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Prophages and satellite prophages are widespread
in Streptococcus and may play a role in
pneumococcal pathogenesis
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Prophages (viral genomes integrated within a host bacterial genome) can confer various

phenotypic traits to their hosts, such as enhanced pathogenicity. Here we analyse >1300

genomes of 70 different Streptococcus species and identify nearly 800 prophages and satellite

prophages (prophages that do not encode their own structural components but rely on the

bacterial host and another helper prophage for survival). We show that prophages and

satellite prophages are widely distributed among streptococci in a structured manner, and

constitute two distinct entities with little effective genetic exchange between them. Cross-

species transmission of prophages is not uncommon. Furthermore, a satellite prophage is

associated with virulence in a mouse model of Streptococcus pneumoniae infection. Our

findings highlight the potential importance of prophages in streptococcal biology and

pathogenesis.
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The genus Streptococcus comprises a wide variety of
pathogens responsible for causing significant morbidity
and mortality worldwide1. Some of the most important

species causing disease in humans include: Streptococcus
pneumoniae (pneumococcus), a leading cause of pneumonia,
bacteraemia, and meningitis2; Streptococcus pyogenes (group
A streptococci), a major cause of pharyngitis, scarlet fever and
necrotising fasciitis3; and Streptococcus agalactiae (group B
streptococci), the most common cause of neonatal sepsis4.
In addition, Streptococcus suis and Streptococcus equi rarely
cause disease in humans but are important animal
pathogens1.

Bacteriophages (phages) are intracellular parasites of bacteria.
Lytic phages hijack the host bacterial machinery, produce new
phages and destroy the infected bacterial cell, whereas lysogenic
phages do not necessarily initiate replication immediately upon
host entry and may integrate their genome within the bacterial
genome to be activated at a later stage. An integrated phage is
termed a prophage and those genes can be passed down to the
bacterial daughter cells. As survival depends on their bacterial
hosts, prophages often express genes that increase host cell
fitness5,6. Prophages can exert a range of phenotypic effects on
the host bacteria: encode toxins that increase virulence5, promote
binding to human platelets7 or cells8, evade immune defences9,10,
or protect from oxidative stress11. Prophage integration can also
regulate bacterial populations by altering bacterial gene
expression12,13.

Prophages and their hosts, like other predator and prey rela-
tionships, are embroiled in a complex evolutionary arms race
whereby bacteria evolve various strategies to defend themselves
and prophages co-evolve to overcome these barriers14. These
coevolutionary dynamics are complicated by satellite prophages,
which lack all the necessary genetic information to replicate on
their own and are reliant on hijacking the machinery of another
inducing ‘helper’ prophage to replicate. Satellite prophages might
be thought of as ‘parasites of parasites’15,16.

Satellite prophages adversely interfere with helper prophage
replication and thus promote bacterial survival17–19. Satellite
prophages have been discovered through different circumstances
and thus there are different terms used to describe this particular
type of mobile genetic element in the literature, including Sta-
phylococcus aureus pathogenicity islands, phage-related chromo-
somal islands and phage-inducible chromosomal islands, among
others17–23.

Satellite prophages have been shown to be vectors for the
spreading of toxin genes and other virulence factors, e.g.,
SaPI1, which possesses the gene responsible for causing toxic
shock syndrome24. The prevalence, diversity, genetic stability
and molecular epidemiology of satellite prophages in strep-
tococcal species are largely unknown. A small number of
satellite prophages have been identified in streptococcal spe-
cies, although whether they are associated with virulence
remains to be investigated25. Previous work has shown that
prophage-related sequences are highly prevalent within
pneumococcal26–28, S. pyogenes29,30 and S. agalactiae gen-
omes31; however, genus-wide analyses of the genomic diver-
sity and population structure of streptococcal prophages have
not yet been reported.

Here we report the discovery of ~800 prophages among
>1300 streptococcal genomes and provide detailed insights into
prophage genomics and population structure. Using the pneu-
mococcus as the model organism, we investigate the molecular
epidemiology of satellite prophages within a large globally-
distributed collection of pneumococci isolated over a 90-year
period and demonstrate that a satellite prophage is associated
with virulence in a murine infection model.

Results
Prophages are a significant component of streptococcal gen-
omes. We analysed 1306 genomes from 70 different streptococcal
species and identified 415 full-length prophages and 348 satellite
prophage genomes (Supplementary Data 1). We estimated the
prophage gene content within each streptococcal genome and this
revealed a substantial difference in the average prophage content
among various streptococcal species, ranging from 0.4% of the
Streptococcus thermophilus genome to 9.5% of the S. pyogenes
genome (Fig. 1a; Supplementary Data 2). Furthermore, we
observed significant variability in prophage content among dif-
ferent genomes of the same bacterial species, e.g., full-length
prophages comprised up to 19% of the genes in some S. pyogenes
genomes, whereas in others they made up <1% of the genome
(Fig. 1a). The prevalence of satellite prophages ranged from 0.1%
among Streptococcus mutans and Streptococcus sanguinis gen-
omes to 4.5% of the Streptococcus dysgalactiae genomes (Fig. 1a).

Full-length and satellite prophages are separate entities. Satel-
lite prophages had a lower guanine (G) and cytosine (C) content
than full-length prophages and were about a third of the size in
terms of both length of sequence and the number of genes they
harboured (Fig. 1b). Owing to their relatively small genome and
apparent lack of essential genes, streptococcal satellite prophage
sequences have often been regarded as “remnant” or “defective”
prophages in a state of mutational decay13,22,32–34. Our data
reveal that satellite prophage sequences can be highly conserved
over many decades, e.g., one satellite prophage was present
among pneumococcal genomes with isolation dates ranging from
1939 to 2006 and had maintained >99.98% nucleotide similarity
across its entire genome (Fig. 1c), suggesting that it is under
strong evolutionary pressure and likely provides an important
biological function. The highly conserved nature of this satellite
prophage is particularly striking given that the pneumococcus has
long been known to be a highly recombinant organism35,36.

An unrooted phylogenetic tree of all streptococcal prophage
genomes in our data set depicted full-length and satellite
prophages as two clearly distinct groups (Fig. 1d). We observed
that the genes of satellite prophages are unique and differ to those
of full-length prophages, as 93% of all satellite prophage genes
(>70% amino acid sequence similarity) are not found in any full-
length prophages (Fig. 1e). Taken together, these findings confirm
that satellite prophage sequences are not recent remnants of
previous lysogenisation by full-length prophages, but rather that
they belong to a unique family of mobile genetic elements.

Streptococcal prophages have a structured population. We
found that both full-length and satellite streptococcal prophages
demonstrated well-conserved patterns in genome organisation
and synteny, regardless of the species that they were isolated from
(Fig. 2a). Similar to other non-streptococcal prophages (Supple-
mentary Fig. 1), genes encoding specific functions were often
found clustered together in the prophage genome, although note
that the function of many genes is still unknown and therefore the
delineation of discrete gene clusters remains problematic
(Fig. 2a). Whole-genome comparisons of all prophage sequences
in our data set depicted major and minor clusters for both full-
length and satellite prophages (Fig. 2b; Supplementary Fig. 2).

Phages are generally believed to be bacterial species-specific
and even specific to genetic lineages within a single bacterial
species37. Surprisingly, we often found prophages from different
bacterial species within the same phylogenetic cluster, suggesting
that cross-species transmissions are more common among
streptococcal prophages than previously realised. Remarkably,
despite the relatedness of their prophages, the bacterial hosts were
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Fig. 1 Prophages identified among streptococcal genomes. a Average prophage content within each streptococcal species. SD, standard deviation.
b Graphical representation of all prophages by average genome size and number of genes. Each prophage is coloured to represent its average guanine (G)
and cytosine (C) content. c Satellite prophage SpnSP24 was represented among pneumococci isolated between 1939 and 2006 and all of these satellite
prophage sequences were nearly identical at the nucleotide level. d An unrooted phylogenetic tree of all streptococcal prophage genomes identified in the
data set. Blue branches mark full-length prophages and red branches mark satellite prophages. e Venn diagram depicting the number of genes found
exclusively in full-length prophages or in satellite prophages (at a threshold of >70% amino-acid sequence similarity) and those genes that are shared.
Source data are provided as a Source Data file
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Fig. 2 Evidence for cross-species transmission of prophages. a Full-length and satellite prophages identified among different streptococcal species shared a
similar pattern in gene orientation and synteny. b Phylogenetic trees depicting the genetic relationships among streptococcal species (left) and all
prophages detected in this study (right). A zoomed-in branch of the prophage tree (with branch lengths ignored for illustrative purposes) depicts one
example of a cluster of full-length prophages that were found among multiple streptococcal species. Coloured boxes highlight where the indicated
streptococcal species are found in each of the trees. A larger version of the tree is depicted in Supplementary Fig. 2 and a distance matrix of pairwise
similarity among these 18 prophages is in Supplementary Fig. 3
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not necessarily the closest phylogenetically related species (Fig. 2b;
Supplementary Fig. 3). One possible explanation could be that
streptococcal prophages are evolving separately from their
microbial hosts, and therefore, other factors such as ecological
relatedness may dominate over evolutionary relatedness of the
host bacteria.

Molecular epidemiology of pneumococcal satellite prophages.
We had previously determined the prevalence, diversity and
molecular epidemiology of full-length prophages in a global and
historical pneumococcal genome data set26. Many shorter
prophage sequences were also identified in that study, which were
simply classified as partial prophage sequences and not char-
acterised further at the time. Here, we used this genome data set
to further investigate satellite prophages in the context of the
pneumococcal population structure. The genome collection was
comprised of 482 pneumococci recovered from both healthy and
diseased individuals between 1916 and 2009. Pneumococci were
isolated from people of all ages residing in 36 different countries.
Ninety-one serotypes and 94 different clonal complexes (genetic
lineages) were represented in the data set.

A reinvestigation of the ‘partial prophage’ sequences resulted in
the identification of 44 representative pneumococcal satellite
prophages, which clustered into five major groups (Fig. 3a). The
average GC content of the satellite prophages was lower than
their pneumococcal host but varied among each group (Fig. 3b).
We found that 35% of the pneumococci in our data set contained
at least one satellite prophage and 5% of the genomes contained
two. Some satellite prophages were present in up to six different
clonal complexes, whereas others were only found in Singletons
(genotypes with no closely related variants; Table 1 and
Supplementary Fig. 4). Those satellite prophages identified in
more than one genome were often found among pneumococci
recovered over a decade or more (Table 1). The average prophage
content for each of the major clonal complexes ranged from 2.2 to
6.5%, and with only one exception (CC7232), all of these are
widely circulating pneumococcal genetic lineages (Fig. 1c; https://
pubmlst.org/spneumoniae).

Prophages and satellite prophages have defined integration
sites. We previously reported that pneumococcal full-length
prophages were consistently integrated in specific locations
within the genome26. Likewise, pneumococcal satellite prophages
were consistently integrated in seven precise locations (a–f)
within the host genome, each of which was directly associated
with the integrase gene they harboured (Fig. 3d; Fig. 4a). The 44
representative satellite prophage integrases were divided into
seven different categories with ≥95% nucleotide sequence simi-
larity within each category. Each integrase category was asso-
ciated with insertion at a single location on the pneumococcal
genome, apart from integrase category I, which was associated
with five different locations (Fig. 3d). In all, 28.3% of pneumo-
coccal satellite prophages were inserted at site a, which was very
close to the origin of replication (oriC) (Fig. 4a) and prompted us
to investigate whether factors other than the integrase sequence
determined the prophage insertion site.

We investigated the location of prophage insertion sites within
the genome sequences of non-pneumococcal streptococci for
which at least one complete (finished) genome was available (n=
29). We divided the genome of each species into eight non-
overlapping segments of equal length according to the number of
base pairs, and the percentages of prophages situated in each
segment were quantified. Overall, we observed no strong
preference for prophage insertion in any of the eight segments

and the location of prophages residing within the genome varied
greatly between different species (Supplementary Fig. 5).

Among pneumococcal and non-pneumococcal streptococcal
genomes, five flanking genes upstream and downstream of each
prophage were retrieved for functional classification using gene
ontology analyses. This revealed that nearly one-third of all the
bacterial flanking genes were involved in replication, recombina-
tion, DNA repair, transcription, translation and ribosomal
structure and biogenesis (Fig. 4b). One-quarter of flanking genes
were involved in metabolic processes, but equally, one-quarter of
all flanking genes did not have a defined functional classification.
The remaining flanking genes were involved in other cellular
processes and signalling. A list of all prophage insertion sites and
their flanking genes is available in Supplementary Data 3.

For comparison, we selected one genome of each of the 70
different streptococcal species, determined the clusters of
orthologous groups (COGs) for all streptococcal genes, and then
compared those genome-wide streptococcal data to the COGs
represented by the prophage flanking genes in the overall data set.
This demonstrated that the distributions of COGs categories were
significantly different, and while prophage flanking genes were
more likely to be in the information storage and processing COGs
category, the most prevalent COGs category among all strepto-
coccal genes was metabolism (32.1% of all genes; Supplementary
Table 1).

Satellite prophages and vapE are involved in pathogenesis. Our
investigation of pneumococcal satellite prophage genes led to the
identification of a gene that is a homologue of the ‘virulence-
associated gene E’ (vapE) in S. suis38. We investigated vapE in S.
suis genomes and confirmed that it is carried by a satellite
prophage. We searched for vapE in the representative pneumo-
coccal satellite prophages and found that 30/44 (68.2%) contained
vapE. To investigate whether the vapE homologue in the pneu-
mococcal satellite prophage is also associated with virulence, we
performed in vivo studies using a murine pneumococcal infection
model and one example of a satellite prophage containing vapE
identified in this study (Fig. 5a).

Deletion mutant stains were constructed in a serotype 6B
pneumococcal strain, BHN418, which contains a satellite
prophage sequence (SpnSP38; GenBank accession number
MK448645) and no full-length prophage sequences (see Supple-
mentary Data 4 for details of the gene content of BHN418). Either
vapE only (ΔvapE) or the entire satellite prophage sequence
(ΔSpnSP38) were replaced by a spectinomycin resistance cassette
(aadA9) in the BHN418 strain (Fig. 5a). For each of the mutant
strains a competitive index (CI) was determined using a highly
sensitive competitive infection experiment in a mouse model of
pneumonia.

The CI was significantly <1 in the lungs after mixed infection
with ΔSpnSP38 and the wild-type serotype 6B or ΔvapE and the
wild-type serotype 6B, indicating a role for the satellite prophage
and vapE in the establishment of pneumococcal pneumonia
(Fig. 5b). To further assess the degree of attenuation in virulence
of the ΔSpnSP38 and ΔvapE strains, infection experiments were
repeated with pure inocula of each strain in both the pneumonia
and sepsis models. There were no significant differences in
bacterial CFU recovered from the lungs of infected mice at 24 h
between either mutant and the parental wild-type strain and the
majority of the mice developed fatal infection by this point.
However, in the sepsis model, the mice infected with the wild-
type serotype 6B strain had significantly greater blood and spleen
CFU than the ΔSpnSP38 mutant (Fig. 5c, d), indicating that the
satellite prophage is directly involved in pneumococcal virulence
during bacterial dissemination in the systemic circulation.
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Fig. 3 Satellite prophages among pneumococci. a An unrooted phylogenetic tree demonstrated that the 44 representative satellite prophages could be
clustered into five major groups based upon nucleotide similarity. b The average guanine/cytosine (GC) content (stated in brackets) of the satellite
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Although the ΔvapE strain had lower spleen CFU compared with
the wild-type, this difference was not statistically significant,
suggesting that loss of the whole-satellite prophage has a more
marked effect on the attenuation of virulence during sepsis than
loss of VapE alone.

The satellite prophage is required for optimum growth in sera.
Reduced systemic virulence of ΔSpnSP38 or ΔvapE mutants could
reflect poor growth under physiological conditions, or evasion of
host innate immune killing, which is largely dependent on
complement-mediated neutrophil killing. Using a flow cytometry
assay, the binding of complement component C3b was not
demonstrably different between the mutant strains and wild-type
strain (Fig. 5e, f). Furthermore, survival of the ΔSpnSP38 and
ΔvapE mutants in the presence of neutrophils after 30 min was
similar to the wild-type BHN418 strain (Fig. 5g). These data
indicate that the satellite prophage and vapE are not required for

evasion of complement or neutrophil killing, and that the reduced
virulence of the ΔSpnSP38 strain could reflect delayed growth in
serum. Growth rates of both mutant strains in THY were not
significantly different to the parental wild-type strain (Fig. 5h);
however, culture in serum demonstrated a small but significant
delay in growth of the ΔSpnSP38 strain compared with the wild-
type and ΔvapE strains (Fig. 5i).

Satellite prophage genes were overexpressed in planktonic
culture. Given the association of the satellite prophage and
vapE with virulence in our murine pneumococcal infection
model, we hypothesised that satellite prophage genes would be
overexpressed when pneumococci were grown planktonically in
broth versus in a biofilm. To evaluate this hypothesis, we per-
formed comparative transcriptome analyses of planktonic
and biofilm pneumococci using an existing RNA sequencing
data set generated by Blanchette et al.39. In their study,

Table 1 Epidemiological characteristics of 44 satellite prophages identified among pneumococci

Prophage Cluster Isolation Genomes (n) CC (n) Country (n) Serotype (n) Site Int

SpnSP16 A 1939–1982 4 3 2 4 b I
SpnSP3 A 1981–2004 3 2 2 2 b I
SpnSP26 A 1985–2000 3 2 1 2 b I
SpnSP35 A 1952–1952 2 2 1 2 b I
SpnSP43 A 1939–2004 2 2 2 2 b I
SpnSP30 A 1978–1978 5 1 1 1 b I
SpnSP44 A 1939–1962 2 1 1 1 b I
SpnSP7 A 1968 1 1 1 1 b I
SpnSP25 A 1999 1 1 1 1 b I
SpnSP19 A 1939–1952 2 S 2 2 b V
SpnSP11 A 1952 1 S 1 1 b I
SpnSP5 B 1939–2007 15 5 3 7 d, g I
SpnSP29 B 1978–1988 15 1 1 2 b I
SpnSP27 B 2006 1 1 1 1 b I
SpnSP20 B 1954 1 S 1 1 b I
SpnSP2 C 1984–2005 4 2 3 2 f VII
SpnSP31 C 1983–2005 2 2 1 2 b I
SpnSP12 C 1968 1 1 1 1 b I
SpnSP15 C 1943 1 1 1 1 b I
SpnSP32 C 1986 1 1 1 1 f VII
SpnSP37 D 1939–1988 9 5 4 7 c II
SpnSP38 D 1972–2006 30 4 6 5 c II
SpnSP6 D 1939–1991 8 3 3 3 c II
SpnSP23 D 1962–2008 11 2 3 4 a III
SpnSP39 D 2005–2007 2 1 1 1 a III
SpnSP18 D 1939–1952 2 S 2 2 c II
SpnSP24 E 1939–2006 23 6 6 4 a III
SpnSP33 E 1952–1998 3 2 1 2 a III
SpnSP1 E 1978–1988 5 1 1 1 b I
SpnSP40 E 2001 3 1 2 2 a III
SpnSP8 E 1988 1 1 1 1 a III
SpnSP9 E 1957 1 1 1 1 a III
SpnSP13 E 1943 1 1 1 1 a III
SpnSP14 E 1995 1 1 1 1 a III
SpnSP17 E 1972 1 1 1 1 a IV
SpnSP22 E 1971 1 1 1 1 a III
SpnSP28 E 2003 1 1 1 1 a III
SpnSP34 E 1990 1 1 1 1 a III
SpnSP36 E 1963 1 1 1 1 a III
SpnSP42 E 1994 1 1 1 1 a III
SpnSP4 E 1982 1 S 1 1 e I
SpnSP10 E N/A 1 S 1 1 h I
SpnSP21 E 1954 1 S 1 1 e VI
SpnSP41 E 1983 1 S 1 1 a III

Note: Prophage= name of each satellite prophage; Cluster= satellite prophage cluster (see Fig. 3); Isolation= isolation date(s) of the pneumococci that harboured the satellite prophage; Genomes=
number of pneumococcal genomes in which the satellite prophage was identified; CC= clonal complex (genetic lineage) of the host pneumococcus; Country= the number of countries in which the
pneumococci were recovered; Serotype= number of different serotypes of the host pneumococci; Site= prophage insertion site within the pneumococcal genome (see Fig. 4); Int= integrase sequence
of the satellite prophage; S= singleton, a genotype with no closely related variants
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pneumococcal reference strain Sp6A-10, which contained two
full-length prophages and one satellite prophage (SpnSP33,
58.7% identical to SpnSP38; GenBank accession number
MK448640), was grown planktonically and as a 2-day-old
biofilm. Three biological replicates were collected from each of
the growth conditions and the corresponding RNA samples
were extracted and sequenced.

We analysed the Blanchette transcriptomic data39 to assess
prophage gene expression under these two experimental condi-
tions, and the data demonstrated significantly higher satellite
prophage and full-length prophage gene expression when the host
pneumococcus was grown in broth as compared with growth in a
biofilm (Fig. 6; Supplementary Data 5). The full complement of
satellite prophage genes were significantly expressed, and many of
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the genes of the two full-length prophages, mainly structural and
lysis genes, were also significantly upregulated. These gene
expression patterns were consistent with the hypothesis that the
satellite prophage was exploiting the other full-length prophages
in the pneumococcal genome as helper prophages, since the
satellite prophage does not possess phage structural genes.

Notably, among the 20 most significantly upregulated genes,
60% (n= 12) were satellite prophage genes and vapE was the
third most upregulated gene in the entire genome. Among the 50
most highly expressed genes, just over half were prophage-related
genes: 15 (30%) were satellite prophage genes; 7 (14%) were genes
of one full-length prophage; and 4 (8%) were genes of the second
full-length prophage (Fig. 6; Supplementary Fig. 6; Supplemen-
tary Data 5). These experimental data further support a
significant role for satellite prophages and vapE (and full-length
prophages) in pneumococcal biology.

Discussion
In this study, we sampled a large collection of streptococcal
genomes and revealed a diverse collection of full-length

prophages and satellite prophages among streptococcal species.
What was striking about these findings was that prophages and
satellite prophages were two clearly different entities and both
had a structured population. Specifically, among pneumococci
there were full-length prophages and satellite prophages with
persistent associations to major, epidemiologically successful
genetic lineages of pneumococci over long periods of time. This is
crucial, as these data allow for the exploration of why certain
combinations of prophages and bacteria exist and whether the
prophages might be contributing to the epidemiological success of
bacterial genetic lineages.

Our findings suggest that prophages are likely to be influencing
bacterial biology and epidemiology to a much greater extent than
previously appreciated, given the high proportion of prophage
DNA present in many streptococcal species—many of which have
not previously been analysed for evidence of prophages. Pro-
phages are mobile genetic elements and genetically similar pro-
phages were frequently detected between different streptococcal
species. Historically, the prevailing dogma is that phages have a
narrow host range, but our data challenge this view and suggest
that prophage transmission across bacterial species is more

Fig. 5 A satellite prophage is associated with virulence. a Upper part depicts the satellite prophage genes integrated within the BHN418 genome and
flanking pneumococcal genes, and the lower part depicts the ΔvapE and ΔSpnSP38 mutants with the addition of the spectinomycin resistance cassette
aadA9. b Plots of the competitive index (CI) for the ΔSpnSP38 and ΔvapE mutant strains versus the wild‐type strain in a mouse model of pneumonia. Each
symbol represents the CI for a single animal and bars represent the median and range. c, d Mean bacterial colony-forming units (CFU) recovered at 24 h
from blood (c) or spleen (d) homogenates after intraperitoneal inoculation of 5 × 106 CFU/strain. Each symbol represents data for a single animal. e Mean
fluorescence intensity (MFI) of C3b deposition on the surface of the wild-type and mutant strains as measured by a flow cytometry assay. f Example of a
flow cytometry histogram for the C3b deposition data. g Bacterial survival in a neutrophil-killing assay (multiplicity of infection: 1 bacterium/100
neutrophils) represented as % CFU/ml recovered after 15–30min incubation compared with the input bacteria. h, i Growth curves as measured by the
optical density (OD) of wild-type and mutant strains cultured in Todd-Hewitt broth supplemented with 0.5% yeast-extract (h) or 100% human serum (i).
Error bars c, d, e, g represent standard deviation and asterisks c, d, g represent statistical significance compared with the wild-type strain (two-sided
Kruskal–Wallis test with Dunn’s correction for multiple comparisons) *p < 0.05; ***p < 0.001; ****p < 0.0001). Source data are provided as a Source
Data file
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common than previously recognised. Other investigators have
also recently suggested that some phages may have a broader host
range than previously appreciated40.

Our data set was designed to be comprised of streptococci that
were genetically different and geographically widely distributed,
rather than from a very defined population. These data demon-
strated high prophage diversity overall, given the breadth and
depth of the data set, and what was remarkable was the similarity
among prophages in different bacterial species. In the context of a
highly diverse data set, there are two plausible explanations for
finding the same or highly similar prophages in different species,
the most likely of which is cross-species transmissions of pro-
phages, or at least prophage sequences. The alternative explana-
tion is a shared common ancestor, but this is far less likely given
the overall variation among prophage sequences, at least on any
reasonable time frame. The implications of these findings are that
host specificity should be taken into account when trying to
understand the precise role of prophages in streptococcal biology
and when considering whether phages might be used in any
therapeutic interventions.

Many of the streptococci we investigated are important human
and animal pathogens, raising the question whether prophages
influence host virulence potential. To investigate this, we assessed
the effects of deleting a pneumococcal satellite prophage sequence
on virulence in a murine model of infection. This prophage
contains vapE, a gene that has previously been described to have a
role in S. suis virulence through an unknown mechanism. The
results showed that deletion of the whole prophage or vapE alone
had a significant effect on pneumococcal virulence, and deletion
of the whole prophage had a particularly strong effect and
reduced recovered CFU for the sepsis model by approaching 104

log10. In vitro characterisation of the mutant strains indicated that
the reduced virulence of the prophage mutant was related to
impaired growth in serum rather than avoidance of opsonopha-
gocytic killing. How the prophage influences pneumococcal
growth in serum will require more detailed investigation, but the
stronger phenotypic effect of loss of the whole prophage com-
pared with vapE alone suggests that additional prophage genes
are involved in virulence. For example, the prophage is predicted
to contain regulatory genes, which could potentially improve
growth in serum by altering the expression of metabolic and
transporter genes.

Furthermore, when we analysed the transcriptomic data from
Blanchette et al.39, these data demonstrated that all satellite
prophage genes (including vapE) and many genes of the two full-
length prophages were among the most significantly upregulated
among pneumococci growing in planktonic form (which is akin
to pneumococcal bacteraemia) rather than in a biofilm (a state in
which pneumococci are less likely to be virulent41). Although the
specific mechanism driving virulence is not yet clear, this work
provides clear evidence that experimental investigations of
pneumococcal prophages and satellite prophages can reveal
central aspects of the bacteria/prophage relationship among
pneumococci and other streptococci.

The increasingly large volume of genome sequence data in the
public domain presents many opportunities for understanding
bacterial infection and pathogenesis at a depth and breadth never
before experienced. Large population-level analyses such as this
alter our perspective on how bacterial and prophage populations
interact and drive evolution of both parasite and host. As
demonstrated here, population genomics studies can and should
be used to generate hypotheses, design experiments, and select the
most appropriate strains for testing. The findings of this study
reveal numerous areas for further investigation, the results of
which will increase our knowledge of prophage and bacterial
biology, epidemiology and evolution.

Methods
Development of PhageMiner for prophage identification. Some in silico
prophage detection tools are available that identify prophages by comparison with
a reference database of known prophage genomes, thus their performance is
strongly influenced by the size and composition of the reference data set42,43. In
order to ensure a thorough discovery of previously unidentified prophages, manual
curation of annotated genomes is required, however, this is not feasible for large
genome studies26,44,45. To address these issues, we developed a user-supervised
semi-automated computational tool called PhageMiner in order to streamline the
manual curation process for prophage sequence discovery.

The PhageMiner pipeline consists of a series of steps, as follows. The bacterial
genome of interest is annotated using the RAST annotation server (http://rast.
nmpdr.org) in order to create an annotated GenBank file, which is then input into
the PhageMiner Python script. The location and the annotated name of each ORF
in the host genome is retrieved from the annotated GenBank file and saved to a
comma-separated value (CSV) file using the Biopython package (http://biopython.
org). A number of predefined user-adjustable phage-associated keywords are then
used to scan the CSV file generated in the previous step and any ORF containing a
matching string (e.g., “phage”, “lytic amidase”, “tail fibre protein”, etc.) in its
annotation name is deemed a ‘hit’. An additional set of predefined user-adjustable
keywords are used to discard any matching hits with annotation names that
resemble phages but are not prophage genes (e.g., ‘macrophage’). Using the mean
shift clustering method in Scikit-Learn machine learning library (https://scikit-
learn.org), the location of the remaining phage hits respective to each other and to
the size of the host genome are used to identify clusters of bacteriophage-related
genes. During this step, minimal manual inputs by the user are requested in order
to ensure correct identification of prophage regions. If necessary, clustering can be
repeated with a different sensitivity as redefined by the user, or alternatively, the
coordinates corresponding to each suspected prophage region can be entered
manually. The pipeline is aborted at this stage if no clusters of bacteriophage-
related genes are detected or manually defined by the user. Once clusters of
bacteriophage-related genes are identified, PhageMiner creates various figures and
tables related to each of the suspected prophage regions, the most important of
which are a schematic diagram of the coding regions, the location of the prophage
region in the chromosome including the flanking genes adjacent to the prophage
region, the presence of any assembly gaps, and the nucleotide sequences of the
ORFs in the cluster. If necessary, the number of flanking genes displayed in each
figure can be manually adjusted. Based on the decisions made by the user, the
putative prophage genomes are either rejected or extracted as a separate GenBank
file and categorised into three groups: full-length prophages, satellite prophages
and unknown phage-related regions. The source code of PhageMiner is available
from GitHub.

Genomes used in this study. In total, 1306 assembled genomes from 70 different
species of the genus Streptococcus were selected for this study, of which 482 gen-
omes belonged to a pneumococcal data set previously characterised by us26. This
collection was designed to be highly diverse and consisted of pneumococci
recovered from both ill and healthy individuals of all ages residing in 36 different
countries between 1916 and 2009. These pneumococci represented 91 serotypes
and 94 different clonal complexes (Supplementary Data 6).

The remaining 824 streptococcal genomes were selected from a non-
pneumococcal Streptococcus species genome data set previously compiled by us46.
In brief, 69 different Streptococcus species were included in this data set and up to
50 genomes per species were selected for analyses from the ribosomal MLST
database (https://pubmlst.org/rmlst)47. When >50 genomes were available, the
population structure of the species was depicted using PHYLOViZ48 and genomes
were selected to maximise the population-level diversity of the species from the
available genomes. All streptococcal genome sequences were stored in a BIGSdb
database49 and annotated using the RAST server (http://rast.nmpdr.org).

Sequence analyses of prophages. All putative prophage sequences were
inspected manually using Geneious version 11.1 (Biomatters Ltd; https://www.
geneious.com) and those containing ambiguous bases (N’s) and/or assembly gaps
(n= 411) were excluded from further analyses. The total number of open reading
frames (ORFs), overall sequence length and GC content of each prophage were
calculated within the Geneious environment. All multiple sequence alignments
were performed using ClustalW (version 2.1)50 with default parameters (Gap open
cost= 15, Gap extend cost= 6.66). Phylogenetic trees were constructed based
upon sequence alignments using FastTreeMP (version 2.1.5)51. Unique integrase
sequences were identified using the CD-HIT programme (version 4.6.6)52 and a
threshold of ≥95% sequence identity. Schematic diagrams of the coding regions of
the prophages were produced in Geneious and edited using Adobe Illustrator.

Estimation of prophage content within bacterial genomes. The phage content
was estimated based on the percentage of prophage genes within a given bacterial
genome. To do this, we developed a Python script that first used Prodigal software
in the Prokka annotation suite (version 1.10)53 to predict ORFs in three separate
groups of sequences: (i) all identified full-length prophage genomes, (ii) all iden-
tified satellite prophage genomes and (iii) a single bacterial genome of interest for
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which the phage content is to be estimated. Next, the individual ORF nucleotide
sequences from all three groups were extracted, combined and clustered using
Roary54 set at a 70% similarity threshold. Any ORFs in the bacterial genome that
were also present in at least one prophage genome were deemed to be phage-
related, and this information was used to output the total percentage of phage-
related ORFs in the given bacterial genome. The PhageContentCalculator script is
available from GitHub.

Investigation of prophage insertion sites and flanking genes. The prophage
insertion sites within the bacterial genomes were investigated among the repre-
sentative pneumococcal prophages and any streptococcal species for which at least
one complete bacterial genome was available. Prophage insertion sites containing
ambiguous bases or assembly gaps were excluded from the analyses. In order to
assess the relative location of prophages within streptococcal bacterial genomes, the
genomes were divided into eight equally sized segments and the prevalence of
prophages per segment was calculated.

To investigate the location of prophages relative to the putative function of the
flanking bacterial genes, the sequences of the five bacterial genes both upstream
and downstream of each prophage were retrieved. Bacterial gene sequences were
categorised into COGs using eggNOG-mapper, which is based on eggNOG 4.5
orthology data55,56. For comparison, a reference set of 70 streptococcal genomes,
each representing a different streptococcal species, was compiled. All bacterial
genes were assigned a COGs category using eggNOG and the average prevalence of
each COG category across the combined set of 70 reference streptococcal genomes
was calculated.

Construction of a pneumococcal core genome phylogenetic tree. The 482
pneumococcal genomes in the study data set were annotated using Prokka in order
to create GFF3 files compatible with downstream analysis scripts. Genes present in
all strains were clustered at 90% sequence identity threshold and aligned using
Roary. The phylogenetic tree was generated using FastTreeMP51 using a general-
ised time-reversible model and then was reconstructed using ClonalFrameML
(version 1.11)57 to account for recombination. The tree was annotated using iTOL
(version 4.3.3)58 and Adobe Illustrator (Adobe Inc.).

Estimate of phylogenetic relationships among streptococci. A phylogenetic tree
was constructed using concatenated sequence data from 53 ribosomal loci among
all streptococcal genomes in the study data set using the BIGSdb PhyloTree plugin.
The tree was graphically simplified to the species level by collapsing clades con-
taining genomes from the same species into a single leaf using iTOL.

Bacterial strains, media and growth conditions. Pneumococci were cultured in
the presence of 5% CO2 at 37 °C on Columbia agar (Oxoid) supplemented with 5%
horse blood, or in Todd-Hewitt broth supplemented with 0.5% yeast-extract (THY;
Oxoid). Mutant strains were selected by using 150 µg/ml spectinomycin. Growth of
pneumococci in broth was monitored by measuring optical density at 580 nm
(OD580) and stocks of pneumococci were stored as single-use 0.5 ml aliquots of
THY broth culture (OD580 0.4–0.5) at −70 °C in 10% glycerol. Data for growth
curve measurements were collected using 96-well plates in a Tecan Spark micro-
titer plate reader59, measuring the optical density at 595 nm (OD595) in 30 min
intervals. For growth in THY and serum, 106 CFU of each strain was added to 200
µl of medium or serum and incubated at 37 °C plus 5% CO2.

Construction of ΔvapE and ΔSpnSP38 pneumococcal mutant strains. Strains,
plasmids and primers used for this study are described in Supplementary Table 2.
Both mutants, ΔvapE and ΔSpnSP38, were generated by overlap extension PCR60,61

in the pneumococcal serotype 6B BHN418 strain (a gift from D Ferreira; multilocus
sequence type (ST)138) using a transformation fragment in which the Spn_00749
gene (vapE) or the entire satellite prophage, Spn_00738-Spn_00753, were replaced
by the spectinomycin resistance cassette aadA9. For the satellite prophage, two
products corresponding to 762 bp upstream (primers SpnSP_UpF and
SpnSP_UpspecR) and 872 bp downstream (primers SpnSP_Downspec_F and
SpnSP_DownR) of the satellite prophage were amplified from pneumococcal
genomic DNA by PCR carrying 3′ and 5′ linkers complementary to the 5′ and 3′
portion of the aacA9 gene respectively. aadA9 was amplified from the pR412
plasmid (a gift from M Domenech) using PCR and primers SpnSP_Upspec_F and
SpnSP_Downspec_R60.

Similarly, for the in-frame deletion of vapE, a construct was created in which
820 bp of flanking DNA upstream of the vapE ATG (primers VapE_UpF and
VapE_UpspcR) and 526 bp of flanking DNA downstream from the vapE ORF
(starting from the ATG of the overlapping Spn_00750 ORF, primers
VapE_DownspecF and VapE_DownR) were amplified by PCR and fused with the
aadA9 cassette by overlap extension PCR62. The resulting constructs were then
transformed into the BHN418 strain by homologous recombination and allelic
replacement using a mix of CSP-1 and CSP-2 and standard protocols63,64. The
mutations were confirmed by PCR analysis and sequencing.

Experimental models of infection. Six-week-old female CD-1 mice were obtained
from Charles River Laboratory and bred in a conventional animal facility at
University College of London (UCL). All animal procedures were conducted in
accordance with the United Kingdom (UK) national guidelines for animal use and
care and were approved by the UCL Biological Services Ethical Committee and the
UK Home Office (Project Licence PPL70/6510). Studies investigating pneumo-
coccal sepsis or pneumonia were performed using 6-week-old mice and infected as
previously described65.

In brief, in the sepsis model, mice were challenged with 5 × 106 CFU/ml of the
serotype 6B strain or the correspondent mutants in a volume of 150 µl by the
intraperitoneal route, whereas for pneumonia, mice under anaesthesia with
isofluorane were inoculated intranasally with 50 µl containing 107 CFU/mouse of
the serotype 6B strain or the mutants. A lethal dose of pentobarbital was
administered at 24 or 28 h after challenge and bacterial counts were determined
from samples recovered from lung and blood. Lungs and spleens were
homogenised through a 0.2 µm filter. Results were expressed as log10 CFU/ml of
bacteria recovered from the different sites.

For mixed infection experiments, mice were inoculated with a 50/50 mixture of
wild-type and mutant pneumococci. The CI was defined as the ratio of the test
strain (mutant strain) compared with the control strain (wild-type strain)
recovered from mice, divided by the ratio of the test strain to the control strain in
the inoculum66,67. A CI of <1 indicates that the test strain is attenuated in virulence
compared with the control strain, and the lower the CI the more attenuated the
strain. Statistical analyses were performed using analysis of variance (ANOVA) for
multiple comparisons. GraphPad Prism 7.0 (GraphPad Software, San Diego, CA)
was used for statistical analyses.

C3b binding to pneumococci. Serum samples from five healthy male volunteer
controls (median age 40 y) were obtained according to institutional guidelines
and stored as single use aliquots at −70 °C to use as a source of complement.
Experiments using human cells were approved by the joint University College
London/University College Hospitals National Health Service Trust Human
Research Ethics Committee, and informed consent was obtained from all par-
ticipants. C3b deposition was analysed using a flow cytometry assay68. In brief,
C3b deposition was investigated by incubating 107 CFU of pneumococci with
10 µl of pooled human serum (diluted to 20% in PBS) for 30 min at 37 °C. C3b
bound to the different strains was labelled with 50 µl of a 1/500 dilution of
fluorescein isothiocyanate-conjugated polyclonal goat anti-human C3b antibody
(ICN) after two washes in PBS-Tween 20 (0.01%). The detection of C3b binding
was performed using flow cytometry with gating based on the analysis of at least
10,000 bacteria. Experiments were repeated three times and the results were
expressed as the proportion of C3b deposition on the surface of the different
mutants compared with the C3b deposition on the 6B wild-type strain.

Neutrophil-killing assay. Frozen aliquots of pneumococci were thawed and
washed twice with PBS-Tween 20 (0.01%) by centrifugation for 5 min at
13,000 rpm. In all, 100 µl of the bacterial suspension, diluted to 103 CFU, was
added to each well in the presence of 25% baby rabbit complement. After 30 min of
incubation at 37˚C, 100 µl of neutrophils (105 cells) previously isolated from
human blood using MACSxpress was added to each well and incubated at 37˚C
with shaking. Sample aliquots were taken at 15 and 30 min, spotted onto Columbia
blood agar plates and incubated at 37 °C plus 5% CO2. Bacterial colony counts were
performed after overnight incubation.

Transcriptomic analyses of prophage gene expression. The RNA sequencing
data used in this study were originally generated by Blanchette et al.39. In brief,
samples were collected in three biological replicates from a pneumococcal strain
Sp6A-10 isolate (serotype 6A; ST460) growing in Todd-Hewitt broth either
planktonically or in polystyrene six-well plates as 2-day-old biofilms. Total RNA
from each sample was extracted and sequenced using the Illumina
HiSeq4000 sequencing platform. For use in the current study, raw RNA
sequencing data was retrieved from the Gene Expression Omnibus (GEO)
repository (http://www.ncbi.nlm.nih.gov/geo/; accession number GSE85196).
Reads from the control planktonic (THB_PK1, THB_PK2, THB_PK3) and
biofilm (THB_BF1, THB_BF2, THB_BF3) samples were paired and mapped
onto the pneumococcal Sp6A-10 genome using Bowtie269 with the highest
sensitivity option. Differential gene expression and statistical significance (genes
with an adjusted p value < 0.001 were deemed to be differentially expressed) was
computed in Geneious using the DESeq2 method70. A volcano plot was gener-
ated within the Geneious environment and further edited using Adobe
Illustrator.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The 1306 bacterial genomes analysed in this study are available from the rMLST database
or PubMLST databases and the corresponding accession numbers are listed in
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Supplementary Data 2. The 763 full-length and satellite prophage sequences analysed in
this study are available in GenBank and the corresponding accession numbers are listed
in Supplementary Data 3. The sequence of the vapE gene is available via GenBank
accession number QBX13222.1.

Code availability
The PhageMiner and PhageContentCalculator scripts are available without restrictions
from GitHub [https://github.com/RezaRezaeiJavan/PhageMiner]; [https://github.com/
RezaRezaeiJavan/PhageContentCalculator].
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