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Approximating observables on eigenstates of large many-body localized systems
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Eigenstates of fully many-body localized (FMBL) systems can be organized into spin algebras based on
quasilocal operators called l bits. These spin algebras define quasilocal l-bit measurement (τ z

i ) and l-bit flip
(τ x

i ) operators. For a disordered Heisenberg spin chain in the MBL regime we approximate l-bit flip operators
by first calculating them exactly on small windows of systems using an algorithm called operator localization
optimization. We then extend the l-bit operators onto the whole system by exploiting their quasilocal nature. We
subsequently use these operators to represent approximate eigenstates of the Hamiltonian. Finally, we describe a
method to calculate products of local observables on these eigenstates for systems of size L in O(L2) time. This
method is used to calculate the variance of the energy of the approximate eigenstates, yielding an estimate of the
error of the approximation.
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I. INTRODUCTION

Thermalization behavior of closed quantum systems has
received heightened interest since the suggestion that Ander-
son localization could be generalized to systems of interact-
ing particles, a phenomenon dubbed many-body localization
(MBL) [1,2]. Over the last decade and a half, an increasingly
large body of proof has spoken to the existence and com-
plexity of this behavior. Perturbative arguments [3,4], studies
using exact diagonalization [5,6], and further mathematical
proofs [7] have all emerged over this period. This body of
work has firmly proved the existence of MBL at strong disor-
der in one dimension without broken time-reversal symmetry
or spin-orbit coupling, while localization at weaker disorder
closer to the phase transition is still the subject of exploration
[8–10]. Experiments using cold atoms and trapped ions have
also revealed robust MBL behavior [11,12].

General many-body states are expressed in a Hilbert space
that grows exponentially with system size; MBL systems
have the added property of a description using an extensive
set of l bits [13–15], which can be thought of as quasilocal
generalizations of physical spins. The l-bit algebra implies a
set of quasilocal operators: τ z

i which measures the l bit on the
ith site and τ x

i which flips the l bit on the ith site. For the
spin-1/2 systems with which we work, the l-bit algebra can
be thought of as akin to the Pauli spin algebra. τ z

i returns a
phase (±1) when applied to the eigenstate.

Several algorithms exist to construct these integrals of mo-
tion approximately [16–23], which produce operators that do
not commute exactly with the Hamiltonian. Recent algorithms
have also been proposed to construct integrals of motion
exactly [24,25].

Our focus in this paper will be on using l-bit algebras
to construct approximate eigenstates on large MBL systems.
Several methods for constructing eigenstates on large MBL
systems already exist. One particular class that has shown
great success is algorithms based on the density matrix

renormalization group (DMRG) algorithm [26]. While
DMRG itself finds the ground state of a generic local Hamil-
tonian, algorithms like shift-and-invert matrix product states
(SIMPS) [27], DMRG-X [28], and En-DMRG [29], reviewed
further in Sec. II B, are able to compute excited states of MBL
systems by exploiting the area-law nature of MBL eigenstates.

Additionally, a class of recent tensor network algorithms
[19–22] provides efficient methods of constructing matrices
whose columns are approximate eigenstates of the system.
These algorithms, also reviewed further in Sec. II B, use
layers of local unitaries to generate a large unitary matrix that
approximately diagonalizes the Hamiltonian.

We introduce a type of algorithm to construct approxi-
mate eigenstates on large MBL systems, using exact l-bit
algebras on small subsystems to approximate an l-bit algebra
on a larger system. Using this algorithm, eigenstates can be
targeted by their l-bit labels, allowing one to access any
eigenstate in practice. Further, we extend the algorithm to
show how it can also be used to measure expectation values of
products of local observables on eigenstates of large systems.

We begin by describing the disordered Heisenberg spin
chain and l-bit algebras in further detail. We then review the
existing classes of methods used to construct approximate
eigenstates on large MBL systems.

In Sec. III, we describe an algorithm based on ideas similar
to the authors’ work in Ref. [24] but far more efficient. The
algorithm is used to construct exact l-bit algebras on small
systems and is labeled operator localization optimization
(OLO). We subsequently describe how we use the improved
algorithm repeatedly to construct approximate eigenstates on
large MBL systems, which we label the τx network representa-
tion due to its similarity to the tensor network. We additionally
introduce an algorithm, labeled the inchworm algorithm, to
measure products of local observables on the approximate
eigenstates.

In Sec. IV, we first test the quality of our eigenstates by
measuring their energy fluctuations and compare these results
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to the tensor network method of Ref. [22]. We additionally
show how the algorithm can be used to find correlations over
large distances. Finally, we conclude the paper by discussing
our algorithm in relation to tensor network-class and DMRG-
class algorithms and considering future directions.

II. PHENOMENOLOGY AND OTHER METHODS

A. XXZ spin chain

We make use of the disordered XXZ spin chain, with the
Hamiltonian

H =
L−1∑
i=1

Si · Si+1 +
L∑

i=1

hiS
z
i , (1)

where Si = 1
2σ i and the values hi are drawn randomly and

independently from a uniform distribution [−W,W ]. The
properties of this model are well studied. For small W , the
model is known to obey the eigenstate thermalization hy-
pothesis, while for large W , the model is known to exhibit
localized, nonergodic behavior. This behavior can be probed
in a variety of ways, including through the level statistics of
the energy spectrum [5], through the entanglement character-
istics of eigenstates and mobility edge [30,31], through the
behavior of integrals of motion [24], and through diffusion
characteristics [32]. Though system behavior for large W and
small W are well understood, the crossover between thermal
and localized characteristics is still being probed.

Starting from W � 1, behavior is thermal. As W increases,
Griffiths regions, rare insulating areas surrounded by regions
with metallic behavior, begin to dominate the behavior of
the system and transport of conserved quantities becomes
subdiffusive [8,9,32]. Finally, as W exceeds Wc, the system
becomes completely localized.

In the localized phase, eigenstates no longer obey ETH,
level statistics display Poisson behavior [5], and system entan-
glement grows as the logarithm of time following a quantum
quench [33,34]. Numerical simulations give estimates for the
transition disorder strength at Wc ≈ 3.5 in the thermodynamic
limit [5,24,30,32], though this value is subject to finite-size ef-
fects. The work of this paper occurs well within the localized
regime.

B. Current eigenstate approximation methods

Several methods exist to approximate eigenstates on large
MBL systems. We provide a brief review of two of these
methods here in order to provide context for the method we
present in this paper.

The tensor network method for approximating eigen-
states, developed and presented in Refs. [20] and [22], uses
layers of small unitary matrices to represent a large uni-
tary matrix that approximately diagonalizes the Hamiltonian.
Reference [20] makes use of two-site unitary matrices stacked
in multiple layers. Starting from arbitrary unitary blocks,
the algorithm sweeps across the system, using the conjugate
gradient method to minimize the total variance of the energy
of the approximate eigenstates generated by the matrices.
The computational cost of this algorithm scales linearly as
a function of system size and exponentially as a function of

number of layers. Closer to the MBL transition, more layers
are required to accurately represent the system’s eigenstates
as their entanglement properties become less local.

In Ref. [22], the scaling of the computational cost is
reduced by instead fixing the number of layers at 2 and
increasing the size of the smaller unitary blocks. Using unitary
matrices that act on a larger number of sites, fewer layers
are required to represent eigenstates to the same accuracy.
Reference [22] also makes use of a cost function whose
computational cost scales less quickly than that of finding the
total eigenstate energy variance. We benchmark our algorithm
against this one in Sec. IV.

The other method we highlight is DMRG-X, presented
in Ref. [28]. The original DMRG method makes use of the
fact that ground states of one-dimensional systems can be
represented accurately through matrix product states (MPS)
[35,36]. The DMRG method starts from a random matrix
product state, sweeping through the system and updating the
constituent matrices of the MPS by minimizing an effective
Hamiltonian with respect to individual parts of the MPS.

The DMRG-X method of Ref. [28] makes use of the fact
that eigenstates of MBL systems can be represented efficiently
through MPS [37]. Eigenstates can be targeted by their over-
lap with physical spin product states. DMRG-X starts from an
initial physical spin product state and updates the constituent
matrices of the MPS by replacing them with maximally
overlapping eigenstates of an effective Hamiltonian, allowing
one to target eigenstates based on proximity to a physical
spin structure. Another variation of DMRG is presented in
Ref. [29]. In this method, labeled En-DMRG, one can target
eigenstates by energy using the DMRG and Lanczos methods.
As opposed to DMRG, DMRG-X and En-DMRG allow one to
target eigenstates across the energy spectrum as long as they
can be accurately represented using MPS. In Sec. V of this
paper, we describe how our method complements the methods
described above.

III. METHODS

A. Introduction

As previously described, eigenstates of FMBL systems can
be expressed through an l-bit spin algebra, akin to the physical
spin algebra. In the absence of spin-spin interaction, eigen-
states are physical spin product states and the l-bit algebra
is simply that of the physical spins. In the presence of spin-
spin interactions, the l-bit label of an eigenstate corresponds
to a quasilocal measurement on the system. In an FMBL
system, the weight of the l-bit measurement on a site decays
exponentially with distance from the site, where weight is
defined below. Where the physical spin measurement operator
on site i is labeled σ z

i , the l-bit measurement operator on site
i is labeled τ z

i . The nontrivial action of the τ z
i operator on site

j decays as e|i− j|/ξ , where ξ is the localization length.
The set of operators τ z

i commute with one another and
with the Hamiltonian. Further, they can be used to express the
Hamiltonian in the form

H =
∑

i

h̃iτ
z
i +

∑
i, j

h̃i jτ
z
i τ

z
j +

∑
i, j,k

h̃i jkτ
z
i τ

z
j τ

z
k + . . . , (2)
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where the coefficients h̃ decay exponentially with maximum
distance between the lattice points in the index.

Just as the σ x
i operator flips the spin of a state on site i,

a quasilocal l-bit flip operator τ x
i can be defined on FMBL

systems. The l-bit flip operator on site i takes one eigenstate
to another whose label τ z

i is flipped on site i and is unchanged
everywhere else.

τ x
i operators can be constructed as

τ x
i = Uσ x

i U †, (3)

where U diagonalizes the Hamiltonian and contains the eigen-
states of the Hamiltonian in its columns. However, there exist
exp(L) real choices for U for a system of size L. These
choices correspond to rearranging the columns of U and
assigning each column a phase of plus or minus one for
a real Hamiltonian. Only certain choices of U will yield
quasilocal integrals of motion with exponentially decaying
weight; generally, there are exponentially many more choices
for U that yield nonlocal integrals of motion. Therefore, given
the set of eigenstates of a Hamiltonian, finding any matrix
U that produces quasilocal integrals of motion is a nontrivial
combinatorial optimization problem.

B. Constructing quasilocal operators on small subsystems

In Ref. [24], the authors of this paper presented a method
to construct exact quasilocal integrals of motion. In this work,
we present a method to construct optimally local l-bit oper-
ators, called operator localization optimization (OLO). The
method presented here improves on the previous method by
reducing the runtime for systems of L = 14 by approximately
40 times while improving operator localization length; on
the computing cluster used by the authors (a 10 TFLOP
Beowulf cluster of 113 multicore machines), this amounted
to an absolute reduction in time from approximately ten hours
to fifteen minutes.

To begin, we note that any operator O can be written

O =
∑

γ∈0,x,y,z

σ
γ
j ⊗ Aγ

j̄
, (4)

where σ 0
i is the identity operator and Aγ

j̄
is an operator that

acts as the identity on site j but is nontrivial elsewhere. The
action of the operator on a site j can be quantified as the
weight function

w j (O) = 16

N Tr
[(

Ax
j̄

)2 + (
Ay

j̄

)2 + (
Az

j̄

)2]

= 1

N
∑

γ∈x,y,z

Tr
[(

O − σ
γ

j Oσ
γ

j

)2]
. (5)

This non-negative function measures how much the operator
O affects site j, and it is zero if O acts as the identity on site j.
The normalization factor N is simply the size of the Hilbert
space; in this case N = 2L.

Consider an l-bit labeling on the set of eigenstates {α}.
Each eigenstate is uniquely labeled by the chain of eigen-
values from the set {τ z

j }, for example {+ + − + −} for a
system with 5 l-bit operators. The function p(α, i) takes an
eigenstate α to the eigenstate with a label flipped on i and
identical everywhere else. For example, p({+ + ++}, 1) =

{− + ++}. We also define a measurement operator s(α, i) that
takes the sign of the l-bit label of an eigenstate α on site i. For
example, s({− + ++}, 1) = −1. The l-bit measurement and
flip operators can then be written

τ z
i =

∑
α

s(α, i)|α〉〈α| (6)

τ x
i =

∑
α

|α〉〈p(α, i)|. (7)

The functions s and p correspond to an l-bit algebra on
eigenstates and equivalently a choice on the ordering of the
columns of U . For these operators, the weight function can be
written as follows:

Nw j
(
τ z

i

)

= 3 · 2L+1 − 2
∑

γ∈x,y,z

∑
α,β

s(α, i)s(β, i)
〈
α
∣∣σγ

j

∣∣β〉〈
β
∣∣σγ

j

∣∣α〉

= 3 · 2L+1 − 2
∑

γ

Tr
[
Mγ , jσ z

i Mγ , jσ z
i

]
(8)

Nw j
(
τ x

i

)

= 3 · 2L+1 − 2
∑

γ∈x,y,z

∑
α,β

〈
α
∣∣σγ

j

∣∣β〉〈
p(β, i)

∣∣σγ
j

∣∣p(α, i)
〉

= 3 · 2L+1 − 2
∑

γ

Tr
[
Mγ , jσ x

i Mγ , jσ x
i

]
, (9)

where Mγ , j = U †σ
γ
j U .

For a quasilocal operator on site i, w j ∝ e|i− j|/ξ , where ξ

is the localization length of the operator. Therefore, our goal
is to maximize the sums shown at the end of Eqs. (8) and
(9) away from site i. Each term in the sum has a maximum
2L. Therefore, maximizing these will bring the total weight as
close to 0 as possible. As we expect the weight functions for
τ z

i and τ x
i operators to mirror one another, we choose to focus

just on the sum in Eq. (9), as we find that the weight decay
of the τ x

j operator is more sensitive to the pairing structure
chosen.

The first insight in solving this optimization problem
comes from noting that in a system without spin-spin interac-
tion (in which the eigenstates are simply product states), the
ideal ordering of U is one such that Mγ , j = σ

γ
j . If this is the

case, then for all j 	= i, the σ x
i operators in Eq. (9) commute

through Mγ , j , yielding

Tr
[
Mγ , jσ x

i Mγ , jσ x
i

] = Tr
[
σ x

i σ x
i Mγ , jMγ , j

] = 2L. (10)

Inserted back into Eq. (9), this yields w j (τ x
i ) = 0 as desired.

For i = j, Mx,i commutes through, yielding 2L for this part
of the sum as well. For the other parts of the sum, Mγ ,i

anticommutes with σ x
i , yielding −2L for each part of these

sums. Thus, we obtain wi(τ x
i ) = 8 · 2L, the maximum allowed

weight.
After turning on the spin-spin interaction, the same princi-

ple applies, though the ideal ordering becomes harder to find.
We can minimize the weight where j 	= i and maximize it
where j = i by satisfying the following two principles that
can be seen from Eqs. (8) and (9).
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(1) For (a) j 	= i, γ = x, y, z or (b) j = i, γ = x: If
|〈α|σγ

j |β〉| is close to unity, then 〈p(β, i)|σγ
j |p(α, i)〉 ≈

〈α|σγ
j |β〉. In case (a), the first line of Eq. (9) shows that the

sum can be brought close to 2L, yielding a small value for
w j (τ x

i ). Case (b), for which j = i, is covered below.
(2) For j = i, γ = y, z: If |〈α|σγ

i |β〉| is close to unity then
〈p(β, i)|σγ

j |p(α, i)〉 ≈ −〈α|σγ
i |β〉, or vice versa if the first

quantity is negative. For γ = x (case 1b), the sum in the first
line of Eq. (9) is close to 2L. For γ = y, z, the sum is close to
−2L. When inserted into the first line of Eq. (9), the total is
brought to 8 N , the maximum allowed value.

These two principles, if satisfied, thus ensure that the
weight of an operator τ x

i is maximized at site i and minimized
elsewhere. However, the correct ordering is necessary in order
to satisfy both principles.

Notice that (1b) and (2) are clearly satisfied by stipulating
that if 〈β|σ x

i |α〉 
 0, then p(α, i) = β. We will take this as
an ansatz and numerically verify that the first condition is also
satisfied.

As the Hamiltonian conserves total spin in the z direction,
its eigenstates can be split into sectors according to total spin.
There are L + 1 sectors that we will label U1,U2, . . . ,UL+1.

Utilizing conservation of total spin serves two purposes.
First, splitting the Hamiltonian into spin sectors allows us to
diagonalize smaller matrices and thereby work with larger
systems. Second, the sectors give us some information on
the l-bit algebra; the τ i

x operator changes the total spin of
an eigenstate by one unit. Therefore, |p(α, i)〉 exists in an
adjacent spin sector to an eigenstate |α〉 for all α and i.
This fact narrows down the search for p(α, i) from the full
spectrum of eigenstates to just one or two spin sectors.

We now describe the pairing process inductively, starting
from an eigenstate spin sector Ui that we assume already has
the correct l-bit labeling, meaning that its columns have been
correctly ordered. Our goal is now to correctly order Ui+1. We
start by taking the set of matrices {Oj} = {U †

i σ+
j Ui+1} over

all j.
The proper interpretation of each Oj operator is as follows.

The matrix U †
i is one whose rows are eigenstates with a

correct l-bit label. We then apply the operator σ+
j on the right,

flipping the jth physical spin of each state from down to up
or eliminating terms that are already up. Notice that σ+

j is
a block off-diagonal matrix in the basis of total spin, with
only upper triangular nonzero terms. This is the segment that
flips Ui into Ui+1 rather than Ui−1. This multiplication yields
a matrix whose rows are the eigenstates from the ith spin
sector with the jth physical spin flipped, though solely the part
that lives in the (i + 1)th spin sector. We then label the rows,
flipping the jth l-bit. Taking the product of this matrix with
Ui+1, whose columns are randomly arranged eigenstates. Oj

is thus an overlap matrix between Ui+1 and Ui with a physical
spin flip on site j.

We now have a set of overlap matrices whose rows contain
the set of labelings for the (i + 1)th sector. Because there are
L such matrices, labelings may be represented multiple times,
representing multiple approximations of the same eigenstate
in the (i + 1)th sector using different physical spin flips from
the ith sector. If this is the case, we simply average the
absolute value of the overlaps with identical row labelings.

FIG. 1. Sample weights of three τ x
i operators for a system of size

L = 14 and disorder W = 15. The weight of the operator decays
exponentially as a function of distance from the primary site.

Our goal is now to match each column to a row label-
ing. We do this through a greedy algorithm, choosing each
subsequent pairing by minimizing the second-worst available
overlap of remaining eigenstates. This greedy algorithm gen-
erally outperforms simply repeatedly choosing the maximum
available overlap.

The final important factor in assigning eigenstates is deter-
mining the appropriate phase. The phase, plus or minus one, of
an eigenstate has a strong effect on the localization length of
the τ x

j matrix. As can be seen in Eqs. (8) and (9), the weight of
an operator τ x

i or τ z
i outside of site i is minimized if the terms

〈α|σγ
i |β〉 have the same sign, so we multiply the eigenstate in

Ui+1 by the appropriate phase (plus or minus one) to make all
of the overlap terms positive.

We start this inductive process from U0, which consists
only of the all down physical spin eigenstate which we au-
tomatically assign the label {− − − . . .}, and iterate through
spin sectors until reaching UL+1, which consists only of the
all up physical spin eigenstate. The OLO algorithm gives
us a good labeling of eigenstates to create localized τ z

i and
τ x

i operators. The weight profiles of sample τ x
i operators are

given in Fig. 1.

C. Extension of operators to large systems and
measurement of local observables

The OLO algorithm allows us to construct exact l bits
on one-dimensional systems up to size L = 14 using 16GB
RAM. Attempting to access exact eigenstates and measure ob-
servables exactly on larger systems becomes computationally
infeasible.

However, the quasilocal nature of the τ
j

x operators in
FMBL systems presents a natural method to approximately
move between eigenstates of large MBL systems. The action
of an operator τ

j
x becomes exponentially trivial far away from

the site j. Therefore, if we construct τ
j

x on an appropriate
window, we can extend the operator to a larger FMBL system
simply by extending it using the identity matrix. If the window
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used is large enough, the approximate operator only misses
an exponentially decaying action outside the window. From a
known eigenstate (such as the all up physical spin state), we
can then use combinations of τ

j
x operators to approximately

access other eigenstates. The 2L different combinations of
products of τ

j
x operators yield the 2L distinct eigenstates. We

call this eigenstate formulation the τx network representation.
Because the Hilbert space involved in this calculation grows
exponentially with system size, it is not possible to store the
full eigenstate, but it is possible to measure local observables
on the eigenstates by selectively extending and tracing on the
system such that the operating space is never too large to
conduct calculations.

Starting from a large Hamiltonian of size L, we break the
system down into ‘manageable’ subsystems of size l . Where
the original Hamiltonian is

H =
L−1∑
i=1

Si · Si+1 +
L∑

i=1

hiS
z
i , (11)

we create L − l + 1 subsystems with Hamiltonian

H sub
j =

j+l−2∑
i= j

Si · Si+1 +
j+l−1∑

i= j

hiS
z
i . (12)

We use the algorithm described in the previous subsection to
build a set of quasilocal τ

j
x operators on each site of each

subsystem.
For each site of the large system, we can choose a subsys-

tem containing the site and a τ̃
j

x operator of size l centered
on the site. Generally, there will be l subsystems containing
any given site of the total system and ideally we select a τ̃

j
x

operator from the center of a subsystem so as to cut off as
little of the operator’s action as possible.

In practice, we select a τ̃
j

x operator by calculating the en-
ergy fluctuation of the eigenstate produced by applying each
of the candidate operators from the l subsystems containing
the site j to the fully polarized eigenstate. We select the can-
didate operator that produces the lowest fluctuation. Energy
fluctuation is calculated using the process described below.

In our Hamiltonian, we know two eigenstates independent
of the disorder realization: the all up and all down physi-
cal spin states (| ↑↑↑ . . .〉 and | ↓↓↓ . . .〉). We label these
| + + + . . .〉 and | − − − . . .〉 in the l-bit basis, respectively.
From these eigenstates, the set of τ

j
x operators that we have

selected can be used to flip l bits to attain any configuration,
allowing us to target any eigenstate through its l-bit label.

We now proceed with a verbal and pictorial description of
the process by which we calculate the expectation value of a
product of local operators on a large system while working
in a Hilbert space of computationally manageable size. Our
starting eigenstate here is the all up physical spin state whose
density matrix we label ρ↑. We additionally generate an l-bit
flip configuration S = {s1, s2, . . . sn} and a product over local
observables Ô = ô1ô2 . . . ôm. The quantity to calculate is:

〈Ô〉 = Tr(ρO)

= Tr

⎡
⎣

⎛
⎝∏

j∈S

τ x
j

⎞
⎠| ↑ · · · 〉〈↑ · · · |

⎛
⎝∏

j∈S

τ x
j

⎞
⎠

†

Ô

⎤
⎦. (13)

FIG. 2. A diagram portraying the structure of our τ x network rep-
resentation of eigenstates. Starting from the reduced density matrix
ρ↑, represented in the red circles here, we carry out the multiplication
from the inside outward. In order to implement our algorithm, we
rearrange commuting operators so that this multiplication can be
carried out from right to left, as indicated in Eqs. (13) and (14).
In this case, 〈ôiô j〉 = Tr(τ̃ x

s1
τ̃ x

s2
ρ↑τ̃ x

s2
τ̃ x

s1
ôiô j ). Note that ô j commutes

through τ̃ x
s1

and can therefore be moved forward in the multiplication
order, represented in this diagram by being moved inward. Operators
ôi and τ̃ x

s1
however do not commute. Therefore, before including

ôi, we must extend the working window to include τ̃ x
s1

, the largest
working window we will need.

We are careful to determine a canonical ordering of the
product over τ̃ x

j operators; while the exact τ x operators on
the full system commute, ours may not commute exactly
as they are not exact. We choose to order the operators in
ascending order of j. Writing the products explicitly, our
equation becomes

〈ô1 . . . ôm〉 = Tr
(
τ̃ x

s1
. . . τ̃ x

sn
ρ↑τ̃ x

sn
. . . τ̃ x

s1
ô1 . . . ôm

)
. (14)

A visual representation is shown in Fig. 2.
Each of the τ̃ x

i operators has nontrivial support on a
window of size l and is trivially the identity outside of this
window. Our goal is to never work with a reduced density
matrix larger than the window. We initialize the process using
the reduced density matrix of the all up physical spin eigen-
state on the rightmost window. We then expand the system
leftward, extending the window by taking the tensor product
of an up spin with the current reduced density matrix. To keep
the working space manageable, we subsequently contract the
system from the right by taking the partial trace over the last
site. For the process portrayed in Fig. 3 wherein the working
window extends leftward and contracts rightward, we call this
method the inchworm algorithm.

The order in which we introduce the operators is important,
as it pertains to the order of multiplication. We always intro-
duce τ̃ x

i operators when we reach the operators’ right edge,
indicating that we introduce the l-bit flip operators in descend-
ing order. When we reach the right edge of an observable, we
must first introduce any τ̃ x

i operator that intersects with the
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FIG. 3. A depiction of the algorithm described in the text. The
white sites are those that have yet to be reached, the solid red sites
are in the current working window, and the striped blue sites have
been traced out. In (a), we start with a working window of size l .
In (b), the working window extends one site to the left by taking
a tensor product with the single-site spin up density matrix. The
window is now of size l + 1. If a τ x operator or an observable exists
in the window, it is introduced in this step. In (c), the working space
contracts by taking the partial trace over the site on the right. The
system is traversed in this manner.

observable in order to maintain the order of the operation in
Eq. (14).

For example, when we encounter an observable o j that
has an intersecting range with a bit flip operator τ̃ x

i , we first
include the l-bit flip operator even if its support does not
extend as far to the right as the support of the observable. We
update the density matrix by

ρn = τ̃ x
i (ρ↑,s ⊗ ρ0)τ̃ x

i ô j, (15)

where ρ↑,s is here the density matrix of all up physical spins
of the length required to extend the ρ0 to the range of τ̃ x

i and
ô j . Therefore, if l is the lattice size of the τ x

i operator and lo is
the lattice size of the ô j operator, the largest window we ever
need to work with has lattice size l + lo − 1.

Progressing until we reach the furthest left site on the
system and tracing over the remaining sites, we obtain the

product in Eq. (14). A visual representation of this ordering
is shown and explained in Fig. 2.

IV. RESULTS

A. Energy fluctuation

A natural first test to verify the quality of the algorithm
described above is to calculate the energy fluctuation of ap-
proximate eigenstates produced using the method. Calculating
the energy fluctuation has the benefit of indicating the quality
of the eigenstates constructed by the approximate l-bit flip
operators, thereby proving the use of the method for general
products of observables.

The energy fluctuation or variance, 	H2 = 〈H2〉 − 〈H〉2,
can be calculated by splitting the Hamiltonian into a sum of
local operators acting over two sites. In this case,

H =
L−1∑
i=1

ĥi, ĥi = Si · Si+1 + hiS
z
i . (16)

We can then calculate the fluctuation by taking the sum over a
set of products of local observable operators.

Figure 4 shows the variance of eigenstates produced by dif-
ferent combinations of l-bit flips for three disorder strengths
for systems of size L = 32. Each disorder strength contains
three disorder realizations and approximately fifty eigenstates
for each realization.

Flipping no l bits whatsoever, we expect a variance of
zero, as the all up and all down physical spin states are exact
eigenstates. We expect the variance to increase with number of
bit flips because the approximate l-bit flip operators introduce
error into the constructed eigenstate. Eigenstates are selected
at random; therefore because the eigenstates follow a binomial
distribution in number of l-bit flips, the number of bit flips
is clustered about L/2. If the number of bit flips is greater
than L/2, we start from the all down physical spin eigenstate,
meaning that we never need to flip more than L/2 l bits.

As a comparison to existing methods for approximating
eigenstates on large localized systems, Fig. 5 shows the
median and mean variance of eigenstates produced using

FIG. 4. Energy fluctuations plotted as a function of number of l-bit flips from the all up physical spin eigenstate for systems of size
L = 32. Three different disorder strengths are shown, with three realizations for each disorder strength and approximately fifty eigenstates per
realization. If the number of bit flips is greater than 16, the algorithm is started from the all down physical eigenstate instead. As expected,
fluctuation increases with an increasing number of bit flips, as the approximate operators introduce error. Also as expected, fluctuation decreases
with increasing disorder.
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FIG. 5. A comparison of the τ x network representation presented
in this paper with the tensor network representation for approximate
eigenstates, both for systems of size L = 32. (Top) The mean of the
τ x network formulation is consistently worse, likely owing to the fact
that the distribution of variances is uniform on a log scale and the
mean is therefore dominated by upper outliers. (Bottom) However,
a comparison of the 50th percentile variance of each method indi-
cates that the median τ x network eigenstate is more accurate than
the median tensor network eigenstate for higher disorder strengths,
W � 10.

the τ x network described in this paper and the tensor net-
work method described in Ref. [22], where the constitut-
ing unitaries are of size l = 8. The data are shown over
three disorder strengths for systems of size L = 32. For each
disorder strength, three realizations are generated, with one
hundred eigenstates per realization calculated using the τ x

network representation and one thousand for the tensor net-
work method.

The mean for the τ x network representation is consistently
worse than that for the tensor network method owing to the
fact that the τ x network method’s mean is dominated by
outlying eigenstates of high variance (see Fig. 4). However,
the median variance for the τ x network method becomes
lower than that for the tensor network method with increasing
disorder strength. This indicates that deep in the MBL phase,
the typical approximation yielded by the τ x network represen-
tation becomes better than that yielded by the tensor network
method. As disorder strength increases, the nontrivial portions

FIG. 6. A plot of all correlations 〈Sz
i Sz

j〉 − 〈Sz
i 〉〈Sz

j〉 for an approx-
imate eigenstate of a system of size L = 32 and disorder strength
W = 6. An exponentially decaying line approximately bounding the
correlations is provided as a guide to the eye. The correlators decay
with distance until they reach machine precision. Note further that
this decay can still be observed beyond the subsystem window of
size l = 14.

of the exact τ x
j operators cut out of the subsystem window

become smaller as the operators become more local. As a
result, our approximate τ̃ x

j operators resemble the exact τ x
j

operators to a higher degree with increasing disorder strength,
yielding more accurate eigenstates.

B. Correlations

Our technique also allows us to probe long-range cor-
relations of observables measured on eigenstates of MBL
systems. Though the approximation of the l-bit flip operator
cuts off operator weight outside of some window, approximate
eigenstates composed of overlapping strings of τ̃ x

j operators
can display correlation outside of this operator window length.
Generally, two observables that can be continuously con-
nected by windows of τ̃ x

j operators will display a nontrivial
correlation. For systems of a moderate size such as the L = 32
size systems with which we work, this condition is fulfilled for
most eigenstates.

Because of the entanglement behavior of MBL eigenstates,
local observables are thought to show an exponential decay
in correlation with distance [7]. Though we could feasibly
measure correlations between any local observable through
our method, in this case we choose to focus on the spin-spin
correlation function:

〈
Sz

i Sz
j

〉 − 〈
Sz

i

〉 〈
Sz

j

〉
. (17)

We expect

max
(〈

Sz
i Sz

j

〉 − 〈
Sz

i

〉 〈
Sz

j

〉) ∝ e|i− j|/ξ , (18)

where ξ is a localization length, indicating that correlations
of an eigenstate as a function of distance are bounded by an
exponentially decaying envelope. An example of this behavior
for a low disorder eigenstate is shown in Fig. 6.
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FIG. 7. The average value of ξ as a function of disorder strength
for one hundred eigenstates per realization and three realizations per
disorder strength W . The value of ξ is defined through the enve-
lope bounding the correlation functions of an eigenstate: (〈Sz

i Sz
j〉 −

〈Sz
i 〉〈Sz

j〉) ∝ e|i− j|/ξ . Note that the localization length decreases with
increasing disorder. In the inset, the quality of an exponential decay
fit on the envelope is shown. The fit is of high quality for all W
considered in our simulations.

The τ x network description of eigenstates is not imme-
diately expected to be able to exhibit accurate correlation
beyond the length of the subsystem. Overlapping τ̃ x operators
can carry nontrivial action beyond the length of a subsystem,
though it is not evident that this action is similar to that carried
by products of exact τ x operators. However, Fig. 6 shows that
correlations continue to decay smoothly even outside of the
subsystem window, which may indicate that the τ x network
eigenstate correlations are more accurate than expected.

For each eigenstate calculated, approximately one hun-
dred per disorder realization and three realizations per dis-
order strength, we calculated ξ, the strength of the decay
of the envelope of spin-spin correlation functions. The be-
havior of the mean ξ as a function of disorder strength
is shown in Figure 7. Further, to determine the degree to
which the correlator bound exhibits exponential decay, the
average R2 value for the exponentially decaying fit is shown in
the inset.

As each of the disorder strengths tested are within the MBL
phase, we do not observe a breakdown in the exponential
decay of the correlator as a function of distance, even for the
lowest disorder strength, W = 6. However, we do observe a
gradual increase of the exponential decay length with decreas-
ing disorder strength as expected.

V. DISCUSSION AND CONCLUSIONS

We presented in this work the τ x network representation of
approximate eigenstates and the inchworm method to measure
observables on those eigenstates for large MBL systems.
Benchmarked against the tensor network method, we found
that the algorithm does not construct eigenstates as accurately

as the tensor network method close to the MBL crossover.
However, the median eigenstate constructed by the algorithm
outperforms that produced by the tensor network method deep
in the MBL phase.

In Sec. II B, we outlined two current classes of methods to
construct eigenstates on large MBL systems. Here, we briefly
describe the advantages and disadvantages carried by the τ x

network representation compared to the others.
Like SIMPS, DMRG-X, and En-DMRG, the τ x network

representation allows one to construct highly excited eigen-
states of MBL systems. Compared to the DMRG-X algorithm,
the τ x network formulation does not produce eigenstates as
accurately. For example, the DMRG-X algorithm in Ref. [28]
produces eigenstates with mean error at machine precision for
systems of size up to L = 40 with disorder as low as W = 8.
However, one of the benefits carried by the τ x network repre-
sentation is that it does not rely on eigenstate overlap with
a physical spin product state, allowing one to theoretically
target any eigenstate by its l-bit label. By contrast, eigenstates
with low overlap to physical spin product states may not be
captured by DMRG-X.

The tensor network algorithm of Ref. [22] also allows one
to theoretically target any eigenstate by its l-bit label, making
it most similar to the τ x network representation. In terms of
accuracy of eigenstate, the two algorithms are similar. The
median tensor network eigenstate is an order of magnitude
more accurate than that of the τ x network formulation at W =
6. However, at W � 10, the median τ x network eigenstate
becomes an order of magnitude more accurate than the tensor
network algorithm.

A primary divergence between the tensor network and
τ x network algorithms comes from computational speed. At
L = 32, the tensor network algorithm can take a long period
of time (on our 113-machine, 10 TFLOP Beowulf computing
cluster up to a week) to generate the unitary matrix for a
given realization, but thereafter, one can compute observables
on eigenstates almost instantaneously. Meanwhile, the OLO
algorithm presented in Sec. III B can generate an l-bit algebra
for a system of size L = 32 several times faster (on our
computing cluster less than three hours), but the inchworm
algorithm can take several hours to measure observables on a
given eigenstate. Thus, the tensor network algorithm might
be preferred when given a realization and a large set of
eigenstates to sample. The τ x network representation allows
for a quick sampling over many realizations and, as opposed
to DMRG-class methods, produces an unbiased sample of
eigenstates.

There are several natural next steps in studying this algo-
rithm. One would be to test it on other models with quasilocal
operators that jump between eigenstates. For example, a re-
cent work [38] explored quasilocal integrals of motion of a
two-site, disordered Hubbard model by constructing l-bit-like
algebras that could be used in the algorithm we present in this
paper.

Additionally, the algorithm structure presented in Fig. 2
suggests that there is an analogy of this method to the ten-
sor network algorithm. A future algorithm could use the τ̃ x

operators from the OLO algorithm as a starting point and
then extend them by adding arbitrary unitary matrices on
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either side. These unitary matrices could then be optimized to
minimize the commutation of the τ̃ x matrices or the energy
fluctuation of the eigenstate produced by applying the τ̃ x

matrices to the fully polarized eigenstate.
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