm−1, µs = 5mm−1, g = 0.9, n = 1.37).
A pencil beam was incident from the middle of the bottom face. For compatibility of the two
results, all MMC simulations were run on a piecewise constant basis and performed using a large
time window and step (0.5 s). The mesh had 11853 nodes and 70749 elements and it can be
found as a part of the distribution of MMC.
The results were in a good agreement with each other, showing a maximal difference

of 1.16 × 10−4 Wmm−2 in fluence after 108 photon packets were launched into the domain.
Differences in the results calculated according to Eqn. (10) over the entire computation domain
were 1.57 %, 0.16 % and 0.05 % after 105, 107 and 108 packets launched in to the medium,
respectively. A plot of the difference is shown in Fig. 4(b). A comparison of the computation
speeds is given in Section 5.2.
To validate the computation of internal reflections due to a refractive index mismatch, we

varied the refractive index of the sphere. The refractive index of the background medium and at
the boundary of the computation domain were kept unchanged. The total energy absorption rate
into the sphere was computed with both codes using 107 photon packets for each refractive index

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 968

Fig. 4. Comparison of ValoMC against Mesh-based Monte Carlo (MMC) [19]. (a) Fluence
distribution when the refractive index of the sphere was set to n = 1.0 calculated with
ValoMC. (b) Difference (relative error) between fluence obtained using ValoMC and MMC
with different number of photon packets calculated using Eqn. (10). (c) Total energy
absorption rate in the sphere as a function of its refractive index calculated with ValoMC
and MMC.

and is shown in Fig. 4(c). Changing the refractive index did not affect the difference between the
results (0.16 ± 0.1 % for all computations).

4.3. Frequency domain calculation

The use of intensity modulated light sources was simulated following an example given in the
book by L.V. Wang [66]. Two light sources, 180 degrees out of phase, were placed adjacent to
each other (see Fig. 5) and the resulting amplitude was measured on a line further away. Due
to the symmetry of the problem, the photon fluence from the two light sources should be at an
opposite phase on a line in half-way between the light sources, which cancels the amplitude on
that line.

Fig. 5. Frequency domain calculation in 2D. Coloured image shows the phase of the photon
fluence. The blue line shows the amplitude of the exitance.

Since the options related to the intensity modulation affect all light sources in ValoMC, two
simulation runs were performed to demonstrate the effect. To activate a sinusoidally modulated
light source, the field options.frequency was set to 200MHz in both simulations. Using
options.phase0, the initial phase of the first source was set to π/2 in the first simulation

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 969

and the initial phase of the second source was set to −π/2 in the second simulation. The total
fluence and exitance were formed by summing the individual results from the two simulations.
The results are shown in Fig. 5.

5. Software and hardware specifications and availibilty

The simulation code is written in C++ and parallelized using OpenMP. A 64-bit platform is
required to run the software. ValoMC has been tested on the platforms listed in Table 3. The
software is available for download from the homepage https://inverselight.github.io/ValoMC/ and
the source code from GitHub https://github.com/InverseLight/ValoMC. The project is distributed
under the MIT-license, excluding the external components. LICENCE file is provided for detailed
information. Several examples demonstrating the various features of the code are included.

Table 3. List of the environments ValoMC has been tested on.

Operating system MATLAB version Compiler version

Windows 10 2017a Visual Studio 2017

Windows 10 2016a TDM-GCC 5.1.0

Ubuntu 16.04 2016a GCC 4.9

5.1. Installation

Installation instructions are provided in the homepage and in the README.md file. Currently,
binaries are not distributed and the program must be compiled before use. We have distributed
the program to a small number of test users and found that most problems in installation arose
due to MATLAB not supporting the version of the compiler that was installed. These problems
are avoided e.g. by using CMake [67] to compile the program and changing the default compiler
(instructions provided in the README files).

5.2. Performance

On our Linux test system (Ubuntu GCC 8.1.0, Intel(R) Core(TM) i7-6500U processor, using 4
threads), the computation times of the simulations described in Section 4.2 were somewhat slower
than with MMC but similar in magnitude. ValoMC had the computation rate of about 55 000
packets/second, whereas for MMC it was 99 000 packets/second under comparable conditions.
In the current implementation, ValoMC sacrifices some of the optimisations (e.g. by using

double precision numbers and standard math functions, whereas MMC uses single precision and
custom math functions) for numerical accuracy. Furthermore, ValoMC (unlike MMC) stores by
default the boundary solution. On the other hand, MMC performs a time domain calculation. The
compiler switches were those reported optimal for MMC in its user manual. All simulations were
performed with the stand-alone executable and not in MATLAB. Thus, although while we have
made efforts to make the comparison as fair as possible, some differences in the computations
remain. The results suggest no significant gain in accuracy by using double precision numbers
and standard math functions.
Furthermore, we found that on our Windows test system, the ValoMC binary compiled with

Visual Studio 2017 compiler (optimized for speed in the settings) performed considerably better
than the GCC 8 compiler without losing accuracy (∼ 1.25×), while we were unable to compile
MMC with Visual Studio to perform the comparison also with that. For users wanting to achieve
the maximal performance, we therefore recommend trying out multiple compilers. This is
straightforward with CMake.

https://inverselight.github.io/ValoMC/
https://github.com/InverseLight/ValoMC

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 970

6. Discussion and conclusions

We have developed an open source Monte Carlo software for studying photon transport. While
similar programs exist and are readily available, the code packages may require substantial
learning efforts. To address this issue, we have also developed a simple MATLAB interface to
the simulation code and provide multiple examples demonstrating the features of the software.
Functions for facilitating the use of the software with certain biomedical optics simulation
software such as Toast++ [61] and k-Wave [62] and meshing software such as NetGen [59]
are provided. The simulation code and the interface are suitable for fast prototyping as well
as setting up large-scale problems. Near-term feature extension plans include time domain
computations, internal light sources (for modelling e.g. fluorescence), coordinate based detectors
and optimizations. In particular, we consider that there is still considerable optimization potential
left in e.g. improving cache performance, utilising the vector instructions on CPU and math
libraries, while GPU implementations are also in consideration.

With this project, we aim to bring high-performance Monte Carlo modelling of light transport
accessible to a wide range of researchers, teachers and students, including those not previously
familiar with the method or lacking background in low-level programming languages. We vision
ValoMC as a lightweight, efficient and flexible tool that is developed according to the principles
of open source to suit increasingly diverse uses in biomedical and other applications.

Funding

Academy of Finland (286247, 312342, 314411); Jane ja Aatos Erkon Säätiö (J&AE).

Acknowledgments

We thank A. Liemert and A. Kienle for providing the data for the analytical solution. In addition,
we thank T. Lunttila and O. Pärssinen for helpful discussions and comments.

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References
1. A. Sassaroli and F. Martelli, “Equivalence of four Monte Carlo methods for photon migration in turbid media,” J.

Opt. Soc. Am. A 29(10), 2110–2117 (2012).
2. C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902

(2013).
3. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in

“SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology,” G. Müller and D. Sliney, eds. (1989),
vol. IS 5, pp. 102–111.

4. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. Arridge, P. van der Zee, and D. Delpy, “A Monte Carlo
investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys.
Med. Biol. 38(12), 1859–1876 (1993).

5. L. Wang, S. Jacques, and L. Zheng, “MCML – Monte Carlo modeling of photon transport in multi-layered tissues,”
Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

6. L. Wang, R. Nordquist, and W. Chen, “Optimal beam size for light delivery to absorption-enhanced tumors buried in
biological tissues and effect of multiple-beam delivery: a Monte Carlo study,” Appl. Opt. 36(31), 8286–8291 (1997).

7. V. Periyasamya and M. Pramanik, “Monte Carlo simulation of light transport in turbid medium with embedded object
- spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues,” J. Biomed. Opt. 19(4),
045003 (2014).

8. T. Pfefer, J. K. Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional
modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel.
Top. Quantum Electron. 2(4), 934–942 (1996).

9. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through
complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).

10. J. Heiskala, I. Nissilä, T. Neuvonen, S. Järvenpää, and E. Somersalo, “Modeling anisotropic light propagation in a
realistic model of the human head,” Appl. Opt. 44(11), 2049–2057 (2005).

https://doi.org/10.1364/JOSAA.29.002110
https://doi.org/10.1364/JOSAA.29.002110
https://doi.org/10.1117/1.JBO.18.5.050902
https://doi.org/10.1088/0031-9155/38/12/011
https://doi.org/10.1088/0031-9155/38/12/011
https://doi.org/10.1016/0169-2607(95)01640-F
https://doi.org/10.1364/AO.36.008286
https://doi.org/10.1117/1.JBO.19.4.045003
https://doi.org/10.1109/2944.577318
https://doi.org/10.1109/2944.577318
https://doi.org/10.1364/OE.10.000159
https://doi.org/10.1364/AO.44.002049

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 971

11. Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and
neonatal head models,” Appl. Opt. 42(16), 2881–2887 (2003).

12. Q. Fang and D. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics
processing units,” Opt. Express 17(22), 20178–20190 (2009).

13. S. Patwardhan, A. Dhawan, and P. Relue, “Monte Carlo simulation of light-tissue interaction: Three-dimensional
simulation for trans-illumination-based imaging of skin lesions,” IEEE Trans. Biomed. Eng. 52(7), 1227–1236
(2005).

14. Y. Liu, S. Jacques, M. Azimipour, J. Rogers, R. Pashaie, and K. Eliceiri, “OptogenSIM: a 3D Monte Carlo simulation
platform for light delivery design in optogenetics,” Biomed. Opt. Express 6(12), 4859–4870 (2015).

15. R. Hochuli, S. Powell, S. Arridge, and B. Cox, “Quantitative photoacoustic tomography using forward and adjoint
Monte Carlo models of radiance,” J. Biomed. Opt. 21(12), 126004 (2016).

16. T. Binzoni, T. S. Leung, R. Giust, D. Rüfenacht, and A. H. Gandjbakhche, “Light transport in tissue by 3D Monte
Carlo: Influence of boundary voxelization,” Comput. Methods Programs Biomed. 89(1), 14–23 (2008).

17. D. Côte and I. Vitkin, “Robust concentration determination of optically active molecules in turbid media with
validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13(1), 148–163 (2005).

18. E. Margallo-Balbás and P. French, “Shape based Monte Carlo code for light transport in complex heterogeneous
tissues,” Opt. Express 15(21), 14086–14098 (2007).

19. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express
1(1), 165–175 (2010).

20. T. Tarvainen, V. Kolehmainen, A. Pulkkinen, M. Vauhkonen, M. Schweiger, S. Arridge, and J. Kaipio, “An
approximation error approach for compensating for modelling errors between the radiative transfer equation and the
diffusion approximation in diffuse optical tomography,” Inv. Probl. 26(1), 015005 (2010).

21. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4),
947–962 (2010).

22. J. Cassidy, A. Nouri, V. Betz, and L. Lilge, “High-performance, robustly verified Monte Carlo simulation with
FullMonte,” J. Biomed. Opt. 23(8), 1 (2018).

23. A. Pulkkinen and T. Tarvainen, “Truncated Fourier-series approximation of the time-domain radiative transfer
equation using finite elements,” J. Opt. Soc. Am. A 30(3), 470–478 (2013).

24. R. Yao, X. Intes, and Q. Fang, “Generalized mesh-based Monte Carlo for widefield illumination and detection via
mesh retessellation,” Biomed. Opt. Express 7(1), 171–184 (2016).

25. C. Hayakawa, J. Spanier, and V. Venugopalan, “Comparative analysis of discrete and continuous absorption weighting
estimators used in Monte Carlo simulations of radiative transport in turbid media,” J. Opt. Soc. Am. A 31(2), 301–311
(2014).

26. T. Leung and S. Powell, “Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing
unit,” J. Biomed. Opt. 15(5), 055007 (2010).

27. Q. Fang and D. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU architectures,” Biomed. Opt.
Express 3(12), 3223–3230 (2012).

28. S. Powell and T. Leung, “Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid
media,” J. Biomed. Opt. 17(4), 045002 (2012).

29. O. Yang and B. Choi, “Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing
Unit (GPU),” Biomed. Opt. Express 4(11), 2667–2672 (2013).

30. L. Yu, F. Nina-Paravecino, D. Kaeli, and Q. Fang, “Scalable and massively parallel Monte Carlo photon transport
simulations for heterogeneous computing platforms,” J. Biomed. Opt. 23(1), 1 (2018).

31. Y. Liu, H. Jiang, and Z. Yuan, “Two schemes for quantitative photoacoustic tomography based on Monte Carlo
simulation,” Med. Phys. 43(7), 3987–3997 (2016).

32. S. L. Jacques, “Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal
generation,” Photoacoustics 2(4), 137–142 (2014).

33. D. Ancora, A. Zacharopoulos, J. Ripoll, and G. Zacharakis, “Fluorescence diffusion in the presence of optically clear
tissues in a mouse head model,” IEEE Trans. Med. Imaging. 36(5), 1086–1093 (2017).

34. J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime
multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).

35. J. J. Selb, D. A. Boas, S. T. Chan, K. C. Evans, E. M. Buckley, and S. A. Carp, “Sensitivity of near-infrared
spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings
during hypercapnia,” Neurophotonics 1(1), 015005 (2014).

36. D. Ancora, L. Qiu, G. Zacharakis, L. Spinelli, A. Torricelli, and A. Pifferi, “Noninvasive optical estimation of CSF
thickness for brain-atrophy monitoring,” Biomed. Opt. Express 9(9), 4094 (2018).

37. F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom:
statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).

38. D. Wangpraseurt, S. L. Jacques, T. Petrie, and M. Kühl, “Monte Carlo modeling of photon propagation reveals highly
scattering coral tissue,” Front. Plant. Sci. 7, 1404 (2016).

39. J. Cassidy, V. Betz, and L. Lilgem, “Treatment plan evaluation for interstitial photodynamic therapy in a mouse
model by Monte Carlo simulation with FullMonte,” Front. Phys. 3, 6 (2015).

https://doi.org/10.1364/AO.42.002881
https://doi.org/10.1364/OE.17.020178
https://doi.org/10.1109/TBME.2005.847546
https://doi.org/10.1364/BOE.6.004859
https://doi.org/10.1117/1.JBO.21.12.126004
https://doi.org/10.1016/j.cmpb.2007.10.008
https://doi.org/10.1364/OPEX.13.000148
https://doi.org/10.1364/OE.15.014086
https://doi.org/10.1364/BOE.1.000165
https://doi.org/10.1088/0266-5611/26/1/015005
https://doi.org/10.1088/0031-9155/55/4/003
https://doi.org/10.1117/1.JBO.23.8.085001
https://doi.org/10.1364/JOSAA.30.000470
https://doi.org/10.1364/BOE.7.000171
https://doi.org/10.1364/JOSAA.31.000301
https://doi.org/10.1117/1.3495729
https://doi.org/10.1364/BOE.3.003223
https://doi.org/10.1364/BOE.3.003223
https://doi.org/10.1117/1.JBO.17.4.045002
https://doi.org/10.1364/BOE.4.002667
https://doi.org/10.1117/1.JBO.23.1.010504
https://doi.org/10.1118/1.4953185
https://doi.org/10.1016/j.pacs.2014.09.001
https://doi.org/10.1109/TMI.2016.2646518
https://doi.org/10.1364/BOE.2.000871
https://doi.org/10.1117/1.NPh.1.1.015005
https://doi.org/10.1364/BOE.9.004094
https://doi.org/10.1038/srep27057
https://doi.org/10.3389/fpls.2016.01404
https://doi.org/10.3389/fphy.2015.00006

Research Article Vol. 2, No. 3 / 15 March 2019 / OSA Continuum 972

40. H. Xiang, B. Chen, W. Wu, Y. Zhang, and H. Jia, “An integral MPS model of blood coagulation by laser irradiation:
Application to the optimization of multi-pulse Nd:YAG laser treatment of port-wine stains,” Int. J. Heat Mass Transfer
114, 1220–1233 (2017).

41. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational
efficiency,” Phys. Med. Biol. 38, 5788–5798 (2011).

42. Y. Marzouk, I. Langmore, and G. Bal, “Bayesian inverse problems with Monte Carlo forward models,” Inv. Probl.
Imag. 7(1), 81–105 (2013).

43. L. Vinckenbosch, C. Lacaux, S. Tindel, M. Thomassin, and T. Obara, “Monte Carlo methods for lightpropagation in
biological tissues,” Math. Biosci. 269, 48–60 (2015).

44. B. A. Kaplan, J. Buchmann, S. Prohaska, and J. Laufer, “Monte-Carlo-based inversion scheme for 3D quantitative
photoacoustic tomography,” in “Photons Plus Ultrasound: Imaging and Sensing 2017, Proc. of SPIE,” A. Oraevsky
and L. Wang, eds. (2017), vol. 10064, pp. 100645J–1.

45. J. Buchmann, B. A. Kaplan, S. Prohaska, and J. Laufer, “Experimental validation of a Monte-Carlo-based inversion
scheme for 3D quantitative photoacoustic tomography,” in “Photons Plus Ultrasound: Imaging and Sensing 2017,
Proc. of SPIE,” A. Oraevsky and L. Wang, eds. (2017), vol. 10064, p. 1006416.

46. A. Correia, P. Hanselaer, H. Cornelissen, and Y. Meuret, “Radiance based method for accurate determination of
volume scattering parameters using GPU-accelerated Monte Carlo,” Opt. Express 25(19), 22575–22586 (2017).

47. O. Lehtikangas, T. Tarvainen, V. Kolehmainen, A. Pulkkinen, S. Arridge, and J. Kaipio, “Finite element approximation
of the Fokker-Planck equation for diffuse optical tomography,” J. Quant. Spectrosc. Radiat. Transfer 111(10),
1406–1417 (2010).

48. P. Mohan, T. Tarvainen, M. Schweiger, A. Pulkkinen, and S. Arridge, “Variable order spherical harmonic expansion
scheme for the radiative transport equation using finite elements,” J. Comput. Phys. 230(19), 7364–7383 (2011).

49. T. Tarvainen, A. Pulkkinen, B. Cox, J. Kaipio, and S. Arridge, “Image reconstruction in quantitative photoacoustic
tomography using the radiative transfer equation and the diffusion approximation,” in “Opto-Acoustic Methods
and Applications, Proc. of OSA Biomedical Optics-SPIE,” V. Ntziachristos and C. Lin, eds. (2013), vol. 8800, pp.
880006–1.

50. A. Pulkkinen, V. Kolehmainen, J. Kaipio, B. Cox, S. Arridge, and T. Tarvainen, “Approximate marginalization of
unknown scattering in quantitative photoacoustic tomography,” Inv. Probl. Imag. 8(3), 811–829 (2014).

51. O. Lehtikangas, T. Tarvainen, A. Kim, and S. Arridge, “Finite element approximation of the radiative transport
equation in a medium with piece-wise constant refractive index,” J. Comput. Phys. 282, 345–359 (2015).

52. V. Periyasamy and M. Pramanik, “Advances in Monte Carlo simulation for light propagation in tissue,” IEEE Rev.
Biomed. Eng. 10, 122–135 (2017).

53. A. Ishimaru,Wave Propagation and Scattering in Random Media, vol. 1 (Academic, 1978).
54. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
55. A. Kienle, F. K. Foster, and R. Hibst, “Influence of the phase function on determination of the optical properties of

biological tissue by spatially resolved reflectance,” Opt. Lett. 26(20), 1571–1573 (2001).
56. M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random

number generator,” ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998).
57. L. Devroye, “General Principles in Random Variate Generation,” in “Non-Uniform Random Variate Generation,”

(Springer New York, New York, 1986), pp. 27–82.
58. Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in “Proc.

IEEE Int. Symp. Biomed. Imaging,” (IEEE Press, 2009), ISBI’09, pp. 1142–1145.
59. J. Schöberl, “NETGEN an advancing front 2d/3d-mesh generator based on abstract rules,” Comput. Visualization Sci.

1(1), 41–52 (1997).
60. “Comsol Multiphysics, COMSOL AB, Stockholm, Sweden,” http://www.comsol.com/.
61. M. Schweiger and S. R. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,”

J. Biomed. Opt. 19(4), 040801 (2014).
62. B. Treeby and B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave

fields,” J. Biomed. Opt. 15(2), 021314 (2010).
63. Visual Computing Lab ISTI - CNR, “MeshLab,” http://meshlab.sourceforge.net/.
64. A. Jacobson, et al., “gptoolbox: Geometry processing toolbox,” (2018). http://github.com/alecjacobson/gptoolbox.
65. A. Liemert and A. Kienle, “Analytical approach for solving the radiative transfer equation in two-dimensional layered

media,” J. Quant. Spectrosc. Radiat. Transfer 113(7), 559–564 (2012).
66. L. V. Wang, Diffuse Optical Tomography (Wiley-Blackwell, 2012), chap. 11, pp. 249–281.
67. Kitware, Inc., “CMake,” http://cmake.org (2018).

https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.033
https://doi.org/10.1118/1.3641827
https://doi.org/10.3934/ipi
https://doi.org/10.3934/ipi
https://doi.org/10.1016/j.mbs.2015.08.017
https://doi.org/10.1364/OE.25.022575
https://doi.org/10.1016/j.jqsrt.2010.03.003
https://doi.org/10.1016/j.jcp.2011.06.004
https://doi.org/10.3934/ipi.2014.8.811
https://doi.org/10.1016/j.jcp.2014.11.025
https://doi.org/10.1109/RBME.2017.2739801
https://doi.org/10.1109/RBME.2017.2739801
https://doi.org/10.1086/144246
https://doi.org/10.1364/OL.26.001571
https://doi.org/10.1145/272991.272995
https://doi.org/10.1007/s007910050004
http://www.comsol.com/
https://doi.org/10.1117/1.JBO.19.4.040801
https://doi.org/10.1117/1.3360308
http://meshlab.sourceforge.net/
http://github.com/alecjacobson/gptoolbox
https://doi.org/10.1016/j.jqsrt.2012.01.013
http://cmake.org

