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ABSTRACT 
 
The increasing availability of large healthcare databases is fueling an intense debate on 
whether real-world data should play a role in the assessment of the benefit-risk of 
medical treatments. In many observational studies, for example, statin users were found 
to have a substantially lower risk of cancer than in meta-analyses of randomized trials. 
While such discrepancies are often attributed to a lack of randomization in the 
observational studies, they may be explained by flaws that can be avoided by explicitly 
emulating a target trial. Using the electronic health records of 733,804 UK adults, we 
emulated a target trial of statins and cancer and compared our estimates with those 
obtained using previously applied analytic approaches. Over the 10-year follow-up, 
28,408 individuals developed cancer. Under the target trial approach, estimated 
observational analogs of intention-to-treat and per-protocol 10-year cancer-free survival 
differences were -0.5% (95% CI -1.0%, 0.0%) and -0.3% (95% CI -1.5%, 0.5%), 
respectively. By contrast, previous analytic approaches yielded estimates that appeared 
strongly protective. Our findings highlight the importance of explicitly emulating a target 
trial to reduce bias in the effect estimates derived from observational analyses.  
 
Keywords: Causal inference, target trial, electronic health records, intention-to-treat 
analysis, inverse-probability weighting, per-protocol analysis   
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Randomized trials are the preferred approach to evaluate the benefit-risk of clinical 
interventions. However, randomized trials may not be feasible for all causal questions in 
all populations and, even when feasible, may not provide timely answers to inform 
clinical, policy, and regulatory decisions. The limitations of randomized trials to support 
decision making are most evident when the goal is to evaluate long-term harms and 
benefits or to estimate effects in subgroups of individuals. In these cases, the analysis 
of observational data provides an opportunity to generate evidence to inform decisions.1  
 
Specifically, the increasing availability of large healthcare databases, combined with 
recent computational and analytic developments, is fueling an intense debate on 
whether observational data from electronic health records can play a role in the 
assessment of the benefit-risk of medical treatments.2-5 For example,  the US Food and 
Drug Administration recently released a strategic framework for a Real-World Evidence 
Program to explore the use of observational data to support regulatory decisions about 
drug effectiveness.6 
 
The debate has largely revolved around a key concern with observational studies that 
the treatment strategies under comparison are not randomly assigned, which could 
result in confounded effect estimates.5 That is, differences in risk between treatment 
groups may be explained by differences between the individuals in each group rather 
than by the effect of treatment. Careful measurement of and adjustment for major 
confounders can ameliorate, but never eliminate, this concern. As a result, when 
observational studies and randomized trials produce conflicting results, the discrepancy 
is often attributed to lack of randomization in the observational studies.  
 
However, this emphasis on confounding often blinds critics to other fundamental, and 
ubiquitous, flaws in the analyses of observational data which can result in substantial 
selection bias and immortal time bias. Unlike lack of randomization, these flaws can be 
easily prevented by designing the observational analysis to explicitly emulate a 
(hypothetical) pragmatic target trial.7 
 
Many observational studies, for example, have reported a lower cancer risk among 
statin users compared with nonusers.8-19 Some of these studies, published in leading 
journals, reported cancer risk reductions as large as 50-65%.9,12,15 Not only is the large 
magnitude of this apparent benefit implausible, but subsequent analyses of randomized 
trials suggested no effect of statins on cancer incidence.20,21 As expected, critics of the 
observational studies attributed their failure to confounding bias due to lack of 
randomization.22,23 However, confounding is unlikely to explain strong associations 
between a treatment (statin) and an outcome (cancer) that was not an intended effect of 
the treatment.24  
  
Here we show that the failure of observational studies results from deviating from basic 
principles of study design rather than from lack of randomization. To do so, we 
implement a 4-step approach. 
 



 4 

First, we specify the protocol of a target trial to estimate the effect of statins on cancer 
incidence among adults with low-density lipoprotein (LDL) cholesterol below 5 mmol/L. 
Table 1 summarizes the key components of the target trial protocol (see also 
Methods). Briefly, the eligibility criteria include age ≥30, no history of cancer, no statin 
contraindication, no statin prescription within the past year, and LDL cholesterol <5 
mmol/L; and the treatment strategies to be compared are initiation of any statin therapy 
at baseline and continuation over follow-up until the development of a contraindication 
(hepatic impairment or myopathy) and no initiation of statin therapy over follow-up 
unless there is an indication (LDL cholesterol ≥5 mmol/L). Participants are followed for 
up to 10 years or until cancer diagnosis.  
 
Second, we use a large observational database to emulate this target trial of statins and 
cancer. We show that the effect estimates from the observational data are comparable 
to those from the randomized trials.  
 
Third, we use the same observational data to replicate the analytic approach of a 
previous observational study that reported a substantially lower cancer risk among 
statin users compared with nonusers. We show that flaws in the analysis, in the form of 
deviations from an adequate target trial emulation, lead to the implausible estimates that 
were previously reported.12  
 
Fourth, to show the generality of our approach, we repeated the analysis to emulate a 
target trial of statin therapy and type 2 diabetes (rather than cancer). We selected type 2 
diabetes as an alternative outcome because the magnitude of the intention-to-treat 
effect of statins on diabetes is well established from randomized trials (odds ratio: 1.09, 
95% CI 1.02, 1.17)25 and can therefore be used as a benchmark. We show that the 
target trial approach leads to observational estimates compatible with the known effect 
of statins on diabetes and that the same analytic flaws lead to implausible estimates for 
diabetes. 
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RESULTS 
 
Emulating a target trial of statins and cancer  
 
We explicitly emulated the target trial of statins and cancer (Table 1) using Clinical 
Practice Research Database (CPRD) primary care electronic health records accessed 
through the CALIBER resource.26,27 We mirrored each protocol component as closely 
as possible, with several modifications to accommodate the use of observational data. 
For example, to assess baseline confounders, we required information on lab values 
measured during the past year and lifestyle factors during the past four years. We 
classified individuals into two groups according to their prescription records at baseline. 
We assumed these groups were exchangeable at baseline conditional on the covariates 
in Table 2. The analysis proceeded as for the target trial, with additional adjustment for 
these baseline covariates (in an attempt to emulate randomization) and with sequential 
emulation (for statistical efficiency, see Methods).   
  
Figure 1 shows a flowchart of participant selection, and Table 2 shows baseline 
characteristics of the 733,804 eligible individuals. Compared with statin non-initiators at 
baseline, statin initiators were, on average, older and had higher LDL cholesterol and 
BMI, and included more men, current smokers, antihypertensive and aspirin users, and 
individuals with cardiovascular disease and diabetes. Over the 10-year follow-up (mean 
4 years), 28,408 individuals developed cancer, including 4,287 female breast, 3,091 
colorectal, 2,770 hematological, 1,302 melanoma, 2,993 lung, 4,486 prostate, and 1,615 
urothelial cancers. 
 
Table 3 shows the estimated 10-year cancer-free survival differences and hazard ratios 
for cancer comparing statins with no statins. The estimated observational analog of the 
intention-to-treat 10-year cancer-free survival difference was -0.5% (95% CI -1.0%, 
0.0%) for total cancer, and ranged from -0.3% to 0.0% across cancer sites. The 
estimated observational analog of the per-protocol 10-year cancer-free survival 
difference was -0.3% (95% CI -1.5%, 0.5%) for total cancer, and ranged from -0.3% to 
0.3% across cancer sites. Cancer-free survival curves under each strategy were almost 
overlapping (Figure 2). Estimates for total cancer were similar in subgroups defined at 
baseline by age, sex, and coronary heart disease status (Extended Data 1). Estimates 
were also similar under several sensitivity analyses for potential misclassification, 
residual confounding, and selection bias due to loss to follow-up (Extended Data 2-6).  
 
Comparison with previous observational analyses 
 
A previous observational study estimated an odds ratio for lung cancer of 0.23 (95% CI 
0.20, 0.26) comparing long-term statin users (>4 years) with nonusers, which suggests 
a 77% lower risk of lung cancer among long-term statin users compared with 
nonusers.12  
 
This study deviated from its corresponding target trial in two key ways. The investigators 
classified individuals based on their observed duration of statin therapy over follow-up 
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(in this case, using postbaseline information to assign baseline treatment status). They 
also included individuals who were using statins before baseline (though they did not 
use pre-baseline therapy to quantify total duration of use). Other observational studies 
reporting implausible estimates deviated from their respective target trials in similar and 
additional ways.9,15 
 
To assess the cumulative impact of these two deviations from the target trial on the 
estimates, we replicated them in our own data analysis with total cancer as the 
outcome. We assigned individuals to the initiator group if they used statins for >4 years 
over follow-up and to the non-initiator group if they never used statins. Additionally, we 
removed our eligibility criteria of no statin prescriptions within the past year and LDL 
cholesterol <5 mmol/L.  
 
When we classified individuals based on their observed duration of statin therapy over 
follow-up, the estimated hazard ratio for total cancer was 0.22 (95% CI 0.21, 0.23) 
comparing statin use for >4 vs. 0 years. When we additionally included prevalent users 
at baseline, the corresponding hazard ratio was 0.23 (95% CI 0.22, 0.24). In contrast, 
the hazard ratios estimated under the target trial approach were close to null (1.02 
intention-to-treat, 1.01 per-protocol). These analytic decisions led to similar estimates 
for lung cancer (0.26 [95% CI 0.23, 0.30] comparing statin use for >4 vs. 0 years, and 
0.27 [95% CI 0.25, 0.29] when additionally including prevalent users). 
 
Statins and diabetes 
 
After specifying and emulating a target trial of statin therapy and type 2 diabetes (using 
the same observational data with an additional eligibility criterion of no history of 
diabetes), we estimated an intention-to-treat hazard ratio of 1.11 (95% CI 0.98, 1.25) 
comparing statins with no statins, which is close to the 1.09 estimate from a meta-
analysis of randomized trials.25 After modifying the analysis to incorrectly classify 
individuals based on their observed duration of statin therapy (>4 vs. 0 years), the 
hazard ratio estimate was 0.2 (Extended Data 7). Estimates decreased with increasing 
observed duration of statin use.  
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DISCUSSION 
 
After emulating a target trial using the electronic health records of 733,804 adults with 
up to 10 years of follow-up, we found little indication that statin therapy influences 
cancer incidence. This finding is consistent with meta-analyses of randomized trials.20,21 
By contrast, after mimicking the approach of previous observational analyses,12 we 
found apparently protective estimates of an implausible magnitude.  
 
A basic tenet of any trial, including a target trial emulated using observational data, is 
the alignment of eligibility and treatment assignment with time zero of follow-up 
(baseline).7 We replicated common flaws in observational analyses that unhitch 
treatment assignment from time zero by classifying individuals based on observed 
treatment duration over follow-up and including prevalent users at baseline. The former 
flaw resulted in a striking so-called protective estimate (hazard ratio for lung cancer: 
0.26, 95% CI 0.23, 0.30), as in the previously published study (odds ratio: 0.23, 95% CI 
0.20, 0.26),12 which is likely the result of immortal time bias, because classification as a 
long-term user necessitates having survived without cancer and remained under follow-
up for a long time.7 The additional inclusion of prevalent users had a small influence on 
this estimate possibly because, as in the particular study whose analysis we replicated, 
pre-baseline statin use was not counted toward treatment duration. In general, the 
inclusion of prevalent users at baseline may contribute to selection bias, due to the 
selection of individuals who received treatment for some time before baseline and 
remained at risk and under follow-up at baseline.28 
 
Our approach of explicitly specifying the protocol of the target trial and its observational 
emulation ensures synchronization of eligibility and treatment assignment with time 
zero, and therefore prevents these biases. This emulation approach has also helped to 
resolve randomized-observational discrepancies in other settings. A prominent example 
is the effect of estrogen plus progestin therapy on coronary heart disease among 
postmenopausal women in the US. Observational analyses found a lower risk among 
prevalent users compared with nonusers of hormone therapy at baseline,29 whereas a 
large randomized trial found a higher risk among women assigned to initiate hormone 
therapy vs. placebo, especially during the first year after initiation.30 A reanalysis of the 
observational data that emulated the randomized trial yielded similar intention-to-treat 
effect estimates, suggesting that the discrepancies were largely due to different analytic 
approaches rather than unmeasured confounding.31,32  
 
Our study has several additional strengths. The size, follow-up, and breadth of data in 
the electronic health records allowed us to quantify the relation between statins and 
site-specific cancers in a population-based sample with adjustment for many potential 
confounders. The length of follow-up (up to 10 years with a mean 4 years) allowed us to 
capture slowly-progressing cancers. Also, our analytic approach allowed us to estimate 
both relative and absolute risks under sustained strategies that realistically depend on 
evolving clinical characteristics. We performed several sensitivity analyses to address 
potential misclassification, residual confounding, and selection bias. Lastly, our 
analyses of type 2 diabetes confirm that the target trial approach can reproduce effect 
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estimates from trials for outcomes other than cancer, and that the same analytic flaws 
described above will result in severe bias for diabetes as well as for cancer. 
 
Our study also had some limitations. A key challenge with the analysis of real-world 
data is that individuals are not randomly assigned to the treatment strategies under 
study, which may result in confounded effect estimates. To successfully emulate 
randomization, we need to adjust for all baseline confounders required to achieve 
comparability of the treatment groups. Because not much confounding by indication is 
expected for cancer outcomes, estimating the effect of statins on cancer seems a 
suitable aim for a study based on real-world data. We were also limited by our reliance 
on prescription records and diagnosis codes, which may contribute to measurement 
error and residual confounding. However, previous validation studies have confirmed a 
high proportion of recorded cancers (95%) and other diagnoses in our study data.33,34 
We were unable to assess subtypes of site-specific cancers, which prevented us from 
studying the previously reported inverse association between statins and advanced, but 
not total, prostate cancer (relative risk: 0.77, 95% CI 0.64, 0.93).35 However, prostate 
cancers are expected to be more advanced at diagnosis in the UK compared with the 
US given the absence of a national screening program.36 Finally, CPRD does not 
capture the purchase of over-the-counter low-dose statins, which have been available 
since 2004. However, a nationally representative study reported that only 0.7% were 
using over-the-counter statins, of whom 72% were also using prescribed statins, and 
any related misclassification of non-initiators is therefore expected to be minimal.37 
 
In summary, our findings suggest that statin therapy does not influence cancer 
incidence and that explicitly emulating a target trial helped us reduce the discrepancies 
between the effect estimates from observational analyses and randomized trials. 
Importantly, our analysis highlights the crucial role of factors other than randomization in 
explaining discrepant observational versus randomized effect estimates. Though 
obtaining better effect estimates from observational data is not necessarily helpful when 
effect estimates from randomized trials are available, analyses like ours provide general 
guidance for causal analyses of observational data when randomized trials are not yet, 
or will not be, available. In those cases, the choice is between making decisions based 
on sensible analyses of high-quality observational data and making decisions based on 
no human data. 
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Figure legends  
 
Figure 1. Flowchart for selection of eligible individuals from CALIBER when emulating a 
target trial of statin therapy and cancer risk, 1999-2016. Numbers in parentheses 
represent unique individuals in each group. Counts of initiator and non-initiator 
individuals do not sum to the total number of eligible individuals because some eligible 
individuals contributed to both groups in different nested emulated trials.  
 
Figure 2. Standardized cancer-free survival curves comparing statin therapy with no 
statin therapy estimated by an observational analog to an (a) intention-to-treat analysis 
and (b) per-protocol analysis, CALIBER, 1999-2016.  
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Table 1. Specification and emulation of a target trial of statin therapy and cancer risk using CALIBER observational data 

Protocol 
component 

Target trial specification  Target trial emulation 

Eligibility 
criteria 

 Age ≥30 between 1 January 1998 and 29 February 2016 

 No history of cancer (except nonmelanoma skin cancer) 

 No statin contraindication (hepatic impairment or myopathy) 

 No statin prescription within the past year  

 LDL cholesterol <5 mmol/L 

 At least one year of up-to-standard data in a CPRD practice 

 At least one year of potential follow-up 

Baseline is defined as the first month in which all eligibility criteria are 
met.  

 Same. 

We defined hepatic impairment 
as a code for hepatic failure or 
ALT ≥120 IU/L, and myopathy as 
codes for its symptoms: muscle 
aches, pain, or weakness. 

We also required information on 
lab values measured during the 
past year and on lifestyle factors 
during the past four years.  

Treatment 
strategies 

(1) Initiation of any statin therapy at baseline and continuation over 
follow-up until the development of a contraindication (hepatic impairment 
or myopathy)  

(2) No initiation of statin therapy over follow-up until the development of 
an indication (LDL cholesterol ≥5 mmol/L) 

When clinically warranted during the follow-up, patients and their 
physicians will decide whether to start, stop, or switch therapy. 
Participants must have a primary care consultation at least once every 
four years to assess prognostic factors associated with adherence. 

 Same.  

We defined the date of 
medication initiation to be the first 
date of a prescription. We 
calculated discontinuation dates 
using the daily dose and quantity 
of pills in the prescription. We 
considered treatment to be 
continuous if there was a gap of 
less than 30 days between 
successive prescriptions. 

Treatment 
assignment 

Individuals are randomly assigned to a strategy at baseline and will be 
aware of the strategy to which they have been assigned. 

 We classified individuals 
according to the strategy that 
their data were compatible with at 
baseline and attempted to 
emulate randomization by 
adjusting for baseline 
confounders.  

Outcomes Total cancer and seven site-specific cancers: female breast, colorectal, 
hematological, melanoma, lung, prostate, urothelial. 

 Same. 

Follow-up  Starts at baseline and ends at the month of first cancer diagnosis, death, 
loss to follow-up (transfer out of the practice or incomplete follow-up [four 
years after the last recorded confounder values]), 10 years after 
baseline, or administrative end of follow-up (end of practice data 
collection or 29 February 2016), whichever happens first.  

 Same.  

Causal 
contrasts 

Intention-to-treat effect.  

Per-protocol effect. 

 Observational analog of intention-
to-treat and per-protocol effect. 

Statistical 
analysis 

Intention-to-treat analysis. 

Per-protocol analysis: censor participants if and when they deviate from 
their assigned treatment strategy and apply inverse-probability weights 
to adjust for pre- and post-baseline prognostic factors associated with 
adherence. 

Subgroup analyses by baseline age, sex, and cardiovascular disease 
status. 

 Same intention-to-treat and per-
protocol analyses with sequential 
emulation and additional 
adjustment for baseline 
covariates. 

Same subgroup analyses. 

Abbreviations: ALT, alanine transaminase; CPRD, Clinical Practice Research Database; LDL, low-density lipoprotein. 
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Table 2. Baseline characteristics of eligible individuals when emulating a 
target trial of statin therapy and cancer risk, CALIBER, 1999-2015*. 

Characteristic, mean (SD) or %† Initiators 

(187,630) 

Non-initiators 

(12,923,081) 

Age (years) 64.1 (11.7) 59.3 (13.8) 

Female, % 45 54 

Body mass index (kg/m2) 29.1 (5.8) 28.3 (5.8) 

Smoking status, %   

     Never 46 55 

     Former 34 29 

     Current 20 16 

Low-density lipoprotein cholesterol (mmol/L) 3.3 (1.0) 3.2 (0.8) 

High-density lipoprotein cholesterol (mmol/L) 1.4 (0.4) 1.5 (0.4) 

Coronary heart disease, % 9 3 

Hypertension, % 31 25 

Cerebrovascular disease, % 2 1 

Other cardiovascular disease‡, % 21 18 

Diabetes, % 28 11 

Antihypertensive use§, % 62 38 

Aspirin use, % 28 9 

Hormonal replacement therapy, % of women 2 2 

Oral contraceptive use, % of women 2 4 

Referrals in the past three months, ≥2, % 4 2 

* Baseline ranges from January 1999 to February 2015. 

† Each individual may contribute to more than one trial.   

‡ Includes acute rheumatic fever, chronic rheumatic heart disease, pulmonary 
heart disease, and other circulatory disease. 

§ Includes all primary care prescriptions from British National Formulary 
chapters 2.2.1 thiazides and related diuretics, 2.2.3 potassium-sparing 
diuretics and aldosterone antagonists, 2.2.4 potassium-sparing diuretics with 
other diuretics, 2.4 beta-adrenoceptor blocking drugs, 2.5 hypertension and 
heart failure, 2.6.2 calcium-channel blockers. 
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Table 3. Estimated 10-year standardized cancer-free survival differences and hazard ratios* for cancer 
comparing statin therapy with no statin therapy, CALIBER, 1999-2016.  

 Number of incident cancers 
10-year survival 

difference (%) 95% CI 
Hazard 

ratio 95% CI 

  Initiators†  Non-initiators†     

Intention-to-treat‡       

Total cancer 8,001 27,181 -0.5 -1.0, 0.0 1.02 0.99, 1.05 

Breast, female 859 4,166 -0.1 -0.5, 0.3 1.00 0.92, 1.09 

Colorectal 893 2,958 -0.1 -0.3, 0.1 1.04 0.95, 1.13 

Hematological 761 2,657 0.0 -0.2, 0.2 0.96 0.88, 1.06 

Melanoma 338 1,250 -0.1 -0.2, 0.1 1.06 0.93, 1.20 

Lung§ 1,021 2,826 -0.1 -0.3, 0.1 1.08 0.99, 1.17 

Prostate 1,344 4,263 -0.3 -0.7, 0.3 1.02 0.95, 1.09 

Urothelial 564 1,522 0.0 -0.2, 0.1 1.09 0.98, 1.21 

Per-protocol|| 

Total cancer 5,834 20,626 -0.3 -1.5, 0.5 1.01 0.96, 1.06 

Breast, female 603 3,465 0.0 -0.7, 0.7 0.97 0.85, 1.11 

Colorectal 643 2,224 0.0 -0.4, 0.3 1.00 0.86, 1.16 

Hematological 543 2,035 0.3 -0.1, 0.6 0.84 0.71, 1.00 

Melanoma 253 978 -0.1     -0.2, 0.2     1.16 0.88, 1.53 

Lung§ 723 1,996 -0.3 -0.7, 0.1 1.13 0.96, 1.32 

Prostate 993 3,179 -0.3 -1.2, 0.9 0.98 0.85, 1.13 

Urothelial 414 1,059 0.1 -0.3, 0.3 1.13 0.91, 1.41 

Abbreviation: CI, confidence interval. 

* Adjusted for age, sex, BMI, smoking status, LDL cholesterol, HDL cholesterol, months since last measure of 
LDL, months since last measure of HDL, coronary heart disease, hypertension, cerebrovascular disease, 
other cardiovascular disease, diabetes, antihypertensive use, aspirin use, number of referrals in the past three 
months. Estimates for breast and colorectal cancer additionally adjusted for hormone replacement therapy 
and oral contraceptive use. Estimated survival differences were standardized to the joint distribution of the 
baseline covariates. 

† The number of events in the initiator and non-initiator groups do not sum to the total number of events 
because some individuals contributed as events to both groups in different nested emulated trials.  

‡ Comparing statin initiation at baseline with no statin initiation at baseline. 

§ Non-small cell lung cancer. 

|| Comparing statin initiation at baseline and continuation over follow-up unless contraindicated with no statin 

initiation over follow-up unless indicated. 
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METHODS 
 
Protocol for target trial  
 
We specified a target trial with the following protocol components (see also Table 1):  
 

Eligibility criteria: age 30 between 1 January 1998 and 29 February 2016, no 
history of cancer (except nonmelanoma skin cancer), no statin contraindication (hepatic 
impairment or myopathy), no statin prescription within the past year, LDL cholesterol <5 
mmol/L, at least one year of up-to-standard data in a Clinical Practice Research 
Database (CPRD) practice, and at least one year of potential follow-up. Baseline is 
defined as the first month in which all eligibility criteria are met. 
  

Treatment strategies. The dynamic strategies to be compared are: (i) initiation of 
any statin therapy at baseline and continuation over follow-up until the development of a 
contraindication (hepatic impairment or myopathy), and (ii) no initiation of statin therapy 
over follow-up unless there is an indication (LDL cholesterol ≥5 mmol/L). When clinically 
warranted during the follow-up, patients and their physicians will decide whether to start, 
stop, or switch therapy. Participants must have a primary care consultation at least once 
every four years to assess prognostic factors associated with adherence. 
 

Treatment assignment. Individuals are randomly assigned to a strategy at 
baseline and will be aware of the strategy to which they have been assigned.  
 

Outcomes. The outcomes of interest are total cancer and seven site-specific 
invasive cancers: female breast, colorectal, hematological (leukemia, lymphoma), 
melanoma, lung (non-small cell), prostate, urothelial (bladder, ureters, renal pelvis). 

 
Follow-up. Each individual is followed from baseline until the month of first cancer 

diagnosis, death, loss to follow-up (transfer out of the practice or incomplete follow-up 
[four years after the last recorded confounder values]), 10 years after baseline, or 
administrative end of follow-up (end of practice data collection or 29 February 2016), 
whichever happens first.  
 

Causal contrasts (i.e., estimands): the intention-to-treat effect of being assigned 
to statin initiation vs. no initiation at baseline and the per-protocol effect of statin 
initiation and continuation over follow-up unless a contraindication develops vs. no 
initiation over follow-up unless an indication develops. 
 

Statistical analysis: Pooled logistic regression to estimate intention-to-treat and 
per-protocol effects via hazard ratios and standardized survival curves.  

The intention-to-treat effect is estimated by fitting a pooled logistic regression 
model containing an indicator of assigned strategy and a flexible function of months 
since randomization (linear and quadratic terms). Given a low monthly risk of the 
outcome, the odds ratio from this model approximates a hazard ratio from a Cox model 
comparing those assigned to treatment initiation vs. no initiation.38  
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The per-protocol effect is estimated by fitting this pooled logistic regression 
model to the data after censoring participants if and when they deviate from their 
assigned treatment strategy. Specifically, participants in the initiator group are censored 
when they stop statins (in the absence of a contraindication) and participants in the non-
initiator group are censored when they start statins (in the absence of an indication). 
Time-varying nonstabilized inverse-probability weights are used to adjust for the time-
varying confounding that may occur when adherence depends on treatment history and 
shares common causes with the outcome.39 Participants who stop statins because of a 
contraindication or start statins because of an indication are not censored and their 
weights remain constant from that time until the end of follow-up.    

Absolute risks under each strategy are estimated by fitting these pooled logistic 
regression models with an added product term between treatment and follow-up time. 
The predicted values from these models are used to estimate 10-year cancer-free 
survival under each strategy.    

To identify potential subgroups of patients for whom the treatment strategies may 
be most beneficial, analyses are conducted separately in subsets of the study 
population defined at baseline according to age (<70 vs. ≥70 years), sex, and coronary 
heart disease status (yes vs. no).  
 
Target trial emulation  
 
We emulated this target trial using CPRD primary care electronic health records 
accessed through the CALIBER resource.26,27 The CPRD database includes 
approximately 7% of the UK population and patients are broadly representative of the 
UK general population in terms of age and sex.40 Data on demographics, lifestyle, 
symptoms, diagnoses, clinical examination findings, laboratory test results, referrals, 
and prescriptions are recorded by general practitioners. Diagnoses are recorded using 
Read terms, which map to The International Health Terminology Standards 
Development Organization Systematized Nomenclature of Medicine Clinical Terms 
(SNOMED-CT).41 Clinical phenotypes are derived using algorithms that combine 
information on diagnoses, symptoms, laboratory values, physiological measures, 
prescriptions, and procedures which are created and validated using an established 
methodology.42,43 
 

Eligibility criteria. We applied all eligibility criteria to individuals in CPRD who had 
lab values measured during the past year and lifestyle factors during the past four 
years. Figure 1 shows a flowchart of participant selection. 

 
Treatment strategies. We defined the date of medication initiation to be the first 

date of a prescription. We calculated discontinuation dates using the daily dose and 
quantity of pills in the prescription. We considered treatment to be continuous if there 
was a gap of less than 30 days between successive prescriptions. 

 
Treatment assignment. We classified individuals into two groups according to the 

strategy that their data were compatible with at baseline. We assumed groups were 
exchangeable at baseline conditional on baseline covariates: demographics (age, sex), 
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lifestyle characteristics (BMI, smoking status), laboratory measurements (LDL and HDL 
cholesterol and time since their last measurement), diagnoses (coronary heart disease, 
hypertension, cerebrovascular disease, other cardiovascular disease, diabetes), 
concomitant medication use (antihypertensives, aspirin; hormone replacement therapy 
and oral contraceptives for breast and colorectal cancer analyses), and healthcare 
utilization (number of any referrals in the past three months). 
 

Outcomes. Cancer diagnoses were recorded as Read codes in primary care. 
Previous validation studies have confirmed a high proportion of cancers recorded in this 
database (95%).33  

 
Follow-up. Same as for the target trial. 
 
Causal contrasts. Observational analogs of the intention-to-treat and per-protocol 

effects. 
 
Statistical analysis. We emulated the target trial as a series of trials starting at 

each of the 194 months between January 1999 and February 2015, such that each 
individual may participate in multiple trials. This accommodates the fact that individuals 
may meet the eligibility criteria at several times over follow-up and is more statistically 
efficient than choosing just one of those times as time zero.44 We used pooled logistic 
regression to pool data over all 194 emulated trials and estimate intention-to-treat and 
per-protocol effects.  
 To estimate the intention-to-treat effect, we fit the pooled logistic regression 
model previously described but also including the baseline covariates. To estimate the 
per-protocol effect, the inverse probability weights were a function of time-varying 
covariates (updated values of the baseline covariates and an indicator for cancer at a 
site other than the one of interest for site-specific cancer analyses). We truncated 
estimated weights at their 99th percentile to prevent outliers from affecting our analyses. 
We standardized estimated survival probabilities to the joint distribution of the baseline 
covariates. See Extended Data 8 for details on covariates. 

We used nonparametric bootstrapping with 500 samples to calculate percentile-
based 95% confidence intervals for survival difference estimates, including all 
individuals in the initiator group and, for computational efficiency, a randomly sampled 
10% of individuals in the non-initiator group. For hazard ratio estimates, we used robust 
variances to calculate conservative 95% confidence intervals.  
 

Sensitivity analyses. We assessed the robustness of our estimates to various 
analytic decisions. Specifically, we (1) increased the maximum gap between successive 
prescriptions from 30 to 60 days, (2) additionally adjusted for clinically-recorded physical 
activity, alcohol consumption, family history of cancer, practice region (at the Strategic 
Health Authority level), influenza vaccination in the past year, and cancer screening in 
the past year as potential confounders, (3) instead adjusted for ever-diagnosis with 
cardiovascular disease and diabetes by carrying forward indicators, (4) truncated 
weights at their 99.5th percentile, and (5) additionally applied weights for censoring due 
to loss to follow-up. 
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Comparison with previous observational analyses 
 
We replicated the analytic approach of a previous observational study that reported a 
substantially lower cancer risk among statin users compared with nonusers. The 
estimated odds ratio of 0.23 (95% CI 0.20, 0.26) in this study suggests a 77% lower risk 
of lung cancer among long-term statin users (>4 years) compared with nonusers.12  
 
This study deviated from its corresponding target trial in two key ways. First, the 
investigators classified individuals based on their observed duration of statin therapy 
over follow-up (in this case, using postbaseline information to assign baseline treatment 
status). Second, they included individuals who were using statins before baseline 
(though they did not use pre-baseline therapy to quantify total duration of use). Other 
observational studies reporting implausible estimates deviated from their respective 
target trials in similar and additional ways.9,15 
 
To assess the cumulative impact of these two deviations from the target trial on the 
estimates, we implemented them sequentially in our own data analysis with total cancer 
as the outcome. First, we assigned individuals to the initiator group if they used statins 
for >4 years over follow-up and to the non-initiator group if they never used statins. 
Second, we additionally removed our eligibility criteria of no statin prescriptions within 
the past year and LDL cholesterol <5 mmol/L. We fit unweighted pooled logistic 
regression models to estimate hazard ratios adjusted for baseline and time-varying 
covariates.  
 
Statins and diabetes 
 
To show the generality of our approach, we repeated the analysis to emulate a target 
trial of statin therapy and type 2 diabetes (using the same data with an additional 
eligibility criterion of no history of diabetes) and also replicated the analytic flaws 
described above for this alternative outcome. 
 
All analyses were conducted using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA).  
 
Details on models and inverse-probability weighting  
 

Estimating the intention-to-treat hazard ratio. In our target trial, the intention-to-
treat effect is the effect of being assigned to treatment initiation vs. no initiation at 
baseline on the risk (or rate) of cancer. Estimating its observational analog requires 
adjustment for baseline confounders. To do this, we fit a pooled logistic regression 
model containing an indicator of observed treatment initiation and potential confounders 
measured in the baseline month of each emulated trial. Under the assumptions of no 
unmeasured confounding given the included covariates and a low monthly risk of the 
outcome within levels of those covariates, the exponentiated coefficient of the treatment 
indicator (i.e., 𝑒𝑥𝑝(𝛼1)) validly estimates the intention-to-treat hazard ratio (averaged 
over follow-up) that would be seen in a target trial with a similar adherence pattern as 
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the CPRD data. Estimates were similar when we additionally applied inverse-probability 
weights to this model to adjust for potential selection bias due to loss to follow-up.  
 

𝑙𝑜𝑔𝑖𝑡 (Pr[𝑌𝑚+𝑡+1
 = 1|𝐴𝑚, 𝐿𝑚, �̅�𝑚+𝑡 = 0]) = 𝛼0,𝑚+𝑡 + 𝛼1𝐴𝑚 + 𝛼2

𝑇𝐿𝑚 

 
The overbar indicates the history of a covariate from the start of follow-up.  
The superscript T indicates a transpose of a vector of parameters. 

 
𝑌𝑚+𝑡+1 Indicator for the outcome of interest at month t+1 of monthly 

emulated trial m, where m=0,1,…,193 

𝛼0,𝑚+𝑡 Time-varying intercept, estimated as a constant plus linear and 
quadratic terms for both the baseline month m and follow-up 
month t of the emulated trial 

𝐴𝑚 Indicator for treatment group 

𝐿𝑚 Vector of potential confounders at the start of emulated trial m for 
each individual 

 
Estimating the per-protocol hazard ratio. In our target trial, the per-protocol effect 

is the effect of adhering to the assigned treatment strategies on the risk (or rate) of 
cancer. Estimating it or its observational analog requires adjustment for baseline 
confounders and time-varying confounders.  
 

First, we censored patients if and when they deviated from their assigned 
treatment strategy. That is, we censored patients in the initiator group when they 
discontinued statin therapy (unless a contraindication developed) and censored patients 
in the non-initiator group when they initiated statin therapy (unless an indication 
developed). We fit the below pooled logistic regression model to this censored data, 
additionally applying time-varying nonstabilized inverse-probability weights to adjust for 
time-varying confounding. We truncated weights at their 99th percentile to prevent 
outliers with extreme weights from affecting our estimates. Under the same 
assumptions described in the previous section, the exponentiated coefficient of the 
treatment indicator (i.e., 𝑒𝑥𝑝(𝛽1)) validly estimates the per-protocol hazard ratio.  
 

𝑙𝑜𝑔𝑖𝑡 (Pr[𝑌𝑚+𝑡+1
 = 1|𝐴𝑚, 𝐿𝑚, �̅�𝑚+𝑡 = 0, 𝐶�̅�+𝑡+1 = 0]) = 𝛽0,𝑚+𝑡 + 𝛽1𝐴𝑚 + 𝛽2

𝑇𝐿𝑚 

 
The overbar indicates history of the variable.  
The superscript T indicates a transpose of a vector of parameters. 

 
𝑌𝑚+𝑡+1 Indicator for the outcome of interest at month t+1 of monthly 

emulated trial m, where m=0,1,…,193 

𝛽0,𝑚+𝑡 Time-varying intercept, estimated as a constant plus linear and 
quadratic terms for both the baseline month m and follow-up 
month t of the emulated trial 

𝐴𝑚 Indicator for treatment group 
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𝐿𝑚 Vector of potential confounders at the start of emulated trial m for 
each individual 

 
  Subject-specific time-varying nonstabilized inverse-probability weights. 
Informally, the denominator of this weight at time t is the probability that an individual 
received her observed treatment history given her covariate history by t. The application 
of these weights creates a pseudo-population in which treatment is independent of the 
measured confounders at all time points.  
 

Weights for censoring due to switching treatment 
 

𝑊𝑚+𝑡
𝐴 = ∏

1

𝑓(𝐴𝑘|�̅�𝑘−1, �̅�𝑘, 𝑌𝑘−1 = 0)

𝑚+𝑡

𝑘=𝑚

 

 
 

To estimate the denominator, we fit two separate models to allow the 
probabilities to differ according to prior treatment status. 
 

The first model was fit to person-months who were untreated in the previous 
month (i.e., 𝐴𝑘−1 = 0): 

 

 𝑙𝑜𝑔𝑖𝑡 (𝑃𝑟[𝐴𝑘 = 1 |𝐴𝑘−1 = 0, �̅�𝑘, 𝑌𝑘−1 = 0]) = 𝜂0,𝑡 + 𝜂1
𝑇𝐿0 + 𝜂2

𝑇𝐿𝑘   
 
The second model was fit to person-months who were treated in the previous 
month (i.e., 𝐴𝑘−1 = 1): 

 

   𝑙𝑜𝑔𝑖𝑡 (𝑃𝑟[𝐴𝑘 = 1 |𝐴𝑘−1 = 1, �̅�𝑘, 𝑌𝑘−1 = 0]) = 𝜃0,𝑡 + 𝜃1
𝑇𝐿0 + 𝜃2

𝑇𝐿𝑘   
 

Covariate history �̅�𝑘 was summarized by baseline 𝐿0 and the most recent 
measurement of 𝐿𝑘. 

 
Because we allowed a 30-day gap after the end of a treatment prescription, we 

excluded the first person-month after treatment initiation from the weight models 
(because the probability of treatment in that period was 1). Individuals stopped 
contributing to the weight models once they deviated from their assigned strategy for a 
clinically allowable reason (i.e., once someone in the initiator group developed a 
contraindication, and once someone in the non-initiator group developed an indication). 
The final weight for each individual at each time point was the product of the weights for 
that individual up until that time.  
 

Estimating standardized survival curves and survival differences. We estimated 
survival curves and 10-year survival differences by fitting the pooled logistic regression 
models described above with an added product term between treatment and time.  
 

Intention-to-treat analysis: 
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𝑙𝑜𝑔𝑖𝑡 (Pr[𝑌𝑚+𝑡+1
 = 1|𝐴𝑚, 𝐿𝑚, �̅�𝑚+𝑡 = 0]) = 𝜆0,𝑚+𝑡 + 𝜆1𝐴𝑚 + 𝜆2𝐴𝑚(𝑚 + 𝑡) + 𝜆3

𝑇𝐿𝑚 

 
Per-protocol analysis:  

 

𝑙𝑜𝑔𝑖𝑡 (Pr[𝑌𝑚+𝑡+1
 = 1|𝐴𝑚, 𝐿𝑚, �̅�𝑚+𝑡 = 0, 𝐶�̅�+𝑡+1 = 0]) = 𝜇0,𝑚+𝑡 + 𝜇1𝐴𝑚 + 𝜇2𝐴𝑚(𝑚 + 𝑡) + 𝜇3

𝑇𝐿𝑚 

 
Point estimates were the same when including separate product terms for m and 

t. We used the predicted probabilities from these models to estimate the probability of 

survival at time 𝑚 + 𝑡 for individual 𝑖 under strategy 𝑎, �̂�𝑖,𝑚+𝑡
𝑎 , conditional on the 

individual’s baseline confounders 𝐿𝑖,𝑚.  

 

�̂�𝑖,𝑚+𝑡
𝑎 = ∏[1 −

𝑒𝑥𝑝(𝛼0,𝑘 + 𝛼1𝑎𝑚 + 𝛼2𝑎𝑚𝑘 + 𝛼3
𝑇𝐿𝑖,𝑚)

1 + 𝑒𝑥𝑝(𝛼0,𝑘 + 𝛼1𝑎𝑚 + 𝛼2𝑎𝑚𝑘 + 𝛼3
𝑇𝐿𝑖,𝑚)

𝑚+𝑡

𝑘=𝑚

] 

 
We standardized the survival probabilities at each time point to the empirical 

distribution of the confounders at baseline, 
 

�̂�𝑚+𝑡
𝑎 =

1

𝑛
∑ �̂�𝑖,𝑚+𝑡

𝑎

𝑛

𝑖=1

 

  
where 𝑛 is the number of non-unique individuals in all monthly trials. 
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Data availability 
 
This study is based in part on data from the Clinical Practice Research Datalink 
obtained under license from the UK Medicines and Healthcare products Regulatory 
Agency. The data are provided by patients and collected by the UK National Health 
Service (NHS) as part of their care and support. The interpretation and conclusions 
contained in this study are those of the authors alone. Because electronic health 
records are classified as sensitive data by the UK Data Protection Act, information 
governance restrictions (to protect patient confidentiality) prevent data sharing via public 
deposition. Data are available with approval through the individual constituent entities 
controlling access to the data. Specifically, the primary care data can be requested via 
application to the Clinical Practice Research Datalink (https://www.cprd.com). 
 
Code availability 
 
Access to the computer code used in this research is available by request to the 
corresponding author. 
 
Ethical approval 
 
The CPRD has been granted generic ethics approval for observational studies that 
make use of only anonymized data and linked anonymized National Health Service 
healthcare data (Multiple Research Ethics Committee ref. 05/MRE04/87). This study 
was approved by the Medicines and Healthcare Products Regulatory Agency 
Independent Scientific Advisory Committee (protocol 16_221, approved 14 February 
2017).  
 
Reporting summary 

Further information on research design is available in the Life Sciences Reporting 
Summary linked to this article. 

 
  

https://www.cprd.com/
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