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Abstract—This study explores the feasibility of incorporating
energy information into a maximume-likelihood reconstruction of
activity and attenuation (MLAA) framework. The attenuation
and activity distributions were reconstructed from multiple en-
ergy window data, and a scatter function was added to the system
model of the algorithm. The proposed energy-based method
(MLAA-EB) was evaluated with simulated 3D phantom data,
using the geometry and characteristics of a Siemens mMR PET-
MR scanner. Results showed that the proposed algorithm is able
to compensate for errors in the activity image caused by the
incorrect assignment of attenuation values to the segmented MR.
This is effective for small objects only, for large objects further
solutions need to be found.

I. INTRODUCTION

He problem of attenuation correction of PET images

represents a challenging issue in PET/MR scanners, as
it is not possible to directly correlate the MR signal to tissue
attenuation of the 511 keV photons.

Therefore, emission-based attenuation estimation strategies
seem to be particularly promising for overcoming the quantifi-
cation errors induced by conventional MR-based attenuation
correction methods [1] in PET/MR. However, in the absence
of time-of-flight information, the joint reconstruction of the ac-
tivity and attenuation map is a strongly ill-posed problem with
infinitely many solutions. Therefore, alternative approaches
need to be found.

Berker et al [2] investigated the possibility of incorporating
the scatter information into a joint reconstruction scheme.
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Whilst promising, the assumption that photopeak and scattered
data can be measured separately represents a limitation for this
approach. The study is also restricted to small 2D phantoms
representing a mouse-sized object.

In previous work, we demonstrated that the finite energy
resolution of PET detectors can be efficiently modelled when
using multiple energy window measurements and that it is
possible to estimate the attenuation distribution of the object
from such data if the emission image is known [3]. This paper
explores the feasibility of incorporating a 3D probabilistic
scatter model into a joint reconstruction scheme, without
having to resort to the assumption of the absence of scatter
in the photopeak window. We also provide a preliminary
evaluation of the performance of the method on simulated data.

Algorithm 1: Pseudo-code for MLAA-EB.

init

Input: gyv, gur, gru, p
for i =1,...,MaxlIter; — 1 do
OSEM: gyp & sty =0 & pi™it — AL
SSS: pinit & A1 — st
end
AO . Ainit .
/J‘O — “init .
sy < Py
fort =1,...,MaxIters — 1 do
1. Attenuation Update: g7 & gry & A\t—1 — ut;
2.SSS + ut & A1 S{IU;
3. Activity Update: gyy & si, & pt — Ak
end

Output: Estimated activity A®* and attenuation image p°5t.

II. METHODS
A. Multiple Energy Window Data

In the proposed method, it is assumed that each detector can
assign a photon to either the photopeak window (U) or a lower
energy window (L) placed below the photopeak. Therefore,
four different sinograms are created, one for each combination:
gUU, EUL, ELU, gLL. We assume that the observed counts g



are given by the sum of unscattered and scattered events. In
our current method, we disregard the presence of unscattered
events in the scatter windows. This leads to:

guu = gyu. + 8Uu (D
SUL ~ 8UL 2
gLU ~ gLU (3)

We currently assume that g5y, g¢7r, and giy; contain single
scatter events only. We do not use the gy, data as it contains
very few single scatter events [3].

The expected number of unscattered counts ggj;¢ in the
photopeak window UU is defined for each pair of detectors
as:

BUTS = cu(511)eu(511)(Gyh)e” W I @)
where €, and €, denote the detection probability of a photon
with a certain energy in a given energy window, A and p repre-
sent the activity and the attenuation distributions respectively,
G;; is the projector operator along the line of response (LOR)
spanned by two detectors 4, j.

The expected number of scatter counts gy, ;;¢ in the
energy window pair UL (and similarly in LU) is computed
using an extension of the single scatter simulation (SSS) [4]
to the case of multiple energy window measurements:

8UL.ij,s X
ev(F)er(511)u(511, 5)(Kig\)e Kis#(511) g =Kysu(E)
+eu (511)er (B)u(511, S) (Kjs A\ e Kisn(511) g ~Kisu(E)

(%)
where S is the scatter point, K;g and Kjs denote the projector
operator along the line connecting each detector with the
scatter point, respectively ¢S and j 5, F is the scattered photon
energy, and p(FE) is the attenuation coefficient at the energy
E.

The model also accounts for the fact that Compton Scat-
tering is not equally probable at all scattering angles, as
described by the Klein-Nishina equation [5]. It also considers
the detector cross-sections normally presented to the rays ;7.5
and kS. These factors are omitted from Eq. 5 for simplicity
of notation.

B. MLAA-EB Optimisation algorithm

The proposed MLAA-EB optimisation algorithm (Energy-
Based Maximum Likelihood reconstruction of attenuation and
activity) relies on alternating maximisation in A and /.

The emission image is reconstructed with a Maximum Like-
lihood (ML) estimator from UU data, whilst the attenuation
image is obtained with the MLTR-EB algorithm [3] from the
other energy window pairs (UL, LU). Both likelihoods use a
Poisson model.

The algorithm alternates between estimating activity from
UU data (for a maximum of 3 iterations) and attenuation
from UL and UL data (for a maximum of 1 iteration), where
each step uses LBFGS-B [6]. The gradient V,,(gVX/LU|\, 1)
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Fig. 1. Small cylinder (D = 8 cm). First row: Initial attenuation image (20%
error in the inner cylinder), true attenuation image, initial and true activity
images. Second row: mean percentage error over iteration number, for the
attenuation and activity images.

was derived analytically from the forward scatter model,
implemented in STIR [7] and validated with finite differences.

Both the forward model and the gradient account for the
dependency of the energy attenuation of the photon as well as
the finite energy resolution of the PET detectors.

The scatter component in the photopeak UU is computed
from the current estimate of the attenuation image and the
emission data, using an extension of the single scatter simu-
lation (see Eq. 5) .

Algorithm 1 shows the pseudo-code for the proposed
reconstruction algorithm.

C. Simulation Set-Up

Simulations have been performed using the geometry and
characteristics of the Siemens mMR scanner [8]. The lower
energy window range was set to L=350-460 keV and the upper
one to U=460-570 keV, with an energy resolution of 16%.

We report results for a cylindrical phantoms of different
size, initialised from a p-map with an error of —20% in the
inner cylinder w.r.t. the ground truth. Image size is 30x30x8
with a voxel dimension of 1.2x.1.2x3.25 cm?®. Inner and outer
ring diameters for the small cylinder are respectively 6 and
8 cm (Fig. 1). The big cylinder is 3 times bigger in the x-y
plane. In z-dimension both cylinders are as long as the scanner
(26 cm).

In the current results, attenuation masking was incorporated
in the algorithm by only updating the p values within the inner
cylinder during MLTR-EB iterations.

III. RESULTS AND DISCUSSION

Results for the small cylinder show that the algorithm is
able to compensate for errors due to the wrong assignment
of population based density values. Fig. 1 reports the mean
percentage error over iterations, for both the activity and the
attenuation images, which converges to zero.

According to the findings in a previous study [2], we also
decided to investigate the effects of the size of the phantom:
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Fig. 2. First row: Contour plots related to the small cylinder, w.r.t the lower
(a) and upper (b) energy window. Second row: Contour plots related to the
big cylinder, w.r.t the lower (a) and upper (b) energy window.

a two-variable analysis was conducted on a larger cylinder of
diameter 32cm. Only two constant values, activity and atten-
uation in the inner cylinder, were estimated at each iteration.
This choice was made in order to reduce the complexity of
the problem and isolate the number of variables that come into
play.

Fig 2 shows the obtained activity and attenuation values for
each iteration for the small (Fig. 2 a-b) and big (Fig. 2 c-d)
cylinder, superimposed on the contour plots of the respective
log-likelihoods.

This analysis shows that the size of the phantom affects the
shape and inclination of the cost functions in the different
energy windows. Furthermore, it shows that the algorithm
behaviour depends on spatial scale: the algorithm converges
to the true solution only for the small cylinder (Fig. 2 a-b).

IV. CONCLUSIONS

Results from simulations demonstrated that the proposed
MLAA-EB algorithm is capable of correctly estimating both
the activity and the attenuation distribution for a small cylin-
drical phantom.

A subsequent study conducted to understand the effect of
the size of the object demonstrated that the proposed approach
is sufficient (and fast) for small phantoms, but insufficient for
patient-scale objects.

We believe that the use of alternating optimisation between
two different objective functions is the source of failure of this
approach in the case of big objects. Therefore, future work will
be oriented towards the development of a joint reconstruction
algorithm that optimises both variables simultaneously.

Further efforts will have to be made to reconstruct the at-
tenuation map without restricting the update to the lung region
only. In addition, the proposed algorithm can be extended to

include unscattered counts in the lower energy windows as
well as multiple scatters. The impact of the presence of noise
in the data will also have to be evaluated.
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