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Abstract 12 

1. Measures of β-diversity characterizing the difference in species composition 13 

between samples are commonly used in ecological studies. Nonetheless, 14 

commonly used dissimilarity measures require high sample completeness, or at 15 

least similar sample sizes between samples. In contrast, the Chord-Normalized 16 

Expected Species Shared (CNESS) dissimilarity measure calculates the 17 

probability of collecting the same set of species in random samples of a 18 

standardized size, and hence is not sensitive to completeness or size of 19 

compared samples. To date, this index has enjoyed limited use due to difficulties 20 

in its calculation and scarcity of studies systematically comparing it with other 21 

measures.  22 

2. Here, we developed a novel R function that enables users to calculate ESS 23 

(Expected Species Shared)-associated measures. We evaluate the performance 24 

of the CNESS index based on simulated datasets of known species distribution 25 

structure, and compared CNESS with more widespread dissimilarity measures 26 

(Bray-Curtis index, Chao-Sørensen index, and proportionality based Euclidean 27 

distances) for varying sample completeness and sample sizes.  28 

3. Simulation results indicated that for small sample size (m) values, CNESS chiefly 29 

reflects similarities in dominant species, while selecting large m values 30 

emphasizes differences in the overall species assemblages. Permutation tests 31 

revealed that CNESS has a consistently low CV (coefficient of variation) even 32 

where sample completeness varies, while the Chao-Sørensen index has a high 33 

CV particularly for low sampling completeness. CNESS distances are also more 34 

robust than other indices with regards to undersampling, particularly when chiefly 35 

rare species are shared between two assemblages.  36 
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4. Our results emphasize the superiority of CNESS for comparisons of samples 37 

diverging in sample completeness and size, which is particular important in 38 

studies of highly mobile and species-rich taxa where sample completeness is 39 

often low. Via changes in the sample size parameter m, CNESS furthermore 40 

cannot only provide insights into the similarity of the overall distribution structure 41 

of shared species, but also into the differences in dominant and rare species, 42 

hence allowing additional, valuable insights beyond the capability of more 43 

widespread measures. 44 

 45 

Key words 46 

β-diversity, CNESS, dissimilarity, species turnover, R function 47 



 4 

Introduction 48 

Reliable measurements of biodiversity are crucial in ecological studies, both with 49 

regards to species richness (α-diversity) and assemblage composition (β-diversity). 50 

Whittaker (1960) defined β-diversity as the species turnover across spatial scale, 51 

with α-diversity as the species richness at a sampling unit and γ-diversity as the total 52 

number of species over a large geographic area. Assessments of species turnover 53 

between samples as a key measure of β-diversity are commonly based on 54 

dissimilarity measures using mathematical descriptions of differences between pairs 55 

of samples (Legendre & Gallagher 2001; Tuomisto 2010; Mori, Isbell & Seidl 2018). 56 

These approaches are generally based on plot × species matrices, often also 57 

including information on species’ abundances, as basis for the calculation of the 58 

(dis)similarity or relative distance between pairs of samples.  59 

The sampling effort for assemblages of diverse, mobile organisms, such as most 60 

insect assemblages, is difficult to standardize. The number of species in a sample 61 

generally correlates positively with the overall sample size and sampling effort, while 62 

sample completeness with regards to the local species pool is often unachievable in 63 

species-rich groups and biomes. Therefore, directly comparing the species records 64 

between two samples or sites with measures not accounting for the relative sampling 65 

effort and completeness creating a potential ‘undersampling bias’ that will result in 66 

highly unstable and unreliable outcomes (Coddington et al. 2009; Beck, Holloway & 67 

Schwanghart 2013; Iknayan et al. 2014). With regards to alpha-diversity, 68 

standardization can be achieved for example via the use of rarefaction (Hurlbert 69 

1971) and extrapolation techniques (Chao & Jost 2012; Chao et al. 2014), the use of 70 

species richness estimators (Hortal, Borges & Gaspar 2006) or by using parametric 71 
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diversity indices such as Fisher’s α (Beck & Schwanghart 2010). Nonetheless, most 72 

widespread measures of species turnover between assemblages are not 73 

appropriately accounting for the ‘undersampling bias’, with results potentially only 74 

poorly representing the “true” dissimilarity in the underlying populations (Beck, 75 

Holloway & Schwanghart 2013). For example, results are often heavily influenced by 76 

dominant species, or by widespread species of low abundance that by chance 77 

appear in only a subset of samples (Legendre & Gallagher 2001). Such problems 78 

are inherent in results gained by virtually all commonly used techniques to assess 79 

changes in species’ assemblages, with incidence-based indices more sensitive to 80 

sample size than abundance-based ones (Beck, Holloway & Schwanghart 2013). 81 

Some efforts have been made to address the influence of incomplete sampling on 82 

beta-diversity measures, both by developing indices regarded as less sensitive to 83 

sample size (Cardoso, Borges & Veech 2009; Schroeder & Jenkins 2018), or by 84 

trying to adjust existing indices (Chao et al. 2005; Yue & Clayton 2005) or using 85 

rarefaction techniques (Stier, Bolker & Osenberg 2016; Brocklehurst, Day & Fröbisch 86 

2018) that account for sample size-related variations in dissimilarity values. While 87 

these have yielded some interesting insights, they were often either plagued by very 88 

high levels of uncertainty or by low predictability power, making the interpretation of 89 

resulting values very difficult. 90 

One measure specifically designed to account for the issues relating to sample 91 

standardization is the ’Chord-Normalized Expected Species Shared’ (CNESS)- 92 

distance. The CNESS index was introduced by Trueblood, Gallagher and Gould 93 

(1994), and it is based on the calculation of the ‘Normalized Expected (number of) 94 

Species Shared’ (NESS) between two samples as proposed by Grassle and Smith 95 

(1976). Both CNESS and NESS are in turn derived from the ‘Expected Species 96 
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Shared’ (ESS)-index that reflects the probability of obtaining the same set of species 97 

when randomly drawing a specific number of individuals from a community (Morisita 98 

1959; Grassle & Smith 1976). In other words, CNESS has been developed to cater 99 

for the effect that two samples of equal size randomly drawn from the same 100 

underlying community will by chance vary in their exact composition of species, and 101 

in the distribution of individuals across the different species. High CNESS 102 

dissimilarity values in this context reflect a low probability that two samples are 103 

drawn from the same community. Additionally, CNESS calculations allow for the 104 

sample size compared between two samples to be varied by adjusting the sample 105 

size parameter, m. This allows for a direct comparison of assemblages represented 106 

by two samples of varying sample size, by estimating their similarity for a 107 

standardized sample size common to both samples. In this context, small values of 108 

m are believed to emphasize the similarity specifically in dominant species, whereas 109 

for large values of m, results are assumed to be increasingly affected by the 110 

composition of the entire species assemblage (Trueblood, Gallagher & Gould 1994). 111 

Calculating dissimilarities for different m values therefore generates unique insights 112 

into the similarity patterns between samples with regards to their different 113 

components (Trueblood, Gallagher & Gould 1994). CNESS has already been used 114 

particularly in studies of insect biodiversity, where samples are commonly showing 115 

large differences in the number of specimens caught at individual sampling events 116 

and in their sample completeness (Axmacher et al. 2004; Beck & Vun Khen 2007; 117 

Zou et al. 2014).  118 

In spite of its theoretical advantages over other, commonly used dissimilarity metrics, 119 

the uptake of CNESS has been limited. For example, CNESS was excluded in a 120 

recent study by Schroeder and Jenkins (2018) who evaluated the sensitivity of 121 
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several dissimilarity indices to the ‘undersampling bias’, with the authors 122 

recommending  measures such as the Bray-Curtis index due to their relative 123 

robustness to this effect. One of the reasons for the low profile of CNESS distances 124 

might relate to problems in calculating these dissimilarity values, with no suitable 125 

software tools available to date. The Compah96 software used in previous studies 126 

that is programmed in FORTRAN for MS DOS-based systems (Gallagher 1998) has 127 

become unavailable. In contrast, commonly used dissimilarity measures such as the 128 

Sørensen or  Bray-Curtis indices can be calculated already by a number of standard 129 

packages in the open source R programming language (Oksanen et al. 2014). In 130 

addition, dissimilarity value of CNESS range between 0 and √2 (see details in the 131 

method section), which makes direct comparisons with other dissimilarity measures 132 

whose values usually range between 0 (samples are the same) and 1 (samples are 133 

100% different) problematic. 134 

Here, we provided scripts for a function to conveniently calculate the entire family of 135 

ESS (Expected Species Shared) measures using the R language (see Appendix 1) 136 

to make these dissimilarity measures more easily and widely available. We 137 

additionally introduced a slightly amended version of the CNESS measure adjusted 138 

so that values now range between 0 and 1. We used this function to explore how 139 

CNESS performs for assemblages of different species distribution structures for 140 

different sample size parameters, m. In addition, we evaluated the sensitivity of the 141 

CNESS measure in comparison to other, commonly used dissimilarly measures, with 142 

regards both to incomplete samples and variations in sample size.  We used 143 

simulated rather than empirical data-sets to explore patterns and draw conclusions 144 

for the general behaviour of the different dissimilarity and distance measures.  145 
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Method 146 

The expression of CNESS 147 

CNESS is derived from the Expected Species Shared (ESS) measures introduced 148 

by Trueblood (Trueblood, Gallagher & Gould 1994). The ESS value for sites i and j 149 

(ESSij|m) (Grassle & Smith 1976), represents the number of species expected to be 150 

shared between two randomly selected samples of a standardized size of m 151 

individuals, and can mathematically be expressed as: 152 

ESSij|m = ∑ [1 −
(Ni∗−Nik

m
)

(Ni∗

m
)

]

S

k=1

× [1 −
(Nj∗−Njk

m
)

(Nj∗

m
)

] 

where S represents the total number of species, Ni* and Nj* represent the total 153 

number of individuals of site i and j, and Nik and Njk represent the abundance of the 154 

kth species at sites i and j. 155 

While ESS calculations follow logical probability assumptions, the value of (Ni∗

m
) for a 156 

large value of m can become almost infinite, leading to potential calculation failures 157 

during computation. The function nonetheless can be amended as follows (see 158 

mathematical proof in Appendix 2):  159 

ESSij|m = ∑ [1 − ∏
(Ni∗ − Nik − 𝑛)

Ni∗ − 𝑛

𝑚−1

𝑛=0

]

S

k=1

× [1 − ∏
(Nj∗ − Njk − 𝑛)

Nj∗ − 𝑛

𝑚−1

𝑛=0

] 

 160 

Although generally creating the same values for ESS, this formula is more robust 161 

with regards to the aforementioned calculation problems. The ESS values can in a 162 

next step be normalized, leading to the NESS (Normalized Expected Species 163 
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Shared) similarity measure between two samples, with values ranging between 0 164 

and 1 (Grassle & Smith 1976):  165 

NESSij|m =
2 × ESSij|m

ESSii|m + ESSjj|m
 

 166 

This measure is further modified to specifically account for the often large number of 167 

rare species that randomly occur in a small number of samples, even if samples are 168 

drawn from the same, underlying population. This modification is the CNESS (Chord-169 

Normalized Expected Species Shared)-distance measure (Trueblood, Gallagher & 170 

Gould 1994). CNESS values can be calculated as: 171 

CNESSij|m = √2 × [1 −
ESSij|m

√ESSii|m × ESSjj|m

] 

While NESS values vary between 0 and 1, Trueblood, Gallagher and Gould (1994) 172 

formulated CNESS in a way that theoretical values range between 0 and √2. This 173 

may result in difficulties when comparing its values with other dissimilarity indices 174 

that usually range between 0 and 1. We therefore slightly modified the CNESS index 175 

by removing the √2 multiplicator from the function, leading to the amended formula 176 

for CNESSa: 177 

 CNESSa(ij|m) = √1 −
ESSij|m

√ESSii|m×ESSjj|m
 178 

We have created an R function (Appendix 1) that conveniently allows us and our 179 

readers to calculate CNESSa, CNESS, NESS and ESS values in the R environment. 180 

The function contains three parameters, x, m, and index (by default, the index is set 181 
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as CNESSa); where x represents the species × sample (as row × column) matrix, 182 

and m the sample size parameter representing the number of individuals to be 183 

randomly drawn from the two samples that are compared. Theoretically, the choice 184 

of m can be any positive integer that is ≥ 1. However, if the total sample size for a 185 

site is < m, this site will automatically be excluded from the analysis. 186 

Simulation and analysis 187 

To assess the performance of CNESSa in comparison to other distance or 188 

dissimilarity measures, we first created a theoretical “control” dataset containing 100 189 

species. The abundance of these species was fitted to a logarithmic distribution 190 

pattern. The log-mean value of the resulting dataset is 6.5, with a log-sd value of 1, 191 

with the resulting dataset representing the trial community therefore containing about 192 

100,000 specimens distributed across the 100 species. For “treatments”, we created 193 

assemblages of equal size and distribution patterns, but with different amounts of 194 

“dominant” (D) and “rare” (R) species shared with the control. Each treatment 195 

contained three different populations, sharing 25%, 50% and 75% of their dominant 196 

(D) or rare (R) species with our “control”. Thus, we created a total of six “treatment” 197 

assemblages. The “dominant” species group shares the most abundant species from 198 

the control group.  For example, the 25% dominant species (D25) group shares the 199 

25 species most abundant in the control group with that group, while randomizing 200 

their respective species rank order in the new group. The remaining 75 species in 201 

this second group are “new species” when compared with the control group.  202 

Likewise, the rare species assemblage shares the least abundant species with the 203 

control, with species ranks again randomized. The overall abundance distributions 204 

for different datasets are displayed in Appendix 3.  205 
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The actual analysis of index performances was separated into two parts. In the first 206 

part, the relative influence of abundant and rare species on the CNESSa calculated 207 

for different m values was evaluated. This was achieved by calculating the pairwise 208 

CNESSa value between the “control” and “treatment” datasets, with m values 209 

increasing from 1 to 100,000. 210 

The second part of the analysis focuses on comparisons of the stability of distance 211 

or dissimilarity values of CNESSa and a selection of other, commonly used 212 

abundance-based dissimilarity indices. We selected three indices: i) the Bray-Curtis 213 

index, which is the most commonly used abundance-based dissimilarity index that 214 

has been argued to also be relatively robust with regards to undersampling bias 215 

(Schroeder & Jenkins 2018), ii) The Chao-Sørensen index, which is an abundance 216 

based form of the Sørensen index developed by Chao et al. (2005) in order to 217 

reduce the species distribution bias inherent in incidence-based indices, and iii)  218 

proportion-based Euclidean distances. For the CNESSa index, we selected m values 219 

of 1, 10, 100 and 1000.  220 

We simulated two sampling strategies in order to investigate the effects of 221 

incompleteness of samples, and of unequal sample sizes. The first strategy was to 222 

have an equal sampling coverage for both “treatment” and “control” datasets, with 223 

the coverage varying between 0.01% (~10 individuals), 1%, 10% and 100% (all 224 

specimens present in the sample). Our sampling coverage refers to the number of 225 

individuals sampled from the overall pool, while we also calculated the sampling 226 

completeness that refers to the proportion of species sampled in comparison to the 227 

total number of species contained in the pool. Species completeness reach 9%, 54% 228 

and 97% for the individual coverage at 0.01%, 0.1% and 1, and reach 100% when 229 
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individual coverage is higher than 10%. The second strategy then compared the 230 

dissimilarity or distance between two samples that varied in their coverage, again 231 

with the coverage in the individual treatment samples varying from 0.01% to 1%, 10% 232 

and 100%, but using a constant number of 1000 specimens for the control treatment. 233 

We calculated the pairwise distance or dissimilarity values between the “control” and 234 

“treatment” samples from these combinations for all the above indices, carrying out 235 

permutations with 1000 iterations. 236 

It need to be noticed that the main aim of our study was to test the ‘stability’ or 237 

‘robustness’ of distance measures based on CNESSa and the other indices for 238 

differences in sampling coverage and unequal sample size scenarios, rather than 239 

evaluating how each index specifically reflects the underlying differences between 240 

samples and assemblages. The applicability of individual indices may partly depend 241 

on the actual sample patterns, with some measure comparisons in this regard 242 

provided in earlier studies (Chao et al. 2005; Beck, Holloway & Schwanghart 2013; 243 

Barwell, Isaac & Kunin 2015). In order to evaluate the stability of the different indices 244 

under the different sampling strategies, we then compared the coefficient of variation 245 

(CV = SD / mean) of the permutations results. In order to check the change of 246 

dissimilarity under different levels of sampling coverage, we computed the change 247 

rate (𝐷𝑐,𝑛) between the undersampled dataset (Dn) and the final, full sample dataset 248 

(D1 , i.e. representing either the full dataset in sampling approach 1, or the 1% 249 

control dataset in approach 2) using the formula: 250 

𝐷𝑐,𝑛 =
|𝐷𝑛 − 𝐷1|

𝐷1
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 251 

All calculations were conducted in R V3.1.2 (R Core Team 2014), and we used the 252 

“CommEcol” package (Melo 2014) to calculate the Chao-Sørensen index, while the 253 

package “plyr” (Wickham 2011) was used for the data sorting during the simulation. 254 

The simulation scripts can be found in Appendix 4.  255 

 256 

Results 257 

CNESSa distances between control samples and samples taken from assemblages 258 

sharing rare species with the control were generally larger than distances between 259 

control samples and samples sharing dominant species with the control. 260 

Nonetheless, the difference between these scenarios decreased with an increase in 261 

the sample size parameter m, with the shared rare species sample distances 262 

decreasing and the distances for samples sharing dominant species initially 263 

decreasing, but then increasing (Figure 1). For very large m – values, distances for 264 

“rare” and “dominant” treatments converged towards a common value, representing 265 

the value when ESS accounts for the actual number of species for site i (ESSii) and 266 

site j (ESSjj), and the shared total number of species between two sites (ESSij).   267 

Comparisons of the different dissimilarity metrics show that the CV values generally 268 

increase with a decrease in sample coverage across all indices and for both, equal 269 

and unequal sampling strategies, as well as across both, the rare and the dominant 270 

shared species scenarios. Only the Bray-Curtis measures shows an exceptional 271 

peak in CV at a sampling coverage of 1% for the unequal sampling strategy (i.e. both 272 

samples have the same coverage). In all scenarios, the CV of CNESSa, Bray-Curtis 273 
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and proportion-based Euclidean distances never exceeded 0.1 (<0.05 for CNESSa in 274 

most cases), while the CV of Chao-Sørensen exceeded 0.1 in several scenarios, for 275 

example for samples sharing dominant species with the control for a coverage 276 

<0.1%, reaching a maximum value of 0.69 (Figure 2). With regards to variations in 277 

the standardized sample size in CNESSa (m), an increase in its value resulted in a 278 

lower CV in the scenario of shared dominant species, but in a higher CV in the “rare 279 

species” shared scenario (Figure 2).  280 

Where rare species were shared between control and treatment samples, CNESSa 281 

showed a stable performance across different sampling coverages and sampling 282 

strategies, as the change rate in comparison to the full coverage value never 283 

exceeded 0.1 and remained <0.05 for the majority of cases. In comparison, the 284 

changes of all other three indices exceeded 0.1 in some cases, for example in 285 

scenarios where sampling coverage <0.1% (Figure 3). Where dominant species 286 

were shared between control and treatment samples, all indices showed high 287 

change values >0.1 under a sampling coverage < 0.1% (this value could not be 288 

calculated for CNESSa m =1000), expect for Bray-Curtis distances under the 289 

unequal sampling strategy, but the change for this index exceed 0.1 when sampling 290 

coverage reached 10% and 0.1% (Figure 3).  291 

Discussion  292 

The R function we developed for this study and present in the appendix enables 293 

users to calculate the entire family of ESS-related distance measures. It allowed us 294 

to simulate and compare the performance of these widely neglected dissimilarity 295 

measures with more widespread measures for communities across a wide range of 296 

shared species and sample completeness scenarios. The values of the amended 297 
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CNESSa range from 0 to 1, which enables users to compare results directly with 298 

common dissimilarity measures. The sample size, m, which by default is set to 1, 299 

can be changed according to the users' requirements. In the simulation we selected 300 

a low sampling coverage of 0.01%, (~ 10 individuals) as our lower margin. This 301 

coverage, equivalent to 9% in species richness-based sample completeness, is 302 

much lower than that used in previous simulation studies dealing with the 303 

undersampling issue, for example ~ 40% by Brocklehurst, Day and Fröbisch (2018), 304 

~ or 30% by Beck, Holloway and Schwanghart (2013). Such a low number of 305 

individuals in a sample is actually not uncommon in real-life arthropod studies (e.g. 306 

Beck & Kitching 2009; Duan et al. 2016), although we are commonly unable to 307 

assert the correct number of species in a sampling plot given the associated effort 308 

that would be required to completely sample such communities. This is also one 309 

reason that simulated groups with known species and abundance distributions were 310 

used in this study. 311 

Our first simulation confirms that pair-wised results based on CNESS distances are 312 

strongly influenced by the distribution of shared species. Previous, empirical studies 313 

often calculated species turnover for different values of m, following the assumption 314 

that a smaller value of m emphasizes the similarity of samples with regards to their 315 

dominant species (Brehm, Homeier & Fiedler 2003; Axmacher et al. 2004; Hilt & 316 

Fiedler 2005), while here, we for the fist time analyse in detail the implications of 317 

changes in its value across a wide variety of values up to the entire generated 318 

species pool. For a small sample size parameter m, CNESS distances between 319 

treatment assemblages sharing rare species with the control assemblage are much 320 

higher than the ones sharing dominant species with the control. This is reflecting the 321 

basic probability calculations on which the measure is based, since when taking a 322 
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relatively small sample (i.e. a small value of m), the probability of any of the m 323 

individuals belonging to shared species is higher when assemblages share their 324 

dominant species rather than their rare ones. Nonetheless, for large values of m, 325 

CNESS approaches a constant value, i.e. the (chord-normalized) proportion of the 326 

shared number of species between two samples in both scenarios (shared rare or 327 

common species), explaining the convergence of CNESS dissimilarity values for 328 

large values of m. This confirms that for small m values, results chiefly reflect 329 

similarities in the dominant species (e.g. Hilt & Fiedler 2005), while for large m-330 

values, the dissimilarity reflects the overall turnover between samples in their 331 

underlying species pool, irrespective of the abundance of the individual species 332 

within that pool. Altering values of m therefore enables researchers to shift the focus 333 

from the share of abundant species to the overall species pool. This ability in our 334 

view makes CNESS already a superior measure of species turnover patterns, since 335 

other, widespread beta-diversity indices only generate one fixed value that is 336 

strongly influenced by the underlying species abundance distribution pattern (Beck, 337 

Holloway & Schwanghart 2013).  338 

Comparisons of the CV values confirms the robustness of the CNESS measure of 339 

compositional dissimilarity across a wide range of scenarios, including in cases 340 

where two communities share rare species. In contrast, the high variance particularly 341 

of the Chao-Sørensen dissimilarity measure for a low sampling completeness 342 

suggests that this index is not suitable to measure compositional dissimilarity in such 343 

scenario. Where communities share chiefly their dominant species, most indices 344 

show a high change ratio under a low sampling coverage, which means they all do 345 

not provide strong representations of the actual dissimilarity between the two 346 

samples. Nonetheless, even under this condition, CNESS still performs much better 347 
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than Chao-Sørensen and Euclidean distance measures. It needs to be noticed that 348 

the performance of Bray-Curtis is likely influenced by the sampling strategy, i.e. its 349 

changing ratio showed the same increasing trend with the decrease of sampling 350 

coverage under equal sampling strategy (i.e. undersampling for both assemblages, 351 

or only for one of the assemblages). However, Bray-Curtis reached a peak in 352 

similarity for the 1% coverage under the unequal sampling strategy, i.e. it behaves in 353 

a more unstable and unpredictable way across these scenarios when compared to 354 

CNESS that shows similar performances under the two sampling strategies.  355 

In this study, we calculated CNESS for different sample size parameters m and three 356 

widespread beta diversity indices based on simulated datasets of known dissimilarity 357 

and using different sampling scenarios, to compare the difference between the 358 

different dissimilarity measures. It needs to be stressed that we did not assess how 359 

close resulting values were to the “true dissimilarity”. Instead, we focused on the 360 

variance and change ratio observed in the indices, since in the ordination or in other 361 

visualization approaches used to present the data, plots are commonly grouped by 362 

their relative distance or dissimilarity values. A robust prediction of dissimilarities 363 

across the different scenarios and under repeat extraction of random samples from 364 

underlying assemblages in this context is seen as an absolutely crucial basic 365 

criterion (Brehm & Fiedler 2004). In this regard, our results clearly emphasize the 366 

suitability and superiority of CNESS in samples of diverging sample sizes. The value 367 

of CNESS is sensitive to the distribution structure of shared species, which can be 368 

reflected by the changing of the sample size parameter m. While being highly useful 369 

in studying the compositional difference for overall species assemblage, in many 370 

real-life cases, setting m to large values comes at the cost of having to remove a 371 

number of samples whose overall sample sizes are smaller than m. Nonetheless, the 372 
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CNESS uniquely allows to address this problem via variations in the sample size 373 

parameter according to the respective underlying data structure of the samples that 374 

are being compared. We generally recommend researchers to calculate the CNESS 375 

(or similar measures such as NESS) dissimilarity for a number of different m values 376 

to obtain insights both into the share in dominant species and across the overall 377 

species pool (see e.g. Brehm, Homeier & Fiedler 2003; or Axmacher et al. 2004). 378 
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Figures 474 

 475 

Figure 1.  The CNESSa values calculated between the control and different 476 

treatment datasets with different m values. R25, R50 and R75 refer to treatments 477 

that share 25%, 50% and 75% of the rare species in the theoretical population, while 478 

D25, D50 and D75 refer to the respective share in dominant species with the control.  479 
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 480 

Figure 2. The coefficient of variation (CV, log10 transformed) based on 1000 permutations for different dissimilarity or distance 481 

measures calculated between the different treatments and the control sample for equal sampling (sampling strategy 1) and unequal 482 

sampling (sampling strategy 2) for different sampling coverage. Solid and dashed vertical lines refer to 0.1 (log10 value of -1) and 483 

0.05 (log10 value of -1.3) CV values. R25, R50 and R75 refer to treatments that share 25%, 50% and 75% of the rare species in 484 

the theoretical population, while D25, D50 and D75 refer to the respective share in dominant species with the control. The table 485 

refers to the mean species richness completeness for different sampling coverages calculated based on the control group.  486 
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 487 

Figure 3: Change in the mean value (log10-transformed) based on 1000 permutations for different indices between treatment and 488 

control group for equal sampling (Sampling strategy 1) and unequal sampling (Sampling strategy 2) under different sampling 489 

coverage. Solid and dashed vertical lines refer to 10% (log10 value of -1) and 5% (log10 value of -1.3) change. R25, R50 and R75 490 

refer to treatments that share 25%, 50% and 75% of the rare species in the theoretical population, while D25, D50 and D75 refer to 491 

the respective share in dominant species with the control. The table refers to the mean species richness completeness for different 492 

sampling coverages calculated based on the control group. 493 

 494 
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