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We propose a tensor network encoding the set of all eigenstates of a fully many-body localized system in
one dimension.Our construction, conceptually based on the ansatz introduced in Phys. Rev. B 94, 041116(R)
(2016), is built from two layers of unitary matrices which act on blocks of l contiguous sites. We argue that
this yields an exponential reduction in computational time and memory requirement as compared to all
previous approaches for finding a representation of the complete eigenspectrum of large many-body
localized systems with a given accuracy. Concretely, we optimize the unitaries by minimizing the
magnitude of the commutator of the approximate integrals of motion and the Hamiltonian, which can be
done in a local fashion. This further reduces the computational complexity of the tensor networks arising in
the minimization process compared to previous work. We test the accuracy of our method by comparing the
approximate energy spectrum to exact diagonalization results for the random-field Heisenberg model on 16
sites. We find that the technique is highly accurate deep in the localized regime and maintains a surprising
degree of accuracy in predicting certain local quantities even in the vicinity of the predicted dynamical
phase transition. To demonstrate the power of our technique, we study a system of 72 sites, and we are able
to see clear signatures of the phase transition. Our work opens a new avenue to study properties of the
many-body localization transition in large systems.
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I. INTRODUCTION

Many-body localization (MBL), a phenomenon conjec-
tured by Anderson in 1958 for disordered, interacting
quantum particles [1], occurs in an isolated quantum
system when it fails to reach thermal equilibrium. It was
shown to exist within perturbation theory for short-ranged
interacting models with sufficiently strong disorder for
states even at a finite energy density [2,3]. Strikingly, in
one-dimensional models, the entire many-body spectrum
can be localized [4,5], known as full many-body localiza-
tion (FMBL). As opposed to a thermalizing system where
the eigenstates exhibit volume law entanglement and
satisfy the eigenstate-thermalization hypothesis (ETH)
[6,7], for a one-dimensional system exhibiting FMBL,
all the eigenstates of the Hamiltonian are expected to obey
an area law [8,9].
The breakdown of thermalization lends itself to several

interesting phenomena that are absent in a thermalizing
system [10]. Topological and symmetry-breaking orders,
which are destroyed by thermal fluctuations at equilibrium,
can be extended to highly excited states at a finite energy
density because of MBL [11–15]. Logarithmic growth of

entanglement in the FMBLphasemay allow the construction
of logical qubits in an interacting system which can serve as
robust quantum memories [16,17]. Even the quantum phase
transition between the thermal and MBL phases is not
described by any of the conventional theories of phase
transition [18–21]. Recent developments in cold atoms
and various forms of synthetic quantummatter have allowed
the experimental study of the phenomena of thermalization
and its breakdown in a controlled manner [22–24].
Many of the features of FMBL can be understood in

terms of an extensive set of emergent quasilocal, exact
integrals of motion (qLIOM) [25–28]. Here, the phrase
quasilocal indicates that if we trace over the operator within
a region of size x around where the operator is localized, we
should obtain an operator proportional to the identity up to
corrections that decay as e−x=ξL with localization length ξL.
(We use the term quasilocal as compared to strictly local,
which would mean that, outside of a sufficiently large
finite-sized region, we obtain an operator exactly propor-
tional to the identity.)
A proof of the existence of qLIOMs for a strongly

disordered, one-dimensional spin-1=2 model shows that
this characteristic of the nonergodic phase is true, at least
deep in the MBL phase [29,30]. This emergent integrability
is successful in capturing much of the phenomenology in
1D, developed based on exact diagonalization of small
systems. But in the absence of numerics on sufficiently
large systems or a mathematical proof, its generalization to
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weaker disorder or higher dimensions remains under
intense investigation [31,32].
In the FMBL phase, the entire spectrum of the many-

body Hamiltonian can be described in terms of the quantum
numbers of the qLIOMs, as opposed to the case where there
is a many-body mobility edge in the spectrum [33–36].
As a consequence, all the eigenstates obey an area-law
of entanglement [8,9], which then allows the use of
highly efficient approximations involving tensor networks
[37–42]. The efficiency of these techniques is exemplified
for states with area-law entanglement, which can be
described numerically using exponentially fewer parame-
ters than are required for an arbitrary state in Hilbert space.
Such techniques are impressively (and provably) efficient
for describing gapped ground states in one dimension
[38,42]. Increasingly, similar techniques have been com-
putationally effective in two dimensions as well [41,43].
For FMBL systems, the area law holds not only for the
ground state but also for the entire spectrum.
Exploiting this area-law entanglement, excited eigen-

states of FMBL systems can be approximated efficiently as
matrix product states (MPS) [44]. Furthermore, the unitary
operator diagonalizing the entire Hamiltonian can be
represented as a tensor network, known as a spectral tensor
network [45]. The algorithm to construct such a spectral
tensor network proposed by Pekker and Clark does not
scale efficiently with system size [46]. Constructing the
unitary using a Wegner-Wilson flow approach also appears
to be limited to small system sizes [47]. A proposal with an
efficient scaling was given by Pollmann et al. using stacked
layers of unitaries, i.e., a quantum circuit, by minimizing
the fluctuations in the total energy [48]. It was suggested
that the accuracy of the approximation for a given chain
length can be increased by increasing the number of layers
(the depth of the quantum circuit). Compared to the
methods targeting eigenstates within an energy window
[49–52], this procedure is constructed to efficiently re-
present all eigenstates with sufficient accuracy, providing
access to dynamical properties of local observables.
In this work, we improve upon the ansatz from Ref. [48]

by increasing the size of the block of spins acted upon by
the unitaries while keeping the number of layers fixed at
two. This corresponds to a quantum circuit of fixed depth
with gates acting on several qubits. We provide analytic
arguments and show numerically that this gives rise to an
exponential improvement of the computational time and
memory requirements. Our scheme constitutes the first
scalable representation of the full set of eigenstates of
FMBL systems by tensor networks: Local observables can
be approximated with an error that decreases like an inverse
polynomial of the computational cost. We use a figure of
merit that is directly related to the qLIOMs and motivated
by a procedure introduced by Kim et al. to identify slow
operators in disorder-free nonintegrable models [53]. This
strongly reduces the computational cost of the tensor

network (TN) contractions needed to optimize our unitaries
compared to using the variance as a figure of merit (as
in Ref. [48]). For concreteness, we consider the one-
dimensional random-field Heisenberg model. We compare
the numerical performance of our scheme and the one
originally proposed by Ref. [48], even extending their study
to four layers (albeit with our figure of merit to improve
computational efficiency). We find our strategy to be both
more accurate and computationally efficient.
Specifically, we quantify the performance of our scheme

by minimizing the commutator of the Hamiltonian with the
approximate, local integrals of motion defined through our
TN ansatz. As we show, this figure of merit decomposes into
strictly local parts, which allows us to evaluate it with linear
cost in the system size, thus enabling us to reliably assess the
performance of our ansatz in the regime where exact
diagonalization is unavailable. We corroborate this by
comparing the optimized TN with exact diagonalization
results for 16 sites, where we observe that the numerical
value of the figure of merit indeed reflects how well the real
MBL energy spectrum is approximated. We find a very high
accuracy of our ansatz for unitaries acting on eight con-
tiguous sites and thus use the same procedure to tackle a
chain with 72 sites as a function of the disorder strength.
Remarkably, the ansatz fares extremely well for local
observables at weak disorder and close to the MBL-to-
thermal phase transition in this model. We use the fluctua-
tions in the half-cut entanglement entropy calculated with
this ansatz to estimate the location of the transition [36],
which is in agreement with the exact diagonalization studies.
In Sec. II, we define the model used to perform our

calculations and also highlight the phenomenological
features of the FMBL phase in one dimension. In
Secs. III and IV, we give a detailed description of the
tensor network ansatz and the figure of merit used to
diagonalize the full Hamiltonian efficiently. The numerical
results and their comparison to exact diagonalization are
presented in Sec. V. The scaling of the procedure with the
total number of spins and its performance close to the
MBL-thermal transition is also discussed in this section. In
Sec. VI, we present a summary of the results and future
directions for the method.

II. MODEL AND ITS PHENOMENOLOGY

We consider the canonical random-field Heisenberg
model defined on a spin-1=2 chain [4] of N sites with
open boundary conditions,

H ¼
XN−1

i¼1

ðJSi · Siþ1 þ hzi S
z
i Þ þ SzNh

z
N; ð1Þ

with Si ¼ 1
2
σi, and each of the hzi is chosen from the

uniform distribution bounded between ½−W;W�, where W
is called the disorder strength. The model is known to have

WAHL, PAL, and SIMON PHYS. REV. X 7, 021018 (2017)

021018-2



a dynamical phase transition into the MBL phase, where all
states are localized for disorder strength greater than Wc ≈
3.5 [4,33].
In the FMBL regime, the bare physical spins in the

model (also known as “p-bits”) can be unitarily trans-
formed into an extensive set of mutually commuting
quasilocal effective spins τzi (also known as “l-bits”), which
are expected to commute exactly with the Hamiltonian,

½H; τzi � ¼ ½τzi ; τzj� ¼ 0; ð2Þ

where τzi ¼ UσziU
†. Note that U is the unitary operator that

exactly diagonalizes the Hamiltonian. In the localized
phase, the unitary transformation U can be decomposed
into a sequence of local unitaries so that the l-bits develop
exponentially decaying tails away from site i [29]. More
mathematically,

∥Tri−r;i−rþ1;…;iþrðτzi − σzi Þ∥1 ≤ ae−r=ξL ; ð3Þ

with positive constants a, ξL for N ≫ r. We use the 1-norm
∥A∥1 ¼

P
jkjAjkj and consider the matrix representation of

τzi − σzi in a fixed basis. Note that ξL can be defined to be the
localization length of the MBL system where the trace is
taken over the collection of spins within a distance r of site
i. It is important to note that the definition of the
localization length is not unique. There can even be
multiple localization lengths, and some of them may not
diverge at the MBL-thermal transition [25].
According to Eq. (2), the Hamiltonian and the set of

l-bits fτzjg can be simultaneously diagonalized, where
every eigenstate is a product state in the l-bit basis.
Each eigenstate can be uniquely labeled by the eigenvalues
ij ¼ �1 of the set of l-bit operators fτzjg (j ¼ 1;…; N),
jψ i1i2…iN i. In the l-bit basis, the Hamiltonian can be
expressed in the following form,

H ¼
XN
i¼1

Jiτ
z
i þ

XN
i;j¼1

Jijτ
z
i τ

z
j þ

XN
i;j;k¼1

Jijkτ
z
i τ

z
jτ

z
k þ � � � ; ð4Þ

where the coefficients Jijk… typically decay exponentially
with the largest distance between two spins ji − jj occur-
ring in a particular cluster in the expansion. The probability
of a coefficient being substantially larger than the typical
value expected from this exponential decay is also expo-
nentially small [29].

III. TENSOR NETWORK ANSATZ

Tensor network states are believed to provide an
efficient representation of the ground states of local gapped
Hamiltonians. In other words, as the system size is
increased, the number of parameters required to appro-
ximate the ground-state wave function with a certain
fidelity (e.g., with at least 99% overlap) increases only

polynomially with the system size. For MBL systems with
sufficiently strong disorder (i.e., in the absence of a
mobility edge), the whole spectrum of eigenstates fulfills
the area law and thus can be efficiently represented by MPS
[44]. However, since the number of eigenstates is expo-
nential in the system size, for large N one can only tackle
the eigenstates in a certain energy window using MPS (see,
e.g., Refs. [49–51]). On the other hand, spectral tensor
networks are meant to encode an approximation to all
eigenstates at once, which is a desirable property if one
aims to calculate dynamical properties of local observables
in MBL systems. We build on the tensor network ansatz
proposed in Ref. [48]. It defines a unitary matrix ~U, which
approximately diagonalizes the Hamiltonian, in terms of
many 4 × 4 unitaries, which are stacked in several layers
and contracted as shown in Fig. 1.
In the following, we argue that, for this tensor network,

the approximation of local observables with a given
accuracy requires the computational resources to grow
superexponentially with the localization length. In contrast,
for the tensor network we suggest, they scale only
exponentially with the localization length. In addition,
for a fixed localization length, the error of local observables
is expected to decrease as the inverse of a polynomial
function in computational cost.
In Ref. [48], the best tensor network approximation is

found by minimizing the sum of the energy variances of all
approximate eigenstates j ~ψ i1…iN i. The computational cost
for the calculation of this quantity scales as 25n, where n is
the number of layers (note that we will introduce a figure of
merit below for which the minimization would only require
a computational cost of order 23n). However, it appears that
n needs to grow exponentially with the localization length
ξL in order to keep the accuracy of the approximation fixed
on average: Within distances smaller than ξL, there are no
particular restrictions on the elements of the unitary U that
diagonalizes the Hamiltonian. The number of real param-
eters required to describe the unitary within that range is
expected to typically scale as 22ξL . Therefore, in order to

FIG. 1. Tensor network ~U as proposed in Ref. [48] with n layers
of 4 × 4 unitaries fux;yg. Since the unitary ~U is supposed to
approximately diagonalize the Hamiltonian, the corresponding
approximate eigenstates j ~ψ i1;…;iN i are the states obtained by
fixing the lower open indices in the figure to be i1;…; iN .
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reproduce local observables with a given accuracy, of the
order of 22ξLN parameters are required. Since the number of
parameters of the tensor network in Fig. 1 is only
42Nðn=2Þ ¼ 8Nn, n is required to grow as 22ξL . It follows
that the computational resources are required to grow
superexponentially with ξL for a fixed accuracy. This
makes it hard to approach the transition into the delocalized
phase using the multilayer ansatz.
We propose to overcome this problem by increasing the

range of sites acted on by the building-block unitaries,
instead of varying the number of layers. Thus, we stick to
two layers of unitaries with l lower and upper “legs” (l is
even) contracted as shown in Fig. 2. Each unitary has 22l real
parameters; i.e., the total number of parameters is 22lþ1N=l.
Hence,l needs to growonly linearlywith ξL in order to keep
the accuracy fixed. The contraction cost of the tensor
network arising in the variational optimization of its uni-
taries scales only exponentially in l (as discussed in the
following section), which is an exponential improvement
over themultilayer ansatz.Moreover, for a fixed localization
length ξL, we anticipate the error of our approximation to
decrease as expð−l=ξLÞ because of Eq. (3), allowing us to
describe eigenstates more accurately closer to the MBL
transition. As the computational cost is exponential inl, this
corresponds to a decrease in the error of local observables as
the inverse of a polynomial function in computational
resources, which is typical for ground states using tensor
network states. On the other hand, for the multilayer
ansatz [48], based on the above argument, we expect
an error of order exp (− 2log2ðnÞ=ξL), which is computa-
tionally less efficient. If one chooses both l and n larger
than 2, the computational cost is approximately of order
exp (− llog2ðnÞ=ξL) since the above scaling argument also
holds if the unitaries act on several siteswithin themultilayer
ansatz: The number of parameters of the tensor network
would increase only linearly in the number of layers and thus
reduce the error of the approximation only as the inverse of a
polynomial while increasing the computational cost expo-
nentially. Hence, keeping the number of layers fixed at two
and investing computational resources only into longer
unitaries fares substantially better.
Finally, note that in both the ansatz of Ref. [48] and

in our approach, the number of parameters required to

represent the exact diagonalizing matrix U with a given
accuracy increases linearly with N in the FMBL phase.

IV. FIGURE OF MERIT

In order to find the unitary ~U as described by our tensor
network, which is as close as possible to the unitary U
exactly diagonalizing the MBL Hamiltonian, we define a
figure of merit that reflects the deviation between the two.
This can be achieved by defining the approximate l-bits
corresponding to ~U, ~τzi ¼ ~Uσzi ~U

†. If they were the exact
l-bits, they would commute with the Hamiltonian and with
each other. The latter property is fulfilled by construction,
so we define the error in our approximation as the sum of
the (squared) trace norms of the individual commutator of
~τzi with the Hamiltonian,

fðfux;ygÞ ≔
1

2

XN
i¼1

trð½H; ~τzi �½H; ~τzi �†Þ

¼
XN
i¼1

(trðH2Þ − trðð~τziHÞ2Þ): ð5Þ

In the following, we call f the sum of the commutator
norms (SCN), which will be our figure of merit. In order to
minimize f, we evaluate the right-hand side of Eq. (5),
which may naively appear exponentially hard in the
number of sites N. However, it is possible to break it
down into a sum of local terms, rendering the computa-
tional complexity linear in the system size. To that end, we
first express the Hamiltonian as a sum of terms hi acting on
two neighboring sites i, iþ 1, H ¼ P

N
i¼1 hi. Then, the last

term of Eq. (5),
P

N
i¼1 tr(ð~τziHÞ2), can be easily written as a

sum of tensor networks; see Fig. 3. This term can be further
decomposed into local parts as depicted in Fig. 4 (using
~τzi ¼ ~Uσzi ~U

†),

fðfux;ygÞ ¼ NtrðH2Þ −
XN
i¼1

XN−1

j;k¼1

trð ~Uσzi ~U
†hj ~Uσzi ~U

†hkÞ

¼ const −
XN=l

x¼1

fxðux;1; ux−1;2; ux;2Þ: ð6Þ

Here, fxðux;1; ux−1;2; ux;2Þ itself is a sum of tensor networks
that only depend on ux;1, ux−1;2, and ux;2, as well as the
Hamiltonian terms hj and the σzi operators that are con-
nected to those unitaries. Those tensor networks can be
contracted by multiplying matrices up to size 2lþ1 × 2l. As
explained in Appendix A, this results in a computational
cost for the calculation of each fxðux;1; ux−1;2; ux;2Þ which
scales as l323l, giving rise to an overall scaling of N23ll2

(as there are N=l terms fx). This scaling law is a result of
the figure of merit that we chose. On the other hand, the
minimization of the variance as in Ref. [48] requires the
contraction of a matrix product operator (MPO) and scales
as LD5χ2d4 (see their appendix), where L is the number of

FIG. 2. Construction of the unitary ~U in terms of unitaries ux;1,
ux;2 acting on l sites (in this example, l ¼ 4). Again, the
approximate eigenstates j ~ψ i1;…;iN i are the states obtained by
fixing the lower open indices in the figure to be i1;…; iN .
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tensors of the MPO, D is its bond dimension, χ is the bond
dimension of the MPO representing the Hamiltonian
(which does not depend on the block size l), and d is
the physical dimension of the MPO tensors. The most
efficient way to obtain such an MPO in our case is to cut
each unitary vertically through the middle by performing a
singular-value decomposition, giving rise to a number
of singular values and bond dimension of D ¼ 2l.
Afterwards, one blocks upper and lower layers together.
The physical dimension per tensor is then d ¼ 2l=2, leading
to a scaling of Nð27l=lÞ [since L ¼ ðN=2lÞ]. Our figure of
merit thus has a much lower computational complexity as l
is increased. Finally, we note that the extension of our
approach to higher dimensions is still numerically efficient

since then our figure of merit still decomposes into local
contributions. In contrast, calculating the variance would
require the contraction of a projected entangled pair state
[43], which cannot be done exactly for large system sizes.

V. NUMERICAL RESULTS

A. Optimization method

In the following section, we will approximate the
eigenstates of the Hamiltonian defined in Eq. (1). The
model possesses Uð1Þ symmetry (it conserves the total
spin-z component), ½H;

P
N
i¼1 S

z
i � ¼ 0. Furthermore, the

Hamiltonian is real in the σz basis. In conventional tensor
network states, symmetries of the model can be imposed on
the individual tensors [54,55]: Any tensor network state
that is invariant under a symmetry can be written as a
(possibly different) tensor network state, where all its
individual tensors form a projective representation of the
corresponding symmetry group; that is, they are invariant
up to a phase under the action of the symmetry. In doing so,
the dimensions of the tensor indices might have to be
increased by a factor that is independent of the system size.
The cost of variational optimization of the tensor network
states usually reduces tremendously by imposing such
symmetries on the tensors, as they become sparse and
have fewer variational parameters. We implement a
similar procedure for our spectral TN: We impose it to
be real by taking all tensors as real; i.e., its unitaries
are orthogonal matrices. To ensure that the total spin-z
component is conserved, each individual tensor ux;y is
assumed to leave the total spin z of the block invariant, i.e.,
½ux;y;

P
l
q¼1 Ŝ

z
q� ¼ 0, where Ŝzq is defined in the same

Hilbert space as ux;y. Graphically speaking, this means
that the sum of the spin-z components on the lower legs of
each tensor has to equal the sum of the spin-z components
of the upper legs (remember that all indices have dimension
two, corresponding to spin-1=2 particles). All tensor entries
whose indices do not fulfill this requirement are forced to
be zero. This leads to a block structure of the matrix, which
is obtained by grouping upper and lower legs together into
one single index each. Each of these blocks, say, uB, can be
parametrized by an antisymmetric real matrix AB,
uB ¼ eAB , making the unitaries real and Uð1Þ symmetric.
In order to carry out the optimization, we pick initial

values for the antisymmetric matrices AB parametrizing the
unitaries and optimize the unitaries individually by sweep-
ing from the left end of the chain to the right and back, until
convergence is achieved. Crucially, each such minimization
step requires only the evaluation of a few terms in the sum
of Eq. (6). As it turns out, faster convergence is achieved by
always optimizing two connected unitaries at once.
We use a quasi-Newtonian routine supplied with

the gradient with respect to the parameters contained in
the matrices AB. This gradient comes almost for free in the
contraction of the tensor network of Fig. 4 if one contracts

FIG. 3. Sum of tensor network contractions, which yields the
second term,

P
N
i¼1 tr(ðH~τzi Þ2), in Eq. (5). The multiplications

from left to right in Eq. (6) correspond to top to bottom in the
figure. The indices of the lower wiggly lines are to be contracted
with those of the corresponding upper wiggly lines. For a given
position i of the σz operator and arbitrary positions j, k of the two-
body Hamiltonian terms, all unitaries of the lower layer (i.e.,
un;1), apart from the ones directly connected to the σz operators,
cancel with their adjoints and can be replaced by identities (i.e.,
straight vertical lines). In the example in the figure, this
corresponds to all unitaries un;1 for n ≠ x. Furthermore, all
unitaries of the second layer (un;2) which are not directly
connected to the remaining ones of the first layer cancel and
can be substituted by identities. This implies that the xth
summand in Eq. (6) depends only on the unitaries uxþ1;1, ux;2,
uxþ1;2. The contraction corresponding to this term is shown in
Fig. 4.
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its tensors in the right order, as explained in more detail in
Appendix B.
As it turns out, the final SCN figure of merit depends on

the choice of the initial unitaries. For l ¼ 2, the best results
are obtained by initializing the unitaries as identities and for
larger l if they are initialized according to the optimal
tensor network obtained for smaller blocks. For l ¼ 4, 8,
we obtain

ulx;1 ¼ ð1 ⊗ ul=22x−1;2 ⊗ 1Þðul=22x−1;1 ⊗ ul=22x;1Þ; ð7Þ

ulx;2 ¼ 1 ⊗ ul=22x;2 ⊗ 1; ð8Þ

where 1 is the 2l=2-identity matrix. Note that the unitaries
obtained are also real and invariant under Uð1Þ symmetry.
For l ¼ 6, we could only initialize the unitaries with the
blocked optimal l ¼ 2 unitaries for a given disorder

realization. This corresponds simply to choosing ul¼6
x;y ¼

ul¼2
3x−3þy;y ⊗ ul¼2

3x−2þy;y ⊗ ul¼2
3x−1þy;y.

B. Comparison to exact diagonalization

In order to demonstrate the precision of our method for
efficiently representing U in the FMBL regime, we
performed the optimization defined in Sec. VA for a
system of size N ¼ 16 with disorder strength W ¼ 6 and
10 different disorder realizations using unitaries with
l ¼ 2, 4, 8 legs. We compare our results to the energies
and the eigenstates of the Hamiltonian obtained using exact
diagonalization [which was performed by taking advantage
of the Uð1Þ symmetry of the model]. The results are shown
in Figs. 5 and 6.

FIG. 4. Decomposition of the figure of merit (5) into local terms
resulting in Eq. (6). Again, the indices of the lower wiggly lines
are to be contracted with those of the corresponding upper wiggly
lines. The tensor network shown is obtained after replacing
mutually canceling unitaries in Fig. 3 by identities (vertical lines).
Those forming closed loops yield a factor of 2 each, which results
in the prefactor 2−Nþ2lþ2 of fx shown in the figure. Terms j, k,
where hj or hk are not connected to ux−1;2 or ux;2, yield
contributions that are independent of all unitaries ux;y and can
thus be neglected in the local definition of our figure of merit.
Note that the precise positions of σzi , hj, and hk depend on the
indices i, j, and k that are being summed over, and thus the
graphic depicts one example configuration. For details of our
contraction scheme, see Appendix A.

FIG. 5. Comparison of the optimized tensor network ~U for
l ¼ 2 (a), l ¼ 4 (b), and l ¼ 8 (c) with exact diagonalization for
N ¼ 16 and ten disorder realizations at W ¼ 6. The energy
differences ΔE were obtained by ordering the diagonal elements
of ~U†H ~U in each spin-z sector and subtracting them from the
ordered exact eigenvalues of the Hamiltonian H in the corre-
sponding spin-z sector. The plots show the concatenation of the
data of all spin-z sectors and disorder realizations. The optimized
SCN figure of merit was, on average, fl¼2=2N ¼ 1.011,
fl¼4=2N ¼ 0.194, fl¼8=2N ¼ 0.0203.
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In Fig. 5, the distribution of the differences between the
(ordered) diagonal elements of the matrix ~U†H ~U and the
exact energies (defined to be ΔE) are plotted for the chosen
values of l. The distribution narrows tremendously with
increasing l, with a sharp peak at ΔE ¼ 0. The mean of the
optimized value of the SCN figure of merit was
fl¼2=2N ¼ 1.011, fl¼4=2N ¼ 0.194, fl¼8=2N ¼ 0.0203,
showing a rapid decay with l. (For an explanation of the
normalization factor 2−N, see Sec. V C.) The values for the
individual disorder realizations are shown in Table I. The
calculation time for a single disorder realization is of the
order of 15 seconds for l ¼ 2, 10 minutes for l ¼ 4 and
4 days for l ¼ 8 on a single CPU. We also computed the
mean variance of the approximate eigenstates (the figure of
merit used in Ref. [48]),

ΔH2 ¼ 1

2N

X
i1…iN

ðhψ i1…iN jH2jψ i1…iN i

−hψ i1…iN jHjψ i1…iN i2Þ: ð9Þ

Note that ΔH2 averaged over the different disorder realiza-

tionswasΔH2
l¼2¼0.2476,ΔH2

l¼4 ¼ 0.0405, andΔH2
l¼8 ¼

0.0035, decaying in a way very similar to the SCN.
We find that the SCN reliably reflects the accuracy of our

approximation method and thus captures the extent to

which the Hamiltonian is diagonalized by the optimal
unitary matrix ~U. Therefore, for larger systems, where
exact diagonalization is unavailable, we can use the SCN in
order to assess the quality of the approximation by our
tensor network.
As a further corroboration, we computed the overlaps

between the exact eigenstates and the approximate ones
for l ¼ 8. The overlaps are, in general, very high [see
Fig. 6(a)]: More than 99% of them have more than 60%
overlap, with a strong peak close to an overlap of 1, which is
an extremely high accuracy given that the Hilbert space
dimension is 216 ¼ 65 536. To show that the local properties
of the eigenstates alsomatch to a high degree of accuracy,we
compare the distribution over all sites of the expectation
value of σzi evaluated in all the eigenstates. In Fig. 6(b), the
distributions resulting from exact diagonalization and the

FIG. 6. Comparison of the optimized tensor network ~U for
l¼8 with exact diagonalization for N ¼ 16, showing the data for
ten disorder realizations at W ¼ 6. The approximate eigenstates
are given by the columns of ~U. (a) Distribution of the overlap of
the exact and the matched eigenstates. (b) Distribution of the
expectation value of σzi over the sites and the eigenstates obtained
from exact diagonalization (light brown) and the TN (blue).

TABLE I. Top: Optimized SCN figure of merit f=2N for the
individual disorder realizations (column 1) and unitaries acting
on l ¼ 2, 4, 8 sites (columns 2 through 4) and four layers of
l ¼ 2 unitaries with imposed symmetries (column 5) and without
(column 6). The l ¼ 4 ansatz performs better for all disorder
realizations than the multilayer approach. Bottom: Comparison of
the variance ΔH [Eq. (9)] for the same categories (apart from the
asymmetric four-layer case, where we were not able to compute
the variance due to memory constraints). We also gather that the
values of the variance and the SCN are very closely related.

z}|{n ¼ 2 z}|{n ¼ 4;l ¼ 2

f=2N l ¼ 2 l ¼ 4 l ¼ 8
Four layers
(symmetries) Four layers

1 0.98 0.256 0.0564 0.778 0.497
2 1.19 0.388 0.0053 0.870 0.478
3 0.72 0.106 0.0222 0.630 0.202
4 0.69 0.135 0.0002 0.467 0.159
5 0.58 0.052 0.0051 0.433 0.222
6 1.32 0.218 0.0209 0.930 0.615
7 0.77 0.038 0.0019 0.527 0.243
8 1.48 0.268 0.0706 1.274 0.731
9 1.65 0.437 0.0198 1.006 0.540
10 0.74 0.043 0.0010 0.546 0.196
Mean 1.01 0.194 0.0203 0.746 0.388

ΔH l ¼ 2 l ¼ 4 l ¼ 8
Four layers
(symmetries)

1 0.239 0.0516 9.81 × 10−3 0.186
2 0.291 0.0862 9.34 × 10−4 0.208
3 0.173 0.0212 4.11 × 10−3 0.149
4 0.171 0.0253 3.01 × 10−5 0.116
5 0.144 0.0117 9.13 × 10−4 0.106
6 0.326 0.0431 2.97 × 10−3 0.223
7 0.189 0.0082 2.39 × 10−4 0.128
8 0.354 0.0538 1.22 × 10−2 0.302
9 0.407 0.0946 3.88 × 10−3 0.231
10 0.182 0.0098 1.94 × 10−4 0.134
Mean 0.248 0.0405 3.53 × 10−3 0.178
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spectral tensor network overlap to a remarkable precision,
showing that the method has indeed converged to the
eigenstates with the appropriate local features.
For comparison, we also optimized the unitaries using

the ansatz in Fig. 1 with four layers for the same ten
disorder realizations. This corresponds to the scheme
proposed in Ref. [48], extending their explicit numerical
study of a network of two layers to four layers (and also
using our figure of merit rather than theirs to reduce
computational time). We initialized the unitaries in one
series of calculations as identities and in another one with
the optimized two-layer result (choosing the remaining
unitaries as identities) and took the best four-layer result in
each individual case. The histogram of the error in energy is
shown in Fig. 7. The Uð1Þ symmetry and the fact that the
unitaries are real (orthogonal matrices) imply that there is
only one variational parameter per unitary. We find f̄=2N ¼
0.746 and thus little improvement compared to the two-
layer case [Fig. 5(a)]. The computation time per disorder
realization is of the order of 20 minutes.
We also carried out such an optimization without

imposing any symmetry on the unitaries; i.e., they are
parametrized by an arbitrary Hermitian 4 × 4 matrix Hx;y,
ux;y ¼ eiHx;y with 16 variational parameters per unitary. We
found that the figure of merit hardly improves over its
initial value, using a standard quasi-Newtonian minimiza-
tion (and minimizing four or more connected unitaries
forming a column at once). This result is due to the
minimization algorithm being stuck in (bad) local minima,
which appears to be another problem of the multilayer
approach. We managed to overcome this obstacle by the
following procedure: At each step of the sweep, several
completely random initial choices for the parameters of the

unitaries that are being varied are optimized individually
(along with their original parameters) and ranked against
each other; one is able to escape these local minima
and obtain much better results. By carrying out 32 of
such minimizations at each sweep step, we obtained
f0=2N ¼ 0.388, which is a significant improvement over
the two-layer case. However, the four-layer calculations
without imposed symmetries are much more computation-
ally intense, requiring of the order of 1 week per disorder
realization. This is of the same order of magnitude as the
l ¼ 8 calculations with two layers (note fl¼8=2N ¼
0.0203), while yielding worse accuracies than for l ¼ 4

(where fl¼4=2N ¼ 0.194). Hence, the potential landscape
of the multilayer ansatz, of which the algorithm has to find
the global minimum, is tormented by many local minima of
poor quality. As expected, we obtain much better numerical
results if computational resources are invested into “longer”
unitaries as compared to increasing the number of layers.
For a comparison of the figure of merit and the variance of
the individual disorder realizations, see Table I.
In summary, despite our efforts, we did not succeed

in making the multilayer l ¼ 2 network calculation as
accurate or computationally efficient as our multileg ansatz.
Thus, the numerical results corroborate our analytic argu-
ments that the FMBL system cannot be approximated as
efficiently and accurately by increasing the number of
layers compared to increasing the number of legs per
unitary. We also note that on relaxing the restriction of the
unitaries to be real and Uð1Þ symmetric for four layers, a
significant improvement is achieved, as the additional
parameters can partially compensate for the lack of
parameters that we conjectured.

C. Scaling with the system size

One of the primary objectives of this work is to establish
our ansatz for the description of fully many-body localized
systems. For a given point in the MBL phase, increasing the
system size does not require an increase in l to approxi-
mate the local properties of eigenstates with a constant
accuracy (averaged over disorder realizations). Therefore,
the SCN should detect a constant mismatch per lattice site
and thus increase linearly with the system size. However,
recall that it is defined as a trace of an operator in the
2N-dimensional Hilbert space; i.e., a mismatch that is not
affected by the sites far away is multiplied by the trace over
the identity operator corresponding to them, which grows
as 2N . As a result, the SCN averaged over many disorder
configurations should grow as N2N . We corroborated this
by optimizing our tensor network ansatz for l ¼ 2, 4, 6,
and 8, and system sizes in the range between N ¼ 12 and
72 for 100 disorder realizations for l ¼ 2, 4, 6, and 10 for
l ¼ 8, as shown in Fig. 8. We gather that, on average, f=2N

indeed increases linearly with system size for all choices
of l.

FIG. 7. Comparison of the optimized tensor network ~U using
four layers in the ansatz of Fig. 1 with exact diagonalization for
N ¼ 16 and the same ten disorder realizations as in Fig. 5 (i.e.,
W ¼ 6), the unitaries of the TN being Uð1Þ symmetric and real.
The energy differences shown have been calculated in each spin-z
sector separately and concatenated, also over disorder realiza-
tions. The improvement over Fig. 5(a) (l ¼ 2) is minuscule. The
average optimized SCN figure of merit was f̄=2N ¼ 0.747. (For
the full parametrization of the unitaries, we were not able to
produce the plot because of the limitations of virtual memory.)
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The results in Sec. V B show that the MBL eigenstates
are well represented by the optimized tensor network; i.e.,
by minimizing the SCN, we obtain an overall unitary
matrix ~U that approximately diagonalizes the Hamiltonian
to a very high accuracy for l ¼ 8. The linear dependence
on N of the optimized SCN [divided by the dimension of
the Hilbert space (2N)] suggests that, in the localized
region, expectation values of local observables in any
eigenstate can be approximated with an error that depends
only on l and not on the size of the system. Hence, our
method is able to approximate local properties of eigen-
states for large system sizes, where exact diagonalization is
not available. We note that while the full set of eigenstates
is encoded approximately in our tensor network, computing
the eigenspectrum from it would be exponentially hard, but
this is not required in practical calculations.

D. Scaling with the block length

The disorder dependence of the figure of merit (scaled by
2N) is shown in Fig. 9 for the different values of l at
N ¼ 72. The improvement of the accuracy with increasing
l can be gathered from Fig. 10: Deep in the localized
phase, the relevant quantity decays almost by an order of
magnitude from l ¼ 2 to l ¼ 4 and again from l ¼ 4 to
l ¼ 6. For l ¼ 8, the improvement is slightly less, pre-
sumably because our algorithm tends to get stuck in local

minima. (Note that the number of parameters per unitary is
6307 for l ¼ 8.) Nevertheless, we get by far the most
accurate results for l ¼ 8. As can be gathered from Fig. 10,
the results point to a polynomial decay with l in the

FIG. 9. Figure of merit, SCN, for N ¼ 72 as a function of
disorder strength W for l ¼ 2, 4, 6, 8. The same hundred (ten)
disorder configurations were taken for l ¼ 2, 4, 6 (l ¼ 8) and all
choices of W, adjusting only the overall prefactor of the random
magnetic fields. The error bars denote the error of the mean
calculated from the distribution over disorder realizations.

FIG. 8. Scaling of the SCN figure of merit as a function of
system size N for W ¼ 6 and 100 different disorder realizations,
optimized using unitaries of block sizes l ¼ 2, 4, 6 and ten
disorder realizations for l ¼ 8. For given N, the same hundred
(ten) disorder realizations were taken for all values of l. As
discussed in the main text, we expect f=2N ∝ N, which is
consistent with the numerical results. The error bars denote
the error of the mean calculated from the distribution over
disorder realizations. The inset shows an enlargement of the
data for l ¼ 6 and l ¼ 8. There, the symbol size is at least the
size of the error bars.

FIG. 10. Optimized SCN averaged over disorder realizations as
in Fig. 9 shown as a function of l for various disorder strengths
W. The error bars denote the error of the mean calculated from the
distribution over disorder realizations. The inset shows the same
data on a log-log plot (with symbol size at least as big as the error
bars). For W ¼ 8, 16, the decay of the SCN is approximately
exponential for l ¼ 2, 4, 6 but deviates for l ¼ 8, probably
because the algorithm tends to get stuck in local minima. For
W ¼ 0.5, 2, the decay with l is, to a good approximation, an
inverse power law (exponents −1.3 and −1.9, respectively).
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delocalized phase (W < 3), whereas in the localized phase
(W > 6), the decay with l is exponential, as expected.
Besides the fact that the approximation becomes worse

as one approaches the transition, the SCN does not show
any signature of the phase transition. In the following
subsection, we investigate in more detail the accuracy of the
eigenstates in the weakly disordered regime and the effects
of the approaching phase transition into the thermal phase.

E. Approaching the many-body
localization transition

Deep in the MBL phase, existence of qLIOMs makes it
amenable to approximate the eigenstates of large systems
with very high accuracy using TNs. As we approach the
transition into the thermal phase at weaker disorder, the
eigenstates become more entangled. The ansatz with a
larger number of legs is able to capture the regions of high
local entanglement, allowing the method to perform appre-
ciably well even close to the phase transition. In Fig. 11, the
distributions of the local observable σzi evaluated in all the
eigenstates of an N ¼ 12 system for 100 disorder realiza-
tions, at disorder strengthsW ¼ 2, 3, 4, and 6 are shown for
l ¼ 6. The average optimized SCN figure of merit
fl¼6=2N was 0.134, 0.078, 0.054, and 0.023, respectively.
The distribution evaluated using the approximate eigen-

states from the tensor network ansatz matches remarkably
well with the exact diagonalization results in the vicinity of
the MBL transition. The comparison with the data from
exact diagonalization is good even at disorder strength

W ¼ 2, which is expected to be on the “thermal" side of the
phase transition. However, we cannot expect this to be the
case if N is increased, as opposed to the localized phase,
where local observables can be reproduced with a constant
accuracy for fixed l. Instead, l would need to be scaled
with N to keep the accuracy fixed [48]. In this regime, the
eigenstates from the tensor network ansatz have larger
weight in the distribution at hσzi i ≈�1, which suggests that
the ansatz does not fully capture the local features of the
eigenstates. The finite number of legs in the local unitaries
of our tensor network ansatz enforces the qLIOMs to
always be approximately conserved but strictly local.
Thus, our TN ansatz cannot resolve whether there are
exactly conserved qLIOMs in the vicinity of the phase
transition.
Finally, we turn to an extremely sensitive test of the

approximate method’s ability to reproduce subtle details of
the MBL system. We evaluate the fluctuation in the half-cut
entanglement entropy σS (the standard deviation over
disorder realizations of the entanglement entropy), where
the entropy was averaged over all approximate eigenstates
for l ¼ 2, 4, 6 and N ¼ 12 for the TN and exact
diagonalization. We performed these calculations over a
wide range of disorder strengths. The quantity was evalu-
ated using 100 disorder realizations. In exact diagonaliza-
tion studies, this quantity has a peak at the MBL-ETH
transition, which is expected to diverge with system size
[36]. Although our ansatz cannot represent any volume-law
entangled states, it is expected to capture the entanglement
structure at length scales of order 2l. In Fig. 12, we

FIG. 11. Comparison of the eigenstates from the optimized TN
~U for l ¼ 6 and exact eigenstates from exact diagonalization for
N ¼ 12 and 100 disorder realizations at disorder strengths
(a) W ¼ 2, (b) W ¼ 3, (c) W ¼ 4, and (d) W ¼ 6. We present
the distribution of the expectation value of σzi over the sites,
eigenstates, and disorder realizations from exact diagonalization
(blue) and the TN (light brown).

FIG. 12. Standard deviation of the half-cut entanglement
entropy (σS) for 100 disorder realizations averaged over the
(approximate) eigenstates as a function of disorder strength for
the TN with l ¼ 2, 4, 6, and exact diagonalization. The system
size is N ¼ 12. The inset shows the average entanglement
entropy (S̄) for the four cases.
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indeed see a broad peak close to the value of disorder
strength, where exact diagonalization gives a relatively
narrow peak. As expected, at strong disorder, the exact
diagonalization and the TN (for l ¼ 4, 6) tend towards the
same value.
We also calculated the entanglement entropy averaged

over the approximate eigenstates as given by our tensor
network for system size N ¼ 72 as a function of disorder
strength W. For a specific disorder realization, the compu-
tational cost to calculate such an entropy is independent of
N and only depends on l: This is due to the fact that the
partial trace of j ~ψ i1…iN ih ~ψ i1…iN j gives rise to a reduced
density matrix whose nonzero eigenvalues are the same as
the ones of a reduced density matrix defined only on the
sites that are, at most, one tensor block away from the
entanglement cut, cf. Appendix C. This makes it possible to
average over all eigenstates efficiently.
In Fig. 13, we show the statistical mean and standard

deviation over 100 (10) disorder configurations of the
eigenstate-averaged entanglement entropy as a function of
W for l ¼ 2, 4, 6 (l ¼ 8). The curves of hσSicuts and hS̄icuts
shown are obtained after averaging over different entangle-
ment cuts to improve smoothness. The positions for the

respective entanglement cuts have been chosen such
that they are at least one tensor block away from the
boundaries of the system. We observe maxima in the region
2.5 ≤ W ≤ 3.5. Averaging over entanglement cuts com-
bined with the increased decay of hσSicuts at larger disorder
strength makes the peaks much more pronounced than the
N ¼ 12 case.
In the insets of Figs. 12 and 13, the average entangle-

ment entropy (S̄) increases as the disorder strength goes
down, but for N ¼ 12, this increase is still slower
compared to the exact eigenstates. In the quantum critical
regime, there are suggestions that the transition is driven
by a subcluster of spins that are weakly entangled [56].
With increasing system size, on the thermal side of the
transition, the size and the entanglement of the subcluster
grow with N, while on the localized side of the quantum
critical regime, the entanglement remains small. By
varying l and N in our TN ansatz, it may be feasible
to access this regime numerically, which is a question
suitable for future work.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have made several significant advances
in efficiently representing the entire set of eigenstates of
fully many-body localized systems. Besides improving
upon the tensor network ansatz proposed in Ref. [48],
we also optimize the network by minimizing a different
figure of merit (the SCN) given by the magnitude of the
commutator of the Hamiltonian and the approximate
qLIOMs produced by the tensor network ansatz. This
figure of merit can be evaluated by decomposing into
strictly local terms, leading to a much better scaling than the
previous figure of merit (cf. Fig. 4).
We have extended the two-leg, multilayer tensor network

ansatz for FMBL systems [48] to unitaries with several legs
while keeping the number of layers fixed at two. We have
shown that, compared to increasing the number of layers,
the extension to multiple legs (l-legs) is far more computa-
tionally efficient—obtaining (exponentially) higher accu-
racies for the same system size and computational cost.
By comparing the energies and eigenstates evaluated

using a TN to exact diagonalization for a chain of 16 sites,
we demonstrated that our figure of merit (SCN) reflects the
accuracy of our method. In the regime where the figure of
merit is small, the energy eigenvalues from the TN and
exact diagonalization match extremely well. Furthermore,
the distribution of expectation values of local observables
in the eigenstates also matches very well with the exact
diagonalization calculation. Therefore, this method is able
to represent all eigenstates simultaneously to a very high
degree of accuracy.
We observed that the SCN (normalized by 2N) increases

linearly with the system size. This shows that our method
only incurs a constant error per lattice site; i.e., by
implementing our scheme to larger systems, for fixed l,

FIG. 13. Standard deviation of the eigenstate-averaged half-cut
entanglement entropy, followed by an average over entanglement
cuts, hσSicuts (defined in the text), as a function of disorder
strength. The system size is N ¼ 72, and the calculations were
performed on 100 disorder realizations using the TN with l ¼ 2,
4, 6, and 10 disorder realizations using l ¼ 8. For l ¼ 6 and
l ¼ 8, the entanglement entropy was sampled over at least 1% of
all eigenstates, leading to an estimated relative error of about 5%
(marked by error bars) of the mean and standard deviation of the
entropies. The inset shows the corresponding eigenstate-averaged
entanglement entropy, followed by an average over entanglement
cuts (hS̄icuts). The errors in the inset are, at most, as big as the size
of the symbols.
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local observables can be calculated with a size-independent
accuracy. Hence, our approximation can be readily used for
large system sizes.
In the strongly disordered regime, the error as measured

by the SCN decreases exponentially with the number of
legs per unitary. At weaker disorder, on approaching the
MBL-ETH eigenstate transition, the local properties of
the eigenstates are well approximated even close to the
transition. For a large system of N ¼ 72 sites, we observed
peaks in the eigenstate-averaged fluctuation of the entan-
glement entropy for l ¼ 6, 8 at disorder strengths that are
slightly lower than the critical disorder strength Wc ≈ 3.5,
which is predicted to be the critical point using exact
diagonalization. This might indicate that exact diagonal-
ization mildly overestimates the critical disorder strength
due to finite-size effects.
The accurate construction of all eigenstates in the

FMBL phase and in the vicinity of the MBL-ETH
transition for large system sizes opens the door to study
several fascinating phenomena associated with the sub-
ject. As a by-product of the procedure, using our
optimized unitary, one directly obtains the approximate
qLIOM operators in the localized phase. The ability
to vary l and study eigenstates in the vicinity of the
MBL-ETH transition suggests that our procedure may be
able to capture some of the scaling properties on the
localized side of the quantum critical regime of the
transition. Given the efficiency of the method, it may
be feasible to scale the procedure to numerically address
the question of many-body localization in two dimen-
sions. Since MBL of Floquet systems have a structure
similar to that of static Hamiltonians, our method might
be generalized to study the spectrum of Floquet systems
exhibiting MBL as well.
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APPENDIX A: CONTRACTION SCHEME
OF OUR TENSOR NETWORK

The figure of merit (5) is decomposed into local terms
resulting in Eq. (6). The corresponding TN contraction is
the one shown in Fig. 4. Here, we explain how the TN can
be most efficiently contracted, resulting in a computational
cost that scales like l323l. The main idea is to block the
tensors of Fig. 4 together such that all the new tensors
correspond to matrices of size 2l × 2l (we will see that
some of them might be bigger by a factor 2). It is then
possible to contract the TN from left to right or right to left
while only multiplying matrices of this size. This process
corresponds to a computational cost of 23l, and since there
are 4l3 such terms in the sum, we obtain the claimed
overall scaling.
More specifically, we block ux;1, ux−1;2, and ux;2 with its

corresponding complex conjugate and the tensor between
the two, respectively. This is shown in Fig. 14: ux;1, σ

z
i , and

u†x;1 are contracted to form a new tensorQi. Note that u
†
x−1;2

and ux−1;2 are blocked together with whatever is in between

to form AðnÞ
j and u†x;2 and ux;2 similarly to form BðnÞ

j : If hj is

between u†x−1;2 and ux−1;2 but is not connected to u†x;2 and

ux;2 as well, u†x−1;2, hj, and ux−1;2 form the new tensor

Aðn¼1Þ
j (where the upper index is trivial). Then, u†x;2 and ux;2

are blocked directly together, resulting in Bðn¼1Þ
j ¼ 1. If hj

is connected to all four unitaries, we split it by a singular-

value decomposition, hj ¼
P

4
n¼1 h

ðnÞ
L ⊗ hðnÞR . For each of

the four summands, one can block u†x−1;2, h
ðnÞ
L , and ux−1;2 to

form AðnÞ
j and u†x;2, h

ðnÞ
R , and u†x;2 to form BðnÞ

j , respectively.

Finally, if hj is only connected to u†x;2 and ux;2, together

they are blocked to Bðn¼1Þ
j , whereas u†x−1;2 and ux−1;2 are

blocked directly together, resulting in Aðn¼1Þ
j ¼ 1. The

lower blocks AðmÞ
k and BðmÞ

k in Fig. 14 are defined in the
same way. The only two exceptions are j ¼ k ¼ ðx − 1

2
Þl

and j ¼ k ¼ ðxþ 3
2
Þl. In the earlier case, Að1Þ

j ¼ Að1Þ
k

obtains two additional indices (an extra upper and lower
leg in the graphical representation), which is why we call it
~A. In that case, Bð1Þ

j ¼ Bð1Þ
k ¼ 1. For j ¼ k ¼ ðxþ 3

2
Þl, the

assignment is the other way around, resulting in the big
tensor ~B.
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FIG. 14. (a) The left-hand side of the equation is the same as Fig. 4. Here, ux−1;2 and ux;2 have been moved across the upper boundary
coming back from the bottom due to the trace. The dashed orange boxes indicates how the tensors are blocked together in order to speed
up the contraction. Note that the precise positions of σzi , hj, and hk depend on the indices i, j, k that are being summed over; i.e., the
graphic on the left-hand side shows only one example configuration. The right-hand side is obtained after using the substitutions shown
in (b–f). Here,

P0
i;j;k is the same sum as on the left-hand side, with j ¼ k ¼ ðx − 1

2
Þl and j ¼ k ¼ ðxþ 3

2
Þl excluded. These terms

correspond to the second and third terms on the right-hand side, respectively. The most efficient way to contract the tensor networks on

the right-hand side is by contracting AðnÞ
j with AðmÞ

k ( ~Awith ~A) and BðnÞ
j with BðmÞ

k ( ~Bwith ~B) and afterwards the resulting tensors with the
Qi’s. The biggest matrices to be multiplied come from the second and third terms and are of size 2l × 2lþ1, corresponding to a cost of
23lþ1. There are l such contractions, respectively, but to leading order 4l3 contractions coming from the first term (multiplication of

2l × 2l matrices; i.e., the overall computational cost is of order l323l). (b) Definition of Qi. (c) Definition of Aðn¼1Þ
j¼ðx−1=2Þl. The upper

index (n) is trivial in that case. Note that Bðn¼1Þ
j¼ðxþ3=2Þl is defined analogously (for the Hamiltonian term hj¼ðxþ3=2Þl). (d) Definition of ~A for

j ¼ ðx − 1
2
Þl. Here, ~B is defined analogously. (e) Definition of Aðn¼1Þ

j , where the index (n) is trivial and ðx − 1
2
Þl < j < ðxþ 1

2
Þl. Note

that Bðn¼1Þ
j is defined analogously [for ðxþ 1

2
Þl < j < ðxþ 3

2
Þl]. For the j indices we just specified for (c–e), we have Bðn¼1Þ

j ¼ 1.

(f) For j ¼ ðxþ 1
2
Þl, AðnÞ

j and BðnÞ
j are obtained by using a singular-value decomposition of the term hj as shown on the left and blocking

u†x−1;2, h
ðnÞ
L , ux−1;2, and u†x;2, h

ðnÞ
R , ux;2, respectively. This case is the only one where the index (n) is nontrivial.
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APPENDIX B: CALCULATION
OF THE GRADIENT

As pointed out in Sec. VA, because of the presence
of Uð1Þ symmetry and the fact that the Hamiltonian
is real (in the σz basis), we parametrize the unitaries
in terms of real antisymmetric matrices AB corresponding

to the blocks B of conserved Uð1Þ charge. For l ≥ 4,
the optimization tremendously speeds up by provi-
ding the gradient of the function to be minimized. Hence,
the derivative is, calling famx;ygm the parameters
contained in all blocks AB corresponding to a certain
unitary ux;y,

∂fðfugÞ
∂amx;y ¼

8>>><
>>>:

−
∂fxðux;1; ux−1;2; ux;2Þ

∂amx;y if y ¼ 1

−
∂fxðux;1; ux−1;2; ux;2Þ

∂amx;y −
∂fxþ1ðuxþ1;1; ux;2; uxþ1;2Þ

∂amx;y ; if y ¼ 2:

ðB1Þ

In order to evaluate the derivatives on the right-hand side,
we contract the local tensor network of Fig. 4 as shown in
Fig. 15 and cut out the tensor that the derivative is taken of
at the very top or the very bottom, respectively, before
taking the overall trace indicated by wiggly lines. The
contraction is again most efficiently carried out using the
same blocking as in Fig. 14 (where the block from which
the unitary has been taken has to be modified). Since we cut
out a tensor with l lower and upper legs, the result of the
contraction is a 2l × 2l matrix, say, M. This matrix can be
used to obtain both fx by putting back the missing tensor,
fxðux;1; ux−1; ux;2Þ ¼ trðMux;yÞ, and the desired derivative,
ð∂fxðux;1; ux−1; ux;2Þ=∂amx;yÞ ¼ 4ReðtrðMð∂ux;y=∂amx;yÞÞÞ,
without the need for any additional contractions.

APPENDIX C: CALCULATION
OF ENTANGLEMENT ENTROPY

FOR LARGE SYSTEMS

The von Neumann entropy of an approximate eigenstate
j ~ψ i1…iN i for an entanglement cut through the middle of the
system is defined via its reduced density matrix

ρ ¼ trN=2þ1;…;Nðj ~ψ i1…iN ih ~ψ i1…iNijÞ ðC1Þ
and given by S ¼ −trðρ lnðρÞÞ. Here, ρ corresponds to the
tensor network contraction shown in Fig. 16(a) and can be
simplified by replacing unitaries that are contracted with
their adjoints by identities. We obtain a representation for ρ
in terms of the unitaries fu1;1; u1;2;…; uN=2l;1; uN=2l;2;
uN=2lþ1;1g. They define a new tensor network, which in
turn defines a state jϕi1;…iN=2þl

i, which is independent of the
indices iN=2þlþ1;…; iN . Therefore, we can write

ρ ¼ trN=2þ1;…;N=2þlðjϕi1…iN=2þl
ihϕi1…iN=2þl

jÞ: ðC2Þ
Calculating the von Neumann entropy of ρ directly would
still be exponentially hard in N=2. However, the von
Neumann entropy depends only on the eigenvalues λm

FIG. 15. The tensor network contraction shown results in
2−Nþ2lþ2M, with the 2l × 2l matrix M described in the main
text if the unitary of which the derivative is being taken is cut out
on the very top or very bottom (marked in red). The tensor
network can be contracted with the same computational scaling
as before (l323l) by using the same blocking as in Fig. 14. The

resulting blocks AðnÞ
j , BðmÞ

k , etc. are contracted in such an order
that the one which contains the unitary to be varied is contracted
with last. In other words, if ux;1 is being varied (which is

contained in the upper Qi), one first contracts AðnÞ
j with AðmÞ

k

and the resulting tensor with the lower Qi and subsequently with

the contraction of BðnÞ
j and BðmÞ

k .
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(m ∈ N) of ρ. If we carry out a Schmidt decomposition of
jϕi1…iN=2þl

i across the cut between sites N=2 and N=2þ 1,

jϕi1…iN=2þ1
i ¼

X
m

μmjϕðmÞ
L i ⊗ jϕðmÞ

R i; ðC3Þ

the desired eigenvalues are λm ¼ μ2m (μm > 0) since

ρ ¼
X
m

μ2mjϕðmÞ
L ihϕðmÞ

L j: ðC4Þ

The crux is that this has the same nontrivial spectrum as the
reduced density matrix [57]

σ ¼
X
m

μ2mjϕðmÞ
R ihϕðmÞ

R j

¼ tr1;…;N=2ðjϕi1…iN=2þl
ihϕi1…iN=2þl

jÞ
¼ trN=2−lþ1;…;N=2ðjφiN=2−lþ1…iN=2þl

ihφiN=2−lþ1…iN=2þl
jÞ;
ðC5Þ

where jφiN=2−lþ1…iN=2þl
i is defined only in terms of the

unitaries uN=2l;1, uN=2l;2, uN=2lþ1;1. Hence, S ¼
−trðρ lnðρÞÞ ¼ −trðσ lnðσÞÞ. Here, S depends only on the
indices iN=2−lþ1;…; iN=2þl and can be evaluated efficiently
for large N by calculating the reduced density matrix σ
shown in Fig. 16(b). The treatment of entanglement cuts at
other positions is analogous.
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