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Abstract

We study the two-locus-two-allele (TLTA) Selection-Recombination model from population ge-
netics and establish explicit bounds on the TLTA model parameters for an invariant manifold to
exist. Our method for proving existence of the invariant manifold relies on two key ingredients: (i)
monotone systems theory (backwards in time) and (ii) a phase space volume that decreases under
the model dynamics. To demonstrate our results we consider the effect of a modifier gene β on a
primary locus α and derive easily testable conditions for the existence of the invariant manifold.
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1. Introduction1

In diploids, during meiosis, genetic material is occasionally exchanged between the duplicated2

chromosomes due to a crossover among the maternal and paternal chromosomes, and the result is3

new combinations of genes in the resulting gametes. This phenomenon is called recombination4

(see for example, [1, 2, 3]), and it leads to genetic variation among the resulting offspring in which5

genotypes may appear in the gametes that were not possible by exact duplication of the parental6

chromosomes [4, 5].7

In the absence of selection, or other genetic forces, such as mutation or migration, recombi-8

nation is a ‘shuffling’ action that leads ultimately to linkage equilibrium where the frequency of9

gamete genotypes is simply the product of the frequencies of the alleles contributing to that geno-10

type. In allele frequency space this linkage equilibrium defines a manifold known as the Wright11

manifold which we denote by ΣW . When only recombination acts the Wright manifold is invariant,12

globally attracting, and analytic. It turns out that the Wright manifold is also invariant when selec-13

tion acts, provided that fitnesses are additive, so that there is no epistasis, and recombination may14

ISupported by the EPSRC (no. EP/M506448/1) and the Department of Mathematics, UCL.
∗Corresponding author.
Email addresses: steve.baigent@ucl.ac.uk (Stephen Baigent), belgin.seymenoglu.10@ucl.ac.uk

(Belgin Seymenoğlu)
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or may not be present. The geometry behind these facts was examined by Akin in his monograph15

[5].16

In the case of weak selection, when the linkage disequilibrium on the invariant manifold is small17

and changes slowly, the manifold is known as the Quasilinkage Equilibrium manifold (QLE). A18

number of authors have discussed the existence of the QLE when selection is small [6, 7, 8, 9],19

and also the implications for the asymptotic distribution of gametes [5]. Particularly relevant is20

[9] where the authors employ the theory of normally hyperbolic manifolds to show existence of21

the QLE manifold in a discrete-time multilocus selection-recombination model for small selection22

intensity. However, it is not known how far the QLE manifold persists when selection increases,23

nor when the strength of recombination diminishes.24

Here we are able to provide an improved understanding of persistence of an invariant manifold25

in the classical continuous-time two-locus, two-allele selection-recombination model [10] via a26

new approach that uses monotone systems theory. Using our approach we obtain explicit estimates27

for parameter values for which the manifold persists in a standard modifier gene model [11, 12, 13].28

When there is no selection, our key observation is that the recombination only model is actually29

a competitive system relative to an order induced by a polyhedral cone. In itself, this offers no30

more insight when recombination is the only genetic force in action because explicit forms for31

the evolving gamete frequencies are possible, and the invariant manifold is precisely the Wright32

manifold. However, when selection is included that is sufficiently weak relative to recombination,33

the model remains competitive for the same polyhedral cone. Then the work of Hirsch [14], Takáč34

[15], and others, suggests that the selection-recombination model should possess a codimension-35

one Lipschitz invariant manifold. This manifold is precisely the Wright manifold when the fitnesses36

are additive [16]. When fitnesses are not additive, provided that recombination remains strong37

relative to selection, the model remains competitive, and we use this to establish existence of a38

codimension-one Lipschitz invariant manifold. Moreover, we use that the volume of phase space39

is contracting under the model flow to show that the identified codimension-one invariant manifold40

is actually globally attracting.41

On the invariant manifold the dynamics can be written entirely in terms of the allele frequen-42

cies, and from these allele frequencies all other genetically interesting quantities can be calculated43

(since in building the model it is assumed that the Hardy-Weinberg law holds). If the attraction to44

the manifold is rapid then after a short transient the dynamics on the manifold is a good approxima-45

tion of the true dynamics. To show the true versatility of the dynamics on the invariant manifold, it46

is necessary to show exponential attraction and asymptotic completeness of the dynamics, i.e. that47

each orbit in phase space is shadowed by an orbit in the invariant manifold to which it is exponen-48

tially attracted in time (i.e. the manifold is an inertial manifold). We do not establish that here, but49

merely the weaker condition that the invariant manifold is globally attracting.50

When recombination is absent the resulting dynamics is gradient-like for the Shahshahani met-51

ric introduced in [17], as well as identical to that of the continuous-time replicator dynamics with52

symmetric fitness matrix [5, 4] and then the fundamental theorem of natural selection is valid:53

fitness is increasing along an orbit of gametic frequencies.54

When recombination is present, and fitnesses are additive, mean fitness increases [16, 5, 4].55
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If the recombination rate is small, and epistasis is present, generically orbits will also increase56

mean fitness. However, as recombination increases, it becomes more difficult to predict long-57

term outcomes as recombination can work either with or against selection. When recombination58

works against selection sufficient recombination can cause fitness to decrease. In fact, it is known59

[18, 19, 20] that for some selection-recombination scenarios there are stable limit cycles, which60

indicates that mean fitness does not always increase, and moreover nor does any Lyapunov function61

that might be a generalisation of mean fitness [5].62

2. The two-locus two-allele (TLTA) model63

Suppose both loci α and β come with two alleles: A, a for the locus α and B, b for the locus β.64

Hence there are four possible gametes ab, Ab, aB and AB; these haploid genotypes will be denoted65

by G1, G2, G3, G4, whose frequencies at the zygote stage (i.e. immediately after fertilisation) are66

P(ab) = x1, P(Ab) = x2, P(aB) = x3 and P(AB) = x4 respectively (we follow the notation of [4]).67

Here P(Gi) denotes the present frequency of the gamete Gi in an effectively infinite population of68

the 4 gametes G1,G2,G3,G4.69

We let Wi j denote the probability of survival from the zygote stage to adulthood for an indi-70

vidual resulting from a Gi-sperm fertilising a G j-egg. If the genotypes of the gametes from each71

parent is swapped, we expect the fitness to stay the same; thus we assume Wi j = W ji i, j = 1, 2, 3, 4.72

We also assume the absence of position effect, i.e. W14 = W23 = θ [8], since the full diploid geno-73

type of an individual obtained through combination of G1 and G4 gametes is identical to that of an74

individual resulting from G2 and G3 gametes instead, namely Aa/Bb [4]. It is possible to fix θ = 175

without loss of generality [21, 4, 8]; however we will not do so here. A derivation of the model76

(2.2) is given in [21].77

We use R = (−∞,+∞) and R+ = [0,+∞).78

The fitness matrix is the following symmetric matrix:

W =


W11 W12 W13 θ

W12 W22 θ W24
W13 θ W33 W34
θ W24 W34 W44

 , (2.1)

and the governing equations for the selection-recombination model for t ∈ R+ are

ẋi = fi(x) = xi(mi − m̄) + εirθD, i = 1, 2, 3, 4. (2.2)

Here mi = (Wx)i represents the fitness of Gi, while m̄ = x>Wx is the mean fitness in the gamete
pool of the population and D = x1x4−x2x3. Also included are the recombination rate 0 ≤ r ≤ 1

2 and
εi = −1, 1, 1,−1. When r = 0 we say that the model is one of selection only, or that recombination
is absent. The system (2.2) defines a dynamical system on the unit probability simplex ∆4 (the
phase space) defined by

∆4 =

(x1, x2, x3, x4) ∈ R4 : xi ≥ 0,
4∑

i=1

xi = 1

 . (2.3)
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We will denote the vertices of ∆4 by e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 =

(0, 0, 0, 1). Moreover, for each i, j ∈ I4, each edge connecting vertex ei with ej will be denoted
by Ei j. The linkage disequilibrium coefficient D = x1x4 − x2x3 is a measure of the statistical
dependence between the two loci α and β. Using P(a) to denote the frequency of allele a, P(ab) the
frequency of genotype ab, and so on, then [4] D takes the form

D = P(ab) − P(a)P(b).

Hence D = 0 if and only if
P(ab) = P(a)P(b),

with similar results also holding for each of Ab, aB and AB. When D = 0 the population is said to79

be in linkage equilibrium. The 2−dimensional manifold defined by linkage equilibrium D = 0 is80

known as the Wright Manifold and we denote it by ΣW (see, for example, Chapter 18 of [4]).81

The linchpin of this paper is a 2−dimensional invariant manifold (i.e. codimension-one) to82

which all orbits are attracted, and which will be denoted by ΣM. When fitnesses are additive and83

r > 0, ΣM = ΣW [4]. Our numerical evidence so far suggests that ΣM exists for a large range of84

values of the recombination rate r and fitnesses W. However, the existence of an invariant manifold85

has not previously been shown other than for weak selection (relative to r), weak epistasis [9],86

or additive fitnesses, or strong recombination, in the discrete-time case and it is not clear how87

persistence of ΣM depends on the recombination rate r and the fitnesses W.88

To begin the study of (2.2) it is first convenient to follow other authors [11, 12] and change
dynamical variables via Φ : ∆4 → R

3
+

x 7→ u = (u, v, q) = Φ(x) := (x1 + x2, x1 + x3, x1 + x4) . (2.4)

The mapping Φ has continuous inverse

Φ−1(u) =
1
2

(u + v + q − 1, u − v − q + 1,−u + v − q + 1,−u − v + q + 1) . (2.5)

Φ maps ∆4 onto a tetrahedron ∆ = Φ(∆4) ⊂ R3
+ given by

∆ = Conv {ẽ1, ẽ2, ẽ3, ẽ4} , (2.6)

where ẽi = Φ(ei), so that ẽ1 = (1, 1, 1), ẽ2 = (1, 0, 0), ẽ3 = (0, 1, 0), ẽ4 = (0, 0, 1), and Conv S89

denotes the convex hull of a set S .90

Remark 1. Other coordinate changes are possible, for example the nonlinear change of coordi-91

nates x 7→ u = (u, v,D). This has the advantage that the Wright manifold is flat, but now the92

new coordinates may not be not ideal for the detection of monotonicity (backwards in time) in the93

dynamics (to be discussed in section 5 below).94
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In the new coordinates (2.2) becomes

u̇ = F(u), (2.7)

and the new phase space is ∆. F = (U,V,Q) are cubic multivariate polynomials of u, v, q and95

are given explicitly in Appendix A. It is the system (2.7) that forms the focus of our study here,96

although occasionally we will revert back to (2.2).97

Figure 1 shows examples of dynamics of the TLTA model in the old and new coordinates. The98

Wright manifold is shown in (a) for simplex coordinates x and (b) the Wright manifold is shown99

in the new tetrahedral coordinates u. Notice that in (b), the new coordinates allow the manifold100

to be written as the graph of a function over [0, 1]2. (The manifold can also be written as the101

graph of a function in (a), but the construction is somewhat clumsy). In (c), (d) we also show102

an example of the TLTA model with positive recombination rate. Here we see that the invariant103

manifold is a perturbation of the Wright manifold (see [9] for an analysis of this perturbation as the104

QLE manifold for a discrete-time multilocus model using the method of normal hyperbolicity).105

Remark 2. For small values of r > 0, an attempt at numerically computing ΣM using the NDSolve106

function of Mathematica leads to a numerically unstable solution. The computed solution is also107

numerically divergent, which hints that ΣM may not exist for such values of r where selection108

dominates; an example is presented in Appendix B.109

3. Main result and method110

Our objective is to establish explicit parameter value ranges of recombination rate r and selec-111

tion W in the TLTA model that guarantee the existence of a globally attracting invariant manifold.112

113

Here we establish:114

Theorem 3.1 (Existence of a globally attracting invariant manifold). Suppose that the TLTA model115

(2.2) is competitive (relative to a polyhedral cone) and that a suitable phase space measure de-116

creases under the flow of (2.2). Then there exists a Lipschitz invariant manifold that globally117

attracts all initial polymorphisms.118

Our method is to first establish conditions for the TLTA model (2.7) to be a competitive system119

(see section 5 for information on competitive systems). This will be achieved by showing that there120

is a proper polyhedral cone KM with dual cone K∗M such that (2.7) is a K∗M−monotone system when121

time runs backwards. In establishing this, it is particularly fortuitous that the boundary of the graph122

of the Wright manifold in (u, v, q) coordinates is invariant under the TLTA dynamics. The invariant123

boundary then provides fixed Dirichlet boundary conditions for a computation of the invariant124

manifold as the limit φ∗(·) of a time-dependent solution φ(·, t) of a quasilinear partial differential125

equation (see equation (4.2) below). The global existence in time of φ(·, t) and convergence to126

a Lipschitz limit is guaranteed by K∗M−monotonicity of (2.7) backwards in time, which ensures127

confinement of the normal of the graph of φ(·, t) to KM.128
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(a) (b)

(c) (d)

Figure 1: (a) The Wright manifold (additive fitnesses) in x coordinates. (b) The Wright manifold in (u, v, q) coordinates.
(c) The invariant manifold (r > 0) in x coordinates. (d) The invariant manifold (r > 0) in (u, v, q) coordinates. (Param-
eters chosen: W11 = 0.1, W12 = 0.3, W13 = 0.75, W22 = 0.9, W24 = 1.7, W33 = 3.0, W34 = 2., W44 = 0.3, θ = 1.,
r = 0.3)
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4. Evolution of Lipschitz surfaces129

We will use Cγ([0, 1]2) to denote the space of Lipschitz functions on [0, 1]2 with Lipschitz
constant γ. Define the space of functions

B = {φ ∈ C1([0, 1]2) : graph φ ⊂ ∆, ∂graph φ = Ẽ12 ∪ Ẽ13 ∪ Ẽ42 ∪ Ẽ43, Ngraph φ ⊂ KM}, (4.1)

where ∂S denotes the (relative) boundary of a surface S and N(S ) denotes the normal bundle of130

S . The set B is nonempty as it contains (u, v) 7→ 1 − u − v + 2uv. Also, Ẽi j = Φ(Ei j). All func-131

tions in B have the same Lipschitz constant one, hence B is a uniformly equicontinuous family of132

functions, and their graph is always contained in ∆ so all function in B are bounded. Hence by the133

Arzelà-Ascoli Theorem, B is compact. Thus every infinite sequence of elements in B has a subse-134

quence that converges uniformly to a Lipschitz function in B. Our constructions will mostly involve135

sequences C1 function in B, and the limit function may only be differentiable almost everywhere.136

Let a smooth φ0 ∈ B be given. Typically we will take φ0 to correspond to the Wright manifold.
Then S 0 = graph φ0 is a connected and compact Lipschitz surface which is mapped diffeomorphi-
cally onto a new surface S t by the flow of (2.7) and S t is the graph of a function φt : [0, 1]2 → R

for small enough t. Let φ(u, v, t) = φt(u, v). Then similar to [22], we use a partial differential equa-
tion to track the time evolution of the function φ : [0, 1]2 × [0, τ0) → R+ = [0,∞) with the initial
condition φ(u, v, 0) = φ0(u, v) ∈ B. Here, τ0 is the maximal time of existence of φ as a classical
solution in B of the first order partial differential equation

∂φ

∂t
= Q(u, v, φ) − U(u, v, φ)

∂φ

∂u
− V(u, v, φ)

∂φ

∂v
, (u, v) ∈ (0, 1)2, t > 0, (4.2)

with smooth initial data φ0 ∈ B.137

Boundary conditions are also required that are consistent with the invariance of the edges Ẽ42,
Ẽ12, Ẽ13 and Ẽ43:

φ(u, 0, t) = 1 − u, i.e. P(B) = 0, (4.3)

φ(1, v, t) = v, i.e. P(a) = 0, (4.4)

φ(u, 1, t) = u, i.e. P(b) = 0, (4.5)

φ(0, v, t) = 1 − v, i.e. P(A) = 0. (4.6)

All four edges being invariant indicates that for all t > 0

∂graph φt = ∂graph φ0 = Ẽ12 ∪ Ẽ13 ∪ Ẽ42 ∪ Ẽ43. (4.7)

But ∆ is also forward invariant, hence, graph φt ⊂ ∆ for all t ∈ [0, τ0).138

We now have a partial differential equation for the evolution of a surface S t := graph (φ(·, ·, t)).139

Since we wish to recover an invariant manifold as Σt in the limit as t → ∞, we need that the solution140

φ(·, ·, t) : [0, 1]2 → R exists globally in t > 0, and that it remains suitably regular, say uniformly141

Lipschitz. We will achieve this goal by showing that the normal bundle of S t is contained in a142

proper convex cone for all t ≥ 0. As we show in the next section, it turns out that keeping the normal143

bundle of the graph contained within a proper convex cone is intimately related to monotonicity144

properties of the flow of (2.7).145
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5. Competitive dynamics - a brief background146

Before establishing when (2.2) is competitive, we give a brief background on continuous-time147

competitive systems. For simplicity we will present ideas in Euclidean space, although most of148

what we discuss in this subsection can be realised in a general Banach space (see, for example,149

[23]).150

We recall that a set K ⊆ Rn is called a cone if µK ⊆ K for all µ > 0. A cone is said to be proper
if it is closed, convex, has a non-empty interior and is pointed (K ∩ (−K) = {0}). A closed cone is
polyhedral provided that it is the intersection of finitely many closed half spaces; one example is
the orthant. The dual of K, is K∗ =

{
` ∈ (Rn)∗ : ` · x ≥ 0 ∀x ∈ K

}
. If K and F ⊆ K are pointed

closed cones, we call F a face of K if [24]

∀x ∈ F 0 ≤K y ≤K x ⇒ y ∈ F.

The face F is non-trivial if F , {0} and F , K. Given a proper cone K, we may define a partial151

order relation ≤K via x ≤K y if and only if y−x ∈ K. Similarly we say x <K y if and only if x ≤K y152

and x , y, while x �K y if and only if y − x ∈ intK, where intK is the nonempty interior of K. A153

set U ⊂ Rn is said to be p−convex if whenever x, y ∈ U and x < y then [x, y] := {z ∈ Rn : x < z <154

y} ⊆ U.155

Let U ⊂ Rn be open and p−convex, and H : R+ × U → Rn be continuously differentiable on
R+ × U. When K is a polyhedral cone (as in our application here) we say that the system

u̇ = H(t,u) (5.1)

is K-cooperative if for some α ∈ R (possibly 0), αI + DH(t,u) leaves the cone K invariant, i.e.156

(αI+DH(t,u))K ⊆ K for all u ∈ U and t ∈ R+ [23]. When x(0) ≤K y(0) and (5.1) is K−cooperative,157

x(t) ≤K y(t) for all t ∈ R+. Similarly we say that (5.1) is K-competitive if u̇ = −H(t,u) is158

K−cooperative. When (5.1) is K−competitive, if x(t) ≤K y(t) for t ∈ R+ for which both exist, then159

x(s) ≤K y(s) for all 0 ≤ s ≤ t.160

A simple way of checking whether for some α ∈ R that (αI + DH(t,u))K ⊆ K for all u ∈ U
and t ∈ R+ is to note that k ∈ K ⇔ ` · k ≥ 0 for all ` ∈ K∗ and hence that when k ∈ K,
(αI + DH(t,u))k ∈ K if and only if

∀k ∈ K, ` ∈ K∗, ` · (αI + DH(t,u))k ≥ 0. (5.2)

As this can also be written as

∀k ∈ K, ` ∈ K∗, k · (αI + DH(t,u)T)` ≥ 0

we conclude that (αI + DH(t,u))K ⊂ K if and only if (αI + DH(t,u)T)K∗ ⊂ K∗.161
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6. Conditions for the TLTA model to be competitive162

Now return to equation (2.7) and assume that there is an α ∈ R and proper (convex) polyhedral163

cone K such that αI − DFK ⊂ K, i.e. that the TLTA model (2.7) is competitive with respect to K.164

We will relate the invariance of the polyhedral cone K for αI − DF to properties of surfaces
that evolve in [0, 1]3 under the flow φt generated by (2.7). Let S 0 be a compact connected smooth
surface in [0, 1]3, and S t = φt(S 0) be the image of S 0 under the flow map φt. As stated in [22], the
governing equation for the time evolution of a vector n in the direction of the outward unit normal
at u(t) (evolving under (2.7)) is

ṅ =
(
Tr (DF(u(t)))I − DF(u(t))>

)
n, (6.1)

where F = (U,V,Q). (Note that n is not necessarily a unit vector.)165

The condition for the normal bundle of S t to remain inside a convex cone K for all time t is that166 (
Tr (DF(u(t)))I − DF(u(t))T)K ⊂ K, or in other words

(
Tr (DF(u(t)))I − DF(u(t))

)
K∗ ⊂ K∗ which167

is the condition that the original dynamics with vector field F is K∗−competitive, i.e. competitive168

for the polyhedral cone K∗ dual to K:169

Lemma 6.1. A cone K stays invariant under the flow of normal dynamics (6.1) if and only if the170

original dynamical system (2.7) is K∗−competitive.171

Returning to (2.7), at t = 0 the respective normals to Σt = φt(S 0) at the invariant vertices ẽ1, ẽ2, ẽ3, ẽ4
are

p1 = (−1,−1, 1) (6.2)

p2 = (1,−1, 1) (6.3)

p3 = (−1, 1, 1) (6.4)

p4 = (1, 1, 1). (6.5)

However, if we set u(t) = ẽ1 and n(0) = p1, it turns out that p1 is an eigenvector of −DF(u(t))>+172

Tr(DF(u(t)))I. As a result, the right hand side of Equation (6.1) equals a constant multiple of p1173

for all t ≥ 0, indicating that the direction of n(t) matches that of p1 for all time at the vertex ẽ1.174

Similarly, for i = 2, 3, 4 also, n(t) always shares the same direction as pi at ẽi.175

Thus let us generate a polyhedral cone KM from the four linearly independent vectors p1, p2,
p3 and p4:

KM = R+p1 + R+p2 + R+p3 + R+p4.

Using the formulae for p1,p2,p3 and p4 given by (6.2) to (6.5), we have for the dual cone

K∗M = R+α1 + R+α2 + R+α3 + R+α4,
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where

α1 = p1 × p2 = 2(0, 1, 1) (6.6)

α2 = p2 × p4 = 2(−1, 0, 1) (6.7)

α3 = p4 × p3 = 2(0,−1, 1) (6.8)

α4 = p3 × p1 = 2(1, 0, 1), (6.9)

although in what follows we drop the factors of 2 without loss of generality.176

The aim is to show that the normal bundle of graph φt in equation (4.2) stays in a subset of KM

for all time t ∈ [0,∞). The required condition is

−` · DF(u)>n ≥ 0 whenever ` ∈ K∗M,n ∈ ∂KM, ` · n = 0. (6.10)

In fact, in (6.10) we may restrict ourselves to the generators αi for KM:

−αi · DF(u)>n ≥ 0 whenever n ∈ ∂KM, αi · n = 0, i = 1, 2, 3, 4. (6.11)

Noting for example that, α1 · n = 0⇒ n = λ1p1 + λ2p2 for λ1 ≥ 0, λ2 ≥ 0 (and not both zero), and
repeating for α j, j = 2, 3, 4 we find that we require

−αi · DF(u)>p j ≥ 0 i, j = 1, 2, 3, 4, with i , j, (6.12)

which gives eight sufficient conditions for the normal bundle of the graph of φt to remain within
KM for all t > 0:

α1 · DF(u)>p1 = (p1 × p2) · DF(u)>p1 ≤ 0 (6.13)

α1 · DF(u)>p2 = (p1 × p2) · DF(u)>p2 ≤ 0 (6.14)

α2 · DF(u)>p2 = (p2 × p4) · DF(u)>p2 ≤ 0 (6.15)

α2 · DF(u)>p4 = (p2 × p4) · DF(u)>p4 ≤ 0 (6.16)

α3 · DF(u)>p4 = (p4 × p3) · DF(u)>p4 ≤ 0 (6.17)

α3 · DF(u)>p3 = (p4 × p3) · DF(u)>p3 ≤ 0 (6.18)

α4 · DF(u)>p3 = (p3 × p1) · DF(u)>p3 ≤ 0 (6.19)

α4 · DF(u)>p1 = (p3 × p1) · DF(u)>p1 ≤ 0. (6.20)

Our other key ingredient is DF(u)> which, in the original x = (x1, x2, x3, x4) coordinates, takes on
the following form

DF(u(x))> = rθ

 0 0 2x1 + 2x3 − 1
0 0 2x1 + 2x2 − 1
0 0 −1

 + MS (x), (6.21)
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where MS is a matrix whose entries are quadratic polynomials of x and the fitnesses W. We do not
give its explicit form here. However, we derive sufficient conditions for (6.13)-(6.20). For example,
(6.13) reduces to

2x4 [2x2 (W11 − 2W12 + W22) + 2x3 (W11 −W12 −W13 + θ)

+ 2x4 (W11 −W12 − θ + W24) − 2W11 + 2W12 + θ −W24] − 2θr(x3 + x4) ≤ 0.

We divide throughout by 2 and define r̂ = rθ, then rearrange to obtain

r̂(x3 + x4) ≥ x4 [2x2 (W11 − 2W12 + W22) + 2x3 (W11 −W12 −W13 + θ)

+ 2x4 (W11 −W12 − θ + W24) − 2W11 + 2W12 + θ −W24] .

But r̂ ≥ 0, and so r̂(x3 + x4) ≥ r̂x4, hence it suffices to consider

r̂x4 ≥ x4 [2x2 (W11 − 2W12 + W22) + 2x3 (W11 −W12 −W13 + θ)

+ 2x4 (W11 −W12 − θ + W24) − 2W11 + 2W12 + θ −W24]

or, rearranging,

0 ≥ x4 [2x2 (W11 − 2W12 + W22) + 2x3 (W11 −W12 −W13 + θ)

+ 2x4 (W11 −W12 − θ + W24) − 2W11 + 2W12 + θ −W24 − r̂]

which is obviously true for x4 = 0. Meanwhile, for x4 > 0 we can divide throughout by x4, which
yields

0 ≥ 2x2 (W11 − 2W12 + W22) + 2x3 (W11 −W12 −W13 + θ) + 2x4 (W11 −W12 − θ + W24)

− 2W11 + 2W12 + θ −W24 − r̂

= 2x2 (W11 − 2W12 + W22) + 2x3 (W11 −W12 −W13 + θ) + 2x4 (W11 −W12 − θ + W24)

+ (−2W11 + 2W12 + θ −W24 − r̂) (x1 + x2 + x3 + x4),

where the constant terms have been multiplied by
∑4

i=1 xi = 1. Finally, we can rearrange the
previous inequality to obtain

x1 (r̂ + 2W11 − 2W12 − θ + W24) + x2 (r̂ + 2W12 − θ − 2W22 + W24)

+x3 (r̂ + 2W13 − 3θ + W24) + x4 (r̂ + θ −W24) ≥ 0. (6.22)
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Repeating the entire procedure on each of (6.14) to (6.20) gives also

x1 (r̂ − 2W11 + 2W12 + W13 − θ) + x2 (r̂ − 2W12 + W13 − θ + 2W22)

+x3 (r̂ −W13 + θ) + x4 (r̂ + W13 − 3θ + 2W24) ≥ 0 (6.23)

x1 (r̂ + 2W12 − 3θ + W34) + x2 (r̂ − θ + 2W22 − 2W24 + W34)

+x3 (r̂ + θ −W34) + x4 (r̂ − θ + 2W24 + W34 − 2W44) ≥ 0 (6.24)

x1 (r̂ −W12 + θ) + x2 (r̂ + W12 − θ − 2W22 + 2W24)

+x3 (r̂ + W12 − 3θ + 2W34) + x4 (r̂ + W12 − θ − 2W24 + 2W44) ≥ 0 (6.25)

x1 (r̂ −W13 + θ) + x2 (r̂ + W13 − 3θ + 2W24)

+x3 (r̂ + W13 − θ − 2W33 + 2W34) + x4 (r̂ + W13 − θ − 2W34 + 2W44) ≥ 0 (6.26)

x1 (r̂ + 2W13 − 3θ + W24) + x2 (r̂ + θ −W24)

+x3 (r̂ − θ + W24 + 2W33 − 2W34) + x4 (r̂ − θ + W24 + 2W34 − 2W44) ≥ 0 (6.27)

x1 (r̂ − 2W11 + W12 + 2W13 − θ) + x2 (r̂ −W12 + θ)

+x3 (r̂ + W12 − 2W13 − θ + 2W33) + x4 (r̂ + W12 − 3θ + 2W34) ≥ 0 (6.28)

x1 (r̂ + 2W11 − 2W13 − θ + W34) + x2 (r̂ + 2W12 − 3θ + W34)

+x3 (r̂ + 2W13 − θ − 2W33 + W34) + x4 (r̂ + θ −W34) ≥ 0, (6.29)

where r̂ = rθ. Thus a sufficient condition for (2.7) to be K∗M−competitive is that inequalities (6.23)
to (6.29) hold for all x ∈ ∆4. Each of the inequalities (6.23) to (6.29) represents one row in a matrix
inequality of the form

Mx ≥ 0, (6.30)

where M is an 8 × 4 matrix that depends on W and r. M ≥ 0 (i.e. all entries of M are nonnegative)177

is a necessary and sufficient condition for (6.30) to hold, for all x ∈ ∆4.178

Hence it suffices to have M ≥ 0 to ensure that the normal bundle of the graph of φt is a179

subset of KM for all t > 0. The surfaces S t are normal to vectors of the form (n1, n2, 1), where180

−1 ≤ n1, n2 ≤ 1. Consequently, the Lipschitz constant can be bounded above by γ = 1, uniformly181

in t > 0, hence φt ∈ C1([0, 1]2).182

We conclude that M ≥ 0 is sufficient to have φt ∈ B when φ0 ∈ B.183

7. Existence of a globally attracting invariant manifold ΣM for the TLTA model184

For convenience, let the initial condition for (4.2) be φ0(u, v) = 1− u− v + 2uv; that is, suppose185

that graph φ0 = ΣW . Then φ0 ∈ B. If we assume M ≥ 0 holds, then the solution φt of (4.2)186

stays in B for all t > 0 if φ0 ∈ B. At t = 0, the outward normal to ΣW is in the direction of187

(−∇φ0, 1) = (1 − 2v, 1 − 2u, 1). Then α1 · (1 − 2v, 1 − 2u, 1) = 4(1 − u) ≥ 0, and similarly for αi188

with i = 2, 3, 4. Hence (−∇φ0(u, v), 1) ∈ KM for all (u, v) ∈ [0, 1]2. Therefore the normal bundle of189

the graph of φ0 is indeed contained in KM. Since B is compact, there exists a sequence of t1, t2, . . .190

with tk → ∞ as k → ∞ and a function φ∗ ∈ B such that φtk → φ∗ as k → ∞. The problem now is191
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to show that (i) graph φ∗ is invariant under (2.7) and (ii) graph φ∗ globally attracts all points in ∆.192

In fact, in our approach (i) will follow from (ii).193

Take some arbitrary smooth function ψ0 ∈ B not equal to φ0 and, as done with φ0, define194

ψt = Ltψ0, where ψt = ψ(·, ·, t) is the solution of the PDE (4.2) with initial data ψ(u, v, 0) = ψ0(u, v)195

for (u, v) ∈ [0, 1]2. The surface graphψt is the image of graphψ0 under the flow generated by (2.7).196

We will compare the two surfaces graphψt and graph φ∗ and our aim is to show that graphψt tends197

to graph φ∗ as t → ∞ (say in the Hausdorff set metric) by first showing that the volume between198

the two surfaces goes to zero as t → ∞.199

To this end let
epi f = {(u, v, q) ∈ R3 : q ≥ f (u, v)}

denote the epigraph of a function f and define the set

Gt = (epi φ∗) 4 (epiψt), (7.1)

where 4 denotes the symmetric difference between two sets. Informally speaking, Gt is the set of
all points trapped between the graphs of φ∗ and ψt. The volume of this Lebesgue measurable set
Gt is

vol(Gt) =

∫
Gt

dλ3, (7.2)

where λ3 denotes Lebesgue measure in R3. The Liouville formula states that [4]:

d
dt

[vol(Gt)] =

∫
Gt

∇u · F dλ3, (7.3)

where ∇u =
(
∂
∂u ,

∂
∂v ,

∂
∂q

)
. Hence ∇u · F < 0 would suffice to show that vol(Gt) is decreasing in200

t. As the volume is also bounded below by zero, vol(Gt) will converge to some limit; in fact,201

limt→0 vol(Gt) = 0 since ∇u · F is strictly negative.202

Lemma 7.1. Let f(x) denote the right hand side of (2.2) and F as in (2.7). Then

∇u · F = ∇x · f. (7.4)

Proof. Let us set up two more mappings; the first one being the projection

(x1, x2, x3, x4) = x 7→ Π4(x) = (x1, x2, x3).

Let Π4|∆4 be Π4 restricted to ∆4. Π4|∆4 is a diffeomorphism with inverse

Π4|
−1
∆4

(x′) = (x1, x2, x3, 1 − x1 − x2 − x3),

where x′ = (x1, x2, x3). Then define the second diffeomorphism from Π4(∆4) to ∆ as follows:

x′ 7→ u = Ξ(x′) = (x1 + x2, x1 + x3, 1 − x2 − x3),
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which has inverse

Ξ−1(u) =
1
2

(u + v + q − 1, u − v − q + 1,−u + v − q + 1).

Then Φ = Ξ ◦ Π4 (or Φ−1 = Π−1
4 ◦ Ξ−1).203

In (x1, x2, x3) coordinates with x4 = 1 − x1 − x2 − x3, the equations of motion (2.2) become

ẋi = gi(x1, x2, x3) = fi(x1, x2, x3, 1 − x1 − x2 − x3), i = 1, 2, 3. (7.5)

Thus

∇x′ · g =

3∑
i=1

∂gi

∂xi
=

3∑
i=1

∂ fi
∂xi
−

3∑
i=1

∂ fi
∂x4

=

4∑
i=1

∂ fi
∂xi
−

4∑
i=1

∂ fi
∂x4

= ∇x · f −
∂

∂x4

 4∑
i=1

fi

 .
But

∑4
i=1 fi = 0, so that

∇x′ · g = ∇x · f. (7.6)

Meanwhile,
g(x′) = (DΞ(x′))−1F(Ξ(x′)),

which is the definition of the systems (7.5) and u̇ = F(u) being smoothly equivalent, with Ξ as the
diffeomorphism [25]. However,

DΞ(x′) =

 1 1 0
1 0 1
0 −1 −1

 ⇒ (DΞ(x′))−1 =
1
2

 1 1 1
1 −1 −1
−1 1 −1


which are constant matrices. Also,

Dg(x′) = (DΞ)−1D(F(Ξ(x′))),

and the Chain Rule yields
Dg(x′) = (DΞ)−1DF(Ξ(x′)))DΞ. (7.7)

But
∇x′ · g = Tr(Dg(x′)),

so by taking the trace on both sides of (7.7), we obtain

∇x′ · g = Tr((DΞ)−1DF(Ξ(x′))DΞ)

= Tr(DF(u))

= ∇u · F,

and finally
∇u · F = ∇x′ · g,

which, combined with (7.6), gives the desired result.204
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We conclude that it suffices to seek conditions for the right hand side of (7.4) to be negative to205

ensure the volume of Gt is decreasing.206

Recall that a matrix A is said to be copositive if x>Ax ≥ 0 for x > 0.207

Lemma 7.2. When r > 0 the volume of Gt in (7.1) is strictly decreasing whenever the matrix −W′208

given by W′i j = Wii − 6Wi j −
∑4

k=1 Wk j is copositive.209

Proof. We compute

∇x · f =

4∑
i=1

[(mi − m̄) + xi(Wii − 2mi)] − rθ

=

4∑
i=1

(Wiixi + mi) − 6m̄ − rθ

<

4∑
i, j=1

Wiixix j +

4∑
k=1

mk − 6
4∑

i, j=1

Wi jxix j

=

4∑
i, j=1

(
Wii − 6Wi j

)
xix j +

4∑
k=1

mk

=

4∑
i, j=1

(
Wii − 6Wi j

)
xix j +

4∑
j,k=1

Wk jx j

=

4∑
i, j=1

(
Wii − 6Wi j

)
xix j +

4∑
i, j,k=1

Wk jxix j

=

4∑
i, j=1

Wii − 6Wi j +

4∑
k=1

Wk j

 xix j

=

4∑
i, j=1

W′i jxix j. (7.8)

So we arrive at the requirement x>W′x ≤ 0 for x > 0, where

W′i j = Wii − 6Wi j +

4∑
k=1

Wk j. (7.9)

Hence the righthand side of (7.8) is negative if and only if the matrix −W′ is copositive.210

Remark 3. There are necessary and sufficient conditions for a 3× 3 matrix being copositive [26],211

but no known counterpart for 4 × 4 matrices. For −W′ to be copositive, each 3 × 3 submatrix of212

−W′ would need to be copositive, but this would be cumbersome to check, and we will not pursue213

it here.214
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Here we will use the sufficient condition: Verify that all components of W′ are nonpositive, i.e.

Wii ≤ 6Wi j −

4∑
k=1

Wk j ∀ i, j = 1, 2, 3, 4. (7.10)

Actually, it suffices to check only the largest component of W′.215

Remark 4. For variations on (7.10) we may also explore the existence of Dulac functions σ : ∆→216

R+ for which ∇u · (σF) is single signed in ∆.217

Remark 5. The question arises: Are alternative ways of showing global convergence to the graph218

of φ∗? That is, are there methods that do not require an application of Liouville’s theorem, and219

therefore do not require the inequality (7.10) in addition to M ≥ 0 (6.30)? Consider, for example,220

the treatment of carrying simplices which are codimension-one invariant manifolds of competitive221

population models, where global attraction usually requires only mild additional conditions beyond222

competitiveness (see, for example, [27, 28, 29, 30]). In the continuous time case, in his seminal223

paper on carrying simplices [14], Hirsch merely adds to competition (that the per-capita growth224

function has all nonpositive entries) the stronger condition that at any nonzero equilibrium the225

per-capita growth function has all negative entries) (although as stated in [28], the proof is not226

complete and we are not aware of a published correction).227

Lemma 7.3. Suppose that for the volume Gt defined by (7.1) we have limt→∞ vol(Gt) = 0. Then228

ψt converges pointwise to φ∗.229

Proof. Suppose, for a contradiction that ψt does not converge pointwise to φ∗. Then ∃ u, v ∈
[0, 1] ∃ ε > 0 ∀c∃t > c such that |ψt(u, v) − φ∗(u, v)| ≥ 2ε. We can fix c = 0. Moreover, ψt(u, v) =

φ∗(u, v) for each of u = 0, 1 and v = 0, 1. Therefore we arrive at

∃ u, v ∈ (0, 1) ∃ ε > 0 ∃t > 0 |ψt(u, v) − φ∗(u, v)| ≥ 2ε. (7.11)

Define pc = (u, v, 1
2 (ψt(u, v) +φ∗(u, v))) and p± = pc ± (0, 0, l), where l = 1

2 |ψt(u, v)−φ∗(u, v)|. Note
that

1
2

(ψt(u, v) + φ∗(u, v)) ± l = ψt(u, v) or φ∗(u, v),

so in fact p± = (u, v, q±) where q+ = max(ψt(u, v), φ∗(u, v)) and q− = min(ψt(u, v), φ∗(u, v)).230

We set Kice =

{
x ∈ Rn : x3 ≥

√
x2

1 + x2
2

}
(‘ice’ for ice-cream cone), and define

p− + Kice =
{
p− + v : v ∈ Kice

}
, p+ − Kice =

{
p+ − v : v ∈ Kice

}
.

and seek an open ball B(pc, ρ) such that B(pc, ρ) ⊂ K̃ ⊂ Gt where K̃ = (p− + Kice) ∩ (p+ − Kice)
and ρ = minv∈∂K̃‖v−pc‖2, or by symmetry of p−+ Kice and p+−Kice, ρ = minv∈∂(p−+Kice)‖v−pc‖2.
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Translating these sets by (−p−) shifts p− to the origin, while pc and ∂(p− + Kice) are shifted to
(0, 0, l) and Kice respectively. Then

ρ = minv∈∂Kice‖v − (0, 0, l)‖2. (7.12)

Put v = (ũ, ṽ, q̃). Then (7.12) is solved by minimising

ũ2 + ṽ2 + (q̃ − l)2, (7.13)

subject to the constraint q̃2 = ũ2 + ṽ2, which we use to rewrite (7.13) in terms of q̃ only:

q̃2 + (q̃ − l)2,

whose minimum occurs at q̃ = l/2. Hence

ρ =

√(
l
2

)2

+

(
−

l
2

)2

=
l
√

2
,

but by (7.11), l ≥ ε, so choose ρ = ε√
2
. Hence B(pc, ρ) ⊂ Gt, and so for all t > 0:

vol(Gt) ≥ vol(B(p, r)) =
4π
3

r3 =
π
√

2
3

ε3 > 0,

yielding ∃ ε > 0 ∀t > 0 vol(Gt) ≥ π
√

2
3 ε3 which contradicts our earlier assumption that vol(Gt)231

is decreasing and tends to 0 as t → ∞.232

We therefore conclude that for any smooth ψ0 ∈ B, ψt → φ∗ pointwise on [0, 1]2. However, for233

all t > 0, ψt is a (smooth) Lipschitz function, with Lipschitz constant at most 1, on the compact234

set [0, 1]2, thus pointwise convergence is sufficient to ensure uniform convergence to φ∗. We set235

ΣM = graph φ∗.236

To show global convergence of each point (u0, v0, q0) ∈ ∆ to ΣM, we first show global conver-237

gence of each point (u0, v0, q0) ∈ int∆ to ΣM. We need a lemma to show that given (u0, v0, q0) ∈238

int∆, there exists a ψ0 ∈ B such that q0 = ψ0(u0, v0)), i.e. the interior point (u0, v0, q0) ∈ graphψ0.239

Lemma 7.4. Given (u0, v0, q0) ∈ int∆ there exists a ψ ∈ B such that ψ(u0, v0) = q0.240

Proof. Consider the following piecewise linear construction. Let P = (u0, v0, s) ∈ int∆ and S 1 be241

the convex hull of the 3 points P, (1, 0, 0), (1, 1, 1), S 2 the convex hull of the points P, (0, 1, 0), (1, 1, 1),242

S 3 the convex hull of P, (0, 1, 0), (0, 0, 1) and S 4 the closed convex hull of P, (1, 0, 0), (0, 0, 1). Take243

ψ0 : [0, 1]2 → [0, 1] to be the piecewise linear function whose graph is ∪4
i=1S i. ψ0 has constant244

gradient everywhere, except along lines that join (u0, v0) to a vertex of [0, 1]2.245

Consider, for example, the section S 1. The outward normal on S 1 is in the direction of n1 =246

(P − (1, 0, 0)) × (P − (1, 1, 1)) = (s − v0, u0 − 1, 1 − u0). We require that n1 ∈ KM, or equivalently247
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that Li := αi · n1 ≥ 0 for all i = 1, 2, 3, 4 which leads to L1 ≡ 0, L2 = 1 − s − u0 + v0 ≥ 0,248

L3 = 2(1 − u0) ≥ 0 and L4 = 1 + s − u0 − v0 ≥ 0. Each point P ∈ int∆ can be written as249

P = µ1(1, 0, 0) + µ2(0, 1, 0) + µ3(0, 0, 1) + µ4(1, 1, 1) where µ1, µ2, µ3, µ4 > 0 and
∑4

i=1 µi = 1. Then250

L2 > 0 as u0 ∈ (0, 1) and L2 = 2µ2 > 0, L3 = 2µ3 > 0. Hence n1 ∈ KM. Similarly for the other251

sections S 2, S 3, S 4. Hence where the normal exists to the graph of ψ0, it belongs to KM.252

Now we smooth ψ0. We consider φ(u, v, t) = 1−u−v+2uv+
∑∞

k=0 Ak(φ0) sin(kπu) sin(kπv)e−2k2π2t.253

Then φ satisfies the heat equation with Dirichlet boundary conditions equivalent to (4.3) - (4.6).254

Here the coefficients Ak(φ0) are found from the initial condition φ0(u, v) = φ(u, v, 0). Now choose255

s in the interval I = (q0 − δ, q0 + δ) for δ > 0 small enough that (u0, v0, s) ∈ int∆ for all s ∈ I.256

For each s ∈ I, there is a smooth solution φs(·, ·, t) that passes through (u0, v0, s) at t = 0. For257

t = ε > 0 sufficiently small q0 ∈ {φs(u0, v0, ε) : s ∈ I}. If s0 ∈ I is such that q0 = φs0(u0, v0, ε)258

we set ψ(u, v) = φs0(u, v, ε). By construction ψ is smooth, satisfies the boundary conditions and259

ψ(u0, v0) = q0. Lastly we must check that the normal bundle of the graph of ψ belongs to KM,260

i.e. αi · (−ψu − ψv, 1) ≥ 0 for (u, v) ∈ (0, 1)2 and i = 1, 2, 3, 4. This is not immediate from small261

perturbation arguments since α1 · n1 ≡ 0. However, we note that φu(·, ·, t) satisfies ∂φu
∂t = ∆φu, and262

similarly for φv so that ∂ζ
∂t = ∆ζ where ζ(u, v, t) = ` · (−φu(u, v, t),−φv(u, v, t), 1) for any constant263

` ∈ K∗M. ζ(u, v, 0) ≥ 0 for all (u, v) ∈ (0, 1)2 and ` ∈ K∗M, so since the semigroup of operators for264

the heat equation is positivity preserving, ζ(u, v, t) ≥ 0 for all t ≥ 0 which shows that the normal265

bundle of the graph of φ is a subset of KM for all t ≥ 0. We conclude that ψ ∈ B.266

Now consider points (u0, v0, q0) ∈ ∂∆. Recall that x ∈ ∂∆4 if and only if x1x2x3x4 = 0 and267

that Φ−1(∂∆) = ∂∆4. Suppose that x1 = 0. Then ẋ1 = rθx2x3 ≥ 0, and on the interior of the face268

where x1 = 0 we have ẋ1 > 0. Similarly we establish ẋi > 0 on the interior of the face of ∆4 where269

xi = 0 for i = 1, 2, 3, 4. Hence all points on the interior of the faces of ∆4 move inwards under the270

TLTA flow (2.2). This implies that all points interior to faces of ∆ move inwards under the flow271

(2.7). Next we must consider the edges of ∆4 which map under Φ to the edges of ∆. For example,272

on Ẽ14 we have q̇ = x1m1 + x4m4 − m̄ − 2rθx1x4 ≤ 0 with equality if and only if x1 = 1, x4 = 0 or273

x4 = 1, x1 = 0 and these two points are invariant vertices that belong to graph φ∗. Similarly, on Ẽ23274

we have q̇ = 2rθx2x3 ≥ 0 with equality if and only if x2 = 1, x3 = 0 or x2 = 0, x3 = 1 and again275

these are two vertices that belong to graph φ∗. Hence non-vertex points of boundary edges Ẽ14 and276

Ẽ23 move into the interior of ∆4 under flow and hence points on q = 1, u = v and q = 0, v = 1 − u277

move inwards in ∆ under the flow (2.7). Finally the remaining edges Ẽ12, Ẽ13, Ẽ42, Ẽ43 of ∆ are278

invariant and belong to graph φ∗ by (4.7).279

We conclude that either (u0, v0, q0) ∈ int∆, in which case lemma 7.4 immediately applies, or280

(u0, v0, q0) ∈ ∂∆ and moves inwards under the flow (2.7) so that lemma 7.4 can then be applied,281

or (u0, v0, q0) ∈ ∂∆ belongs to the invariant boundary ∂graphφ∗ = Ẽ12 ∪ Ẽ13 ∪ Ẽ42 ∪ Ẽ43. Hence282

for each t > 0, the point (u(t), v(t), q(t)) on the forward orbit through (u0, v0, q0) under (2.7) will283

converge onto ΣM because ψt → φ∗ uniformly.284

To conclude, if we can find a suitable condition on r and W such that (7.10) holds and M ≥ 0,285

then there exists a globally attracting Lipschitz invariant manifold ΣM with (relative) boundary286

corresponding to the union of the four edges E12, E13, E42 and E43. This establishes Theorem 3.1.287
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Remark 6. It would be interesting to establish conditions on W and r for which ΣM is a differ-288

entiable manifold. (A similar question was asked by Hirsch in the context of Carrying Simplices289

[14]). To the best of our knowledge the smoothness of a carrying simplex on its interior is currently290

an open problem). One possible approach might be to investigate when ΣM is actually an inertial291

manifold, and employ the theory of Chow et. al. [31].292

Remark 7. Our method does not show that ΣM is asymptotically complete (i.e. we have not293

shown that for each (u0, v0, q0) ∈ ∆ there exists an orbit in ΣM which ‘shadows’ the orbit through294

(u0, v0, q0)). If ΣM were an inertial manifold it would be asymptotically complete [32]. In the ab-295

sence of selection (or for weak selection [9]), the Wright manifold is an inertial manifold, and so296

is asymptotically complete (as can be shown using explicit solutions when r > 0 and W is the zero297

matrix).298

8. An example: The modifier gene case of the TLTA model299

The two-locus two-allele (TLTA) model has widely been used (for example, [12, 11, 13]) to300

investigate the effect of a modifier gene β on a primary locus α, in the context of Fisher’s theory301

for the evolution of dominance [33]. In many cases the dynamics of the TLTA model is well-302

understood [12, 11, 13]. Our use of the modifier gene case of the TLTA model is not to provide303

new results on equilibria and their stability basins, but rather to demonstrate how our method works304

through a computable example. Using our method we can obtain explicit estimates on the range305

of recombination rates and selection coefficients for a 2−dimensional globally attracting invariant306

manifold to exist.307

The fitness matrix for the TLTA model for the modifier gene scenario is:

W =


1 − s 1 − hs 1 − s 1 − ks

1 − hs 1 1 − ks 1
1 − s 1 − ks 1 − s 1
1 − ks 1 1 1

 . (8.1)

Traditionally (see, for example, [34, 35, 36, 11, 13, 37]) these fitnesses are denoted as in Table 1.308

The parameter s is often called the "selection intensity" or "selection coefficient" [38, 13], while

AA Aa aa
BB 1 1 1 − s
Bb 1 1 − ks 1 − s
bb 1 1 − hs 1 − s,

Table 1: Table of fitnesses for the nine different diploid genotypes. Here 0 < s ≤ 1, 0 ≤ k ≤ h ≤ 1
s and h , 0 [11].

309

h and k are referred to as measures of "the influence of the dominance relations between alleles"310

[12]. In [38] s is interpreted as the recessive allele effect, while h (and k) is the heterozygote effect.311
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Our given range of values for h excludes the case of overdominance (h < 0). The idea of using312

s and h traces back to [39]; Wright’s third parameter h′ is used similarly to k, except the fitness of313

Aa/BB is 1 − ks instead of 1. The case with k = 0 is considered in [33, 40, 39, 41]. Later, Ewens314

assumed that modification depends on whether B occurs in a homozygote BB or a heterozygote Bb315

[35], which prompted him to include the third parameter k.316

For this modifier gene example the matrix problem (6.30) leads to

M =



r̂ + s(2h + k − 2) r̂ + s(−2h + k) r̂ + s(3k − 2) r̂ − sk
r̂ + s(−2h + k + 1) r̂ + s(2h + k − 1) r̂ + s(−k + 1) r̂ + s(3k − 1)

r̂ + s(−2h + 3k) r̂ + sk r̂ − sk r̂ + sk
r̂ + s(h − k) r̂ + s(−h + k) r̂ + s(−h + 3k) r̂ + s(−h + k)

r̂ + s(−k + 1) r̂ + s(3k − 1) r̂ + s(k + 1) r̂ + s(k − 1)
r̂ + s(3k − 2) r̂ − sk r̂ + s(k − 2) r̂ + sk
r̂ + s(−h + k) r̂ + s(h − k) r̂ + s(−h + k) r̂ + s(−h + 3k)

r̂ + sk r̂ + s(−2h + 3k) r̂ + sk r̂ − sk


≥ 0. (8.2)

The condition M ≥ 0 is equivalent to317

r̂ ≥ s max{k,−k, 1 − k,−1 − k, h − k, k − h, h − 3k, 2h − 3k, 1 − 3k, 2 − 3k,

2 − k, 2h − k, 2h − k − 1,−2h − k + 1, 2 − 2h − k}. (8.3)

As k > 0, we can eliminate any non-positive entries in the right hand side of (8.3), leading to

r̂ ≥ s max(k, 1−k, h−k, h−3k, 2h−3k, 1−3k, 2−3k, 2−k, 2h−k, 2h−k−1,−2h−k +1, 2−2h−k),

and, by inspection, we can narrow down the options to

r̂ ≥ s max(k, h − k, 2 − k, 2h − k, 2 − 2h − k)

= s max(k, 2 − k, 2h − k).

Moreover, since h ≥ k,
2h − k = h + (h − k) ≥ h ≥ k,

leaving us with
r̂ ≥ s max(2 − k, 2h − k),

which can be summarised as
r̂ ≥ s(2 max(1, h) − k). (8.4)

Next, we use (7.10) with Lemma 7.2 to obtain the condition for decreasing phase volume.
Here, the largest components of W′ is i = 1, j = 1 and i = 2, j = 1, which yield the conditions
−9 + 7s + hs + ks < 0 and −9 + 2s + 7hs + ks < 0 respectively. These rearrange to 9 > s(7 + h + k)
and 9 > s(2 + 7h + k), which can be rewritten as

9 > s(max(7 + h, 2 + 7h) + k). (8.5)

Combining this with (8.4), we obtain the following result:318
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Theorem 8.1. Consider the TLTA model (2.2) with W given by (8.1). Then if 0 ≤ s ≤ 1 and
0 ≤ k ≤ h ≤ 1

s , h > 0, (8.5) and

r(1 − ks) ≥ s (2 max(1, h) − k) , (8.6)

all hold, there exists a Lipschitz invariant manifold that globally attracts all initial polymorphisms.319

9. Discussion320

The purpose of this paper has been to show that explicit parameter ranges for selection coeffi-321

cients and recombination rates ranges can be found for the classic two-locus, two-allele continuous-322

time selection-recombination model to possess a globally attracting invariant manifold. We achieved323

this by determining those parameter ranges and coordinates for which the model could be written324

as a competitive system for a polyhedral cone. This competitive system is a monotone system325

backwards in time.326

To the best of our knowledge this is a novel approach to the study of selection-recombination327

models and it paves the way for a fresh look at the global dynamics of the TLTA continuous-time328

selection-recombination model via monotone systems theory. In particular, it might be possible to329

study the periodic orbits found by Akin [18, 19] via suitable refinements [42, 43] of the Poincaré-330

Bendixson theory developed for monotone system in [44] and the orbital stability methods of Rus-331

sell Smith [45].332

The QLE manifold was studied for discrete-time multilocus systems in [9], and an obvious333

question is whether there is a convex cone for which the model studied there is competitive. In [9]334

results are based upon small selection or weak epistasis, but it is not clear how strong selection or335

weak epistasis can be relative to recombination for the invariant manifold to persist from the Wright336

manifold. The identification of a cone for which the discrete-time multilocus system is competitive337

would provide bounds on selection coefficients and recombination rates for the invariant manifold338

to exist. Certainly the discrete-time TLTA model could be studied using the same framework339

introduced here, but adapted to discrete time steps.340

Typically the identification of a globally attracting invariant manifold in a finite-dimensional341

system enables reduction of the dimension of the dynamical system. In our case the reduction in342

dimension is one and all limit sets belong to the surface ΣM. However, the smoothness properties of343

ΣM are not known. To write the asymptotic dynamics on ΣM, we would ideally like ΣM to be at least344

of class C1, so that the standard tools of dynamical systems on differentiable manifolds, such as345

linear stability analysis, bifurcation theory, and so on, can be applied. If the study of the smoothness346

of the codimension-one carrying simplex of continuous- and discrete-time competitive population347

models is indicative [46, 47, 48, 49, 50], and bearing in mind that our boundary conditions of ΣM348

are particularly simple, we might expect that when the TLTA model is K∗M−competitive for some349

polyhedral cone KM, ΣM is generically C1, but this remains an interesting open problem.350

Finally, as mentioned above, if the full power of the invariant manifold ΣM is to be harnessed,351

global attraction to ΣM has to be improved to exponential attraction and asymptotic completeness352

21



of the dynamics (2.7). By establishing asymptotic completeness, from a practical point of view it353

means that after a short transient, the dynamics on ΣM is a good approximation of the full dynamics.354
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Appendix A. The selection-recombination model in (u, v, q) coordinates453

The equations of motion for u̇, v̇, and q̇ are:

u̇ =
1
4
{W11 − 2W12 −W13 + W22 + W42 + v(2q(W11 − 2W12 + W22) − 2(W11 − 2W12 + W22 + W42 − θ))

+ v2(W11 − 2W12 + W13 + W22 + W42 − 2θ) − 2q(W11 − 2W12 −W13 + W22 + θ)

+ q2(W11 − 2W12 −W13 + W22 −W42 + 2θ)

+ u [−3W11 + 2W12 + 4W13 + W22 −W33 − 2W42 − 2W43 −W44 + 2θ

+ v(−2q(W11 − 2W12 + W22 −W33 + 2W43 −W44) + 2(2W11 − 2W12 −W33 + 2W42 + W44 − 2θ))

+ q2(−W11 + 2W12 + 2W13 −W22 −W33 + 2w42 + 2W43 −W44 − 4θ)

+ 2q(2W11 − 2W12 − 3W13 + W33 + W42 −W44 + 2θ)

+ v2(−W11 + 2W12 − 2W13 −W22 −W33 − 2W42 + 2W43 −W44 + 4θ)
]

+ u2 [3W11 + 2W12 − 5W13 −W22 + 2W33 −W42 + 4W43 + 2W44 − 6θ

− 2 (W11 − 2W13 −W22 + W33 + 2W42 −W44) q − 2v (W11 −W22 −W33 + W44)
]

+ u3(−W11 − 2W12 + 2W13 −W22 −W33 + 2W42 − 2W43 −W44 + 4θ)},

25



v̇ =
1
4
{W11 −W12 − 2W13 + W33 + W43

+ u(2 (−W11 + 2W13 −W33 −W43 + θ) + 2q (W11 − 2W13 + W33))

+ u2(W11 + W12 − 2W13 + W33 + W43 − 2θ)

− 2q(W11 −W12 − 2W13 + W33 + θ) + q2(W11 −W12 − 2W13 + W33 −W43 + 2θ)

+ v [−3W11 + 4W12 + 2W13 −W22 + W33 − 2W42 − 2W43 −W44 + 2θ

+ u(−2q (W11 − 2W13 −W22 + W33 + 2W42 −W44) + 2(2W11 − 2W13 −W22 + 2W43 + W44 − 2θ))

+ q2(−W11 + 2W12 + 2W13 −W22 −W33 + 2W42 + 2W43 −W44 − 4θ)

+ 2q(2W11 − 3W12 − 2W13 + W22 + W43 −W44 + 2θ)

+ u2 (−W11 − 2W12 + 2W13 −W22 −W33 + 2W42 − 2W43 −W44 + 4θ)]

+ v2 [3W11 − 5W12 + 2W13 + 2W22 −W33 + 4W42 −W43 + 2W44 − 6θ

−2q(W11 − 2W12 + W22 −W33 + 2W43 −W44) − 2u(W11 −W22 −W33 + W44)
]

+ v3(−W11 + 2W12 − 2W13 −W22 −W33 − 2W42 + 2W43 −W44 + 4θ)},

q̇ =
1
4
{W11 −W12 −W13 + W42 + W43 + W44 − 2θ

+ u(−2(W11 −W13 + W43 + W44 − 2θ) + 2v(W11 + W44 − 2θ))

+ u2(W11 + W12 −W13 −W42 + W43 + W44 − 2θ)

− 2v(W11 −W12 + W42 + W44 − 2θ) + v2(W11 −W12 + W13 + W42 −W43 + W44 − 2θ)

+ q [−3W11 + 4W12 + 4W13 −W22 −W33 − 2W42 − 2W43 + W44

+ u(−2v(W11 −W22 −W33 + W44) + 2(2W11 − 3W13 −W22 + W33 + W42 + 2W43 − 2θ))

+ u2(−W11 − 2W12 + 2W13 −W22 −W33 + 2W42 − 2W43 −W44 + 4θ)

+ 2v(2W11 − 3W12 + W22 −W33 + 2W42 + W43 − 2θ)

+ v2(−W11 + 2W12 − 2W13 −W22 −W33 − 2W42 + 2W43 −W44 + 4θ)
]

+ q2 [3W11 − 5W12 − 5W13 + 2W22 + 2W33 −W42 −W43 −W44 + 6θ

− 2u(W11 − 2W13 −W22 + W33 + 2W42 −W44) − 2v(W11 − 2W12 + W22 −W33 + 2W43 −W44)]

+ q3(−W11 + 2W12 + 2W13 −W22 −W33 + 2W42 + 2W43 −W44 − 4θ)}

+ r(1 − q − u − v + 2uv).
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Appendix B. Example of the model without an invariant manifold ΣM454

For the following values of the fitnesses and recombination rate

W =


0.1 0.3 20 1
0.3 0.9 1 10
20 1 1.3 2
1 10 2 0.5

 , r =
1
19
, (B.1)

the invariant manifold ΣM cannot be numerically found; perhaps it does not even exist for these455

values of the parameters. A lot of numerical instabilities are present which oscillate about q = 0.456
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