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Abstract
A class of discrete equations is considered from three perspectives corresponding to
three measures of complexity of the solutions: the (hyper-) order of meromorphic
solutions in the sense of Nevanlinna, the degree growth of iterates over a function
field and the height growth of iterates over the rational numbers. In each case, low
complexity implies a formof singularity confinementwhich results in a knowndiscrete
Painlevé equation.

Keywords Discrete Painlevé equations · Algebraic entropy · Order of meromorphic
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1 Introduction

In this paper we will study the equation

y j+1 + y j−1 = a j y2j + b j y j + c j

y2j
, (1)
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where c j �≡ 0, from three perspectives. In each approach we will explore a different
measure of complexity of the solutions and we will interpret y j and the coefficients in
a slightly different way. Integrability has long been associated with the slow growth of
complexity [21], however the first highly sensitive, yet heuristic, test for integrability of
equations such as (1)was the idea of singularity confinement [6,18]. In each of the three
approaches studied here, we will use an analogue of singularity (non-) confinement,
suitably re-interpreted, to get a lower bound on the relevant measure of complexity.

In analogy with the Painlevé property for differential equations, the idea behind
singularity confinement is to study the behaviour of solutions at singular values of the
dependent variable. For Eq. (1) we note that, if the coefficient functions are finite, the
only way that y j+1 can become infinite starting from finite values is if y j = 0. In
order to better understand this situation, we consider the perturbed initial conditions
y j−1 = κ , where κ is arbitrary, and y j = ε and expand the next few iterates as Laurent
series about ε = 0. If c j �= 0, this gives

y j+1 = c j
ε2

+ b j

ε
+ O(1),

y j+2 = a j+1 − ε + b j+1

c j
ε2 + O(ε3),

y j+3 = −c j
ε2

− b j

ε
+ (b j+2a j+1 + c j+2) − ε + O(ε2)

(
a j+1 − ε + (b j+1/c j )ε2 + O(ε3)

)2 + O(1).

(2)

In the limit ε → 0, y j+3 will be infinite unless a j+1 = 0. If a j+1 = 0 we have

y j+3 = c j+2 − c j
ε2

− b j+2 − 2b j+1 + b j

ε
+ O(1).

Taking the limit ε → 0 we see that y j+3 = ∞ unless

a j+1 = 0, b j+2 − 2b j+1 − b j = 0 and c j+2 − c j = 0. (3)

If these conditions are satisfied the singularity is said to be confined as yn remains
finite (at least for the next few iterates). Demanding that all singularities are confined
in this way means that conditions (3) must hold for all j . Hence Eq. (1) becomes

y j+1 + y j−1 = (α j + β)y j + (γ + δ(−1) j )

y2j
, (4)

where α, β, γ and δ are constants. In order to avoid technicalities in some of the
approaches that follow, we will restrict ourselves to the case in which a j , b j and c j
are rational functions of j . This forces δ = 0 in Eq. (4), leaving us with the equation

y j+1 + y j−1 = (α j + β)y j + γ

y2j
. (5)
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Equation (5) is known to have a continuum limit to the first Painlevé equation, it is the
compatibility condition for a related linear problem and it has been derived from the
Schlesinger transformations of the third Painlevé equation [5].

Although singularity confinement has been successfully used to find many inte-
grable discrete equations, Hietarinta and Viallet [13] gave an example of an equation
in which the singularities are confined and yet the dynamics appear to be chaotic.

The first of the three approaches considered in this paper is to study the growth,
in the sense of Nevanlinna, of meromorphic solutions of difference equations. To this
end we replace Eq. (1) with its complex analytic version:

y(z + 1) + y(z − 1) = a(z)y(z)2 + b(z)y(z) + c(z)

y(z)2
, (6)

where a, b and c are rational functions and y is a non-rational meromorphic function. It
was suggested in [2] that the existence of sufficiently many finite-order meromorphic
solutions is a natural difference equation analogue of the Painlevé property. In [11] the
authors used the existenceof an admissiblefinite-ordermeromorphic solution to reduce
a class of difference equations to a short list of difference Painlevé-type equations.
Here admissiblemeans that the solution grows faster than the coefficients in a precise
sense. In the case in which the coefficients are rational functions as considered here,
this amounts to saying that the solution is non-rational. In [9] it was shown that the
same conclusions remain valid if finite-order is replaced by hyper-order less than one.

The order and hyper-order of a meromorphic function will be defined in Sect. 2 of
the present paper and we will prove the following.

Theorem 1 Let y be a non-rational meromorphic solution of Eq. (6), where a, b and
c �≡ 0 are rational functions. If the hyper-order of y is less than one, then a ≡ 0,
b(z) = Az + B and c(z) = C, where A, B and C are complex constants.

This is a special case of the classification in [9,11]. By restricting ourselves to the case
of rational coefficients, we eliminate many technical issues that arise fromNevanlinna
theory, which allows us to concentrate on the role played by singularity confinement-
type arguments in obtaining a lower bound on the hyper-order of solutions.

In Sect. 3 we will consider Eq. (1) as a discrete equation (i.e. j ∈ Z) but where
each y j is a rational function of an external complex variable z. The natural measure
of complexity here is the degree growth of the rational iterates y j . This is very close
to the idea of algebraic entropy [4,13] in which one considers the degree d j of the jth
iterate of Eq. (1) as a rational function of y0 and y1. The definition of the algebraic
entropy is

lim
j→∞

log d j

j
.

Zero algebraic entropy is associated with integrability. By considering y0 ≡ y0(z) and
y1 ≡ y1(z) as rational functions of z we can use more elementary arguments based on
complex analysis of a single variable. It also gives us a more refined tool to consider
one-parameter families of solutions, rather than considering the whole solution space
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at once. If y0 and y1 are degree one rational functions, then the degree of yn will be the
same as d j unless some cancellation has occurred on substitution into the expression
for yn as a function of y0 and y1.

Finally, in Sect. 4 we will consider the case in which the coefficients a j , b j , c j
are rational functions of j with rational coefficients and the solution of the discrete
Eq. (1), y j ∈ Q for all sufficiently large j . In this setting the natural measure of
complexity is the height. The logarithmic height of p/q, where p and q are co-prime
integers, is h(p/q) = logmax(|p|, |q|). If the logarithmic height of all solutions grows
polynomially, we say that the equation is Diophantine integrable [8]. This idea was
suggested by applying the observation of Osgood [15–17] and Vojta [22] that there
is a formal similarity between Nevanlinna theory and Diophantine approximation
to the first approach to discrete integrability above. The logarithmic height can be
expressed as a sum over all of the (suitably normalised) absolute values on Q (i.e., the
usual absolute value and the p-adic absolute values). We will show how a calculation
similar to the singularity confinement sequence (2) can be formulated in which the
small quantity ε is small with respect to an arbitrary absolute value on Q. This then
induces a lower bound on the height. We will highlight the similarities between the
previous two approaches and the proof of the following theorem, which appears in [7]
and the PhD thesis of Will Morgan [14].

Theorem 2 Let an, bn and cn �≡ 0 be rational functions with coefficients inQ. Suppose
that for sufficiently large r0, yn ∈ Q solves Eq. (1) for all n ≥ r0. If

r∑

n=r0

{h(an) + h(bn) + h(cn)} = o

(
r∑

n=r0

h(yn)

)

(7)

and

r∑

n=r0

h(yn) ≤ Krρ, (8)

for some positive constants K and ρ, then equation (1) reduces to Eq. (5).

A similar result leading to the discrete Painlevé II equation has been derived in [3].
Heights were first used in Abarenkova, Anglès d’Auriac, Boukraa, Hassani and Mail-
lard [1] to estimate entropy. Heights have also been used to detect low complexity
solutions in Silverman [20] and Roberts and Vivaldi [19].

2 Existence of Meromorphic Solutions of Hyper-Order Less Than One

In this section we will use the slow growth rate of meromorphic solutions to detect
Painlevé type equations out of a natural class of second-order difference equations.
Our aim is to review the method of [11] by going through a simple case requiring
as few technical details as possible. We will need a small number of concepts from
Nevanlinna theory (see e.g. [12]) such as the definitions of order, hyper-order and the
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counting function. Lemma 1 below allows us to translate simple inequalities about the
relative frequencies of zeros and poles into statements about the hyper-order.

Let f be a meromorphic function in the complex plane. The counting function
n(r , f ) is the number of poles of f in the disc {z ∈ C : |z| ≤ r}, each pole counted
according to its multiplicity. Moreover, we define log+ x = max{log x, 0} for any
x ≥ 0. Then

N (r , f ) =
∫ r

0
(n(t, f ) − n(0, f ))

dt

t
+ n (0, f ) log r

is the integrated counting function,

m(r , f ) =
∫ 2π

0
log+ | f (reiθ )| dθ

2π

is the proximity function, and

T (r , f ) = m(r , f ) + N (r , f )

is the Nevanlinna characteristic function of f . The order of f is

σ( f ) = lim sup
r→∞

log T (r , f )

log r
,

and the hyper-order is

ς( f ) = lim sup
r→∞

log log T (r , f )

log r
.

Note that by restricting the coefficients of (6) to be rational functions rules out
the most general form of the difference Painlevé I equation, where c is a period two
function. The general case was recovered in [11].

Proof of Theorem 1 We will first show that if |z| is sufficiently large, then each zero ẑ
of a non-rational meromorphic solution y(z) of (6) may be uniquely associated with a
finite number of poles and zeros of neighboring iterates y(z ± 1), y(z ± 2), y(z ± 3),
y(z ± 4) such that the number of zeros divided by the number of poles, both counting
multiplicities, is bounded by 4/5 in each such grouping.

Let y(z)be ameromorphic solution of (6) and assumefirst thata(z) is not identically
zero. Therefore, a, b and c have finitely many zeros (unless b ≡ 0) and poles, since
they are rational functions of z, and so there exists an r0 ≥ 0 such that a(z) �= 0 and
c(z) �= 0 for all z satisfying |z| ≥ r0. 	


Suppose that the solution y(z) has a zero of multiplicity k at some point ẑ in the
complex plane. Then y(z) can be expressed as a Laurent series expansion

y(z) = α(z − ẑ)k + O((z − ẑ)k+1), α ∈ C\{0}, (9)
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in a sufficiently small neighborhood of ẑ. All except finitely many zeros ẑ of y(z)
satisfy |ẑ| ≥ r0 + 1, and so, for these zeros it follows that c(ẑ + σ) �= 0, where
σ = ±1. Now it follows by substituting (9) to the Eq. (6) that y(z + σ) has a pole at ẑ
of order at least 2k for σ = 1 or σ = −1. The order of the pole at ẑ+σ can be strictly
greater than 2k only if there is a pole of the same order l > 2k at both points ẑ+1 and
ẑ − 1. In this case we can find even more poles per zero compared to the case where
the order of the pole at ẑ + σ is equal to 2k. Therefore, without loss of generality, we
may assume that y(z + σ) has a pole of order 2k at ẑ, and so

y(z + σ) = βσ (z − ẑ)−2k + O((z − ẑ)1−2k), βσ ∈ C\{0} (10)

for all z in a small enough neighborhood of ẑ. Now, by shifting Eq. (6), we obtain

y(z + 2σ) + y(z) = a(z + σ)y(z + σ)2 + b(z + σ)y(z + σ) + c(z + σ)

y(z + σ)2
.

(11)

By substituting the Laurent series expansions (9) and (10) into (11), we have

y(z + 2σ) = a(z + σ) + O((z − ẑ)k) (12)

in a neighborhood of ẑ. By continuing in this way, and summarizing the above, it
follows that

y(z) = α(z − ẑ)k + O((z − ẑ)k+1)

y(z + σ) = βσ (z − ẑ)−2k + O((z − ẑ)1−2k)

y(z + 2σ) = a(z + σ) + O((z − ẑ)k)

y(z + 3σ) = −βσ (z − ẑ)−2k + O((z − ẑ)1−2k)

y(z + 4σ) = a(z + 3σ) − a(z + σ) + O((z − ẑ)k),

(13)

where α and βσ are non-zero. Therefore, the zero of y(z) of order k may be grouped
togetherwith the pole of y(z+σ) of order 2k. Note that even if a(z+3σ)−a(z+σ) = 0
we are free to associate the available pole of y(z + 3σ) with the zero of y(z + 4σ),
if the zero is of order k at most. If the zero of y(z + 4σ) is of order l > k, then
ẑ + 4 is a starting point of another sequence of the type (13). Hence the number of
zeros divided by the number of poles in the sequence (13) is less than or equal to 1/2
counting multiplicities, provided that a �≡ 0 in (6).

Suppose now that a ≡ 0 so that equation (6) reduces to

y(z + 1) + y(z − 1) = b(z)y(z) + c(z)

y(z)2
. (14)

We will again consider the case where y(z) has a zero of order k at z = ẑ assuming
first that both y(z + σ) and y(z − σ) have a pole at least of order 2k. Then, as before,
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we may assume without loss of generality that the order of the pole is exactly 2k, and
so, by iterating (14), it follows that

y(z − 2σ) = −α(z − ẑ)k + O((z − ẑ)k+1)

y(z − σ) = γσ (z − ẑ)−2k + O((z − ẑ)1−2k)

y(z) = α(z − ẑ)k + O((z − ẑ)k+1)

y(z + σ) = βσ (z − ẑ)−2k + O((z − ẑ)1−2k)

y(z + 2σ) = −α(z − ẑ)k + O((z − ẑ)k+1),

(15)

where α �= 0, βσ �= 0 and γσ �= 0. In this sequence the number of zeros divided
by the number of poles is less than or equal to 3/4, when multiplicities are taken into
account.

Suppose now that y(z) has a zero of order k at z = ẑ and y(z − σ) has a pole of
order l such that k ≤ l < 2k. Then, by (14),

y(z − σ) = βσ (z − ẑ)−l + O((z − ẑ)1−l)

y(z) = α(z − ẑ)k + O((z − ẑ)k+1)

y(z + σ) = c(z)

α2 (z − ẑ)−2k + O((z − ẑ)1−2k)

y(z + 2σ) = −α(z − ẑ)k + O((z − ẑ)k+1)

y(z + 3σ) = c(z + 2σ) − c(z)

α2 (z − ẑ)−2k + O((z − ẑ)1−2k),

(16)

where α �= 0 and βσ �= 0. The number of zeros divided by the number of poles of
y in the set {ẑ − σ, ẑ, ẑ + σ, ẑ + 2σ } is less than or equal to 2/3. It may happen that
there is a zero of y at ẑ + 3σ , or at ẑ + 4σ , but then this zero becomes a starting
point of another sequence of one of the types (15) or (16), or (17) below. If there is
another sequence of the type (16) progressing in the opposite direction from the point
ẑ − σ , then the corresponding zero-pole ratio of the two combined sequences in the
set {ẑ − 4σ, . . . , ẑ + 2σ } is less than or equal to 4/5.

We still need to deal with the case where y(z) has a zero of order k and y(z − σ)

has a pole of order l < k (or it assumes a finite value). The iteration of equation (14)
yields

y(z + σ) = c(z)y(z)−2 + b(z)y(z)−1 − y(z − σ)

y(z + 2σ) = −y(z) + b(z + σ)

c(z)
y(z)2 − b(z + σ)b(z)

c(z)2
y(z)3 + O(y(z)4)

y(z + 3σ) = (c(z + 2σ) − c(z))y(z)−2

+
(

−b(z) + 2c(z + 2σ)b(z + σ)

c(z)
− b(z + 2σ)

)
y(z)−1 + y(z − σ) + O(1).

(17)
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There are 2k zeros (by taking y(z) into account) and 4k poles in the sequence (17),
unless

c(z + 2σ) − c(z) = 0 and b(z + 2σ) − 2b(z + σ) + b(z) = 0. (18)

(To be exact, there are only 3k poles in (17) if the first of the equations in (18) holds and
the second one does not. In this case the zero-pole ratio in this sequence is 2/3.) Now
unless equations (18) hold for all z at least oneof themwill fail to hold for all sufficiently
large |z|. If these equations hold for all z, then (18) become linear difference equations.
Solving these equations, and taking into account that the coefficients b(z) and c(z)
are rational functions by assumption, it follows that b(z) = Az + B and c(z) = C
for complex constants A, B and C . In this case, the proof is complete. Otherwise, we
have been able to associate each zero of y(z) with an appropriate number of zeros and
poles of “nearby” iterates y(z ± 1), y(z ± 2), y(z ± 3), y(z ± 4) for all sufficiently
large |z| such that within each grouping the number of zeros divided by the number
of poles is at most 4/5. Therefore,

n

(
r ,

1

y

)
≤ 4

5
n(r + 2, y) + O(1). (19)

Lemma 1 below, which is a special case of [10, Lem. 2.1], applied to (19) with a = 0,
s = 2 and τ = 4/5, implies that the hyper-order of y is at least one.

Lemma 1 ([10]) Let f (z) be a non-rational meromorphic solution of

P(z, f ) = 0, (20)

where P(z, f ) is difference polynomial in f (z)with rational coefficients, and let a ∈ C

satisfy P(z, a) �≡ 0. If there exists s > 0 and τ ∈ (0, 1) such that

n

(
r ,

1

f − a

)
≤ τ n(r + s, f ) + O(1), (21)

then the hyper-order ς( f ) of f is at least 1.

We conclude that the only possible case when non-rational solutions of hyper-order
less than one can exist is when b(z) = Az + B and c(z) = C .

3 Polynomial Degree Growth of Rational Iterates

In this section we will prove the following:

Theorem 3 Let {y j } j∈N be a sequence of non-constant rational functions of z solving
Eq. (1) where a j , b j and c j �≡ 0 are rational functions of j . If the degree of {y j } j∈N
grows at most polynomially in j , then a j = 0, b j = Aj + B and c j = C + D(−1) j ,
where A, B, C and D are constants.
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The key idea behind the proof is to use the fact that the degree of a rational function
is the number of zeros or poles (countingmultiplicities) inCP

1.Wewill use singularity
confinement-type calculations similar to (2) to relate the number of zeros and poles
of nearby iterates.

Proof of Theorem 3 The first part of the proof is largely analogous to the first part of the
proof of Theorem 1, and it consists of determining the relative zero and pole densities
of the solution sequence. We assume first that a j is not identically zero. Therefore, a j ,
b j and c j have finitely many zeros (unless b j ≡ 0) and poles, since they are rational
functions of j , and so there exists a j0 ≥ 0 such that c j �= 0 for all j satisfying
| j | ≥ j0.

We will show that if | j | is sufficiently large, then each zero of y j may be uniquely
associated with a finite number of poles and zeros of neighboring iterates yi such that
the number of zeros divided by the number of poles, both counting multiplicities, is
bounded by 4/5 in each grouping obtained.

Suppose that the rational function y j has a zero of multiplicity k at some point ẑ on
the complex sphere. By using a Möbius transformation, if necessary, we may assume
without loss of generality that ẑ = 0. In the following, expressions such as “y j+1 has
a pole” will refer to a pole at z = 0. Since y j has a zero of order k, it follows from
Eq. (1) that y j+σ has a pole of order at least 2k for σ = 1 or σ = −1. Since we have
taken j to be sufficiently large, it follows that a j+σ �= 0, and so iteration of Eq. (1)
gives

y j = αzk + O(zk+1)

y j+σ = βσ z
−2k + O(z1−2k)

y j+2σ = a j+σ + O(zk)

y j+3σ = −βσ z
−2k + O(z1−2k)

y j+4σ = a j+3σ − a j+σ + O(zk),

(22)

where α and βσ are non-zero. Therefore, the zero of y j of order k may be associated
with the pole of y j+σ of order 2k. Note that even if a j+3σ − a j+σ = 0, then we can
associate the available pole of y j+3σ with this zero of y j+4σ (or the zero is a starting
point of a new sequence of iterates of the type (22) in a similar way as in the case
(13) of meromorphic solutions). Hence the number of zeros divided by the number of
poles in sequence (22) is less than or equal to 1/2 (counting multiplicities) under the
assumption that a j �≡ 0. 	


Suppose now that a j ≡ 0 so that Eq. (1) reduces to

y j+1 + y j−1 = b j y j + c j
y2j

. (23)

We will again consider the case where y j has a zero of order k at z = 0 assuming first
that both y j+σ and y j−σ have a pole at least of order 2k. Then, by iterating (23), it
follows that
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y j−2σ = −αzk + O(zk+1)

y j−σ = γσ z
−2k + O(z1−2k)

y j = αzk + O(zk+1)

y j+σ = βσ z
−2k + O(z1−2k)

y j+2σ = −αzk + O(zk+1),

(24)

where α �= 0, βσ �= 0 and γσ �= 0. In this sequence the number of zeros divided
by the number of poles is less than or equal to 3/4, when multiplicities are taken into
account.

Suppose now that y j has a zero of order k at z = 0 and y j−σ has a pole of order l
such that k ≤ l < 2k. Then, by (23),

y j−σ = βσ z
−l + O(z1−l)

y j = αzk + O(zk+1)

y j+σ = c j
α2 z

−2k + O(z1−2k)

y j+2σ = −αzk + O(zk+1)

y j+3σ = c j+2σ − c j
α2 z−2k + O(z1−2k),

(25)

where α �= 0 and βσ �= 0. The number of zeros divided by the number of poles in
(25) is less than or equal to 2/3, provided that y j+3σ is non-zero. If y j+3σ vanishes,
the sequence of iterates starting from y j+3σ of (25) becomes a special case of the
sequence (26) below. If there are two sequences of the type (25) joined together in a
similar way as in the meromorphic case (16), then the number of zeros divided by the
number of poles in the combined sequence is less than or equal to 4/5.

We still need to deal with the case where y j has a zero of order k and y j−σ has a
pole of order l < k (or it assumes a finite value). The iteration of equation (23) yields

y j+σ = c j y
−2
j + b j y

−1
j − y j−σ

y j+2σ = −y j + b j+σ

c j
y2j − b j+σ b j

c2j
y3j + O(y4j )

y j+3σ = (c j+2σ − c j )y
−2
j +

(
−b j + 2c j+2σ b j+σ

c j
− b j+2σ

)
y−1
j + y j−σ + O(1).

(26)

There are 2k zeros (by taking y j into account) and 4k (or 3k) poles in the sequence
(26), unless

c j+2σ − c j = 0 and b j+2σ − 2b j+σ + b j = 0. (27)

Nowunless Eq. (27) hold for all j at least one of themwill fail to hold for all sufficiently
large j . If these equations hold for all j then b j = Aj + B and c j = C + D(−1) j

for constants A, B, C and D. Otherwise, note that degz y j is the total number of zeros
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of y j on the complex sphere counting multiplicities and it is also the total number
of poles of y j . Since we have been able to associate each zero of y j uniquely with
an appropriate number of zeros and poles of iterates yi close to y j for all sufficiently
large j such that within each grouping the number of zeros divided by the number of
poles is less than or equal to 4/5, we have

Dn(y j ) ≤ 4

5
Dn+s(y j ) + O(1), n → ∞,

for some s > 0, where

Dn(y j ) :=
n∑

j=−n

degz(y j ).

It follows that

lim sup
n→∞

1

n
log Dn(y j ) ≥ log

5

4
> 0,

so the degree growth of {y j } j∈N is exponential.

4 Diophantine Integrability

In this section we will consider the solution (y j ) of Eq. (1) to be a sequence of rational
numbers and we will explore the growth of the height of such solutions subject to the
assumptions of Theorem 2. We denote the usual absolute value on Q by | · |∞. Any
non-trivial absolute value on Q is equivalent to | · |∞ or to one of the p-adic absolute
values | · |p, for some prime p. Given a prime p, any non-zero x ∈ Q can be written
as x = a

b p
r for a, b, r ∈ Z, where p � ab. Then the p-adic absolute value of x is

defined to be |x |p = p−r . The p-adic absolute values are non-Archimedean, which
means they satisfy the strong triangle inequality

|x + y|p ≤ max
{|x |p, |y|p

}
,

for all x and y ∈ Q.
An important identity for our calculations is the following expression for the loga-

rithmic height in terms of absolute values

h(x) =
∑

p≤∞
log+ |x |p,

where the sum is over all primes p as well as the “prime at infinity” p = ∞.
We begin by fixing a particular absolute value |·|p onQ andwe use this to determine

a certain length scale εn for the nth iterate. Since the coefficient functions are rational
functions of n, for sufficiently large n, they are either identically zero or they are finite
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and non-zero. From now on we work with sufficiently large n in this sense. For some
0 < δ < 1/2 we define εn by

ε−δ
n = κp max

{
1, |cn|−1

p , |bn|p , |an|p ,

|cn+1|p , |cn−1|p , |bn+1|p , |bn−1|p , |an+1|−1
p , |an−1|−1

p

}
,

(28)

where κp = 1 for all p < ∞ and κ∞ = 3. The following lemma, the proof of which is
elementary and can be found in [7], relates small and large values of ym with respect
to the given absolute value.

Lemma 2 Fix a prime p ≤ ∞. Let (yn) be a solution to equation (1)where ancn �≡ 0.
Suppose that for some integer m, |ym |p < εm, where εm is defined by (28). Then either

|ym+1|p ≥ 1

|ym |2−δ
p

and |ym+2|p ≥ εm+2,

or

|ym−1|p ≥ 1

|ym |2−δ
p

and |ym−2|p ≥ εm−2.

Lemma 3 If (y j ) is a solution of equation (1) satisfying the assumptions of Theorem 2,
then an ≡ 0.

Proof Assume that an �≡ 0. Let | · | denote the absolute value corresponding to the
prime p. For sufficiently large r0, define

S1(r) = {n : r0 ≤ n ≤ r and |yn| < εn}

S2(r) = {n : r0 ≤ n ≤ r and |yn| ≥ εn}.

Now

r∑

k=r0

log+ 1

|yk | =
∑

k∈S1(r)
log+ 1

|yk | +
∑

k∈S2(r)
log+ 1

|yk | . (29)

Using Lemma 2 gives

∑

k∈S1(r)
log+

∣∣∣∣
1

yk

∣∣∣∣ ≤ 1

2 − δ

r+1∑

k=r0−1

log+ |yk |. (30)
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Also

∑

k∈S2(r)
log+ 1

|yk | ≤
∑

k∈S2(r)
log+ ε−1

k ≤
r∑

k=r0

log+ ε−1
k

= 1

δ

r∑

k=r0

log+ (
κp max{1, |ck |−1 , |bk | , |ak | , |ck+1| , |ck−1| ,

|bk+1| , |bk−1| , |ak+1|−1 , |ak−1|−1}
)

≤ 1

δ

⎛

⎝(r − r0) log
+ κp +

r+1∑

k=r0−1

[
log+ |ck |−1 + 3 log+ |bk |

+ log+ |ak | + 2 log+ |ck | + 2 log+ |ak |−1
]
⎞

⎠ ,

where if |bk | = 0 it is excluded from the list.
Recall that

h(x) =
∑

p≤∞
log+ |x |p = h

(
1

x

)
=

∑

p≤∞
log+

∣∣∣∣
1

x

∣∣∣∣
p
.

So taking the sum over all primes p ≤ ∞ in equation (29) gives

r∑

k=r0

h(yk) ≤ 1

2 − δ

r+1∑

k=r0−1

h(yk)

+ 1

δ

⎛

⎝3
r+1∑

k=r0−1

(h(ak) + h(bk) + h(ck)) + (r − r0) log 3

⎞

⎠ . (31)

So from (7), we have

r∑

k=r0

h(yk) ≤ 1

2 − δ

r+1∑

k=r0−1

h(yk) + o

⎛

⎝
r∑

k=r0

h(yk)

⎞

⎠ ,

which is impossible if yk satisfies (8). 	

We conclude this section by quoting another lemma from [7] which bears a strong

similarity to the singularity confinement-type calculation in (2). We do not give the
precise definition of εk here but merely note that it depends on the absolute values of
various combinations of the coefficient functions.
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Lemma 4 Let (yn)
k+3
n=k−1 ⊆ Q/{0} with k − 1 ≥ r0 satisfy

yn+1 + yn−1 = cn + bn yn
y2n

. (32)

If |yk−1| ≤ |yk |−1/2 and, for sufficiently small δ > 0, |yk | < εk , then

1. yk+1 = ck
y2k

+ bk
yk

+ Ak, where |Ak | ≤ |yk |−1/2.

2. yk+2 = −yk + bk+1
ck

y2k + Bk, where |Bk | ≤ |yk |3−4δ

3. yk+3 = ck+2−ck
y2k+2

+ bk+2−2
ck+2
ck

bk+1+bk
yk+2

+ Ck, where

|Ck | ≤ max

{∣∣∣
∣
ck+2 − ck

ck

∣∣∣
∣ |yk+2|1−δ , |yk+2|−1/2

}

for non-Archimedean absolute values and

|Ck | ≤ 2

∣
∣∣∣
ck+2 − ck

ck

∣
∣∣∣ |yk+2|1−δ + 3 |yk+2|−1/2

for Archimedean absolute values.
4. |yk+2| = |yk | for non-Archimedean absolute values and 36

25 |yk | > |yk+2| >
16
25 |yk | for Archimedean absolute values.
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