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Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits
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We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For
exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive
coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove,
both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the
performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit
coupling time, t , we can find an infinite number of triples (Ja,Jb,t) for which the two-qubit entanglement, in
combination with appropriate single-qubit rotations, can produce an exact CNOT gate. This statement is true for
practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease
in the number of nonlocal (two-qubit) operations in quantum circuits.
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I. INTRODUCTION

Quantum computing is envisioned as a sequence of two-
qubit operations, which are nonlocal and produce entangle-
ment, accompanied by a set of proper single-qubit (local)
rotations. Two-qubit operations are at the heart of the process
and are generally the most demanding. The “controlled-not
gate” (CNOT) is a paradigmatic universal nonlocal gate, which
allows one to perform, in conjunction with single-qubit
rotations, all multiqubit operations. The controlled-Z gate
differs from CNOT only by two Hadamard gates, which are
local, so our considerations below are applicable to both
gates [1].

Progress achieved in developing high-fidelity single qubits
based on quantum dots makes two-qubit (and multiqubit)
operation of entangled qubits a timely goal [2,3]. Some
achievements in two-qubit entanglement have been already
reported [4–7].

Typically, quantum-dot spin qubits consist of one [2],
two [8], or three [9] strongly coupled dots, and they differ in the
mechanism through which spin rotations are achieved [10]. In
particular, they can be driven by ac magnetic field [11,12]
or by ac electric field through interactions mediated by
nonequilibrium nuclear magnetization [13–16], inhomoge-
neous magnetic fields produced by micromagnets [17–19], or
spin-orbit coupling [20]. A special class of qubits proposed by
DiVincenzo et al. [9] are exchange-only three-electron qubits,
where the qubit is encoded in the subspace with total electron
spin S = 1/2 and projection Sz = 1/2. Such qubits, which
were first realized by Laird et al. [21], exist in three-dot [22–25]
and two-dot [26,27] modifications. At a proper detuning [24],
the energy spectrum of these systems includes a pair of close
levels forming a qubit that can be described in terms of an
effective spin, and we use this description in what follows.
Single-qubit operations, including transitions between the
levels, are performed by gate voltages which couple to the
electric charges on the dots, and take advantage of the tunneling
matrix elements that allow charge exchange between the dots.
In the absence of spin-orbit coupling, magnetic field gradients
or hyperfine coupling to nuclei, the total electron spin S and its
projection Sz are good quantum numbers, which are conserved
by the single-qubit operations.

Entanglement between two quantum-dot qubits can be
established through capacitive and/or exchange coupling. As
applied to coded qubits, such suggestions have been made in
Refs. [28,29] and [30–32], respectively. Capacitive coupling,
which depends only on the Coulomb interactions between
the qubits, does not violate conservation of S and Sz for
each qubit separately, as long as higher energy states can
be ignored, this allows both qubits to remain in the coding
subspace. Exchange coupling has the advantage that it is
usually stronger, and easier to turn on and off, which should
allow faster performance of individual two-qubit operations.
However, exchange interactions do not conserve S and SZ for
the individual qubits, so that, in general, after an interval of
exchange coupling, the qubits will no longer be in the coding
subspace. In order to rectify this, a proper two-qubit operation
requires a sequence of many exchange couplings, interspersed
with single-qubit operations [31–33], and the total number of
operations is very large. Even with high speed and accuracy
of individual operations [22–24,27], the cost of a long chain
of them could be rather high. Thus, there may be an overall
advantage to using capacitive coupling rather than exchange
coupling for two-qubit operations. However, one may ask
whether capacitive coupling allows one to perform the CNOT

operation exactly and, if so, how many nonlocal rotations are
required for the operation.

In this paper we concentrate on three-dot three-electron
qubits [21,23,24,29] with exchange electron-electron interac-
tion within the qubits and capacitive coupling between them.
We prove that CNOT can be performed exactly using a single
nonlocal operation (accompanied by local rotations) by proper
choice of three parameters, two single-qubit level splittings
(Ja,Jb), and the interqubit coupling time t , where the subscripts
a and b label the two qubits. In fact, there is a countable (infinite
discrete) set of such (Ja,Jb,t) triplets. (We assume here that
during a nonlocal rotation the capacitive coupling between the
qubits, described by four parameters gzz,gxx,gxz,gzx which
depend on the geometry, can be turned on and off sharply,
but that the ratio between them is fixed. See the definitions in
Sec. II.) For large ratios of the intra- to interqubit couplings, the
(Ja,Jb) pairs are arranged on a square lattice, with both (Ja,Jb)
either even or odd (in properly chosen units), but the precise
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positions of the solutions vary continuously as one varies the
relative values of the coupling parameters gzz,gxx,gxz,gzx .

The existence of an extensive set of exact CNOT gates in a
capacitively- coupled qubit array is the central result of our
paper. While it has been proven for a specific model of qubits,
we expect that it is more generic. Indeed, it has been shown,
in recent work by Calderon-Vargas and Kestner [34], that
similar effects can be obtained for capacitatively coupled two-
electron singlet-triplet qubits. These results call for developing
techniques for the control of capacitive couplings and turning
them on and off.

The general outline of the paper is as follows. In Sec. II,
we present a generic four-parameter form of the Hamiltonian
of two capacitively coupled coded qubits and choose the basic
model to which most of the numerical work is related. In
Sec. III, we discuss the transformation from the standard to
magic basis and outline our approach based on calculation of
Makhlin invariants [35]. In Sec. IV, we provide an analytic
solution for a model with two coupling constants, (gzz,gxx),
which unveils the basic potentialities of two capacitively
coupled qubits, including the existence of an infinite set of
exact CNOT gates. In Sec. V, we find the asymptotic behavior
of invariants in the limit where the intraqubit exchange splitting
is large compared to the interqubit coupling, for a generic-form
interqubit coupling, and we derive the asymptotic map of
(Ja,Jb,t) sets producing CNOT gates. Some general properties
of the nonlocal part Md of the evolutionary matrix MS are
investigated in Sec. VI. In Sec. VII, we build a map of the
positions of CNOT gates in the (Ja,Jb) plane for a generalized
basic model as a function of a scaling parameter, and we
investigate analytical properties of both Makhlin invariants
near the CNOT points. Section VIII includes matrix identities
specific for CNOT gates, and Sec. IX discusses in brief the local
rotations that should be performed for achieving controlled-Z
gates. Section X summarizes our results.

II. HAMILTONIAN

In this paper we consider three-electron three-dot coded
qubits [9] in which two-axis rotations are performed by
Heisenberg exchange only, without involvement of any ad-
ditional mechanisms such as spin-orbit coupling, inhomo-
geneous magnetic field, or nonequilibrium nuclear polariza-
tion. Efficient operation of such qubits has been already
demonstrated experimentally [21–24]. Three-electron two-dot
qubits [26,27] have very similar properties.

Depending on the specific shape of two capacitively
coupled three-dot qubits and their mutual position, the basic
two-qubit configurations may be termed as linear, butterfly,
two-corner, and loop geometries [29,31,32]. Details of the
geometry mostly determine the interqubit-coupling part Hint of
the total Hamiltonian H = H0 + Hint, while the Hamiltonian
H0 of individual qubits can always be chosen as

H0 = − 1
2

(
Jaσ

a
z + Jbσ

b
z

)
. (1)

Here and below, (σa
j ,σ b

j ), j = (x,y,z), are Pauli matrices
acting on (a,b) qubits, respectively [29].

Capacitive coupling between qubits can be expressed in
terms of a Coulomb interaction between electric charges on
pairs of dots belonging to different qubits. Generically, for two-

FIG. 1. (Color online) Model of a two-qubit gate consisting of
two three-dot qubits with capacitive coupling between the right dot
of qubit a and the left dot of qubit b.

level systems the operators of charges can only include real
2×2 matrices; hence, they are linear combinations of two Pauli
matrices, σx and σz, and a unit matrix σ0. Explicit expressions
for charges were derived in Ref. [29]. The Hamiltonian Hint

includes Kronecker products of charges in which matrices
σa

0 and σb
0 can be omitted because they result only in an

additive constant and corrections to H0 that can be eliminated
by local spin rotations and/or renormalization of parameters.
Therefore, the most general expression for the Hamiltonian
Hint of capacitive coupling between two qubits reads

Hint = gxxσ
a
x σ b

x + gxzσ
a
x σ b

z + gzxσ
a
z σ b

x + gzzσ
a
z σ b

z . (2)

In this paper, we choose the energy scale such that gzz = 1/4,
and we assume that the other coefficients gij are either small
or of the order of unity.

Generic properties of capacitive gates in the weak-coupling
regime, |gij | � Ja,Jb, will be derived analytically in Sec. V for
arbitrary ratios between the coupling constants gij . However,
the space of these constants is too wide to investigate it all
numerically. Therefore, we choose as the basic model a linear
geometry with capacitive coupling between the right dot of
qubit a and the left dot of qubit b (Fig. 1). In this case [29],
gzz = 1/4, gzx = √

3/4, gxz = −√
3/4, gxx = −3/4, and

Hint =
(

−
√

3

2
σa

x + 1

2
σa

z

)(√
3

2
σb

x + 1

2
σb

z

)
. (3)

The operators in the parentheses are proportional to the
electrical charges at the ends of the two qubits [36]. As we
have used the interqubit couplings in Hint to establish the
energy scale, we see that whenever the intraqubit coupling
is essentially stronger than interqubit coupling, we have
Ja,Jb � 1.

In Sec. IV we solve analytically a model with gxz = gzx = 0
and arrive at an infinite set of CNOT gates. In Sec. VII we
consider a generalization of the basic model by scaling its
parameters (gzx,gxz,gxx) and arrive numerically at a similar
picture that reflects generic properties of capacitive two-
qubit gates. We have also confirmed the generality of these
conclusions by numerical studies of various other randomly
selected values of gij .

III. EVOLUTIONARY OPERATOR
AND MAKHLIN INVARIANTS

We choose the standard basis in the 4×4 two-qubit space
as |00〉,|01〉,|10〉,|11〉, with |0〉 for |↑〉 and |1〉 for |↓〉. Then
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H0 is diagonal,

H0 =

⎛
⎜⎜⎝

− Ja+Jb

2 0 0 0
0 − Ja−Jb

2 0 0
0 0 Ja−Jb

2 0
0 0 0 Ja+Jb

2

⎞
⎟⎟⎠, (4)

and Hint of Eq. (2) equals

Hint =

⎛
⎜⎝

gzz gzx gxz gxx

gzx −gzz gxx −gxz

gxz gxx −gzz −gzx

gxx −gxz −gzx gzz

⎞
⎟⎠. (5)

For the basic model, the sum of the squares of matrix elements
in each row (column) of Hint equals 1, which sets the interqubit
interaction as the energy scale. In more generic models, we
always choose gzz = 1/4 and in this way set the scale of
energy; with � = 1, this also sets the scale of time t .

It follows from these equations that, for large Ja,Jb,
the off-diagonal part of the evolutionary operator MS(t) =
exp (−iH t) is small in the parameters J−1

a ,J−1
b � 1. (We

use the subscript S to indicate the standard basis.) In what
follows we use side by side with the numerical study also
an analytical approach based on 1/J expansion. It is seen
from Eq. (4) that keeping Ja ≈ 2Jb allows avoiding small
denominators in the perturbation theory. On the contrary, with
Ja ≈ Jb, perturbation theory becomes inapplicable.

The conditions for a gate be equivalent to the universal CNOT

gate, up to local rotations, are expressed most conveniently
in the “magic basis” [37] (of time-inversion symmetric Bell
states), which we choose as [35]

|�1〉 = 1√
2

(|00〉 + |11〉), |�2〉 = i√
2

(|01〉 + |10〉),
(6)

|�3〉 = 1√
2

(|01〉 − |10〉), |�4〉 = i√
2

(|00〉 − |11〉).

In this basis local (single-qubit) gates are represented by real
matrices, and the transformation of MS into the magic basis is
performed by MB = Q†MSQ, where [35]

Q = 1√
2

⎛
⎜⎝

1 0 0 i

0 i 1 0
0 i −1 0
1 0 0 −i

⎞
⎟⎠. (7)

The equivalence of two nonlocal gates, up to local operations,
is given by two Makhlin invariants (G1,G2), which are defined
in terms of traces of a unitary matrix m = MT

B MB (T stands
for transpose) and of its square [35,38]:

G1 = 1
16 Tr2[m], G2 = 1

4 (Tr2[m] − Tr[m2]). (8)

Here we have used the fact that Det[M†] = 1, which is true for
the above Hamiltonian H . The choice of numerical coefficients
in (8) results in values of (G1,G2) of the order of unity for
most typical gates [35]. G1 is a complex number and G2 is
real. For CNOT and controlled-Z gates these invariants must be
G1 = 0, G2 = 1, and we prove below that these equations can
be fulfilled for an infinite discrete set of real values of three
parameters of the theory, (Ja,Jb,t).

Because CNOT and controlled-Z gates have the same
invariants, they are equivalent up to local rotations, which may

be performed by two Hadamard gates [1]. However, it follows
from Eqs. (4) and (5) that for Ja,Jb � 1 the evolutionary
matrix MS(t) is nearly diagonal and therefore is closer to a
controlled-Z matrix (which is diagonal in the standard basis)
than to a CNOT matrix. In the standard basis, controlled-Z
is represented by the matrix 1

2σb
0 (σa

0 + σa
z ) + 1

2σb
z (σa

0 − σa
z ),

while CNOT is given by 1
2σb

0 (σa
0 + σa

z ) + 1
2σb

x (σa
0 − σa

z ). For
this reason, we sometimes refer simply to controlled-Z gates
(see Sec. IX).

IV. EXACTLY SOLUBLE MODEL

With gzx = gxz = 0, operator H is block diagonal, and
both Makhlin invariants can be calculated explicitly [39]. It
is convenient to introduce functions

f± = (Ja ± Jb)2 + 4g2
xx cos

[
t
√

(Ja ± Jb)2 + 4g2
xx

]
(Ja ± Jb)2 + 4g2

xx

. (9)

Then the equation Tr[m] = 0 reduces to

eit/2f− + e−it/2f+ = 0. (10)

If (Ja − Jb)2 > 4g2
xx , then f+ + f− > 0, and the equation for

the real part of the trace reduces to cos (t/2) = 0. We restrict
ourselves with the lowest root of the last equation, t = π . Then
it follows from the equation for the imaginary part of the trace
that f+ = f−. Because the expression for G2 is

G2 = 2f+f− + cos t,

the equation G2 = 1 reduces to f+f− = 1. The only solutions
of these two equations for f± are√

(Ja ± Jb)2 + 4g2
xx = 2n±, (11)

where n± are positive integers. It is convenient to define two
integers, r = n+ + n− and s = n+ − n−, so that n± = (r ±
s)/2, where r and s are integers of the same parity, with the
additional constraint that r > |s| � 0. We then arrive at the
following equations for (Ja,Jb):

(Ja ± Jb)2 = (r ± s)2 − 4g2
xx. (12)

These equations have real solutions whenever 2|gxx | � r − |s|.
Thus, for a fixed value of gxx , with gxz = gzx = 0, we have

found an infinite set of exact CNOT gates, indexed by pairs
of integers (r,s) of the same parity, restricted only by the
criterion (r − |s|) > 2|gxx |. The shortest operation time of the
gates is precisely t = π in each case. In the limit gxx → 0,
the solutions for (Ja,Jb) approach the integer values ±(r,s) or
±(s,r). As the value of |gxx | is increased, for fixed values of
(r,s), the solutions for (Ja,Jb) move along the hyperbola

JaJb = rs. (13)

As long as 2|gxx | < r − |s|, there will be two different
solutions on each branch of the hyperbola, related to each
other by interchange of the values of Ja and Jb. When
2|gxx | → r − |s|, the two solutions on each branch come
together on the axis Ja = ±Jb (depending on the sign of s)
and “annihilate” each other. Real solutions do not exist for
2|gxx | > r − |s|.

125409-3



PAL, RASHBA, AND HALPERIN PHYSICAL REVIEW B 92, 125409 (2015)

Although exact CNOT operations are possible for both
positive and negative values of Ja and Jb, as we have seen
in this section, we restrict our considerations in the remainder
of this paper to the positive quadrant of the Ja − Jb plane, as
this seems to be the region of most immediate physical interest.

V. LARGE- J EXPANSION

Our next insight onto the optimal sets of (Ja,Jb,t) comes
from the large-J expansion of the operator MS(t). To eliminate
secular terms in the expansion, the diagonal part of Hint with
gzz = 1/4 was included in H0; no restrictions are imposed on
other coupling constants gij . We note that while gzz is small
compared with (Ja,Jb), it is the only term in H0 resulting in
entanglement.

Formal expansion in 1/J � 1 is complicated by poles at
Ja = Jb, as seen from Eqs. (14) and (15) below. To overcome
this problem, it is convenient to introduce a formal parameter
γ as Hint → γHint, find expansion in γ , and finally put γ = 1.
Then consecutive steps include transforming MS(t) into the
interaction representation, calculating it in the second order in
γ , transforming the result into the magic basis, and calculating
the m matrix, its trace Tr[m], and the invariants (G1,G2).
Final results were simplified by using Ja,Jb � 1. For technical
reasons it is convenient to use the condition Tr[m] = 0 instead
of G1 = 0. While the expansion of m includes 1/J terms,
the expansion of Tr[m] consists of a zero-order term followed
with 1/J 2 terms. After tedious calculations, we arrive at a
1/J 2 order result,

Tr[m] = 4 cos
t

2
+ g2

xxFxx + g2
xzFxz + g2

zxFzx,

Fxx = −16

{
e

it
2

sin2
[

1
2 (Ja − Jb)t

]
(Ja − Jb)2

+ e− it
2

sin2
[

1
2 (Ja + Jb)t

]
(Ja + Jb)2

}
,

Fxz = 4

J 2
a

[
−4 cos

t

2
+ 4 cos(Jat) + t sin

t

2

]
,

Fzx = 4

J 2
b

[
−4 cos

t

2
+ 4 cos(Jbt) + t sin

t

2

]
, (14)

and

G2 = (2 + cos t) − 16g2
xx

J 2
a + J 2

b(
J 2

a − J 2
b

)2

×
[

1 − cos Jat cos Jbt − 2JaJb

J 2
a + J 2

b

sin Jat sin Jbt

]

+ 2

(
g2

xz

J 2
a

+ g2
zx

J 2
b

)(
t sin t − 8 cos2 t

2

)

+ 16

(
g2

xz

J 2
a

cos Jat + g2
zx

J 2
b

cos Jbt

)
cos

t

2
. (15)

The leading cosine terms of both equations originate from the
diagonal part of the interaction, 1

4σa
z σ b

z .
It is seen from Eqs. (14) and (15) that zero-order solutions

of equations Tr[m] = 0 and G2 = 1 are tn = nπ , n being

integers. Below we restrict ourselves to the shortest operational
time, n = 1. Considering Tr[m] = 0 as an equation for t ,
t = π + δt , we arrive at δt ∼ 1/J 2. Then, restricting ourselves
to terms of the order of 1/J 2, we estimate 2 + cos t ≈ 1; the
last two lines of Eq. (15) can be omitted, and equation G2 = 1
reduces to

cos Jaπ cos Jbπ + 2JaJb

J 2
a + J 2

b

sin Jaπ sin Jbπ = 1. (16)

Remarkably, the equation does not depend on the coupling
constants gij . Expressing the trigonometric functions in (16)
in terms of tan (Jaπ/2) and tan (Jbπ/2), one can check that
the only real solutions of Eq. (16) are Ja = r, Jb = s, r and s

being integers of the same parity.
Because the parities of Ja and Jb coincide, cos Jaπ =

cos Jbπ ≡ cos Jπ , and the condition Tr[m] = 0 allows es-
timating δt as

δt ≈ 2
(
g2

xz + g2
zx

)(
J−2

a + J−2
b

)
(4 cos Jπ + π ). (17)

Remarkably, due to the last factor the values of δt have opposite
signs for odd and even values of J , and positive values are
larger than negative ones by an order of magnitude.

The above results suggest the existence of an infinite
two-parameter set of discrete solutions of the equations for
CNOT gates, G1 = 0 and G2 = 1, which in the large-J limit
are t ≈ π , with (Ja,Jb) being integers of the same parity;
notice excellent qualitative agreement with the results of
Sec. IV. Because the results of this section are valid only with
1/J 2 precision, it still should be checked whether equations
G1 = 0, G2 = 1 have exact solutions or are satisfied only
approximately, in some order in 1/J . We prove numerically
in Sec. VII below the existence of exact solutions obeying the
basic patterns described above, and this provides extension of
the analytical results of Sec. IV to generic interqubit coupling.
Hence, two capacitively coupled qubits can serve universally
as perfect CNOT (controlled-Z) gates.

In the numerical work below we look for solutions of
equations G1 = 0, G2 = 1 as zeros of the function

G =
√

|G1|2 + (G2 − 1)2. (18)

In this connection it is worth mentioning that the expression
in second line of Eq. (15) can be rewritten as

J 2
a + J 2

b

(Ja − Jb)2

[
1 − cos Jat cos Jbt − 2JaJb

J 2
a + J 2

b

sin Jat sin Jbt

]

= 1 − cos Jat cos Jbt + 4JaJb

(Ja − Jb)2
sin2

[
(Ja − Jb)

t

2

]
.

(19)

For Ja ≈ 2Jb, the coefficient 4JaJb/(Ja − Jb)2 ≈ 8 and gener-
ically the last term dominates in second line of (19). However,
at t = π it vanishes along the lines Ja − Jb = 2m, m being
integers. Because this term also makes a significant contri-
bution to G, deep valleys in the plots of G(Ja,Jb,t) along
the (Ja − Jb) = 2m lines are expected whenever t ≈ π (cf.
Fig. 4).
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VI. NONLOCAL PART OF THE M MATRIX

Before switching to numerical results, it is instructive
to take a closer look into some exact results related to
invariants (G1,G2). According to Kraus and Cirac [40] (see
also Ref. [41]), the matrix MS can be represented as

MS = UabMdVab, (20)

where Uab and Vab are Kronecker products of local unitaries,
Uab = Ua ⊗ Ub and Vab = Va ⊗ Vb, and Md = exp (−iHd ) is
a unitary operator creating entanglement of two qubits. Here

Hd = αxσ
a
x σ b

x + αy

(
σa

y

)T
σ b

y + αzσ
a
z σ b

z , (21)

where the coefficients (αx,αy,αz) are real numbers. One can
check by inspection that

Q†σa
x σ b

x Q = σa
z σ b

0 ,

Q†σa
y σ b

y Q = σa
0 σb

z , (22)

Q†σa
z σ b

z Q = σa
z σ b

z ,

where (σa
0 ,σ b

0 ) are unit matrices in the corresponding 2×2
subspaces. Therefore, Md is diagonal in the magic basis.
Because products of local unitaries Uab and Vab do not change
entanglement, the invariants (G1,G2) of matrix m are equal
to the invariants (Gd

1 ,G
d
2 ) of matrix md = (MB

d )T MB
d with

properly chosen coefficients (αx,αy,αz). An easy calculation
results in

Re
[
Gd

1

] = cos2 2αx cos2 2αy cos2 2αz

− sin2 2αx sin2 2αy sin2 2αz,

Im
[
Gd

1

] = 1
4 sin 4αx sin 4αy sin 4αz,

Gd
2 = cos 4αx + cos 4αy + cos 4αz

= 4Re
[
Gd

1

] − cos 4αx cos 4αy cos 4αz. (23)

Two first equations coincide with the results of Zhang
et al. [38], and the expressions for Gd

2 are equivalent to their
result but are presented in a form more convenient for our
goals.

Equations (23) are periodic in all three variables with a
period π/2. Hence, we confine solutions inside the interval
−π/4 � αx,αy,αz � π/4. Additional symmetries are circu-
lar permutations of all variables, pair permutations (αx →
αy,αy → αx), (αx → −αy,αy → −αx), and all permutations
similar to them.

It is seen from Eqs. (23) that whenever equations for a CNOT

gate Re[Gd
1 ] = 0 and Gd

2 = 1 are satisfied, equation Im[Gd
1 ] =

0 is satisfied automatically. Therefore, we have two equations
on three real parameters (αx,αy,αz). Nevertheless, their only
solutions are isolated points,

αx = 0, αy = 0, αz = π/4, (24)

and the points that can be obtained from this by the above
permutation group. These solutions are saddle points both for
Re[Gd

1 ] and Gd
2 . For them the eigenvalues e−iλj of Md are

twice degenerate and equal to e±iπ/4 [42]. Moreover, because
md is unitary equivalent to M2

d , its eigenvalues are equal to
e±iπ/2. (This equivalence is easy to check and are demonstrated
explicitly in Sec. VIII.) The parameters λj obey the condition

∑4
j=1 λj = 0 because Tr[σa

z σ b
z ] = 0. The trace of Md equals

Tr[exp (−iHd )] = 2
√

2. These results are used in Sec. VIII.
The above conclusions about the set of solutions of

equations G1 = 0, G2 = 1 for matrix Md = exp (−iHd ) have
important implications. Because the number of free parameters
(Ja,Jb,t) of our model is equal to the number of parameters of
Hamiltonian Hd , we can expect existence of only a discrete set
of (Ja,Jb,t) triplets obeying the requirements of CNOT gates.
If they do exist, they are expected to satisfy the conditions
t ≈ π with Ja,Jb being close to integers of the same parity
in the region Ja,Jb � 1, according to the results of Sec. V.
In the next section, we (i) prove the existence of such a set
by numerical means, (ii) investigate the anomaly along the
line Ja ≈ Jb where the perturbation expansions of Eqs. (14)
and (15) diverge, and (iii) make brief comments about the
small Ja,Jb ∼ 1 region.

VII. EXACT CNOT GATES IN THE ( Ja,Jb) PLANE

In this section we prove numerically the existence of
an infinite discrete set of points in (Ja,Jb,t) space where
the invariants (G1,G2) of Eq. (8) satisfy the conditions
G1 = 0, G2 = 1 for CNOT gates. We have found that errors
accumulate tremendously in the MS and m matrices when
calculations are performed with the standard precision of
Mathematica 10.0. Therefore, the results presented below
were derived with the working precision → 100. With this
precision, we found points of deep minima of G(Ja,Jb,t),
with magnitude typically of 10−50, and we identify them as
exact zeros of G. All presented data were found for shortest
pulses of interqubit coupling, with t ≈ π .

Calculations for the basic model of Eq. (3) resulted in
a set of zeros, G = 0, which are very close to the predic-
tions of Sec. V for large Ja,Jb � 1 and away from the
singular line Ja = Jb. As expected, the accuracy of large-J
expansion is especially high near Ja = 2Jb and Jb = 2Ja

lines; cf. Sec. III. In the vast region where the accuracy
of asymptotic expansion remains satisfactory, zeros of G

found numerically can be brought into correspondence with
the zeros found in Sec. V unambiguously. With decreasing
(Ja,Jb) and/or approaching the Ja = Jb line the deviations
of (Ja,Jb) from integer values increase, so to establish the
genesis of zeros, we followed their evolution as we changed
the coupling constants gij gradually. In particular, we scaled
them as gzx = λ

√
3/4, gxz = −λ

√
3/4, gxx = −3λ/4, with

0 � λ � 1, while keeping gzz = 1/4 constant. This allowed
us to demonstrate the existence of exact roots of G in the
region of the intermediate parameter values 3 � Ja,Jb � 10
and relate them unambiguously to their origins at the integers
of Sec. V. Results of these calculations are presented in Fig. 2
and discussed below.

The scaled model reduces to the parameters of our basic
model when λ = 1. At λ = 0, however, the equations G1 =
0, G2 = 1 reduce to cos (t/2) = 0, cos t = −1. Their first
solution is t = π with no restrictions on (Ja,Jb). This coincides
with the well-known result for Ising gates. However, as soon
as λ deviates from zero, an infinite discrete set of the roots
of equation G = 0 emerges from the (Ja,Jb) continuum. They
correspond to all even-even and odd-odd pairs of (Ja,Jb) values
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FIG. 2. (Color online) Trajectories of the roots of equation
G(Ja,Jb,t) = 0 in the (Ja,Jb) plane. They indicate positions of exact
CNOT gates plotted as the function of the scaling parameter 0 < λ � 1.
Three coupling constants (gzx,gxz,gxx) are scaled as explained in the
text, while gzz = 1/4. Trajectories start at λ = 0 at integer (Ja,Jb)
values of the same parity and end at λ = 1 at the red (large) circles.
Gray (small) circles follow with equal intervals in λ. Numbers indicate
time t at the ends of the trajectories, represented as 103(t/π − 1).

with Ja,Jb � 3, but with the diagonal Ja = Jb excluded (see
Fig. 2). (The behavior observed here for λ → 0 is similar to the
behavior we found for gxx → 0 in the exactly solvable model,
with gxz = gzx = 0, in Sec. IV.) With increasing λ, zeros of G

adjacent to the Ja = Jb diagonal move mostly in such a way
to fill the void around it. Values of t at λ = 1 shown in Fig. 2
are in a reasonable agreement with the estimate of Eq. (17).

One may notice that in Fig. 2 the zeros of G corresponding
to small Ja = 3 (or Jb = 3), which are away from the Ja = Jb

line, do not generally move towards the diagonal line, as λ

increases from 0 to 1. This suggests that there may be a more
complicated behavior for Ja � 3 (and Jb � 3). In Fig. 3 we
illustrate the trajectories for points originating at the integers
(4,2) and (2,4), as λ is increased from zero. In this case the two
trajectories meet at the axis Ja = Jb, at a common value Jc,
when λ reaches a critical value λc which is smaller than 1, and
we find no solutions for λ > λc. As seen in Fig. 3, the trajectory
follows a horseshoelike arc, where, at first, both branches of it
shift in the direction of small Jb and Ja , respectively, but finally
merge at Ja = Jb ≡ Jc. The inset to the figure shows that the
dependence on λ of the distance δJ between the point (Ja,Jb)
and the merger point (Jc,Jc) can be accurately described by
δJ ∝ √

λc − λ.
The behavior seen in Fig. 3 as λ is varied is, in fact,

qualitatively similar to the behavior we found in Sec. IV, when
gxx was varied, in the exactly solvable case with gxz = gzx =
0. The dashed curve in Fig. 3 shows the hyperbolic trajectory

FIG. 3. (Color online) Gray dots show the trajectory of results
for (Ja,Jb), connecting points (4,2) and (2,4), as λ is varied. Ends of
the arc correspond to the scaling parameter limit λ → 0. Branches
of the arc meet at the blue (large) point at the Ja = Jb diagonal at
Jc ≈ 2.1239, λc ≈ 0.9176, and t ≈ 1.332π . (Inset) Distance δJ of
(Ja,Jb) from the point (Jc,Jc) as a function of λ. Near the critical
value λ0 the data shown by gray (small) dots go as δJ ∝ √

λc − λ;
this dependence is shown by a blue (full) curve. The dashed curve in
the main figure shows the trajectory of (Ja,Jb) for the exactly solvable
case where gxz = gzx = 0, when gxx is varied, starting from the same
points (4,2) and (2,4).

JaJb = rs = 8, obtained in the exactly solvable case when
(r,s) = (4,2).

For the exactly solvable case, with gxz = gzx = 0, we found
that for any choice of the integers (r,s), there is a critical
value of gxx , given by |r − s|/2, beyond which solutions cease
to exist. It is a reasonable conjecture that similar behaviors
will occur if we increase λ sufficiently in the model with all
couplings nonzero. We have checked this in the case where one
starts from Ja = 6, Jb = 4 or vice versa; here we find that the
trajectory ends at Ja = Jb ≈ 4.338 86, t ≈ 1.122 48π , when λ

reaches a critical value λc ≈ 1.151 47. However, it is possible
that the trajectories will behave differently for other starting
points.

Of interest is not only the position of zeros of G but also the
behavior of functions G1 and G2 near these zeros. In the close
vicinity of zeros, the functions are defined by their derivatives.
All three first derivatives of G1 at these points vanish. All six
second derivatives do not vanish and are real; the derivative
∂2G1/∂t2 is the largest one. Imaginary terms appear only in
third derivatives. Because in the quadratic approximation the
tensor of second derivatives is a diadic product of the vector
∇Re[G1] onto itself, two of its eigenvalues vanish and the third
is positive. A similar inspection of the properties of G2 shows
that all three first derivatives vanish and second derivatives
are finite. Therefore, the behavior of both functions is analytic
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FIG. 4. (Color online) A plot of G(Ja,Jb,t) as a function of
(Ja,Jb) with time t fixed at its value in the zero of G shown
by a red (large) point. Parameter values of the G = 0 point are
Ja ≈ 5.187, Jb ≈ 6.564, t/π ≈ 0.993. The most prominent features
of the plot are deep valleys in the direction bisecting the angle between
(Ja,Jb) axes.

near the zeros of G, and we find that zeros are saddle points of
G2. As an example, we quote the data for an “even-even”
zero of G, with Ja ≈ 15.63, Jb ≈ 7.91, calculated for the
basic Hamiltonian of Eq. (3). The only nonzero eigenvalue of
the matrix of second derivatives of G1(Ja,Jb,t) is 0.254, and
eigenvalues of the matrix of second derivatives of G2(Ja,Jb,t)
are −4.443, − 0.336, and 0.017. The latter data characterize
the shape of G2(Ja,Jb,t) surface near its saddle point, and we
attribute the difference in the magnitude of three eigenvalues
to the dominance of t derivatives over the derivatives with
respect to (Ja,Jb), when J is large.

The behavior of G(Ja,Jb,t) at a larger scale can be found
only numerically. In all cases, plots of G, with t fixed at its
value in one of the zeros of G, include valleys in the (Ja,Jb)
plane running at an the angle ≈ π/4 relative to the Jb axis, in
agreement with the asymptotic analysis of Sec. V [Eq. (19)].
As seen in the example shown in Fig. 4, the sharpest valley is
the one passing through the G = 0 point.

It is seen from Fig. 2 that all zeros of G in the region
Ja,Jb > 2.5 are genetically related to zeros of the asymptotical
expansion of Sec. V. This is also true for the arc of Fig. 3. We
believe that these zeros will be the ones of greatest importance
for constructing CNOT gates in practice. However, in order
to provide a more complete physical picture, we remark that,
generically, zeros of G exist also in the small (Ja,Jb) region. As
an example, we quote here data on zeros of G at the coordinate
axes of the (Ja,Jb) plane. For the basic model of Eq. (3), the
trace of the matrix m can be calculated explicitly and is real
whenever Jb = 0. As a result, two equations G1 = 0 reduce to
a single equation,

tan (R+t/2) tan (R−t/2) = R+R−
4 − J 2

a

, R± =
√

4 ± 2Ja + J 2
a .

Remarkably, roots of this equation satisfy the condition G2 =
1 for the second Makhlin invariant. Because of the periodicity
of tangents, solutions of this equation form a multibranched

spectrum t = t(Ja). Similar solutions t = t(Jb) exist for Ja =
0. We have not carried out an extensive analysis of the solutions
that are possible in regions close to one of the axes Ja = 0 or
Jb = 0, so we must leave further studies of this problem to a
future investigation

VIII. Md AND m MATRICES

In the previous section, we showed numerically that an
infinite set of exact zeros of G exists for a physical model,
capacitively coupled exchange-only qubits. At such zeros, we
can apply the analytic results of Sec. VI, including Eq. (24)
and everything related to it. In the current section we return to
analytical procedures and establish additional results, which
are exact at the zeros of G and specific to them.

The matrix m = MT
B MB is symmetric by construction and

its eigenvectors |
j 〉 can be chosen real in magic basis (except
of global phases) and are maximally entangled [35]. We
designate its four-component eigenvectors as 
B

j and choose
them to be real. For 1/J � 1, off-diagonal elements of matrix
m are small, and we numerate 
B

j in such a way that the
eigenvector with dominating j component is assigned as 
B

j .
We then find that in the limit of large J , at the zeros of G, the
eigenvalues μj of matrix m, m|
j 〉 = μj |
j 〉, are

μ1 = e−iπ/2, μ2 = eiπ/2, μ3 = eiπ/2, μ4 = e−iπ/2.

(25)

These results remain exact even for finite values of 1/J , since,
as we have seen in Sec. VI, the eigenvalues of Md are precisely
equal to e±iπ/4 at the zeros of G.

After transforming the unitary matrix Md of Eq. (20) to
magic Bell basis it turns into a diagonal matrix with eigen-
values e−iλj , Md = ∑4

j=1 |�j 〉e−iλj 〈�j | [40]. Therefore, MS

matrix of Eq. (20) in magic basis reads MB = UB
abMdV

B
ab,

where UB
ab and V B

ab are Uab and Vab matrices in magic Bell
basis. Then

m = (
V B

ab

)T
Md

(
UB

ab

)T
UB

abMdV
B
ab. (26)

Because matrices (Ua,Ub) and (Va,Vb) of local rotations are
unitary and real [35], the same is true for (Uab,Vab) matrices;
hence,

m = (
V B

ab

)−1
M2

dV B
ab. (27)

Therefore, the matrices m and M2
d are unitary equivalent and

their spectra coincide [43]. Writing μj of Eq. (25) as μj =
e2iεj , with −π/2 � εj � π/2, and eigenvalues of Md found
at the end of Sec. VI as e−iλj , we arrive at e2i(λj +εj ) = 1.
Extracting the square root of this equation as ei(λj +εj ) = 1
(because |εj + λj | < π ), we arrive at equations

εj + λj = 0, (28)

relating all λj to μj of Eq. (25). Finally, we arrive at an exact
expression for Md matrix valid at all zeros of G

Md =

⎛
⎜⎜⎝

e−iπ/4 0 0 0
0 eiπ/4 0 0
0 0 eiπ/4 0
0 0 0 e−iπ/4

⎞
⎟⎟⎠, (29)
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with Tr[Md ] = 2
√

2 in agreement with Sec. VI. We note that
while absolute values of phases |λj | = π/4 were known from
Sec. VI, Eq. (29) ascribes proper signs of phases to all matrix
elements of Md in the magic basis.

Remarkably, the Eq. (29) for Md is valid both in the magic
and the standard bases because matrix elements of Md obey
relations Md

11 = Md
44 and Md

22 = Md
33. This universal form of

Md in the standard basis is important for calculating local
rotations; see Sec. IX.

In the solvable case of Sec. IV, where gxz = gzx = 0, but
gxx �= 0, we found that exact CNOT gates are possible at a
discrete set of points, with t = π , and values of Ja,Jb given by
Eqs. (12). At these points, the matrix MS has a simple diagonal
form, with diagonal elements,

MS
11 = MS

44 = (−1)(r+s)/2 e−iπ/4,
(30)

MS
22 = MS

33 = (−1)(r−s)/2 eiπ/4.

In this case, the eigenvectors |
j 〉 can be chosen to be equal to
|�j 〉, and MB = MS . However, Md and MB differ from each
other by local rotations, except in the case where s is even and
r − s is a multiple of four.

In conclusion, we find that at all the zeros of G, the
matrices Md and m can be put in universal diagonal forms,
with eigenvalues defined by Eqs. (29) and (25), respectively.

IX. LOCAL ROTATIONS

It has been shown above that the matrix MS becomes
equivalent to an exact CNOT gate, up to local rotations, at an
infinite set of points (Ja,Jb,t). In this section, we discuss the
explicit form of the necessary local rotations in some simple
cases.

Entanglement originates from the Hamiltonian Hint of
Eq. (2), which, in general, includes both diagonal and off-
diagonal parts. In the special case of the butterfly geometry,
the Hamiltonian Hint reduces to a diagonal Ising coupling,
Hdiag = gzzσ

a
z σ b

z , which can provide a CNOT gate for t = π at
arbitrary values of (Ja,Jb). By contrast, as we proved above,
adding to Hint an off-diagonal part, which will be present in
generic geometries, restricts exact CNOT gates to a countable
set of the values of parameters (Ja,Jb,t).

Because MS(t) = exp (−iHdiagt) is diagonal in the standard
basis, it is easy to find local rotations accompanying the
nonlocal part, in the Ising case. Because the controlled-
Z matrix is also diagonal in the standard basis, with the
diagonal of (1,1,1, − 1), the local part relating them includes
only z rotations. If we choose z rotations of individual

qubits in the standard form as Uz
a,b = (e

iφa,b/2 0
0 e−iφa,b/2), then

Uz
ab = Uz

a ⊗ Uz
b . Next, with t = π , the product MSU

z
ab is

equal to the controlled-Z matrix, up to a global phase, when
φa = π

2 (1 − 2Ja) and φb = π
2 (1 − 2Jb). Choosing (Ja,Jb) as

integers of the same parity, as in Sec. V, we find equal π/2
rotations of both qubits, φa = φb = ±π/2, with the rotation
direction depending on the parity of (Ja,Jb). More generally,
the magnitudes of the rotation angles are controlled by the
diagonal part of Hint, chosen as 1

4σa
z σ b

z as everywhere above,
and by the choice of (Ja,Jb).

In the more general solvable case of Sec. IV, where gxz =
gzx = 0, but gxx �= 0, we found that exact CNOT gates are
possible at points with t = π and values of Ja,Jb given by
Eqs. (12). At these points, the matrix MS has the diagonal
form given by (30), and we find, once again, that we can
choose the local rotations to be rotations about the z axis, with
φa = φb = ±π/2, depending on the parity of the integer s.

When gxz and gzx are nonzero, exact CNOT gates are still
possible at an infinite set of points (Ja,Jb,t), as was shown in
Sec. VII. However, under these conditions MS will no longer
be diagonal. For large J , the off-diagonal elements will be
of order 1/J , just as we found that Ja and Jb deviate from
integer values, and t deviates from π , by amounts of order
1/J 2. Similarly, the local rotations Uab and Vab will acquire
corrections of the order of 1/J that should be found for each
zero of G by the Kraus-Cirac procedure [40]. With MS , Uab,
and Vab calculated for some zero of G, Eq. (20) brings us
to Md of Eq. (29), which can be easily transformed to the
controlled-Z form as described in the previous paragraphs.
Because the small rotations arising from the off-diagonal part
of MS are specific for each (Ja,Jb,t) zero of G, we do not
calculate them here.

X. SUMMARY

The theory of quantum circuits includes two types of
operations, local and nonlocal. At the heart of it are nonlocal
two-qubit operations because they produce quantum entangle-
ment. Local operations play an auxiliary role. The CNOT gate
is a paradigmatic nonlocal gate because it is universal and
allows performing arbitrary rotations in multiqubit systems.
The controlled-Z gate is equivalent to CNOT, from this point
of view, because the two gates differ from each other only by
local rotations (two Hadamard rotations). Because nonlocal
operations critically depend on interqubit coupling, which is
relatively weak in many realizations, the efficiency of these
operations may be a limiting factor in the speed of quantum
computation. Thus, it is helpful to see how to most efficiently
employ the available interqubit couplings to perform any
desired two-qubit operation.

An important example is the exchange-only coded qubit,
where information is encoded in a two-dimensional subspace
with S = Sz = 1/2, within the eight-dimensional low-energy
Hilbert space for the three participating electron spins. Since
single-qubit operations are implemented by exchange coupling
in these systems, they can be performed quite rapidly. If
two-qubit coupling is also implemented by exchange, however,
the spin quantum numbers of individual qubits will not be
conserved, and the system will not generally remain in the
coding Hilbert space. Then, to rectify this, one is forced to im-
plement a complicated series of at least 15 nonlocal operations,
interspersed with local operations [32,33], all of which take
time and can easily lead to errors. By contrast, if the interqubit
coupling is mediated only by the Coulomb interaction between
electrons in different qubits, the spin quantum numbers of each
qubit are conserved by this interaction. Therefore, if one can
neglect perturbations such as spin-orbit coupling and hyperfine
coupling to nuclear spins, the qubits will remain in their coding
spaces, and complicated remedial steps will not be necessary.
Thus, it may be highly advantageous to use capacitive coupling
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based on the Coulomb interactions, even though it is weaker
than exchange coupling and the coupling time for a single step
will be longer.

In this paper we have explored the issue of whether
it is possible, in general, to execute a perfect CNOT (or
controlled-Z) gate with a single time interval of capacitive
coupling between the two qubits. In general, there will be four
parameters, denoted by gzz,gxx,gzx,gxz, which describe this
capacitive coupling, whose values may be fixed by geometrical
constraints, and may be difficult to vary independently. Here
we have assumed that the couplings may be turned on and
off sharply but that their on values, and the ratios between
them, are fixed by the geometry. We have found that for a
wide range of the coupling parameters a perfect CNOT gate
is indeed possible, provided that we choose appropriately the
single-qubit exchange splittings Ja and Jb, as well as the time
t that the coupling is turned on. In fact, we have found in each
case that there is a countably infinite set of triplets (Ja,Jb,t) that
satisfy the criteria. We have also discussed, in some detail, how
the precise values of (Ja,Jb,t) vary as one varies the assumed
ratio between the four capacitive coupling constants, and in
special cases, we have found the local rotations necessary to
complete a controlled-Z operation.

Although we have focused on exchange-only spin qubits,
other applications may also be considered. Mathematically,
our considerations should apply to any system of qubits where
the coupling can be written in the form of Eq. (2), to a good
approximation, and there is a single-qubit splitting of the form
of Eq. (1).

As a specific example, one may consider a system of S − T0

qubits, where the coding qubit states are linear combinations of
a singlet state and a triplet state with Sz = 0, for two electrons
in a double quantum dot. In order to perform the full array
of single-qubit operations, it is necessary to create a local
magnetic field gradient so that electrons in the two dots see
different magnetic fields. If the magnetic field on both dots is
in the same direction, and if we can neglect effects such as
spin-orbit coupling and transverse components of the nuclear
Overhauser field, then capacitive coupling between two qubits
will conserve Sz for each qubit separately, so the system will
remain inside the coding subspace. Thus, there would be a
possibility to perform an exact CNOT gate in this system in a
similar fashion to the case of exchange-only qubits. Calderon-
Vargas and Kestner have, in fact, considered this possibility
in a recent work [34] and have shown numerically that exact
CNOT gates can be achieved with a single interval of nonlocal
coupling by adjusting three parameters, the coupling time, and
the voltage bias on each of the two qubits in several examples.

The mathematical examples considered in this paper have
assumed that the interqubit coupling constants can be turned
on and off instantaneously. A more realistic scenario would
be a case where the coupling is turned on and off over a

time interval τ > 0 that is short compared to the coupling
duration t . According to our understanding of the analytic
structure of the problem, this should not affect our basic
results. Specifically, if τ is sufficiently small, there should still
exist triplets (Ja,Jb,t) for which the Makhlin invariants exactly
satisfy the criteria for an exact CNOT gate, though the values
will be displaced from the solutions for τ = 0. If τ becomes
too large, however, pairs of solutions may come together and
disappear. We conjecture that a necessary condition for the
existence of exact solutions might be that Jaτ and Jbτ be
small compared to unity. Calculations presented in Ref. [34]
have indeed shown the possibility of achieving exact CNOT

gates in a protocol with a finite time τ for turning on and off
the control voltages in the case of S − T0 qubits.

An assumption in all of our models is that we could confine
ourselves to a low-energy Hilbert space with two states for each
qubit. This assumption can be justified provided that there is a
large energy gap Eg to all other states with the same conserved
quantum numbers as the desired qubit states and provided
that variations of the coupling constants are always adiabatic
compared to 1/Eg . In the present case, this means we must
have Eg � t−1 > J . Although, generically, the conditions for
a CNOT gate will no longer be satisfied exactly when higher
energy states are taken into account, we expect that errors
can be made arbitrarily small, for large enough Eg , as errors
due to nonadiabaticity should fall off faster than any power of
1/(tEg).

The possibility to perform CNOT gates of arbitrary perfec-
tion using a single interval of capacitive coupling, giving a
huge decrease in the number of nonlocal operations relative
to the case of exchange coupling, sounds highly promising.
This calls for new efforts in enhancing and better control of
capacitive interqubit coupling. While the present paper is not
intended to suggest specific architectures, we note that because
our results are rather generic and applicable to arbitrary
values of interdot coupling constants gij , most of the previous
suggestions, including, e.g., [44,45], should be applicable
to exchange-only qubits. In particular, floating electrostatic
gates [46] and circuit quantum electrodynamics [47] are among
the currently discussed tools.
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