The prediction of the operating conditions on
 the permeate flux and on protein aggregation
 during membrane processing of monoclonal
 antibodies

5 Lara Fernandez-Cerezo^{1,2}, Andrea C.M.E. Rayat¹, Alex Chatel¹, Jennifer M. Pollard², 6 7 Gary J. Lye¹, Mike Hoare¹ 8 9 ¹The Advanced Centre for Biochemical Engineering, Department of Biochemical 10 Engineering, UCL, Gower St, London, WC1E 6BT, UK 11 12 ²Downstream Process Engineering and Development, Merck & Co., Inc., 2000 13 Galloping Hill Road, Kenilworth NJ, 07033, USA 14 + Corresponding author: 15 16 Andrea C.M.E. Rayat 17 The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, UCL, Gower St, London, WC1E 6BT, UK 18 Andrea.rayat@ucl.ac.uk 19 20 21 'Declarations of interest: none' 22 23 **KEYWORDS** 24 Tangential flow filtration; ultra scale-down; ultrafiltration/diafiltration; high monoclonal 25 antibody concentration; protein aggregation 26

1 1. INTRODUCTION

2 Membrane processes are integral to industrial processes including monoclonal 3 antibody downstream operations where microfiltration, ultrafiltration and viral filtration 4 membranes are increasingly applied [1,2]. One use of ultrafiltration membranes in 5 these operations is for product concentration and for an exchange to, for example, a 6 formulation buffer [3,4]. These concentration and buffer exchange operations are often 7 simply referred to as ultrafiltration/diafiltration (UF/DF) in the biopharmaceutical 8 industries. The main objectives of UF/DF steps are volume reduction (UF) and buffer 9 exchange of the incoming solution (DF), respectively. This paper demonstrates the 10 application of a rotating disc ultra scale-down membrane system (USD) to predict how 11 a tangential flow filtration (TFF) system performs at pilot-scale using an ultrafiltration 12 membrane in a flat-sheet cassette format.

13 Membrane processes using flat-sheet cassettes are often scaled by changing the 14 number of cassettes or membrane sheets (i.e. to alter the membrane area) while 15 maintaining the same transmembrane pressure, crossflow rate, membrane loading 16 and functional design (i.e. flow path length) [5,6]. Membrane loading is defined by the total feed volume, or mass, to be processed per m² of membrane area in the initial 17 concentration stage. Loadings range from 200 to 1000 g of protein per m² (typically 25 18 19 to 120 L of protein solution per m^2) with an average of 450 g/m² [4]. A trade-off exists 20 between a target membrane loading, total membrane area requirement, and total 21 processing time. For example, when processing a shear sensitive product, a lower 22 loading may be targeted to result in a reduced duration by using a larger membrane 23 area. Where reducing the membrane area is a priority, a higher loading will be targeted 24 by using longer process times. The relationship among these different parameters are 25 shown in Equations 1 - 2.

- 26 Equation 1: Membrane loading (g/m²)= Total feed volume to be processed (L) x Feed concentration (mg/mL) Total membrane area (m²)
- 27 Equation 2: Total membrane area $(m^2) = \frac{\text{Permeate flowrate (L/h)}}{\text{Total duration (hrs) x Permeate flux (LMH)}}$

1 Additionally, the use of membrane loadings allows the design to account for a range 2 of incoming feed concentrations to an UF/DF step. For example, UF/DF steps in 3 monoclonal antibody processing often follow polishing chromatographic steps [2]. 4 These steps will yield different concentrations of the product. A flow-through anion 5 exchange (AEX) chromatography will yield a dilute process stream while a bind-and-6 elute cation exchange (CEX) chromatography step often delivers a more concentrated 7 stream. This means that for the same target membrane loading, a larger volume of 8 feed stream will be processed from a flow-through AEX chromatography than from a 9 bind-and-elute CEX chromatography step. Since the available membrane area in 10 biomanufacturing facilities is often fixed, this has implications on operational costs (for 11 an oversized membrane area) or processing time (for an undersized membrane area) 12 and consequently, on the stability of the product.

13 A challenge is to determine the membrane loadings needed ahead of full-scale trials 14 to help decide the appropriate total membrane area requirements at large-scale. 15 Recent efforts have focused on the development of an ultra scale-down (USD) device 16 (at least 1.7 mL working volume) to predict operations at pilot-scale, which for a 17 previous study required a working volume of ~890 mL per experiment [7]. The USD 18 device uses the rotation of a disc to allow decoupling of the dependencies between 19 the flow over the membrane surface and the transmembrane pressure or flux. More 20 specifically, implementation of this device to predict the flux of a pilot-scale TFF system 21 as a function of shear rate during monoclonal antibody diafiltration experiments was 22 demonstrated by our previous work [7].

23 The prediction of the effect of membrane bioprocessing on product quality attributes, 24 such as dimer content and product variants, is also key to successful scale-down. 25 UF/DF operations are often among the final bioprocess unit operations beyond which 26 there are few or even no further purification stages except bioburden reduction during 27 bulk filtration [1,2,8,9]. These operations can take place in different combinations, i.e. 28 stand-alone UF or DF, or a combined UF/DF, depending on the individual location 29 within the bioprocess sequence. For example, the final step prior to bioburden 30 reduction typically takes place as UF/DF/UF where the incoming feed is initially 31 concentrated, followed by buffer exchange to the formulation buffer, and then further

1 concentrates to reach the target protein concentration. If the UF/DF step takes place 2 between different chromatographic steps or a lower target protein concentration is 3 targeted, it can run as UF/DF with no further ultrafiltration step. It is important to control 4 product quality, e.g. dimer content, particularly for unstable proteins where a small 5 change in aggregate levels may have a significant impact on efficacy and safety 6 considerations [10]. Protein aggregates can be categorised in many ways including 7 whether they are reversible or irreversible, soluble or insoluble, or by size [11]. It is 8 thought that small soluble reversible oligomers are first formed by protein binding at 9 charged or polarised regions [12,13]. These trigger the formation of partially folded 10 protein intermediates, which are known to be precursors to small oligomers [14,15]. 11 The latter may begin to associate through irreversible bonding, and eventually become 12 covalently-bonded insoluble aggregates through, for example, the formation of 13 disulphide bonds through intermolecular thiol linkage [16–18]. These aggregates may 14 become large, often visible, and removable using a 0.22 µm filter [19].

15 During UF/DF stages, proteins are exposed to high shear stress environments and 16 shear-associated conditions including: multiple pump and valve passes per cycle; air-17 bubble entrainment [20]; adsorption to stainless steel [21]; solid-liquid interfacial 18 effects [22,23]; and shear-related pump microcavitation [24]. Proteins are also 19 exposed intermittently to membrane surfaces, where a high concentration gel layer 20 may form possibly triggering the formation of aggregates [25–27]. The choice of pump 21 is additionally known to affect stability; for example, the use of peristaltic [28] and 22 screw pumps [29] tend to cause higher aggregate levels possibly due to increased 23 back pressure and thus, increasing pump "shear" [30].

This paper will focus on predicting the membrane performance across a range of transmembrane pressures, flow conditions (represented by shear rate), feed and retentate concentrations during ultrafiltration and diafiltration operations. This will include a comparison of the dimer content of the resulting solutions as measured by size exclusion chromatography and turbidity to track aggregate formation.

29 2. MATERIALS AND METHODS

System components and the experimental method followed are fully detailed
 elsewhere [7]. For convenience, salient details are provided below.

3 2.1 Materials

4 Humanized monoclonal antibodies mAb-A (~150 kDa, pl 9.0) and mAb-B (~150 kDa,

5 pl 7.6), were provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co.,

Inc., Kenilworth, NJ, USA as ~ 12 mg/mL solutions in 10 mM Sodium Acetate, pH 5.5,
-80°. These were thawed overnight, concentrated to 30 mg/mL (mAb-A) and 155
mg/mL (mAb-B) followed by buffer exchange into 10 mM Tris Acetate pH 5.4 using the
same method, membrane type and equipment as described below and in [7]. The
resultant solutions were diluted using the latter buffer as required. These were used
within 24 hrs.

Buffer materials were obtained from Sigma-Aldrich (St. Louis, MO). Buffer solutions
were pre-filtered with sterilising filter (Steritop bottle-top filters, 0.22 µm pore size, EMD
Millipore, Bedford, MA).

15 2.2 Equipment and experimental methods

16 <u>2.2.1 Pilot-scale and lab-scale TFF systems and experiments (see [7])</u>

17 The main pilot-scale system used is described in [7] (PendoTECH TFF Process 18 Control[™] rig fitted with a guaternary diaphragm pump (QuattroFlow[™] 150S, Triangle Process Equipment, Wilson, NC) and a 0.11 m² membrane cassette (MWCO 30 kDa, 19 20 composite regenerated cellulose, C-screen Pellicon 3, EMD Millipore, Bedford, MA)). 21 For one experiment, a rotary lobe pump (200-576, UNIBLOC®-PD, Unibloc-Pump, 22 Inc, Marietta, GA) was used. The working volume for this system was usually 890 mL, 23 except for a one-off experiment which was 200 mL (Figure 9 Set-up (5)). The 24 laboratory-scale TFF system operated using a diaphragm pump (XX42PMP01, Lab-25 scale pump module TFF system, EMD Millipore, MA) and was fitted with a 0.005 m² 26 membrane cassette (same specification as above) with a working volume of ~50 mL.

All trials were performed at constant mean transmembrane pressure drop, $\Delta \overline{P}_{TMP}$, of typically 1 bar. Constant $\Delta \overline{P}_{TMP}$ was attained using retentate valve control in both TFF systems; automatic in the pilot-scale while manual in the lab-scale. The trials were conducted at room temperature (~ 20 °C). Six main stages for the TFF studies were performed: (1) system set-up (drain and install new cassette); (2) system equilibration (wash with water to measure membrane resistance and then with diafiltration buffer); (3) manual loading; (4) fed-batch diafiltration or two-stage ultrafiltration/diafiltration (feed or diafiltration buffer controlled to match the permeate flux); (5) product collection; (6) system clean and storage at room temperature (with 0.1 N NaOH).

7 <u>2.2.2 USD system and experiments</u>

8 The USD device comprises a 1.7 mL Perspex chamber ($\emptyset = 25$ mm (inner diameter, 9 (ID)), h = 56 mm) and a support frit in the stainless-steel base to hold the membrane 10 disc in place (\emptyset = 25 mm, with the same membrane material as the TFF system). An 11 alternative 6.3 mL Perspex chamber (\emptyset = 25 mm (ID), h = 193 mm) was also used. 12 For both chambers, the stainless-steel rotating disc is located 2.0 mm above the 13 membrane surface. The active membrane is presented as a concentric ring; 2.1 cm² 14 area, ID = 8 mm and OD = 18 mm. For a schematic diagram of the USD device, see 15 [7]. The device contents were maintained at a fixed temperature (20 °C) and at 16 constant pressure (1 bar, unless otherwise specified) by controlling the syringe pump 17 flowrate.

Six main stages were performed for the USD studies: (1) system set-up (with new prewetted filter disc); (2) system equilibration (wash with water to measure membrane resistance, and then with diafiltration buffer); (3) manual load of antibody solution; (4) fed-batch diafiltration or two-stage ultrafiltration/diafiltration (by automatic feeding at the desired ΔP_{TMP}); (5) manual product collection; and (6) system clean and storage at room temperature (0.1N NaOH).

24 Two different types of pilot-scale TFF and USD experiments, diafiltration and 25 ultrafiltration, were conducted in fed-batch configuration (i.e. constant retentate 26 volume), as shown in Figure 1. For diafiltration experiments, firstly steady-state flux 27 rate as a function of transmembrane pressure drop characteristic profile for increasing 28 pressure drop (0.0 - 1.6 bar) was measured. This characteristic profile was recorded 29 for combinations of a protein solution concentration and a flow condition over the 30 membrane at equivalent shear rates for USD and TFF scales (Details on shear rate 31 calculations are given in [7]). A second type of diafiltration experiment was conducted

1 where the transient flux rate versus time profile was measured across a range of 2 protein solution concentrations at a single transmembrane pressure drop (1.0 bar) and 3 single flow condition over the membrane during a 7 diafiltration volume (DV) operation. 4 For all ultrafiltration experiments the transient flux rate versus time profile were also 5 measured for a fixed initial protein concentration (12 mg/mL) at a single flow condition 6 (i.e. the same average shear rate over the membrane) and for combinations of the 7 final protein solution concentration. A new membrane was used for each diafiltration 8 run or combination of ultrafiltration and diafiltration runs.

9 2.3 Analyses

A capillary viscometer (m-VROC, RheoSense ©, San Ramon, CA) was used to
 measure the viscosity of the diafiltration buffer and the feed solutions (1 – 155 mg/mL)

- 12 Soluble protein aggregates were quantified using size-exclusion chromatography (UP-
- SEC using YMC Pack-Diol 120 column, 5µm, 8 x 300 mm, YMC, Kyoto, Japan
 operated using an Agilent 1200 Chemstation Agilent Technologies, US). The injection
- volume of each sample was adjusted to target a mass of 5 µg. The method used a
- 16 flowrate of 0.5 mL/min and a 214 nm UV detection wavelength.
- Turbidity was recorded using optical density (OD) at 650 nm (SpectraMax Plus® 384
 Microplate Reader, Molecular Devices LLC, San Jose, CA).

19 3. RESULTS AND DISCUSSION

20 3.1 Experimental design

21 The performances of the USD and the pilot-scale TFF systems were compared in two 22 different modes: fed-batch diafiltration (DF) (Figures 1A and B) and two-stage fed-23 ultrafiltration followed by diafiltration (terminology batch used here is 24 ultrafiltration/diafiltration, UF/DF) (Figures 1C and D). The lab-scale TFF system was 25 only operated in fed-batch diafiltration operation (Figure 1B).

The systems were scaled at a constant volumetric membrane loading of 8.1 L of feed per m². This for example is equivalent to a mass loading of 97 g/m² for a 12 mg/mL feed solution. The flow conditions in both systems were kept comparable in terms of the average shear rate (studied range from ~2000 to ~7000 s⁻¹) within a 0.1mm-height

1 of fluid above the membrane surface (i.e. half the effective channel height, between 2 two membranes in flat-sheet cassettes [4]). For the USD system, the shear rates were 3 obtained using computational fluid dynamics and for the TFF system using pressure 4 drop-flowrate characteristic profile as described elsewhere [7]. The rheology for the 5 two monoclonal antibody solutions studied is considered to be Newtonian across the 6 explored range of concentrations and shear rates (n = 1.01 ± 0.02 for $\mu = k \bar{v}_{av}^{n-1}$) 7 (Figure 2A). The resulting correlation between viscosity, µ, and feed concentration, C 8 $(\mu = 1.01 e^{0.017C})$ (Figure 2B) is similar to that reported elsewhere [31].

9 3.2 Factors affecting the experimental design space during diafiltration

10 A series of USD experiments in diafiltration mode (Figure 1A) and pilot-scale TFF 11 (Figure 1B) were performed to measure the steady-state flux at increasing 12 transmembrane pressure drop for three feed concentrations (mAb-A) at four disc 13 speeds (USD, Figure 3i) and four crossflow rates (TFF, Figure 3ii). Diafiltration mode 14 was selected using the same composition for the diafiltration buffer as that in the feed 15 solution to maintain a constant ionic environment. This enabled an assessment of the 16 diafiltration performance as a function of feed and operating conditions only without 17 the additional effect of change in ionic environment. The flow conditions were characterised based on an average shear rate (\bar{y}_{av}) which is achieved by a specific 18 19 rotational speed (N, in rpm) of the USD system (Figure 3iii) and/or crossflow rate (QF, 20 in L/min/m² (LMM)) of the pilot-scale TFF system (Figure 3iv).

21 A transition from pressure-dependent to pressure-independent flux was observed for 22 all conditions tested in the USD (Figure 3i) and in the pilot-scale TFF (Figure 3ii) 23 systems with decreasing flux as the feed concentration is increased and increasing flux as the crossflow rate is increased. The transmembrane pressure ($\Delta \overline{P}_{TMP} = \frac{P_F + P_R}{2}$ -24 25 P_P) at which the transition occurs depends on the shear rate and concentration. It was 26 observed to occur at a similar combination of conditions in both scales (Figure 3i and 27 3ii). For example, at a 5 mg/mL feed concentration and a shear rate of 2400 s⁻¹ (N = 28 2100 rpm, Q = 4 LMM) it is observed to occur at a ΔP_{TMP} of 0.9-1.0 bar at both scales 29 (Figures 3Ai and 3Aii).

1 In Figure 3(i) and Figure 3(ii), an exponential curve was fitted to each of the data. Each 2 curve represents a single experiment (n=1) for both systems. Previous work has 3 shown that replicate runs using the USD system has a coefficient of variation (CoV) of 4 less than 5%. To create the exponential curves, an empirical correlation, J = a (1-5 $b^{\Delta P_{TMP}}$), was selected based on the criterion that the correlation should demonstrate 6 typical relationship between J and ΔP_{TMP} , as extensively reported in literature, e.g. in 7 literature [32], with the assumption that the model had to go through 0,0 and have a 8 limiting maximum value. This empirical correlation has the properties of J=0, $\Delta P_{TMP} = 0$ 9 and J approaches a maximum limiting value (=a) for increasing ΔP_{TMP} , i.e. b < 1. For 10 all data sets the expected trends are observed and good fits were obtained ($R^2 > 0.99$). 11 Similar quality fits were observed for the pilot-scale TFF data ($R^2 > 0.98$).

12 Direct matching in terms of the permeate flux of the USD and pilot-scale TFF 13 correlations is not attempted here due to the slightly different flow conditions. However, 14 similar results are observed for both systems but with noticeably higher values of J at 15 low ΔP_{TMP} for the USD device. The profiles at the lowest flow conditions also tended 16 to be of higher flux rates for the USD device. These differences will be further 17 explained following a more detailed analysis of the parity between USD and TFF data.

18 To aid this analysis, a design space (Figure 4i) to evaluate the effects of ΔP_{TMP} and \bar{y}_{av} was developed from the USD flux data (Figure 3i). This was performed by 19 20 combining the results from the four J vs. ΔP_{TMP} correlations for each flow condition 21 and generating a data matrix for the experiments at 5 mg/mL (Figure 4A, i), 15 mg/mL 22 (Figure 4B, i) and 30 mg/mL (Figure 4C, i). This allowed the construction of parity plots 23 comparing the USD predicted and the measured pilot-scale TFF flux rates (Figure 4ii). 24 Good agreement was found particularly at flow conditions > 3300 s⁻¹ and ΔP_{TMP} > 1.0 25 bar which is the industrially relevant region for most TFF operations [33]. As indicated 26 from Figure 4ii the USD system appears to over predict flux at lower shear conditions, 27 lower ΔP_{TMP} values and for lower concentrations. This might be explained by the 28 difference in the nature of flow with the pilot-scale TFF system ($1600 < Re_{USD} < 4600$ 29 versus 2800 < Re_{TFF} < 8500). Also, using a single ΔP_{TMP} value for the USD studies 30 may not fully capture the conditions and match the average $\Delta \overline{P}_{TMP}$ in the pilot-scale 31 TFF system across the variation of possible localised ΔP_{TMP} along the length of

1 membranes within a cassette. To determine where along the length of the membrane 2 these localised ΔP_{TMP} variations occur and how large these variations are in a pilot-3 scale TFF system will be a complex undertaking. This could involve designing 4 experiments to study the membrane performance in terms of the permeate flux at 5 different points of a membrane cassette and comparing these with multiple USD trials 6 representing the range of ΔP_{TMP} and flow conditions along the membrane cassette.

7 3.3 Effect of feed concentration on diafiltration operations

The diafiltration performance of different mAb-B feed concentrations up to 155 mg/mL was evaluated in USD experiments. Due to limited amount of material, only some of the lower feed concentrations, up to 39 mg/mL, were investigated at pilot scale. A crossflow rate, Q_F, of 4.0 LMM was chosen for the TFF system while a disc speed, N, of 2100 rpm for USD trials was selected. These conditions were selected as they have the same shear rates for solution viscosities from 0.00103 Pa s for 5 mg/mL to 0.00137 Pa s for 30 mg/mL (Figure 3iii and 3iv).

15 The flux was recorded as a function of time during a 7 DV operation in the USD (Figure 16 5A, i) and in the pilot-scale TFF systems (Figure 5B, i). In both systems, steady-state 17 flux was attained for all concentrations, i.e. indicating there was negligible fouling layer 18 resistance ($R_F = 0$). The measured steady-state fluxes for all concentrations studied 19 were plotted in Figure 5ii and were observed to overlap for both the USD and TFF 20 systems. This further confirms our observation in Section 3.2 that the USD system is 21 able to predict steady-state fluxes achieved by the pilot-scale TFF system at the upper 22 range of transmembrane pressure drops (> 1.0 bar) tested. For a given 23 transmembrane pressure, the USD system vielded an exponential-like correlation (J $\propto e^{0.020.C}$ (R² = 0.93)) of the diafiltration flux with increasing feed concentration. 24 Interestingly, this is similar to the correlation observed between viscosity and 25 concentration in Figure 2 ($\mu \propto e^{0.017C}$ [31]). The three runs with the previously studied 26 27 mAb-A achieved similar flux rates (Figure 3) as for mAb-B as might be expected from 28 their similar rheological properties (Figure 2).

3.4 Effect of loading/desired retentate concentration in ultrafiltration/diafiltration30 operations

1 A fed-batch UF/DF operation was designed by maintaining constant feed/retentate 2 volume over time during both the ultrafiltration and the diafiltration stage in the USD 3 system (Figure 1C) and the pilot-scale TFF system (Figure 1D). A single flow condition 4 was tested, i.e. a crossflow rate, Q_F, of 4 LMM for the TFF system. Based on 5 equivalent shear rate at this crossflow rate (Figure 3iii), a disc speed, N, of 2100 rpm 6 was chosen for the USD trials. The flux was recorded as a function of time in all trials. The four UF/DF experiments used the same initial feed solution of 12 mg/mL. This 7 8 solution was firstly concentrated using different concentration factors based on 9 different target loadings, and then diafiltered by the same extent of diafiltration (7 DV).

10 A summary of the loading calculation for all four conditions is included in Table 1. 11 Various mass loadings were initially selected (Table 1 Col 1), which are within the 12 typical range of 200 to 1000 g/m² (the typical loading for protein processing is 450 13 g/m² [4]). The calculated total volumetric loading, volume concentration factor and 14 resulting retentate concentration which corresponds to each of the mass loadings are 15 shown in columns 2, 3 and 4 respectively in Table 1.

During the UF stage, the USD system predicts a decline in flux with increasing desired retentate concentration (Figure 6i). The pilot-scale TFF system yields similar flux profile and duration as the USD system. As expected, this is a similar decline to that observed in Figure 5ii. During the DF stage, similar steady-state flux profiles are observed for both scales in all conditions (Figure 6ii).

21 The use of the USD system during UF/DF operations gives an insight into the trade-22 off between the duration and the desired retentate concentrations prior to a diafiltration 23 step. The USD system produces similar UF/DF flux profiles as the pilot-scale TFF 24 system (Figure 6iii). These results show that the USD system can predict the duration 25 of a UF/DF step at various target mass loadings or final retentate concentrations. The 26 USD flux predictions from these studies may be used to recommend a desired 27 retentate concentration (and therefore, fix a membrane loading) which will meet the 28 overall UF/DF duration requirements of 3-4 hrs to fit in a regular shift. For example, 29 based on these studies one may recommend a retentate concentration of up to 74 30 mg/mL if an overall duration of less than 3.5 hrs is desired (Figure 6C, iii).

31 3.5 Comparing product quality between the systems

The final UF/DF step is at the end of a bioprocess, after which only a final bulk filtration for bioburden reduction takes place with no additional purification steps. The main objective of a UF/DF step is to achieve volume reduction (concentrate) and exchange buffer environment (diafilter) while maintaining the product quality, in particular soluble and insoluble aggregation levels. Soluble aggregates can impact potency and safety, while insoluble aggregates could impact the final bulk filtration performance.

7 <u>3.5.1 Comparing soluble aggregates</u>

8 The effect of processing on the presence of soluble aggregates, specifically dimers,
9 was determined by the difference in peak areas from a size exclusion chromatogram.

The monomer content of the feed solutions varied from $99.1 \pm 0.01 \%$ (m = 3) at 0.8 mg/mL (diluted stock), to $98.4 \pm 0.04 \%$ (m = 3) at 155 mg/mL (stock solution) (*data not shown*) - i.e. a significant change (p = 0.005, t-test with alpha level of 0.05). This small difference in monomer content could be due to aggregation being protein concentration dependent and more prone to aggregate-inducing effects such as stirring as observed elsewhere [34,35].

These feed solutions were used for both DF and UF/DF operations. A change in dimer of \pm 0.5% due to processing was detected across the range explored in the USD system (Figure 7i) with a possible decrease with increasing feed concentration. A change in dimer of \pm 0.25% was measured in the pilot-scale TFF system. These differences are considered to be within the expected level of noise of the system used for these experiments.

22 <u>3.5.2 Comparing insoluble aggregates</u>

An increase in turbidity, measured by OD_{650} , was observed in both systems and attributed to protein colloidal particle formation due to the near absence of non-mAb proteins. Trends of the change in OD_{650} (ΔOD_{650}) as a function of concentration (Figure 7A, ii) and total experimental duration (Figure 7B, ii) were obtained for a range of DF and UF/DF trials. The turbidity measurements recorded in the pilot-scale TFF trials were considered to be acceptable for final bulk processing through a 0.22 µm filter during the bioburden reduction stage (private communications, Merck Sharp & Dohme, 2018). At equivalent conditions, △OD₆₅₀ values recorded in the USD system
were ~ 50-100 x larger than that for the pilot-scale TFF. This difference was thought
to be related to the configuration of each system, discussed later on.

4 Single-variable experiments were conducted to try and build up a correlation linking 5 turbidity with time, concentration and the different USD and TFF configurations for DF 6 operations, where concentration is fixed. Data from USD studies were used as the 7 starting point in the initial analysis, where it was arbitrarily assumed that the constant 8 F is 1 for this system. The retentate OD data, from diafiltration trials conducted in the 9 USD system ($\overline{y}_{av} = 2200 \text{ s}^{-1}$) with variations in the extent of diafiltration volume (data 10 not shown) and feed concentration (Figure 4), were fitted into a line of best fit resulting in a correlation of $\Delta OD_{650} = 0.0174 \text{ t}_{DF}^{0.7} \text{ C}^{0.996} \overline{\text{F}}$ with $R^2 = 0.98$ (Figure 8A). The 11 12 exponent values provide some basis in understanding aggregation processes 13 indicating a stronger correlation of the change in OD₆₅₀ with the concentration than 14 with the duration of the diafiltration step. Additional factors such as the extent of 15 diafiltration, reversible aggregation and increasing viscosity may also have an impact. 16 In addition, the empirical correlation follows the same first-order correlation with 17 concentration ($\triangle OD_{650} \propto C^1$) found in mAb aggregation studies that investigated the 18 impact of stainless-steel surface in the presence of shear [21,22].

19 The same trends between ΔOD_{650} , t_{DF} and C were observed for pilot-scale TFF 20 experiments, conducted up to 39 mg/mL, at equivalent membrane flow conditions (\bar{y}_{av} 21 = 2200 s⁻¹). The pilot-scale data overlapped with the USD data using a scaling factor 22 $\bar{F} = 0.016$ (R² = 0.99) (Figure 8B). This \bar{F} value was obtained from the least sum-of-23 squares (SS) from the difference between predicted and actual ΔOD_{650} . Further details 24 are described in Figure 8 legend and Supplementary table.

The same pilot-scale TFF system with an alternative pump type, i.e. rotary lobe, was used at equivalent membrane flow conditions ($\bar{y}_{av} = 2200 \text{ s}^{-1}$) for similar diafiltration studies. Here a scaling factor of $\bar{F} = 0.068$ was found to fit best in the least-squares linear fit (Figure 8C). This larger value can be attributed to the larger hold-up volume of the rotary lobe pump head compared with the quaternary diaphragm pump head, i.e. greater high shear zones. The insights regarding what the \bar{F} values obtained for

these systems may mean are discussed next alongside additional USD and TFF
 systems.

3 More details of these first three experiments are described in Figure 9: 1.7 mL USD

4 device (Figure 9, Col 1); a pilot-scale TFF system with diaphragm pump (Figure 9, Col

5 2); and a pilot-scale TFF system with rotary lobe pump configuration (Figure 9, Col 3).

6 Three additional system configurations were tested. These included: (a) a 6.3 mL USD 7 device (Figure 9, Col 4) showing greater quiet zone for the same high shear zone than 8 the original 1.7 mL USD device; (b) a variation of the TFF system with decreased start 9 volume (200 mL) in the feed tank for the same pump and membrane cassette (Figure 10 9, Col 5); and, (c) a lab-scale TFF system with different tank and membrane 11 configurations, and pump type (Figure 9, Col 6).

12 All were conducted in a 7 DV diafiltration operation at equivalent membrane flow 13 conditions. The diafiltration data from these systems were fitted by applying an 14 individual fitted F value with respect to the default USD configuration that resulted in 15 the least sum of squares using the correlation described above.

The following systems described in Figure 9 have the corresponding \overline{F} (average of fitted F) values in decreasing order: (1) USD system (1.7 mL) > (5) TFF (Quaternary diaphragm pump, 200 mL) > (4) USD system (6.3 mL) > (6) TFF (Millipore TFF® diaphragm pump, 50 mL) > (3) TFF (rotary lobe pump, 890 mL) > (2) TFF (Quaternary diaphragm pump, 890 mL).

21 The characteristics of each filtration system and their corresponding \overline{F} values were 22 then compared with the assumption that the USD system (1) represents an F value of 23 1 as the USD data were used as the starting basis for this evaluation (Figure 8 and 9). The fitted \overline{F} values represent the contribution of the various sources of aggregation 24 25 within these systems. It is now commonly known that the presence of shear causes 26 aggregation of proteins [22]. The mechanism of aggregation has also been discussed 27 in detail in other studies (e.g. [18]). Crucially, these steps involve seeding, nucleation 28 and growth of aggregates. By evaluating the fitted F (\overline{F}) values and comparing the 29 characteristics of the different systems, it can be inferred that \overline{F} represents the contribution of the various sources of aggregation within these systems resulting in a 30

1 change in OD₆₅₀. Aggregation can be considered to be influenced by three 2 environmental conditions within the systems used in this work: (a) high shear zones 3 promoting aggregation; (b) low shear "quiet" zones where aggregation events cease; 4 and (c) presence of particles that act as "seeds" that initiate aggregate nucleation and 5 growth. The first two conditions could be approximated by the hold-up volumes in each 6 filtration system (Figure 9). High shear zones (a) are areas near the source of shear 7 in each system, which are the rotating disc in the USD system, and the crossflow 8 pump, membrane cassette and retentate valve in the pilot-scale TFF system. These 9 were identified as those generating shear due to their design and known impact in 10 bioprocessing [22,36]. Quiet zones (b) are defined as the remaining areas in the 11 filtration system not designated as a high shear zone. This includes the volume above 12 the disc for the USD system and the feed/retentate tank for the pilot-scale TFF system. 13 For condition (c), the presence of "seeds" is based on existing literature, for example 14 by [37], reporting that firstly, stainless steel equipment can potentially shed particles 15 into the solution which can initiate nucleation and aggregate growth and secondly, 16 presence of interfaces, including membrane surface, can induce surface-adsorption 17 leading to aggregation.

18 These three conditions will be used in the next section to understand the ΔOD_{650} of 19 each system (Figure 9). The USD system (System 1, F = 1.00) has higher $\triangle OD_{650}$ than the pilot-scale TFF system (System 2, \overline{F} = 0.016, F_{calc} = 0.053) due to greater potential 20 21 of more frequent shear exposure (i.e. lack of quiet zones as a result of the total system 22 hold-up volume being a high shear zone) and increased proximity between the source 23 of shear and active surfaces. In contrast the modified USD system (4) has a larger 24 quiet zone ($F_{calc} = 0.27$, $\overline{F} = 0.12$) resulting in decreased $\triangle OD_{650}$. This comparison 25 between the fraction of high shear zones over the total system volume (F_{calc}) and the 26 presence of quiet zones also applies when comparing the pilot-scale TFF systems 27 (Systems 2,3,5 and 6) to the USD system.

28 While \overline{F} is derived from fitting measured and predicted $\triangle OD_{650}$, F_{calc} on the other hand 29 is the ratio of the volume of material exposed to high shear zones to the total system 30 volume. The resultant agreement of \overline{F} and F_{calc} values is reasonable with the latter 31 always being an overestimate. This indicates the need to redefine high shear zones in the various devices if the USD device is to be a more representative predictive tool of the pilot-scale. For example, the fraction of high shear zones may not be the only contributor to the aggregation. The presence of "seeds" and more importantly the combined effect of: "seeds", "high shear zone fraction (F_{calc})" and "seed concentration (dictated by the retentate volume)" may all increase the chances of aggregate formation [22,27,37].

"Seed concentration" may play a role in the observed difference between F_{calc} and \overline{F} 7 8 in systems with different retentate volume and pumps (i.e. system 3 vs. system 6). The difference between "high shear zone fraction, F_{calc} " and \overline{F} in these two systems could 9 be explained by the "seed concentration" dominating over F_{calc} when similar F_{calc} 10 11 systems are compared. System (6) has a smaller retentate volume than in system (3) 12 possibly displaying higher "seed concentration". This can help explain why system (6) 13 has a larger \overline{F} (0.077 vs. 0.068) but a smaller F_{calc} (0.081 vs. 0.097) than system (3). 14 A key assumption here is that the membrane surface has an impact on the creation of 15 "seeds" and is included in the high shear zone area. This assumption is based on the 16 increasingly recognised impact of the interaction of proteins with the membrane surface on aggregate formation [27,37] .Fuuture work would be required to confirm 17 18 this by conducting control experiments without the presence of a membrane.

19 An increase in turbidity of the final retentate samples was also observed during UF/DF 20 operations. As with DF-only operations, the USD system consistently showed higher 21 OD changes between initial feed and final retentate samples compared to the pilotscale TFF (data not shown). The $\triangle OD_{650}$ values obtained during UF/DF operation 22 using the USD system follow the same correlation (i.e. $\Delta OD_{650} = 0.0174 \text{ t}_{DF}^{0.7} \text{ C}^{0.996}$ 23 24 \overline{F}). However, deviations in fitted F values for the pilot-scale TFF system were 25 observed: $\overline{F} = 0.005$ (UF/DF) vs 0.016 (DF-only, shown in Figures 8B and 9). A greater 26 understanding of the turbidity profile with time of the UF/DF steps for both USD and 27 pilot-scale TFF systems is required to analyse the deviations between the two 28 systems.

29 4. CONCLUSION

1 This paper has presented the use of the USD system to predict the membrane 2 performance (i.e. permeate flux) and the product quality (i.e. protein aggregation) of 3 monoclonal antibody diafiltration and ultrafiltration/diafiltration operations. The USD 4 predicted fluxes and the measured fluxes at pilot scale for monoclonal antibody 5 solutions were in good agreement across a range of transmembrane pressures, flow 6 conditions (i.e. average shear rate), and feed concentrations.

A difference in the turbidity of the processed solutions was observed between the USD
and pilot-scale TFF system. This was shown to result from differences in the volumes
exposed to high-shear stress zones. A correlation between turbidity, time and feed
concentration is proposed in this study and fitted across a range of conditions in a total
of six systems, two USD and four TFF systems.

12 5. ACKNOWLEDGEMENTS

The work presented has been funded by: Merck Sharp & Dohme Corp., a subsidiary
of Merck & Co., Inc., Kenilworth, NJ, USA; UK Engineering Physical Sciences
Research Council (EPSRC) Centre of Doctoral Training (CDT) Bioprocess
Engineering Leadership (Grant Number: EP/L01520X/1); and Higher Education
Funding Council for England (HEFCE) Catalyst Fund. To the best of their knowledge,
the authors declare there are no other potential conflicts of interest.

19 6. NOMENCLATURE

А	Membrane area	$(cm^2 \text{ or } m^2)$
---	---------------	--------------------------

- C Solution concentration (mg/mL)
- DF Diafiltration (-)
- DV Diafiltration volumes (-)
- F Individual constant determined by the correlation ($\Delta OD_{650} = 0.0174 t_{DF}^{0.7}$ $C^{0.996} \overline{F}$) for a single concentration (C), duration (t_{DF}) and ΔOD_{650} (-) for a given system from Figure 9 (-)
- F Average of F (only determined when multiple F are available) (-)
- F_{calc} Fraction of high shear rate over system volume (-)

G	Sum of least squares (-)
g	Gravitational constant (N m ⁻²)
J	Permeate flux rate (L/m ² /h or LMH)
k	Viscosity constant (Pa s ²)
К	Manufacturer's constant (-)
L	Length of cassette (cm)
Μ	Membrane loading (L/m ² or g/m ²)
n	Viscosity coefficient (-)
Ν	Disc speed (rpm)
ΔOD_{650}	Change in optical density at a wavelength of 650 nm (-)
ΔΡ	Pressure drop across membrane (bar)
Ρ	Fluid pressure (bar)
Q	Flow rate (L/min/m ² of membrane area or LMM)
SS	Least-squares (-)
t	Time (min or hrs)
UF	Ultrafiltration (-)
UF/DF	Ultrafiltration/diafiltration (-)
VCF	Volume concentration factor (-)
δ	Adjustment factor (-)
ρ	Density (g cm ⁻³)
μ	Solution dynamic viscosity (Pa s)
У	Characteristic shear rate (s ⁻¹)

1 6.1 Subscripts

av	Average
DF	Diafiltration

	F	Feed
	L.T	Total volume
	L.F/F	R Feed/retentate volume
	М	Membrane
	Ρ	Permeate
	R	Retentate
	SS	Steady-state
	TMP	Transmembrane pressure
	W	Water
1	7. LIS	ST OF REFERENCES
2	[1]	A.A. Shukla, B. Hubbard, T. Tressel, S. Guhan, D. Low, Downstream processing
3		of monoclonal antibodies — Application of platform approaches, Chromatogr. B.
4		848 (2007) 28–39. doi:10.1016/j.jchromb.2006.09.026.
5	[2]	B. Kelley, Very large scale monoclonal antibody purification: the case for
6		conventional, Biotechnol. Prog. 23 (2007) 995–1008.
7	[3]	J. Curling, The development of antibody purification technologies, in: Process
8		Scale Purif. Antibodies, 2nd ed., John Wiley & Sons, Ltd, London, UK, 2009: pp.
9		25–51. doi:10.1007/SpringerReference_84249.
10	[4]	H. Lutz, Ultrafiltration for Bioprocessing, 1st ed., Woodhead Publishing,
11		Elsevier, Cambridge, UK, 2015.
12	[5]	R. van Reis, E.M. Goodrich, C.L. Yson, L.N. Frautschy, S. Dzengeleski, H. Lutz,
13		Linear scale ultrafiltration, Biotechnol. Bioeng. 55 (1997) 737-746.
14		doi:10.1002/(SICI)1097-0290(19970905)55:5<737::AID-BIT4>3.0.CO;2-C.
15	[6]	M. Dosmar, F. Meyeroltmanns, M. Gohs, Factors influencing ultrafiltration scale-
16		up, Bioprocess Int. 3 (2005) 40–50.
17	[7]	L. Fernandez-Cerezo, A.C.M.E. Rayat, A. Chatel, J.M. Pollard, G.J. Lye, M.
18		Hoare, An ultra scale-down method to investigate monoclonal antibody
19		processing during tangential flow filtration using ultrafiltration membranes,

- 1 Biotechnol. Bioeng. 116 (2019) 581–590. doi:10.1002/bit.26859.
- [8] H.F. Liu, J. Ma, C. Winter, R. Bayer, Recovery and purification process
 development for monoclonal antibody production, MAbs. 2 (2010) 480–499.
 doi:10.4161/mabs.2.5.12645.

[9] P. Rajniak, S.C. Tsinontides, D. Pham, W.A. Hunke, S.D. Reynolds, R.T. Chern,
Sterilizing filtration-Principles and practice for successful scale-up to
manufacturing, J. Memb. Sci. 325 (2008) 223–237.
doi:10.1016/j.memsci.2008.07.049.

- 9 [10] R. V. Cordoba-Rodriguez, Aggregates in mAbs and recombinant therapeutic
 10 proteins: a regulatory perspective, Biopharm Int. 21 (2008) 44–53. doi:(11):4411 53.
- 12 [11] J.S. Philo, Is any measurement method optimal for all aggregate sizes and
 13 types?, Am. Assoc. Pharm. Sci. 8 (2006) 564–571. doi:10.1208/aapsj080365.
- 14 [12] M.E.M. Cromwell, E. Hilario, F. Jacobson, Protein aggregation and
 bioprocessing., Am. Assoc. Pharm. Sci. 8 (2006) 572–579.
 doi:10.1208/aapsj080366.
- 17 [13] J. Patel, R. Kothari, R. Tunga, N.M. Ritter, B.S. Tunga, Stability considerations
 18 for biopharmaceuticals, Part 1: overview of protein and peptide degradation
 19 pathways, Bioprocess Int. 9 (2011) 20–31.
- [14] A. Mitraki, J. King, Protein folding intermediates and inclusion body formation,
 Allian Protein Lab. 1 (1989) 690–697. doi:10.1038/nbt0789-690.
- [15] A.L. Fink, Protein aggregation: folding aggregates, inclusion bodies and
 amyloid, Fold. Des. 3 (1998) 9–23. doi:10.1016/S1359-0278(98)00002-9.
- 24 J.D. Andya, C.C. Hsu, S.J. Shire, Mechanisms of aggregate formation and [16] 25 carbohydrate excipient stabilization of lyophilized humanized monoclonal 26 antibody formulations, Am. Assoc. Pharm. Sci. 5 (2003) 21–31. 27 doi:10.1208/ps050210.
- [17] F. Plath, P. Ringler, A. Graff-Meyer, H. Stahlberg, M.E. Lauer, A.C. Rufer, M.A.
 Graewert, D. Svergun, G. Gellermann, C. Finkler, J.O. Stracke, A. Koulov, V.
 Schnaible, Characterization of mAb dimers reveals predominant dimer forms

- common in therapeutic mAbs, MAbs. 8 (2016) 928–940.
 doi:10.1080/19420862.2016.1168960.
- 3 [18] J.S. Philo, T. Arakawa, Mechanisms of protein aggregation, Curr. Pharm.
 4 Biotechnol. 10 (2009) 348–351. doi:10.2741/e781.
- 5 [19] D.W. Knutson, A. Kijlstra, H. Lentz, L.A. van Es, Isolation of stable aggregates
 6 of igg by zonal ultracentrifugation in sucrose gradients containing albumin,
 7 Immunol. Invest. 8 (1979) 337–345. doi:10.3109/08820137909050047.
- 8 [20] T.J. Narendranathan, P. Dunnill, The effect of shear on globular proteins during
 9 ultrafiltration: studies of alcohol dehydrogenase, Biotechnol. Bioeng. (1982).
 10 doi:10.1002/bit.260240917.
- [21] J. Bee, J.L. Stevenson, B. Mehta, J. Svitel, J. Pollastrini, R. Platz, E. Freund,
 J.F. Carpenter, T.W. Randolph, Response of a concentrated monoclonal
 antibody formulation to high shear, Biotechnol. Bioeng. 103 (2009) 936–943.
 doi:10.1002/bit.22336.
- 15 J. Biddlecombe, A. Craig, H. Zhang, S. Uddin, S. Mulot, B. Fish, D. Bracewell, [22] 16 Determining antibody stability: creation of solid-liquid interfacial effects within a 17 Biotechnol. high shear environment, Prog. 23 (2007) 1218–1222. 18 doi:10.1021/bp0701261.
- [23] R. Tavakoli-Keshe, J.J. Phillips, R. Turner, D.G. Bracewell, Understanding the
 relationship between biotherapeutic protein stability and solid-liquid interfacial
 shear in constant region mutants of IgG1 and IgG4, J. Pharm. Sci. 103 (2014)
 437–444. doi:10.1002/jps.23822.
- [24] R. van Reis, A.L. Zydney, Bioprocess membrane technology, J. Memb. Sci. 297
 (2007) 16–50. doi:10.1016/j.memsci.2007.02.045.
- [25] T. Kiefhaber, R. Rudolph, H.H. Kohler, J. Buchner, Protein aggregation in vitro
 and in vivo: a quantitative model of the kinetic competition between folding and
 aggregation., Nat. Biotechnol. 9 (1991) 825–829. doi:10.1038/nbt0991-825.
- [26] A. Bódalo, J.L. Gómez, E. Gómez, M.F. Máximo, M.C. Montiel, Study of Laminoacylase deactivation in an ultrafiltration membrane reactor, Enzyme
 Microb. Technol. 35 (2004) 261–266. doi:10.1016/j.enzmictec.2004.05.003.

- 1 [27] A. Arunkumar, N. Singh, E.G. Schutsky, M. Peck, R.K. Swanson, M.C. Borys, 2 Z.J. Li, Effect channel-induced of shear on biologics during ultrafiltration/diafiltration (UF/DF), J. Memb. Sci. 514 (2016) 671-683. 3 4 doi:10.1016/J.MEMSCI.2016.05.031.
- 5 [28] A.S. Chandavarkar, Dynamics of fouling of microporous membranes by
 proteins, PhD Thesis. Massachusetts Institute of Technology, 1990.
 https://dspace.mit.edu/handle/1721.1/13642 [Accessed 15 June 2018].
- 8 [29] M. Meireles, P. Aimar, V. Sanchez, Albumin denaturation during ultrafiltration:
 9 effects of operating conditions and consequences on membrane fouling,
 10 Biotechnol. Bioeng. 38 (1991) 528–534. doi:10.1002/bit.260380511.
- [30] M. Vázquez-Rey, D. Lang, Aggregates in monoclonal antibody manufacturing
 processes, Biotechnol. Bioeng. 108 (2011) 1494–1508. doi:10.1002/bit.23155.
- [31] W.G. Lilyestrom, S. Yadav, S.J. Shire, T.M. Scherer, Monoclonal antibody selfassociation, cluster formation, and rheology at high concentrations, J. Phys.
 Chem. B. 117 (2013) 6373–6384. doi:10.1021/jp4008152.
- 16 [32] J.F. Richardson, J.M. Coulson, Liquid filtration, in: Chem. Eng., 5th ed., Elsevier,
 17 Oxford, UK, 2002: pp. 372–386. doi:10.1201/b11072-8.
- [33] E. Rosenberg, S. Hepbildikler, W. Kuhne, G. Winter, Ultrafiltration concentration
 of monoclonal antibody solutions: development of an optimized method
 minimizing aggregation, J. Memb. Sci. 342 (2009) 50–59.
- [34] C.R. Thomas, D. Geer, Effects of shear on proteins in solution, Biotechnol. Lett.
 33 (2011) 443–456. doi:10.1007/s10529-010-0469-4.
- [35] O. Santos, T. Nylander, M. Paulsson, C. Trägårdh, Whey protein adsorption
 onto steel surfaces effect of temperature, flow rate, residence time and
 aggregation, Food Eng. 74 (2006) 468–483.
 doi:10.1016/j.jfoodeng.2005.03.037.
- [36] A.C.M.E. Rayat, G.J. Lye, M. Micheletti, A novel microscale crossflow device for
 the rapid evaluation of microfiltration processes, J. Memb. Sci. 452 (2014) 284–
 293. doi:10.1016/j.memsci.2013.10.046.
- 30 [37] J.S. Bee, T.W. Randolph, J.F. Carpenter, S.M. Bishop, M.N. Dimitrova, Effects

- 1 of surfaces and leachables on the stability of biopharmaceuticals, J. Pharm. Sci.
- 2 100 (2011) 4158–4170. doi:10.1002/jps.

1 8. FIGURES & TABLES

	(1) Mass Ioading, M _g (g/m²)	(2) Total feed volumetric loading, M _{L.T} (L/m²)	(3) Volume Concentration Factor, VCF (-)	(4) Desired retentate concentration, C _R (mg/mL)
(A)	200	17	2.1	25
(B)	300	25	3.1	37
(C)	600	50	6.2	74
(D)	800	67	8.2	99

4 way to define loading and is used to determine total feed volume required in each condition.

5 For example, a $M_{L,T}$ of 17 L/m² with $A_{USD} = 0.00021$ m² results in a total feed volume, V_T, of

6 0.003 L. The resulting VCF (Col 3) were determined by $M_{L.T} / M_{L.F/R}$ where $M_{L.F/R} = 8.1 L/m^2$, as

7 fixed with the USD design used in this paper. Desired retentate concentration, C_R (Col 4) is

8 then calculated by $C_F \cdot VCF$ where $C_F = 12 \text{ mg/mL}$ across all conditions.

(B) Diafiltration

(C) (i) Ultrafiltration

(D) (i) Ultrafiltration

1

Figure 1 Schematic representation for fed-batch diafiltration operation of the (A) ultra scaledown (USD) and (B) lab-scale TFF and pilot-scale TFF membrane systems; and two-stage fed-batch ultrafiltration/diafiltration operation of the (C) ultra scale-down (USD) and (D) pilotscale TFF membrane systems. In this paper the membrane areas are 0.00021 m² for the USD system and 0.11 m² for the pilot-scale TFF system. The volume of protein feed per membrane area is maintained the same. Note that the drawings are not drawn to scale.

2 Figure 2 Effect of the viscosity of mAb-A and mAb-B solutions (A) as a function of average 3 shear rate, \bar{y}_{av} and (B) as a function of concentration at a fixed $\bar{y}_{av} = 2200 \text{ s}^{-1}$. In (A), the chosen 4 range (1000 – 7000 s⁻¹) was representative of the flow conditions for typical crossflow rates in 5 flat-sheet membrane cassettes [7]. Here, mAb-A values are shown by open data points, while 6 mAb-B are closed. Coefficient values of n = 1.01 ± 0.02 ($\mu = k \bar{y}_{av}^{n-1}$) were obtained for all 7 concentrations studied (0.7 - 155 mg/mL). In (B), an exponential trend has been fitted using 8 $\mu = Ae^{BC}$ (where C is concentration (mg/mL), and A = 1.01 mPa s and B = 0.017 mL/mg) with 9 R^2 = 0.95. The different concentrations were made as dilutions from a stock solution of 30 10 mg/mL for mAb-A and 155 mg/mL for mAb-B. Viscosity was measured at a controlled 11 temperature of 20.00 ± 0.05°C in triplicate (error bars (± 1 s.d.) lie within the data points). 12

2 Figure 3 Effect of flow conditions on flux - transmembrane pressure drop profiles for the USD 3 and the pilot-scale TFF systems. The three concentrations of mAb-A used in these 4 experiments were: (A) 5 mg/mL, (B) 15 mg/mL, and (C) 30 mg/mL. In (i) and (ii), fitted 5 exponential curves (J = a $(1-b^{\Delta P_{TMP}})$) are shown where a, b are constants unique to each experimental condition ($R^2 = 0.999$). In (iii), the corresponding average shear rates from CFD 6 7 simulations are shown for each concentration and disc speed used for the USD system. In 8 (iv), the average shear rates are shown for each concentration and crossflow rate assume 9 non-laminar conditions for the pilot-scale TFF runs. In all cases, actual membrane resistances were determined from water flux experiments ($R_M = 1.3 \pm 0.7 \times 10^{12} \text{ m}^{-1}$ for USD and 2.8 ± 0.3 10 11 x 10¹² m⁻¹ for pilot-scale TFF). Flux rates reported are average values in the steady state region 12 for each of the ΔP_{TMP} studied (10 < t(min) < 15) (where flux values of the mean ± 5% are achieved) and adjusted by $J_{USD} = \overline{J} (1 - \delta)$ where the factor $(1 - \delta)$ varies from 0.69 to 1.31 for 13 14 USD and from 0.92 to 1.07 for TFF depending on actual R_M values of each experiment. All 15 trials were run in diafiltration mode (Figure 1A and 1B) (n=1). USD runs were performed at 16 20.0 ± 0.5 °C, while pilot-scale TFF trials occur at room temperature (~20 °C). Feed solutions 17 were mAb-A formulated in 10 mM TrisAcetate at pH 5.4. The diafiltration buffer was 10 mM 18 TrisAcetate at pH 5.4.

1

2 Figure 4 (i) USD design space predicting flux as a function of average shear rate and 3 transmembrane pressure drop. (ii) Pilot-scale TFF measured flux versus USD predicted flux. 4 The three concentrations of mAb-A used in this study were: (A) 5 mg/mL, (B) 15 mg/mL, and 5 (C) 30 mg/mL). In (i), correlations from Figure 3i were used to predict values across a design 6 space (\overline{y}_{av} : 0 - 7500 s⁻¹ and ΔP_{TMP} : 0 - 1.6 bar). In (ii), the measured flux from the pilot-scale 7 TFF system was obtained from Figure 3ii. The predicted flux by USD was empirically obtained 8 from (i) at the pilot-scale TFF conditions (Figure 3iv). The resulting R² are: (A) 0.99; (B) 0.98; 9 and (C) 0.99. The diafiltration operations were run as shown in Figure 1A and 1B (n=1). 10

2 Figure 5 (i) Effect of feed concentration on the flux as a function of diafiltration volumes for 3 the (A) USD system and (B) pilot-scale TFF system for mAb-B. (ii) Steady-state flux as a 4 function of feed concentration for mAb-A and mAb-B for both systems. In (i) the reported flux 5 values were obtained from moving average of raw data (m = 100) where s.d. is ~ 1%. Due to 6 short experimental durations, the first DV values were not calculated for the lower USD 7 concentrations runs. Twelve additional concentrations between 1 and 155 mg/mL were 8 conducted at the same conditions for the USD system (data not shown in (i) but the calculated 9 steady fluxes are included in (ii)). Only three pilot-scale TFF runs were performed at 1, 11 and 10 39 mg/mL due to limited amount of material. In (ii) the steady-state flux (J_{SS}) was determined 11 from the steady state region (3.5 < DV < 7.0) for each run in (i) where flux values of the mean 12 ± 5% are achieved. The error bars lie within the data points and represent the range of the 13 steady-state flux. mAb-A data were obtained from Figure 3. In all cases, actual membrane 14 resistances were determined from water flux experiments ($R_M = 1.4 \pm 0.5 \times 10^{12} \text{ m}^{-1}$ for USD and 1.8 ± 0.3 x 10¹² m⁻¹ for pilot-scale TFF). Flux rates reported are adjusted by multiplying by 15 16 $(1 - \delta)$ to account for membrane variability as discussed in [7], which for the mAb-B 17 experiments varied from 0.73 to 1.13 for USD and from 0.99 to 1.05 for TFF. The feed solutions 18 and the diafiltration buffer were made up of 10 mM TrisAcetate at pH 5.4. A constant 19 transmembrane pressure drop, ΔP_{TMP} , of 1.00 ± 0.05 bar was maintained in both systems. All 20 pilot-scale TFF experimental runs were conducted at constant Q_F = 4 LMM and the USD trials 21 at constant N = 2100 rpm both resulting in equivalent shear rate conditions (\bar{y}_{av} = 2400 s⁻¹ at 22 0.00103 Pa s in Figures 3 and 4ii). All trials were run in diafiltration mode (Figure 1A and 1B) 23 (n=1). Other experimental details are the same as those described in Figure 3 legend.

2 Figure 6 Effect of the desired retentate concentration on flux profiles for mAb-B during: (i) the 3 UF stage as a function of duration; (ii) the DF stage as a function of diafiltration volumes; and 4 (iii) for the combined UF/DF stages as a function of total duration. The specified mass loadings 5 and the desired retentate concentrations are: (A) 200 g/m² \approx 25 mg/mL, (B) 300 g/m² \approx 37 mg/mL, (C) 600 g/m² \approx 74 mg/mL and (D) 800 g/m² \approx 99 mg/mL (more details provided in 6 7 Table 1). In all cases, actual membrane resistances were determined from water flux experiments ($R_M = 1.2 \pm 0.2 \times 10^{12} \text{ m}^{-1}$ for USD and 2.2 $\pm 0.3 \times 10^{12} \text{ m}^{-1}$ for pilot-scale TFF). 8 9 Flux rates reported are adjusted by a factor $(1 - \delta)$ to account for membrane variability as 10 discussed in [7], which for these experiments varied from 0.77 to 0.93 for USD and from 1.03 11 to 1.12 for TFF. An initial feed solution of 12 mg/mL mAb-B in 10 mM Tris Acetate at pH 5.4 12 was used for all experiments. Other operating conditions are the same as those described in 13 Figures 3, 4 and 5 legends.

2 Figure 7 Effect of the operation and the system used on: (i) the change in dimer and (ii) the 3 change in turbidity due to processing of mAb-B as a function of (A) final (retentate) 4 concentration and (B) total duration of the selected operation. Two operations were studied: 5 DF operations (•, $\mathbf{\nabla}$) and UF/DF operations (\circ , ∇). In (ii) \triangle in dimer (%) values are calculated 6 by the difference in dimer present between the feed and the retentate sample at each 7 concentration. In (ii), $\triangle OD_{650}$ values are determined by the difference between the OD₆₅₀ value 8 of the retentate and the feed. All feed solutions contained mAb-B formulated in 10 mM 9 TrisAcetate pH 5.4. mAb-A solutions expected to have similar ΔOD_{650} values at equivalent 10 conditions (data not shown). All details about the DF-only operations and the UF/DF 11 operations are found in Figure 5 and 6 legends, respectively.

2 Figure 8 Effect of diafiltration time, concentration, and fraction of high shear zones on the 3 change in turbidity of mAb-B solutions: (A) USD-only ($\overline{F} = 1.00$, \blacktriangle) where t_{DF} = 0.0 – 5.1 h and C = 1-155 mg/mL; (B) Pilot-scale TFF system with a quaternary diaphragm pump (\overline{F} = 0.016, 4 5 •) where C = 1 - 39 mg/mL, $t_{DF} = 0.5 - 6.8$ h alongside data reproduced from (A); (C) Data from the pilot-scale TFF system with a rotary lobe pump ($\overline{F} = 0.068, \nabla$), C = 12 mg/mL, t_{DF} = 6 7 0.8 – 7.5 h. The sample procedure and data acquisition for ΔOD_{650} is described in Figure 7 8 legend. The steps used to determine the \overline{F} value using least sum-of-squares method for (B) 9 and (C) are shown in the Supplementary table.

10

LEGEN P = Parts M = Marts P ₀ = Parts P ₀ = Parts P ₀ = Parts P ₀ = Cross N = Nobel	D: Robertador even anne pressure inter pressure and pressure forware ng-deci system	(1)			(4)			
Volume	tric loading (L/m²)	8.1	8.1	6.1	30	1.9	8.1	
Area (m	2)	0.00021	0.11	0.11	0.00021	0.11	0.005	
Feed/Re	stentate tank volume (L)	0.0017	0.89	0.89	0.0017	0.20	0.041	
Quiet	Pipework volume (L)	(8)	0.0059	0.011	1.4	0.0059	0.0031	
zones	Unsheared feed volume (L)	(†)	0.89	0.89	0.0046	0.20	0.041	
-	Sheared chamber volume (L)	0.0017	+1		0.0017	<i></i>	1	
High	Pump type (-)	30	Quaternary Disphragm	Rotary Lobe	1	Quaternary Disphragm	Millipore TFF® Diaphragm	
shear zones	Pump head hold-up volume (L)	(a)	0.013	0.060		0.013	0.00063	
	Membrane cassette hold-up volume (L)	÷	0.037	0.037	1.00	0.037	0.0032	
	Retentate valve hold-up volume (L)	(#)	0.000064	0.000064		0.000064	8	
Total sys (= quiet	stem hold-up volume (L) zones + high shear zones)	0.0017	0.95	1.00	0.0063	0.26	0.047	
F _{cab} (-) (= sum volume)	high shear zones/total system hold-up	1.00	0.053	0.097	0.27	0.19	0.081	
F(-)		1.00 (Min: 0.41 Max: 2.00)	0.016 (Min: 0.0049 Max: 0.043)	0.068 (Min: 0.047 Max: 0.091)	0.12	0.15	0.077	
AODeec	(-)	0.0061 - 8,4	0.00033 - 0.035	0.0083 - 0.060	0.025	0.032	0.016	
Concern	tration (g/L)	1 - 155	1 - 40	12	12	12	12	
Diafitra	tion time, t _{DF} (h)	0.0 - 5.1	0.5 - 6.8	0.8 - 7.5	1.3	1.3	1.3	
Number	of diafiltration volumes. DV (-)	0 - 8	4 - 36	4 - 40	2	31	7	

2 Figure 9 Description of the different USD and pilot-scale TFF system designs. The default configurations are: (1) an ultra scale-down (USD) system with \overline{F} = 1.00, and (2) a pilot-scale 3 TFF with \overline{F} = 0.016. Set-up (3) explores the type of pump: a modified pilot-scale TFF system 4 (based on 2) with a rotary lobe pump with $\overline{F} = 0.068$. Two set-ups explore the volumetric 5 loading: (4) is a modified USD system (based on 1) with a larger volumetric loading with \overline{F} = 6 7 0.12 and (5) is a modified pilot-scale TFF system (based on 2) with a smaller volumetric loading with \overline{F} = 0.15. Set-up (6) explores an entire different system alongside a new pump; 8 the lab-scale system (Millipore TFF) with a diaphragm pump with $\overline{F} = 0.077$. \overline{F} shown in Figure 9 10 8 refers to systems (1) - (3).

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Concentration, C (mg/mL)	Time, t _{or} (hr)	∆OD ₆₅₀ (-)	Extent of diafiltration (DV)	Fcalc	F	log (F)	F	∆OD _{650,Predicted}	G	Total G	F* t _{DF} 0.7 * C ^{0.996}
0.9	0.54	0.00033	7		0.033	-1.49		0.000	0.10		0.01
11.4	0.73	0.00078	7		0.005	-2.31		0.003	0.27		0.15
40	1.19	0.0064	7		0.008	-2.09		0.013	0.09		0.72
12	0.78	0.0013	4		0.008	-2.12		0.003	0.11		0.16
12	1.33	0.0027	7	0.053	0.010	-1.98	0.016	0.004	0.03	1.08	0.23
12	2.70	0.0053	14		0.013	-1.89		0.007	0.01		0.38
12	4.05	0.019	21		0.034	-1.47		0.009	0.10		0.51
12	5.43	0.029	29		0.043	-1.37		0.011	0.18		0.63
12	6.78	0.035	36		0.043	-1.36		0.013	0.19		0.73

2	Supplementary table Example calculation of \overline{F} for the pilot-scale TFF system in Figure 8B
3	and Figure 9 Col (2). Col $(1) - (4)$ are obtained from experimental data from Fig 5 and 8. Col
4	(5) is determined as the ratio of the sum of high shear zone and total system volume (F_{calc} ,
5	obtained from Figure 9). Note that the USD system (1.7 mL) is used as a basis in this analysis
6	with F_{calc} arbitrarily assumed to have a value of 1.00. Col (6) represents the individual F value
7	for each experimental condition derived by F = $\frac{\Delta OD_{650.Measured}}{0.0174 * t_{DF}^{0.7*}C^{0.996}}$ (correlation obtained from
8	Fig 8A). Col (7) show the logarithmic values of Col (6). Col (8) represents the mean of Col (7)
9	(= 10 ^{Amean log (F)}). Col (9) shows $\Delta OD_{650.Predicted}$ determined by 0.0174 * \overline{F} * $t_{DF}^{0.7}$ * $C^{0.996}$ (using \overline{F}
10	from Col 8). Col (10) is calculated by (log ($\Delta OD_{650.Measured}$) - log ($\Delta OD_{650.Predicted}$)) ² . Col (11) is
11	the sum of Col (10), which is the least sum of squares (SS) for that particular \overline{F} value. Col (12)
12	is the result of Col $(1)^{0.996}$, $(3)^{0.7}$ and (8), and is used as the x axis values for Figure 9.