
Component Based Operating System

Patty Kostkova, Kevin Murray and Tim Wilkinson

System Architecture Research Center

City University

London, UK

fpatty,kam,timg@sarc.city.ac.uk

The microkernel concept - the leading operating systems design approach of recent years -

brought both applications and kernels a level of exibility. However, the pure micro-kernel

approach has two main drawbacks: poor performance, due to extra kernel-server over-

heads, and the inability to tailor servers to applications demands and needs. To overcome

these problems the new research is investigating better structuring abstractions which en-

able �ner granularity in OS components. This research is primarily based around the

new \extensible" operating system approach (e.g. Exokernel, SPIN, etc.) which tackles

the problem of e�ciency, exibility and application support with reduction of resource

abstractions and speci�c kernel customization via application provided kernel code.

We are designing a radically di�erent operating system approach to cope with the require-

ments of e�ciency, exibility and ease of recon�guration: it consists of independent \com-

ponents" representing hardware devices or o�ering services. Hardware components provide

a direct interface to real devices above which there is a \virtual machine" layer implement-

ing necessary protection schemes. However, there is no enforced hardware abstraction

which ensures the desired e�ciency. The next layer consists of running applications and

the common servers, such as �le systems, distributed shared memory, etc. Applications

then have the choice of accessing a raw device directly or using an abstraction provided by

these servers.

The information about all components currently available in the system is provided by a

special Manager component. It administrates a shared tuplespace and is responsible for

resolving and negotiating application requests (which come in the form of tuples placed into

the tuplespace) so as to �nd the most convenient component matches. Once all desired

components for an application are selected and plugged together by the Manager, the

application can communicate with these components using indirect calls. At this stage,

trusted applications can access services through indirect procedure calls giving them shared

library performance rates. Untrusted applications can still use these abstractions, but

will pay a performance penalty because of protection checks. This gives the applications

high speed, secure, safe access to abstractions and hardware resources in a exible and

manageable fashion.

Here we present a component based OS which consists of independent hardware com-

ponents and abstraction services which are plugged together in response to application

demands. The system supports exibility through late binding, dynamic modi�cation of

its parts during execution, e�ciency through reduction of unnecessary abstractions and

by binding trusted applications to servers by indirect calls. In addition to its structure

and exibility, the system can support 24x7 operation by utilizing its ability to exchange

components dynamically and through the potential for the Manager to replace failed com-

ponents with alternatives providing an equivalent service level.


