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To exhibit social intelligence, animals have to recognize whom they are
communicating with. One way to make this inference is to select among
internal generative models of each conspecific who may be encountered.
However, these models also have to be learned via some form of Bayesian
belief updating. This induces an interesting problem: When receiving
sensory input generated by a particular conspecific, how does an ani-
mal know which internal model to update? We consider a theoretical and
neurobiologically plausible solution that enables inference and learn-
ing of the processes that generate sensory inputs (e.g., listening and un-
derstanding) and reproduction of those inputs (e.g., talking or singing),
under multiple generative models. This is based on recent advances in
theoretical neurobiology—namely, active inference and post hoc (online)
Bayesian model selection. In brief, this scheme fits sensory inputs under
each generative model. Model parameters are then updated in proportion
to the probability that each model could have generated the input (i.e.,
model evidence). The proposed scheme is demonstrated using a series
of (real zebra finch) birdsongs, where each song is generated by several
different birds. The scheme is implemented using physiologically plau-
sible models of birdsong production. We show that generalized Bayesian
filtering, combined with model selection, leads to successful learning
across generative models, each possessing different parameters. These re-
sults highlight the utility of having multiple internal models when mak-
ing inferences in social environments with multiple sources of sensory
information.
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1 Introduction

One of the most notable abilities of biological creatures is their capacity
to adapt their behavior to different contexts and environments (i.e., cog-
nitive flexibility) (Mante, Sussillo, Shenoy, & Newsome, 2013; Dajani & Ud-
din, 2015) through learning. People can learn to call on various responses
depending on the situation—for example, independently move the right
and left hands when playing an instrument and speak several different
languages. Such multitasking abilities are particularly crucial in commu-
nication with several people, who each demand subtly different forms of
interaction (Taborsky & Oliveira, 2012; Parkinson & Wheatley, 2015). In this
kind of situation, one needs to infer who has generated a heard voice—and
infer that person’s mental state—to respond in an appropriate manner. This
is a requirement for exhibiting social intelligence—which usually indicates
the ability of organisms to correctly recognize oneself and others—and be-
have adequately in the social environment with several conspecifics. This
is an important challenge in understanding a key aspect of social intelli-
gence. Experimental studies of primates have shown that the volumes of
certain brain structures (e.g., the hippocampus) are correlated with the per-
formance of cognitive and social tasks (Reader & Laland, 2002; Shultz &
Dunbar, 2010) and that the ability to infer another’s intentions increases
with brain volume (Devaine et al., 2017). This speaks to a putative strategy
for making inferences about several different conspecifics with a plurality
of internal models, each associated with a particular of the community or
econiche.

This ability of biological creatures contrasts with current notions of arti-
ficial general intelligence. The development of a synthetic system as flexi-
ble as the biological brain remains a challenge (LeCun, Bengio, & Hinton,
2015; Hassabis, Kumaran, Summerfield, & Botvinick, 2017). Here, we tried
to understand how the brain might entertain distinct generative models in a
context-sensitive setting. To do this, we focus on a social task, communica-
tion through birdsong, in which the conversational partner may change.
This induces the dual task of inferring the identity of a conspecific and
learning about that conspecific at the same time. Crucially, this learning
should be specific to each partner.

To address this problem, we appeal to generalized Bayesian filter-
ing, a corollary of the free-energy principle (Friston, 2008, 2010). We
illustrate the behavior of the proposed scheme using artificial bird-
songs and natural zebra finch songs. We consider a synthetic (student),
whose generative model is based on a physiologically plausible model of
birdsong production, and present the student bird with a song generated by
one of several (teacher) conspecifics. During the exchange the student bird
performs Bayesian model selection (Schwarz, 1978) to decide which teacher
generated the heard song. Having accumulated sensory evidence under all
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hypotheses or models, the parameters of the generative models are updated
in proportion to the evidence for each competing model.

We show that over successive interactions, our student is able to learn
the individual characteristics of multiple teachers and recognize them with
increasing confidence Finally, possible neurobiological implementations of
the proposed scheme are discussed. Despite our emphasis on birdsong, our
interest (and expertise) is not in the theoretical neurobiology of songbirds.
We use birdsong as a vehicle to introduce a computational perspective on
perceptual categorization and learning in communication (of any sort) that
inherits from Bayesian model selection. We hope the scheme we showcase
may be useful in areas like voice recognition and in other domains of social
exchange.

1.1 Concept of Modeling. In formulating the generative model, we
have to contend with a mixture of random variables in continuous time (i.e.,
latent states of each singing bird) and categorical variables (i.e., the identity
of the bird) that constitute a perceptual categorization problem. In short,
the listening bird (i.e., student) has to make inferences in terms of beliefs
over both continuous and discrete random variables in order to recognize
who is singing and what they are singing. In a general setting, this would
call on mixed generative models with a mixture of continuous and discrete
states of the sort considered in Roweis and Ghahramani (1999) and, more
recently, Friston, Parr, and de Vries (2017). A complementary way of com-
bining categorical and continuous latent states is to work within a continu-
ous generative model that includes switching variables that have a discrete
(i.e., categorical) probability distribution, with an accompanying conjugate
prior such as the Dirichlet distribution. The most common example of this
would be a gaussian mixture model (see Roweis & Ghahramani, 1999, for
details).

Heuristically, this means the generative model can be constructed in one
of two ways. We can select a singing bird to generate a song, leading to a
hierarchical model with a categorical latent variable at the top and a con-
tinuous model generating outcomes. Alternatively, we could generate con-
tinuous outcomes from all possible birds and then select one to constitute
the actual stimulus. In the second (switching variable) case, the categorical
variable plays the role of a switch, basically switching from one possible
sensory “channel” to another.

In terms of model inversion and belief propagation, both generative
models are isomorphic and lead to the same update equations via mini-
mization of variational free energy. However, the way in which the gen-
erative models play out in terms of requisite message passing can have
different forms. We could use a generative model with a single bird and
try to infer which bird was singing (and, implicitly, the parameters of its
generative process). Alternatively, the student may entertain all possible
teachers “in mind” and then select the best hypothesis or explanation for
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the sensory input. This would correspond to the second form of generative
model, in which the dynamics are conditioned on the categorical variable
(i.e., a student bird predicts songs under all possible hypotheses) and the
best explanation is then selected. In this sense, the expectation about the
identity of the singing bird acquires two complementary interpretations. In
the first formulation, it is the posterior expectation about the bird that has
been selected to generate the song. In the second interpretation, it becomes
an expectation about the switching variable. This means the student (i.e.,
listening bird) effectively composes a Bayesian model average over all hy-
potheses (i.e., singing birds) entertained in providing posterior predictions
of the song.

We can appeal to both forms when interpreting the results that follow.
However, the second interpretation has some interesting aspects from a
cognitive neuroscience perspective. In essence, the gating or selection of
top-down predictions complements the gating or selection of ascending
prediction errors usually associated with attention (Luck, Woodman, & Vo-
gel, 2000; Green & Bavelier, 2003; Awh, Belopolsky, & Theeuwes, 2012). In
other words, selecting (switching to) the best explanation from available hy-
potheses, when predicting sensory input, becomes a covert form of (men-
tal) action. Examples of such attentional switching can be found in bistable
visual illusions (Eagleman, 2001). This is in the sense that descending pre-
dictions are contextualized and selected on the basis of higher-order beliefs
(i.e., expectations) about the most plausible hypothesis or context in play.
The unique aspect of this gating rests on the fact that there are a discrete
(categorical) number of competing hypotheses that are mutually exclusive.
This is reminiscent of equivalent architectures in motor control (e.g., the
MOSAIC architecture) and related mixture of experts (Roweis & Ghahra-
mani, 1999; Lee, Lewicki, & Sejnowski, 2000; Haruno, Wolpert, & Kawato,
2003). In our case, a simple perceptual categorization paradigm mandates a
selection among different possible categories and enforces a form of mental
action through optimization of an implicit switching variable.

In what follows, we present the results of perceptual learning and infer-
ence using this form of model selection or structure learning, predicated on
an ensemble or repertoire of generative models (using synthetic birds and
real birdsongs). Using this setup, we show that Bayesian model averaging
provides a plausible account of how multiple hypotheses can be combined
to predict the sensorium, while Bayesian model selection enables percep-
tual categorization and selective learning. Crucially, all of these unsuper-
vised processes conform to the same normative principle: the minimization
of (the path integral of) a variational free energy bound on model evidence.

2 Results

2.1 Multiple Generative Models and Attentional Switching. Or-
ganisms continuously infer the causes of their sensations (unconscious
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inference and the Bayesian brain hypothesis: Helmholtz, 1925; Knill &
Pouget, 2004) and thereby predict what will happen in the immediate future
(e.g., predictive coding) (Rao & Ballard, 1999; Friston, 2005). This sort of per-
ceptual inference rests on an internal generative model that expresses be-
liefs about how sensory inputs are generated, where perceptual inference is
formulated as the minimization of surprise or prediction errors. These mod-
els typically assume that sensations are generated by latent or hidden (un-
observable) causes in the external world. Such causes may themselves be
generated by other causes in a hierarchical manner. In the setting of contin-
uous state-space models, hierarchical Bayesian filtering can be used to per-
form inference under a hierarchical generative model (Friston, 2008; Friston,
Trujillo-Barreto, & Daunizeau, 2008). This filtering uses variational message
passing to furnish approximate posterior probability (recognition) densities
over the hidden states. In what follows, we describe the process-generating
sensory inputs. We assume that the same generative structure is used by
the brain as an internal generative model; however the brain needs to learn
underlying model parameters to infer the values of hidden states (Dayan,
Hinton, Neal, & Zemel, 1995; Friston, Kilner, & Harrison, 2006; George &
Hawkins, 2009). A detailed description of the generative models used in
this study is provided in section 4.

Let us consider a generative model of birdsong. In brief, this model is a
deep generative model with two levels, both levels based on attractor dy-
namics in the form of neural circuits (see section 4; see also Kiebel, Dau-
nizeau, & Friston, 2008, and Friston & Kiebel, 2009, for details). The goal
of an agent (student bird) is to learn about and categorize several differ-
ent birdsongs, and hence reproduce particular songs depending on the cur-
rently heard song. Crucially, the state of a (slow) higher attractor, associated
with neuronal dynamics in the high vocal center (HVC) in the songbird
brain, provides a control parameter for a (fast) attractor at a lower level in
the auditory hierarchy. The hidden or latent states of the lower attractor, as-
sociated with the robust nucleus of the archistriatum (RA), then drive fluc-
tuations in the amplitude and frequency of birdsong. (For related songbird
studies, see Laje & Mindlin, 2002; Long & Fee, 2008; Amador, Perl, Mindlin,
& Margoliash, 2013; and Calabrese & Woolley, 2015.)

In our case, we are interested in multiple models (i.e., multiple teachers),
each specified by mi with i = 1, 2, . . . ∈ M (see Figure 1, right). Each mi

indicates a specific model structure including certain functional forms and
dimensions of latent variables and parameters. These models describe how
sensory input (i.e., birdsong) s is generated by a set of latent variables u(i)

that include hidden states x(i) and hidden causes v (i). Here, hidden states
x(i) are variables whose dynamics are determined by differential equation
(as described below), while hidden causes v (i) are variables generated at
a higher level, with a probability distribution p

(
v (i)|mi

)
. In other words,

hidden states are linked via dynamics within a hierarchical level, while
hidden causes link successive hierarchical levels. Note that the bracketed
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Figure 1: This figure illustrates how random (stochastic) differential equations
of motion (see equation 2.1) can be interpreted as a probabilistic generative
model. This probabilistic model comprises a joint distribution over latent vari-
ables and observable sensory input (upper panel) that can be factorized into
the marginal distributions shown in the middle left panel. The large lower right
panel depicts two generative models in the form of a normal (Forney) factor
graph (Friston, Parr et al., 2017; Forney, 2001; Dauwels, 2007). This graphical
form shows that the sensory input (birdsong) may be generated by one of two
teacher birds, each represented by its own hierarchical generative model. Here,
η at the top of the graph indicates the (prior) expectations of hidden causes. A
switcher placed in the center determines which bird generates the sensory in-
put as described in the bottom left panel. The bottom left panel shows that the
switcher state γi corresponds to the probability of model i being selected, where
only γc takes a value of one (i.e., mc is the present model), while the remaining γi

with i �= c are zero. Importantly, regardless of the switcher state, all models gen-
erate dynamics; for example, p

(
ṽ (i,2)|mi

)
indicates the probability of the hidden

(generalized motion of) cause ṽ (i,2), under the ith model structure mi, while the
selected model is denoted by mc. The task of our synthetic (student) bird that
hears the sensory input (birdsong) is to infer which (teacher) bird generated the
song (i.e., to infer γi). Having done so, the parameters θ (i) associated with bird i
are updated in proportion to the evidence that bird i was, in fact, singing. (See
also section 4 for details.)

superscript (i) indicates they belong to model i (or bird i). These variables
are associated with trajectories that are specified in generalized coordinates
of motion: s̃ ≡ (s, s′, s′′, . . .), where dashes denote time derivatives. The
processes that generate birdsong from these latent variables are parameter-
ized by a set of parameters θ (i). We can represent the generation of birdsong

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01239&iName=master.img-000.jpg&w=311&h=170
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under model i by the following stochastic differential equations:

s̃ = g̃(i,1)
(

x̃(i,1), ṽ (i,1), θ (i,1)
)

+ ω̃(i,1),

Dx̃(i,1) = f̃ (i,1)
(

x̃(i,1), ṽ (i,1), θ (i,1)
)

+ z̃(i,1),

ṽ (i,1) = g̃(i,2)
(

x̃(i,2), ṽ (i,2), θ (i,2)
)

+ ω̃(i,2),

Dx̃(i,2) = f̃ (i,2)
(

x̃(i,2), ṽ (i,2), θ (i,2)
)

+ z̃(i,2), (2.1)

In the above, ω̃(i, j) and z̃(i, j) represent random fluctuations. They follow
gaussian distributions with mean zero and precision (inverse covariance) of
�

(i, j)
v and �

(i, j)
x , respectively. D is a block matrix operator that implements

Dx̃ = x̃′ ≡ (x′, x′′, ...)T . The superscript (ij) indicates the jth level of model
i (i.e. latent variables at level 2 generate latent variables at level 1 that
generate sensory input). The model specified by these equations can be in-
terpreted in terms of a set of probability distributions (see Figure 1 middle
left), and their product provides the ith generative model (see Figure 1 top).

In our task design, although every generative model is running simulta-
neously, only the signal generated by a specific bird is selected as the sen-
sory input (i.e., a teacher song) that the student can actually hear—as an
analogy to social communication with several distinct conspecifics. This se-
lection is controlled by a switcher (see also Figure 1 right). Suppose the cur-
rently selected model is indexed by c. We represent the switcher state by
a set of binary variables P (i = c) = γi ∈ {0, 1} where only γc = 1, while the
remaining variables are zero to ensure

∑
i∈M γi = 1. Note that γi indicates

the probability of model i being selected but takes only either 0 or 1 by de-
sign. When this switching process is used, the probability of sensory input
is p (s̃|mc) = EP(i=c)

[
p(s̃|mi)

] = ∑
i∈M γi p(s̃|mi), where p(s̃|mi) is the condi-

tional probability of the sensory input when model i is selected (see Figure
1 bottom left). We suppose that the switcher γ is sampled from a categorical
prior distribution P (γ ) = Cat(�) for each epoch of singing. In sum all mod-
els (mi) are generating fluctuations in hidden states, while only the output
from mc is selected as the sensory input.

2.2 Update Rules for Inference, Model Selection, and Learning. The
inversion of a generative model corresponds to inferring the unknown vari-
ables and parameters, which we will treat as perceptual inference and learn-
ing respectively. Formally, in variational Bayes, this rests on optimizing an
approximate posterior belief over unknown quantities by minimizing the
variational free energy (and its path integral) under each model. This com-
prises three steps, as shown at the top of Figure 2: (1) in the inference step,
latent variables under all models are updated over an epoch of birdsong;
(2) in the model selection step, a softmax function of variational free action,
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Figure 2: Schematics illustrating the variational update scheme (top): the mod-
els that our synthetic student (right) uses to make inferences about the songs
generated by two teachers (left). A flowchart at the top summarizes the infer-
ence, model selection, and learning processes that the student must implement.
Here, σ (·) is a softmax (normalized exponential) function that converts the con-
ditional free actions to a model plausibility γ i, and ξ (i,s)ξ (i, j)ξa are error-encoding
units that encode between actual and expected error in sensation, hidden states,
and action, respectively (see Friston, 2008, for details). Our learning process is
weighted by the model plausibility, ensuring that the model most likely to have
generated the heard song updates its parameters during learning. See section 4
for further details.

under each model, gives the model posterior (i.e., model evidence); and (3)
in the learning step, this posterior plays the role of an adaptive learning
rate when updating model parameters using a descent on variational free
action. This ensures that only models that are likely to be generating the
birdsong (sensory data) are updated, while the remaining models retain
their current parameters. In what follows, we derive the associated update
rules to illustrate their general form (section 4 for details).

The latent variables and parameters under model i are given by
u(i) ≡ (

x̃(i,1), x̃(i,2), ṽ (i,1), ṽ (i,2)
)

and θ (i) ≡ (
θ (i,1), θ (i,2)

)
, respectively. The

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01239&iName=master.img-001.jpg&w=311&h=251
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internal energy Ui
(
s̃, u(i), θ (i)

) ≡ − log p
(
s̃, u(i)|θ (i), mi

)
quantifies the

amount of (squared) prediction error induced by sensory data for a
given generative model i, that is, the likelihood of (s̃, u(i) ) when θ (i) and mi

are given. Using this, the conditional free energy of model i is given by

Fi (t) ≡ Eq(u(i) )q(θ (i) )
[
Ui

(
s̃, u(i), θ (i)

)
+ log q

(
u(i)

)]
≈ Ui

(
s̃, u(i),θ(i)

)
+ const. (2.2)

Here, q
(
u(i)

)
and q

(
θ (i)

)
are approximate posterior (i.e., recognition) den-

sities over the latent variables and parameters of each model. The expres-
sion Eq(u(i) )q(θ (i) ) [·] denotes the expectation over these posterior beliefs, and
bold symbols u(i) andθ(i) denote their posterior expectations (i.e., the means
of q

(
u(i)

)
and q

(
θ (i)

)
), respectively. Thus, u(i) and θ(i) are maximum a pos-

teriori estimates of the latent variables and parameters under model i. If
we ignore the second-order derivative of Ui, we can express Fi by simply
substituting u(i) and θ(i) into Ui up to a constant term. In neurobiological
process theories, u(i) and θ(i) are usually associated with neural activities
and synaptic strengths, respectively (Bastos et al., 2012; Friston, FitzGerald,
Rigoli, Schwartenbeck, & Pezzulo, 2017).

Inference optimizes the approximate posterior beliefs (expectations)
about the latent variables. This can be expressed as a gradient flow in gen-
eralized coordinates of motion (noting that the solution satisfies the varia-
tional principle of least action):

Inference: u̇(i) − Du(i) ∝ − ∂

∂u(i)
Fi(t). (2.3)

Special cases of this Bayesian filtering reduce to Kalman filtering. The im-
plicit optimization of u(i) allows for inference to take place under every
model. In addition, our agent needs to infer which model is currently gen-
erating its sensory input. This involves minimization of the free action (de-
noted by a bar) over models, given by

F̄ ≡ EQ(i=c)

[
F̄i

(
θ(i)

)]
+ D [Q (γ ) ||P (γ )] +

∑
i∈M

D
[
q
(
θ (i)

)
||p

(
θ (i)|mi

)]
.

(2.4)

Note that the first term is the weighted sum of the path integral of the condi-
tional free energies, where F̄i(θ(i) ) ≡ ∫ T

0 Fi (t) dt is the conditional free action
of model i. In this expression, Q (i = c) = γi ∈ [0, 1] with

∑
i∈M γi = 1 de-

notes the posterior expectation about model i being selected, which is equiv-
alent to the posterior belief about the switcher state Q (γ ) = Cat (γ). The
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second and third terms are complexity terms relating to the switcher and
parameters, expressed by Kullback-Leibler divergence (Kullback & Leibler,
1951). When the prior distribution of the switcher state P (γ ) is the same for
each model (i.e., all birds are equally likely), we obtain the posterior expec-
tation of the switcher state γi that minimizes the total free action as

Model selection: γi = σ
(
−F̄i

(
θ(i)

))
. (2.5)

This means that the posterior expectation (i.e., evidence) that model i gen-
erated the song (denoted by γi) can be computed by taking a softmax σ (·)
(normalized exponential) of the conditional free actions for each model,
analogous to a post hoc Bayesian model selection (Friston & Penny, 2011)
and a discrete categorical model (Friston, FitzGerald et al., 2017). We also
refer to γi as the model plausibility since this quantifies how likely model i
is to have generated the current sensory input.

Finally, learning entails updating posterior expectations about the pa-
rameters θ(i) to minimize the total free action. Taking the gradient of the to-
tal free action with respect to the parameters furnishes the learning update
rule. When the prior density of parameters p

(
θ (i)|mi

)
is flat for every model

(i.e., no prior knowledge about parameters), this optimization is given by
the minimization of the conditional free action weighed by γi:

Learning: θ̇
(i) ∝ −γi

∂

∂θ(i)
F̄i

(
θ(i)

)
. (2.6)

The novel aspect of this update rule is the weighting of its learning rate by
the model evidence or plausibility. This means that only plausible models
will change their parameters, which enables the learning of several different
generative models in a (soft) winner-takes-all manner. (Detailed derivations
of the above equations are in section 4.)

The posterior distribution of the switch Q (γ ) can be considered an
attentional filter (Luck et al., 2000; Green & Bavelier, 2003; Awh et al.,
2012). According to this view, an attended generative model and its as-
sociated posterior beliefs correspond to the marginal distributions over
models and posteriors (i.e., because the attended model is more plau-
sible than all others, the posteriors conditioned on this model will ap-
proximate those obtained through a Bayesian model average over all
models). Let u! and θ ! be the marginal beliefs over latent variables and
parameters, respectively. These may be thought of as Bayesian model
averages over each of the internal models. When each model has the
same structure and dimensions, these marginals are given by p

(
s̃, u!, θ !

) ≡∑
i∈M γi p

(
s̃, u(i) = u!, θ (i) = θ !|mi

)
, q

(
u!
) ≡ ∑

i∈M γiq
(
u(i) = u!

)
, and q

(
θ !
) ≡∑

i∈M γiq
(
θ (i) = θ !

)
. Thus, our model is formally analogous to a gaussian-

mixture-model version of a Bayesian filter. On a more anthropomorphic
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note, the marginal beliefs over latent variables u! and parameters θ ! are fic-
tive (i.e., they do not exist in the external real world). One could imagine that
they underwrite some conscious inference, with several competing genera-
tive models (i.e., hypotheses) running at a subpersonal or unconscious level
in the brain.

Interestingly the above formulation can be applied to generative mod-
els that have different structures and dimensions because there is no direct
interaction between generative models and the switcher receives only the
output from each generative model. This property may be particularly per-
tinent for recognizing conspecifics, since conspecifics may not be best mod-
eled using the same generative model structure.

2.3 Demonstrations of Multiple Internal Models Using Artificial and
Natural Birdsongs. A birdsong has a hierarchical structure that enables
the expression of complicated narratives using a finite set of notes (Suzuki,
Wheatcroft, & Griesser, 2016). Young songbirds are known to learn such a
song by mimicking adult birds’ song (Tchernichovski, Mitra, Lints, & Not-
tebohm, 2001; Woolley, 2012; Lipkind et al., 2013; Yanagihara & Yazaki-
Sugiyama, 2016; Lipkind et al., 2017). Previous studies have developed a
songbird model that infers the dynamics of another’s song based on a deep
(two-layer) generative model (Kiebel et al., 2008; Friston & Kiebel, 2009).
Perceptual inference requires an internal model of how the song was gen-
erated. However, in a social situation, several birds may produce differ-
ent songs generated by different brain states (or generative models). In the
simulations that follow, we consider a case where two birds (denoted by
teacher 1, 2) sang two different songs in turn, as illustrated in Figure 2 (left).
A song s = (s1, s2)T is given by a 4 s sequence of a two-dimensional vec-
tor, where s2 and s1 represent the mode of sound frequency and its power,
respectively—analogous to a physiological model of birdsong vocalizations
(Laje, Gardner, & Mindlin, 2002; Perl, Arneodo, Amador, Goller, & Mindlin,
2011). Here, we supposed that the generative model had two layers of three-
neuron circuits (or circuits comprising three neural populations) for bird-
song generation, the so-called Laje-Mindlin style model (Laje & Mindlin,
2002). In preliminary simulations, we confirmed that when a student with
a single generative model heard their songs, it was unable to learn either
teacher 1 or 2’s song (see Figure 6 in appendix A). This is because a sin-
gle generative model cannot generate two songs. Thus, the student tried to
learn a spurious intermediate model of the two songs and failed to learn
either.

This limitation can be overcome using a repertoire of generative models
(see section 4 for details). We found that a student with two generative mod-
els (m1, m2; see Figure 2, right) can solve this unsupervised learning prob-
lem efficiently. We trained the model by providing two (alternating) teacher
songs by updating an unknown parameter of both generative models.
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Figure 3: Simulation results when learning two birdsongs using multiple gen-
erative models. Teacher bird 1 generated a song in odd sessions, and teacher
bird 2 sang in even sessions. At the beginning of each session, the initial latent
variables of both teachers were reset to their initial values to ensure they gener-
ated quasi-periodic dynamics. The parameters of both teachers were fixed over
sessions. A student bird was equipped with two generative models (m1, m2).
(A) Trajectories of the posterior of a parameter that was optimized. The param-
eters for m1 and m2 (red and blue curves, respectively) were initialized from the
middle point (≈ 0.5) and updated according to the variational scheme in the
main text. After training, m1 and m2’s parameter approximated the true param-
eter value of teacher 1 (= 0; red dashed line) and 2 (= 1; blue), respectively, re-
flecting veridical learning. Shaded areas indicate the standard deviation of the
posterior density. (B) Comparisons between true (teacher) hidden states and
their posterior expectations inferred by the student (left: teacher 1 versus m1,
right: teacher 2 versus m2). (C) Trajectories of conditional free actions for m1

(red) and m2 (blue). When teacher 1 sang (odd sessions), F̄1 was lower than F̄2,
and vice versa. A free action difference of about three corresponds to strong
evidence for the presence of a song—that is, a log odds ratio of 3 (= 20 to 1).
(D) Trajectories of model plausibility used for parameter updates. Simulation
results with different experimental setup are provided in appendix A.

Posterior densities over parameters (i.e., synaptic strengths) were updated
over learning and successfully converged to the true values used in the sim-
ulation (see Figure 3A). As a result, the student was able to make perceptual
inferences about latent states generating both songs (see Figure 3B). In each

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01239&iName=master.img-002.jpg&w=311&h=210


2402 T. Isomura, T. Parr, and K. Friston

session of training, the free action (i.e., average free energy) was computed
for both internal models. The trajectories of free action evince a process of
specialization, where each model becomes an expert for one of two songs
(see Figure 3C). At the beginning of each exposure, the probability of each
model was around 0.5, which led to parameter updates in both models (see
Figure 3D). Following learning, the difference in model plausibility became
significantly larger—and only the most likely model updated its parameter
following the appropriate song. In Figure 3, the hidden states of teachers
were reset at the beginning of each session, which made the song sequence
periodic and easy to learn. When the hidden states of teachers were not
reset, the song sequence became chaotic and was more difficult to learn.
However, even in this chaotic case, our model successfully learned from
two distinct teachers (see Figure 7 in appendix A).

We next provided six distinct natural zebra finch songs to our model to
see if it could learn and recognize six different teachers (see Figure 4; see also
section 4 for details). Here we assumed a generative model with realistic
song generation capacity comprising two layers of four-neuron circuits (or
circuits comprising four neural populations), based on the Laje-Mindlin-
style model (see section 4). The posteriors of the parameters of the student’s
internal models were randomized. However, for simplicity, the posteriors
over hidden states at time t = 0, and the time constants of the differential
equations, were optimized a priori (i.e., initialized) to be consistent with
one of the six teacher songs. Before training, we tested the responses of the
student to the teacher songs as a reference (movie 1; see appendix B).

A student bird with six internal models inferred latent states (with a
small update rate) and calculated the accompanying free energy and model
evidence (see Figures 4A and 4B). After exposure, the student generated a
song to predict (or imitate) the current teacher song by running the gen-
erative models in a forward or active mode. In this mode, the bird repro-
duces its predicted sensory input based on a Bayesian model average of
the dynamics generating a particular song. This Bayesian model average
is the mixture of model-specific predictions weighted by model evidence
or plausibility. However, prior to learning, the student could not reproduce
the teacher song because it has not yet learned the teacher’s parameters and
could not categorize the teachers. During training, we randomly provided
one of the six teacher songs for 60 sessions (movie 2; see appendix B). The
student listened to the song and evaluated model plausibility for each of its
six internal models. It then learned (924-dimensional) unknown model pa-
rameters, with a learning rate determined by model plausibility, to ensure
only plausible models were updated. These parameters controlled a nonlin-
ear (polynomial) mapping from latent states expressing the dynamics of the
deep generative models to fluctuations in amplitude and peak frequency of
the sensory input.

We found that the student’s internal models became progressively spe-
cialized for one of six teacher songs (movie 3; see appendix B). After
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Figure 4: A demonstration of learning six natural zebra finch songs using the
multiple generative models. The dynamics of teacher and student states before,
during, and after training are provided in appendix B. This figure shows a snap-
shot of a movie after training. (A) A teacher song (right) and underlying dy-
namics of hidden states and causes (left and middle; arbitrary scale; they were
estimated from the sensory data). Six real zebra finch songs were processed
and used as teacher songs (illustrated in six colors). A song is given by a 10s
sequence of s, illustrated by the mode of sound frequency and its amplitude
(right; arbitrary scale; amplitude is plotted in both positive and negative sides).
The currently selected song is indexed by c. (B) Six internal generative models
in a student listening to a teacher, making inferences about latent states (cen-
tre), model plausibility (right), and the predicted trajectories of sensory input
g(i,1) (left). These constitute the expected song sequences (output) under each
model. The color of trajectories indicates the song for which each model is spe-
cialized. (C) To evaluate prediction capability, a student generates song (action)
in the absence of sensory input. Action is given by the average of predictions
of the six models weighted by model plausibility, the Bayesian model average.
(D) Posterior expectations of the switcher state (or model plausibility) were up-
dated in each model selection step (see equation 2.5). They were initialized from
a uniform distribution and converged to a definitive identity matrix, suggest-
ing that each model became specialized for a specific teacher song. (E) Poste-
rior expectations of the parameters of six internal models (circles) and optimal
parameters for six teacher songs (plus marks) plotted in a subspace of the first
and second principal components (PC1, PC2) of parameter space. During learn-
ing, only internal models with high model plausibility enjoy parameter updates
(see equation 2.6). The initial parameter values were adjusted in the absence of
model selection to ensure their initial values generated an averaged song (see
section 4 for details).
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learning, only the most plausible model (with veridical parameters) con-
tributed to the Bayesian model average, so that the student could reproduce
the teacher songs in a remarkably accurate way (see Figure 4C). These re-
sults are particularly pleasing because they also suggest that real songbirds
(zebra finches) learn and generate songs (in their RA and HVC) using dy-
namics with the form we have assumed. Indeed, to compare inferred and
true hidden states (and parameters), the real zebra finch songs were learned
separately and regenerated under the appropriate model to provide stimuli.
Learning success was further confirmed by a specialization of each model
for a specific teacher (see Figure 4D) and a convergence of posterior pa-
rameter expectations, under each model, to the teacher-specific values (see
Figure 4E). These results suggest that the proposed scheme works robustly,
even with natural data and a large number of songs.

Finally, we illustrate how inference is affected by either the absence
of attentional switching or by a discrepancy between the number of in-
ternal models and teacher songs presented (see Figure 5). A standard
Bayesian filter, lacking attentional switching, failed to find optimal internal
models—to track six teacher songs separately—even when equipped with
six internal models. In Figures 5A and 5B, this is evidenced by the absence
of free-energy reduction (black line). Conversely, the current scheme, with
attentional switching, was able to reduce free energy (red line). This is due
to the suppression of the learning rate in implausible models during model
inversion. The resulting difference is especially evident when the genera-
tive model comprises four-neuron circuits. The mixture model learned six
different songs with a high degree of accuracy, as shown in Figure 4, thereby
reducing the free energy substantially. When there were equal numbers of
internal models and teachers, only one of six internal models was plausi-
ble for each session (see Figure 5C). When the number of internal models
was greater than that of teachers, several internal models came to repre-
sent a teacher song, while the superfluous models were never considered
plausible (see Figure 5D), indicating the continued success of the agent in
categorizing and learning multiple songs. However, the confidence in these
categorizations diminished relative to the correct model. Conversely, when
the number of internal models was fewer than that of teachers, each inter-
nal model came to represent a mixture of teacher songs, thereby failing to
recognize distinct teacher songs (see Figure 5E). Collectively, these findings
highlight the potential utility of equipping an adequate number of genera-
tive models with attentional selectivity for learning (and inverting) context-
sensitive models of the social world.

3 Discussion

The brain may use multiple generative models and select the most plau-
sible explanation for any given context. Findings from comparative neu-
roanatomy (Reader & Laland, 2002; Shultz & Dunbar, 2010; Devaine et al.,
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Figure 5: Comparison of learning with multiple internal models in the pres-
ence or absence of attentional switching (A, B) and when the number of inter-
nal models matches or differs from the teacher songs (C, D, E). (A) This figure
illustrates the mean trajectories (lines) of averaged free energy, or free action,
in each session and their standard errors (shaded areas). In all cases, a student
bird has six internal models. Simulations were conducted 20 times, using differ-
ent random initial states and song orders. The generative model had two layers
of three-neuron circuits for generating birdsong. (B) The generative model had
two layers of four-neuron circuits. (C) Trajectories of model plausibility for six
internal models. The agent heard one of six teacher songs at random. (D) The
same information as panel is displayed, but in the case where the agent received
one of three teacher songs. (E) Trajectories of model plausibility for three inter-
nal models. In this case, the agent had only three internal models, while hearing
one of six teacher songs.

2017) suggest that as the brain becomes larger, it can entertain more hy-
potheses, or internal models, about how its sensations were caused. This
strategy can be used to learn and recognize particular conspecifics in a com-
munication or social setting. Akey question here is how the brain separately
establishes distinct generative models before it recognizes which model is
fit for purpose, and vice versa. In this study, we introduce a novel learning
scheme for updating the parameters of the multiple internal models that are
themselves being used to filter continuous data. First, several alternative
generative models run in parallel to explain the sensory input in terms of
inferred latent variables; this enables the free action (under each model) and
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associated model plausibility to be evaluated; finally, the parameters of each
model are updated with a learning rate that is proportional to the model
plausibility. This ensures that only models with high model plausibility
or evidence are informed by sensory experience. The proposed scheme
allows an agent to establish and maintain several different generative mod-
els (or hypotheses) and to perform an adaptive online Bayesian model se-
lection (i.e., switching) of generative models depending on the provided
input.

The definition of social intelligence varies greatly. The term could be ap-
plied broadly to species able to engage in coordinated behaviors with other
conspecifics (e.g., swarm behaviors or shoals of fish; Mann & Garnett, 2015).
For an account of the sort of inferences required for a creature to “know its
place” in this sort of society, Friston, Levin, Sengupta, and Pezzula (2015)
illustrate how this can be achieved in the absence of inferences about other
individuals in an ensemble. The sort of intelligence we are interested in here
is of a more sophisticated sort: the capacity to recognize oneself and others.
We are interested in creatures that interact with their conspecifics at an in-
dividual level and can tailor their behavior to whomever they interact with.
This requires not just (a minimal) theory of mind but a theory of multiple
minds and is closer to the sorts of social intelligence thought to be impaired
in conditions like autism (Happé & Frith, 1995).

The ideas presented here address a key challenge for social systems: that
of disambiguating between and learning about other conspecifics or mem-
bers of a society. Our hope is that this takes us a step closer to a formal
theory of social intelligence. A complete formal theory would entail com-
putational approaches to solving other aspects of social behavior, includ-
ing those addressing behavioral economic and trust games (Moutoussis,
Trujillo-Barreto, El-Deredy, Dolan, & Friston, 2014), and approaches to un-
derstanding the optimal depth of recursive sophistication for social inter-
actions (Devaine, Hollard, & Daunizeau, 2014).

The Bayesian filtering or (sensory) evidence accumulation simulated in
this letter offers proof of concept that biologically plausible schemes can
be used to recognize the source of dynamically rich sensory streams. The
simulations show how neuronal-like message passing can solve two key
problems: (1) abstracting or deconvolving a time-invariant representation
of how fluctuating sensations are generated and (2) disambiguating among
alternative sources. The particular message passing used in this study and
in a number of previous publications (Friston, Adams, Perrinet, & Breaks-
pear, 2012; Friston & Frith, 2015b; Friston & Herreros, 2016) can be regarded
as a generalization of predictive coding that has growing empirical support
as a scheme that the brain might use (Kok, Rahnev, Jehee, Lau, & de Lange,
2012; Brodski-Guerniero et al., 2017; Heilbron & Chait, 2017). A review of
the evidence for the basic architecture and ideas can be found in several
papers (Bastos et al., 2012; Adams, Shipp, & Friston, 2013; Shipp, 2016). A
more technical treatment based on message passing on factor graphs can
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be found in other publications (Friston, Parr et al., 2017). This letter pur-
sues the biological plausibility of belief updating and, in particular, shows
the formal similarities between neuronal message passing required under
generative models of both discrete and continuous state spaces.

One might ask if there are alternative schemes that could perform
equally well—for example, classification schemes from machine learning
(LeCun et al., 2015). This is a potentially important question that would
speak to different computational architectures and neurophysiological im-
plementation. However, current machine learning approaches would prob-
ably converge on the Bayesian filtering scheme under the deep temporal
models used above. This follows from the fact that high-end machine learn-
ing schemes use exactly the same (variational free energy) objective func-
tion used in Bayesian filtering (and generalized predictive coding). We have
in mind here variational autoencoders based on a deep bottleneck architec-
ture, for example (Suh, Chae, Kang, & Choi, 2016). Our model is a mix-
ture model for generalized Bayesian filtering. In this sense, our model can
be viewed as a time-domain extension of an autoencoder mixture model
(Aljundi, Chakravarty, & Tuytelaars, 2017). A theoretical comparison also
supports a close link between learning mechanisms in predictive coding
and backpropagation (Whittington & Bogacz, 2017). At the present time,
most variational autoencoders do not deal with time-varying data. The im-
plication is that extending current deep learning and variational inference
in machine learning to solve the inference problem in a dynamic setting will
produce the same scheme as the one used in our simulations.

From a technical perspective, one of the key contributions to the litera-
ture of this study is the evaluation of the evidence for competing hypothe-
ses about the sources of sensory input. This evaluation can be cast in terms
of Bayesian model selection. From a psychological perspective, this sheds
light on our capacity for perceptual categorization, where the underlying
selective processes may be cast in terms of attentional selection (Deubel &
Schneider, 1996; Itti & Koch, 2001; Bosman et al., 2012). From the perspective
of optimal control theory and machine learning, this has clear homologues
with selection from mixtures of experts in motor control (Tani & Nolfi, 1999;
Haruno et al., 2003) and, indeed, any selective process that involves mutual
or lateral inhibition leading to a winner-takes-alll-ike behavior (Zelinsky &
Bisley, 2015).

Recent machine learning studies show that task-specific synaptic con-
solidation can protect the network from forgetting previously learned as-
sociations while learning new associations (Kirkpatrick et al., 2017; Zenke,
Poole, & Ganguli, 2017). We have focused on disambiguating between, and
learning with, multiple internal models. Therefore, we do not consider the
explicit protection of previously learned associations. However, a combina-
tion of attentional switching and synaptic consolidation would be a poten-
tially interesting extension. We would like to address this issue in the future
work.
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When an agent encounters an environment that generates data in
several possible ways, it can model the environment as either a single gen-
erative model (with distinct contextual levels) or multiple generative mod-
els. In contrast, when an agent encounters an environment with multiple
conspecifics, explaining data with a single model is not straightforward be-
cause there are multiple sources of sensory data, calling for a mixture of
generative models. In this sense, our model is particularly useful when an
agent encounters several different agents in a social context.

Neurobiologically, our learning update rule might be implemented by
associative (Hebbian) plasticity modulated by a third factor, a concept
that has recently received attention (Pawlak, Wickens, Kirkwood, & Kerr,
2010; Frémaux & Gerstner, 2016; Kuśmierz, Isomura, & Toyoizumi, 2017).
While Hebbian plasticity occurs depending on the spike timings of pre- and
postsynaptic neurons (Hebb, 1949; Bliss & Lømo, 1973; Markram, Lübke,
Frotscher, Sakmann, 1997; Bi & Poo, 1998; Froemke & Dan, 2002; Malenka
& Bear, 2004; Feldman, 2012), recent studies have reported that various neu-
romodulators (Reynolds, Hyland, & Wickens, 2001; Seol et al., 2007; Zhang,
Lau, & Bi, 2009; Salgado, Köhr, & Treviño, 2012; Yagishita et al., 2014; Jo-
hansen et al., 2014), GABAergic inputs (Paille et al., 2013; Hayama et al.,
2013), and glial factors (Ben Achour & Pascual, 2010) can modulate Hebbian
plasticity in various ways. Our learning update rule consists of the product
of the (conditional) free action gradient providing a Hebbian-like term (see
Friston, 2008 for details) and the posterior belief of the switcher state, in
which the latter might be implemented by such additional neurobiological
factors.

Previous studies have modeled communication between agents in anal-
ogy with the mirror neuron system (Kilner, Friston, & Frith, 2007; Friston,
Mattout, & Kilner, 2011; Friston & Frith, 2015a, 2015b). These simulations
involve two birds that make inferences about each other, converging onto
the same internal state and generating the same song. This has been used as
a model of hermeneutics, cast in terms of generalized synchrony. Heuristi-
cally, both birds come to sing from the same “hymn sheet” and thereby come
to “know each other” through knowing themselves. Such a synchronous
exchange minimizes the joint free energy of both birds because both birds
become mutually predictable. This might be related to an experimental ob-
servation that a birdsong can propagate emotional information to another
bird and have influence on its behavior (Schwing, Nelson, Wein, & Par-
sons, 2017). This setup can be generalized when more than two birds are
singing the same song. However, when several conspecifics generate dif-
ferent songs (or speak different languages), an agent with a single gener-
ative model is no longer fit for purpose. We addressed this limitation by
equipping synthetic birds with alternative attractors or hypotheses. Inter-
estingly, it has been reported that some birdsongs display such a learn-
ing flexibility—for example, white-crowned sparrows learn multiple songs
during the vocal development stage and later switch between learned songs
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(Hough, Nelson, & Volman, 2000). In our case, generative models are ex-
plicitly decomposed and their learning rates are tuned by an attentional
switch, allowing an agent to optimize a specific model for each context. In
other words, inference about a particular correspondent’s “state of mind”
can be modeled by synchronous dynamics during conversation, where one
of the listener’s internal models converges to an attractor representing the
speaker’s. In this view, empathic capacity may be quantified by how many
attractors the agent can deploy and how well it can optimize each attractor.
In future work, it will be interesting to consider the relationship between
this conceptual model and recent experimental work that suggests that the
human brain uses dissociable activity patterns to separately represent self
and other (Ereira, Dolan, & Kurth-Nelson, 2018).

In terms of relating the dynamics of learning and inference to empir-
ical observations, the ability to simulate learning and inference, implicit
in our simulations, raises the possibility of using empirical data to con-
strain the scheme’s parameters. In other words, there is, in principle, an
opportunity to use the simulations of the birdsong recognition above as an
observation model to explain the empirical time course of perceptual cat-
egorization, learning, and their neuronal correlates. For example, the time
course of learning in Figures 3 to 5 suggests that a unit of time (the num-
ber of sessions) would correspond to a range from a few hours to a day,
given the results reported in Tchernichovski et al. (2001). In our simula-
tion, the first few sessions exhibited a small free-energy reduction because
model plausibility was almost uniform and the associated learning rates
were similarly small. After a difference in model evidence emerged, the
rate of free-energy reduction reached a peak and then gradually returned
to zero. This might correspond to the learning process of songbirds that
learn the prototypes of songs early and later learn the details of respective
songs (Tchernichovski et al., 2001). In the songbird brain, a population of
neurons in the auditory association areas exhibits an experience-dependent
selective response to one of several learned songs (Gentner & Margoliash,
2003), suggesting that neurons encode posterior expectations of individual
songs based on experience. Moreover, the HVC plays an important role not
only in song production but also in the formation of associations between a
song and a conspecific that emits that song (Gentner, Hulse, Bentley, & Ball,
2000). Again, this is consistent with our generative model that is used for
both generation and recognition. The existence of neurons with a teacher-
specific activity has been reported in the higher-level auditory cortex of
the songbird, the caudomedial nidopallium (NCM; Yanagihara & Yazaki-
Sugiyama, 2016). In our model, the switcher exhibits teacher-specific activ-
ity by accumulating model evidence. One can imagine that neurons in the
NCM might encode the posterior belief about the switcher state. In addi-
tion, the accuracy of song recognition might be bounded by the memory
capacity of the neural circuit encoding songs (Gentner, 2004), which is sim-
ilar to the memory capacity of our model, as determined by the number of
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generative models that can be supported by the neuronal infrastructure. In
short, these empirical observations support the neurobiological plausibility
of our model and speak to the empirical tests.

While we have randomly interspersed the order of presentation from
each teacher, it would be interesting to examine the influence of more sys-
tematic changes in presentation order. In a social neuroscience context, this
could be important in understanding things like multiple language acqui-
sition in children who speak to different family members in different lan-
guages. Specifically, there appear to be differences in bilingualism when
languages are learned simultaneously (i.e., interspersed like the model
here) or successively (Klein, Mok, Chen, & Watkins, 2014). This might im-
ply different mechanisms for the latter compared to the former and require
an extension of the generative model employed here.

In terms of the questions and challenges for empirical neuroscience, the
picture that emerges from the current solution raises the following con-
siderations: the computational anatomy in Figure 1 communicates with a
deep (temporal) architecture in which there are multiple, competing attrac-
tor networks in the brain. These effectively compete to explain the sensory
data, and their ability to do so determines the rate of perceptual learning.
In turn, this means that one would predict distinct autonomous dynam-
ics corresponding to competing hypotheses about the current dynamical
form of sensory input. This means that there should be neuronal correlates
of distinct pattern generators that are engaged contemporaneously dur-
ing perceptual synthesis. Second, it suggests a convergence of descending
projections to lower (e.g., primary) sensory systems. This brings an inter-
esting and complementary perspective on the divergent neuroanatomy of
descending backward connections in cortical hierarchies in the brain (Zeki
& Shipp, 1988; Angelucci & Bressloff, 2006). We mean this in the sense that
usually one interprets the asymmetry between convergent and divergent
zones in terms of things like extra classical receptive field effects, partic-
ularly in the visual cortex (Angelucci & Bressloff, 2006). A complementary
perspective is that the divergence of descending efferents can also be looked
upon as a convergence of descending afferents. This is precisely the archi-
tecture described in Figure 1. More interesting, the factor graph represen-
tation of neuronal architectures speaks to a selective (Bayesian model se-
lection) modulation of the messages converging on any given lower level.
Physiologically, this means that there must be a neuromodulatory mecha-
nism in play that can handle multiple convergent inputs to a postsynaptic
neuron or population. In effect, this implies a winner-takes-all-like mecha-
nism at the level of synaptic efficacy, as opposed to synaptic activity. One
could speculate about the neurotransmitter basis of this selection process—
for example, appealing to the neuromodulatory effects of neurotransmitter
systems targeting cholinergic and 5HT receptors (Everitt & Robbins, 1997;
Collerton, Perry, & McKeith, 2005; Vossel, Bauer, Bauer, & Mathys, 2014;
Hedrick & Waters, 2015; Doya, 2002; Yu & Dayan, 2005; Dayan, 2012)—on
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inhibitory interneurons in superficial layers and deep pyramidal cells in
deep layers. Many of these speculations have often been rehearsed in rela-
tion to the deployment of attention in the context of predictive coding and
usually implicate synchronous gain mechanisms via the action of inhibitory
interneurons and the current connections with pyramidal cells (Fries, 2005;
Womelsdorf & Fries, 2006; Saalmann & Kastner, 2009; Feldman & Friston,
2010; Buschman & Kastner, 2015). Finally, one key message of this theoreti-
cal work is that the rate of perceptual learning is determined by the evidence
for competing models of sensory input. In principle, this predicts that the
rate of sensory learning under ambiguity should be sensitive to the relative
probability ascribed to different explanations for sensory input. In turn, this
relates to psychophysical studies of perceptual learning under ambiguity
with, for example, ambiguous figures or other forms of multistable percep-
tion (Tani & Nolfi, 1999; Wurtz, 2008; Hohwy, Paton, & Palmer, 2016).

In summary, we have introduced a novel learning scheme that integrates
Bayesian filtering and model selection to learn and deploy multiple gen-
erative models. We assumed that a switching variable selects a particular
model to generate current sensory input (like switching to a particular ra-
dio channel from a repertoire of radio programs), while many alternative
generative models are running in the background. To deal with the prob-
lem of context-sensitive learning, the proposed scheme calculates the model
plausibility (i.e., model evidence) of each generative model based on condi-
tional free actions and updates parameters only in models with a convinc-
ing degree of evidence. Our synthetic agents were able to both learn and
recognize different artificial and natural birdsongs. These results highlight
the potential utility of equipping agents with multiple generative models
to make inferences in context-sensitive environments.

4 Methods

The proposed variational update scheme is described in section 2. Further
details are provided in this section.

4.1 Generative Model. Formally, the multiple generative models are
defined as the following. Hierarchical Bayesian filtering supposes a model
that consists of latent variables u (a set of hidden states x and hidden
causes v ) and parameters θ and infers and learns their approximate prob-
ability (recognition) densities. To extend this for a multiple-model version,
we express the ith generative model consisting of two layers as mi with
i ∈ M ≡ {1, 2, 3, . . .}. This mi indicates a specific model structure including
certain forms of functions and dimensions of latent variables and parame-
ters. Let s̃ be sensory inputs (i.e., teacher song) generated by mi, and x̃(i, j),
ṽ (i, j), and θ (i, j) be hidden states, hidden causes, and parameters in the jth
layer ( j = 1,2) of mi, respectively. The tilde over a symbol denotes a set of
a variable and its time derivatives s̃ ≡ (s, s′, s′′, . . .). Throughout this letter,
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i indices the model while j indices the level of layers. The ith generative
model is given by equation 2.1. The corresponding probabilities are defined
as gaussian distributions and written as

s̃ = g̃(i,1) + ω̃(i,1) ⇐⇒ p
(

s̃|x̃(i,1), ṽ (i,1), θ (i,1), mi

)
≡ N

[
s̃; g̃(i,1),�(i)

s

]
,

Dx̃(i,1) = f̃ (i,1) + z̃(i,1) ⇐⇒ p
(

x̃(i,1)|ṽ (i,1), θ (i,1), mi

)
≡ N

[
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x

]
,
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(
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)
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[
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v

]
,

Dx̃(i,2) = f̃ (i,2) + z̃(i,2) ⇐⇒ p
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)
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[
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x

]
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[
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v

]
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θ (i, j)|mi

)
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[
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θ

]
,

( j = 1, 2) . (4.1)

Note that Dx̃(i, j) is the derivative of x̃(i, j) with respect to time; ω̃(i,1) ∼
N[ω̃(i,1); 0,�

(i)
s ], ω̃(i,2) ∼ N[ω̃(i,2); 0,�

(i,1)
v ] and z̃(i, j) ∼ N[z̃(i, j); 0,�

(i, j)
x ] are

background gaussian noises; g̃(i, j) ≡ g̃(i, j)
(
x̃(i, j), ṽ (i, j), θ (i, j)

)
and f̃ (i, j) ≡

f̃ (i, j)
(
x̃(i, j), ṽ (i, j), θ (i, j)

)
are arbitrary functions of x̃(i, j) and ṽ (i, j) parameter-

ized by θ (i, j);�(i)
s ,�

(i, j)
x , and �

(i, j)
v are precision matrices; and p

(
ṽ (i,2)|mi

)
and

p
(
θ (i, j)|mi

)
are gaussian priors parameterized by the mean and the precision

matrix. To simplify notation, we define u(i, j) ≡ (
x̃(i, j), ṽ (i, j)

)
as latent vari-

ables, u(i) ≡ (
u(i,1), u(i,2)

)
as a set of latent variables in all layers of mi, and

θ (i) ≡ (
θ (i,1), θ (i,2)

)
as a set of parameters in all layers of mi. By multiplying

all equations on the right-hand side of equation 4.1, the ith generative model
is expressed as

p
(

s̃, u(i), θ (i)|mi

)
= p

(
s̃|x̃(i,1), ṽ (i,1), θ (i,1), mi

)
p
(
ṽ (i,1)|x̃(i,2), ṽ (i,2), θ (i,2), mi

)
·p

(
ṽ (i,2)|mi

) ∏
j=1,2

p
(

x̃(i, j)|ṽ (i, j), θ (i, j), mi

)
p
(
θ (i, j)|mi

)
,

(4.2)

as shown in the top panel in Figure 1.
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4.1.1 Sensory Inputs. The sensory input that an agent (i.e., a student bird)
actually receives is selected by one of the models in M ≡ {1, 2, . . .}, where
we index the currently selected model by c. The sensory input is expressed
by the sum of the product of the conditional probability of s̃ under each
model and the probability of each model being selected:

p (s̃|mc) = EP(i=c)
[
p (s̃|mi)

] =
∑
i∈M

P (i = c) p (s̃|mi)

=
∑
i∈M

γi p (s̃|mi) =
∑
i∈M

p (s̃|mi)
γi . (4.3)

Note that the sufficient statistics γi ≡ P (i = c) ∈ {0, 1} satisfies
∑

i∈M γi = 1
by design, where only γc takes a value of one (and the others zero). In this
setting, γi plays a role of a switcher that switches which model has gener-
ated the current sensory input, while all models are running in the back-
ground. The probability of γ = (γ1, γ2, . . .) follows a categorical prior dis-
tribution P (γ ) = Cat (�).

Interestingly, this definition of the multiple generative models and the
switcher is slightly different from supposing a large generative model with
switcher-dependent parameters. This idea is rather an assumption that an
agent has a set of hypotheses (generative models) about sensory inputs from
which to select in a given context. Each generative model is running inde-
pendently from the others. They interact only via sensory inputs through
the model switching scheme, but this interaction does not change their
latent variables or parameters. Because of this conditional independence,
each model can have different forms and dimensions, although in this work,
we assume models based on the same model structure and dimension with
different latent variables and parameters.

4.1.2 Free Energy and Free Action. The negative log of p (s̃|mc) denotes the
surprise (aka surprisal) associated with sensory inputs. Variational free en-
ergy is defined as an upper bound on surprise. In this work, we slightly
modify the derivation of variational free energy to include the model selec-
tion procedure. First, we show that Bayesian model averaging of the condi-
tional surprises provides an upper bound of surprise. Suppose Q (i = c) ≡
γi ∈ [0, 1] with

∑
i∈M γi = 1 is the posterior expectation of the switcher

state. This is equivalent to a categorical posterior distribution of γ given
by Q (γ ) = Cat (γ). Since model c is selected, the following inequality holds
from the nonnegativity of Kullback-Leibler divergence (Kullback & Leibler,
1951):

Ep(s̃|mc )

[
log p (s̃|mc) −

∑
i∈M

γi log p (s̃|mi)

]
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=
∑
i∈M

γiEp(s̃|mc )
[
log p (s̃|mc) − log p (s̃|mi)

]
=

∑
i∈M

γiDKL
[
p (s̃|mc) ||p (s̃|mi)

] ≥ 0, (4.4)

where log p (s̃|mi) is a conditional surprise under model i and DKL [·||·] de-
notes the Kullback-Leibler divergence between two distributions. The ex-
pectation over sensory inputs Ep(s̃|mc ) [·] can be approximated using the time
average of surprise. From equation 4.4, we have

Ep(s̃|mc )Q(i=c)
[− log p (s̃|mi)

] = Ep(s̃|mc )

[
−

∑
i∈M

γi log p (s̃|mi)

]

≥ Ep(s̃|mc )
[− log p (s̃|mc)

]
(4.5)

and

EQ(i=c)

[
−

∫ T

0
log p (s̃|mi)dt

]
= −

∑
i∈M

γi

∫ T

0
log p (s̃|mi)dt

≥ −
∫ T

0
log p (s̃|mc)dt, (4.6)

where T is the measurement time within a session. Finally, we define to-
tal free action (the path integral of free energy) as an upper bound of
EQ(i=c)[−

∫ T
0 log p(s̃|mi)dt]:

F̄ ≡ EQ(i=c)

[∫ T

0

(
−log p (s̃|mi) + Eq(θ (i) )

[
DKL

[
q
(

u(i)
)

||p
(

u(i)|s̃, θ (i), mi

)]])
dt
]

+ DKL [Q (γ ) ||P (γ )] +
∑
i∈M

DKL

[
q
(
θ (i)

)
||p

(
θ (i)|mi

)]

= EQ(i=c)
[
F̄i + logγi − log �i

] +
∑
i∈M

Eq(θ (i) )
[
log q

(
θ (i)

)
− log p

(
θ (i)|mi

)]

≥ EQ(i=c)

[
−

∫ T

0
log p (s̃|mi)dt

]
. (4.7)

Note that q
(
u(i)

)
and q

(
θ (i)

)
are the posterior densities over latent variables

and parameters under model i, respectively. In this expression, the total free
energy is defined as the weighed sum of conditional free actions F̄1, F̄2, . . .

plus the Kullback-Leibler divergence (i.e., complexity) associated with the
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switcher state and parameters. The free action is defined by

F̄i ≡
∫ T

0
Eq(u(i) )q(θ (i) )

[
− log p

(
s̃, u(i)|θ (i), mi

)
+ log q

(
u(i)

)]
dt

=
∫ T

0
Fi (t) dt, (4.8)

where Fi (t) ≡ Eq(u(i) )q(θ (i) )
[− log p

(
s̃, u(i)|θ (i), mi

) + log q
(
u(i)

)]
is free energy

given model i. The first term of Fi (t) is the negative log of the generative
model (see equation 4.2) divided by p

(
θ (i)|mi

)
and is referred to as inter-

nal energy under model i: Ui
(
s̃, u(i), θ (i)

) ≡ − log p
(
s̃, u(i)|θ (i), mi

)
. Note that

F (t) ≡ EQ(i=c) [Fi (t)] = ∑
i∈M γiFi (t) denotes total free energy.

4.1.3 Posteriors. From the Laplace assumption, the posterior density of
latent variables u(i) is approximated as a gaussian distribution q

(
u(i)

) =
N[u(i); u(i), P(i)

u ] with an expectation (or mode) vector u(i) and a precision
matrix P(i)

u . The posterior density of parameters θ (i) is approximated as a
gaussian distribution q

(
θ (i)

) = N[θ (i);θ(i), P(i)
θ ] with an expectation vector

θ(i) and a precision matrix P(i)
θ . As described above, the posterior distribu-

tion of the switcher state (i.e., model plausibility) has been defined as a cat-
egorical distribution Q (i = c) = γi with

∑
i∈M γi = 1, which is equivalent

to Q (γ ) = Cat (γ).

4.2 Variational Update Rules. Updates of the posteriors of the latent
variables, the switcher state, and the parameters are conducted in the in-
ference, model selection, and learning steps, respectively. In the simulation,
these three steps are repeated in order for each session. In what follows, we
formally derive update rules from the minimization of free energy or free
action.

4.2.1 Inference (Neural Activity). The optimal q
(
u(i)

)
is obtained by

solving the variation of Fi, δFi = ∫ {Eq(θ (i) )[Ui
(
s̃, u(i), θ (i)

)
] + log q

(
u(i)

) +
1}δq

(
u(i)

)
du(i). To satisfy δFi = 0, the posterior density should be q

(
u(i)

) ∝
exp[−Eq(θ (i) )[Ui

(
s̃, u(i), θ (i)

)
]] ≈ exp[−Ui(s̃, u(i),θ(i) )], where Ui(s̃, u(i),θ(i) ) is

the first-order approximation of the variational energy for latent vari-
ables. When u(i) has been optimized, the path of the mode u̇(i) should be
equal to the mode of the path Du(i), u̇(i) = Du(i), in addition to minimiz-
ing Ui(s̃, u(i),θ(i) ) (see Friston, 2008, and Friston et al., 2008, for details).
Thus, the gradient descent rule to minimize Fi (t) with respect to u(i) is given
by



2416 T. Isomura, T. Parr, and K. Friston

u̇(i) − Du(i) ∝ − ∂

∂u(i)
Ui

(
s̃, u(i),θ(i)

)∣∣∣∣
u(i)=u(i)

= − ∂

∂u(i)
Ui

(
s̃, u(i),θ(i)

)
≈ − ∂

∂u(i)
Fi (t). (4.9)

Moreover, P(i)
u that minimizes Fi (t) is given by the Hessian:

P(i)
u = ∂2

∂
(
u(i)

)2 Ui

(
s̃, u(i),θ(i)

)∣∣∣∣∣
u(i)=u(i)

≈ ∂2

∂
(
u(i)

)2 Fi (t). (4.10)

Hence, we find equation 2.3. Equation 4.9 is usually supposed to be the
dynamics of state coding neurons.

4.2.2 Model Selection (Attentional Switch). This step performs online
Bayesian model selection analogous to post hoc Bayesian model selection
(Friston & Penny, 2011). Since the switcher state comprises discrete vari-
ables, this step is similar to a Markov decision process scheme (Friston,
FitzGerald et al., 2017). From equation 4.7, the derivative of F̄ with respect
to γi is given by δF̄ = (

F̄i
(
θ(i)) + logγi − log �i + 1

)
δγi. From δF̄ = 0, we

find γi that minimizes F̄ as

γi = σ
(
−F̄i

(
θ(i)

)
+ log �i

)
. (4.11)

Here σ (·) is a softmax function defined by σ (·i) ≡ exp (·i) /
∑

k∈M exp (·k).
This γi expresses the model plausibility of model i. When P (γi) is the flat
(uniform) prior distribution, equation 4.11 becomes equation 2.5.

4.2.3 Learning (Synaptic Plasticity). Estimation of parameters is based on
a conventional gradient descent approach. To satisfy δF̄ = ∫ {γi

∫ T
0 Eq(u(i) )[

Ui
(
s̃, u(i), θ (i)

)]
dt + log q

(
θ (i)

) − log p
(
θ (i)|mi

) + 1}δq
(
θ (i)

)
dθ (i) = 0, from

Eq(u(i) )
[
Ui

(
s̃, u(i), θ (i)

)] ≈ Ui
(
s̃, u(i), θ (i)

)
, the density should be q

(
θ (i)

) ∝
exp[−γi

∫ T
0 Ui

(
s̃, u(i), θ (i)

)
dt + log p

(
θ (i)|mi

)
], where

∫ T
0 Ui

(
s̃, u(i), θ (i)

)
dt is

the approximate variational action for parameters. The gradient descent
rule to minimize F̄ with respect to θ(i) is given by

θ̇
(i) ∝ − ∂

∂θ (i)

{
γi

∫ T

0
Ui

(
s̃, u(i), θ (i)

)
dt − log p

(
θ (i)|mi

)}∣∣∣∣
θ (i)=θ(i)

≈ − ∂

∂θ(i)

(
γiF̄i

(
θ(i)

)
− log p

(
θ(i)|mi

))
. (4.12)
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Moreover, P(i)
θ that minimizes F̄ is given by the Hessian:

Ṗ(i)
θ ∝ −P(i)

θ + ∂2

∂
(
θ (i)

)2

{
γi

∫ T

0
Ui

(
s̃, u(i), θ (i)

)
dt − log p

(
θ (i)|mi

)}∣∣∣∣∣
θ (i)=θ(i)

≈ −P(i)
θ + ∂2

∂
(
θ(i))2

(
γiF̄i

(
θ(i)

)
− log p

(
θ(i)|mi

))
. (4.13)

When p
(
θ (i)|mi

)
is the flat (uniform) prior distribution, equation 4.12 be-

comes equation 2.6.
Accordingly, we obtain posterior beliefs of the latent variables, the

switcher state, and the parameters that minimize free action. The difference
in learning rate mediated by the model plausibility enables that only the
parameters in the most plausible models are updated, while the parame-
ters in the remaining models are maintained in a winner-takes-all manner,
whereas the latent variables in all models are updated with a fixed update
rate. Therefore, inference occurs for all generative models, while learning
occurs only for the most plausible generative models. This mechanism en-
ables the agent to make inferences and learning with several different gen-
erative models.

4.2.4 Action. Action a is generated to minimize the total free energy
F (t) = ∑

i∈M γiFi (t): ȧ ∝ −∂F/∂a. In the absence of the external sensory in-
put, action directly induces sensory input, that is, s̃ = a. Suppose all internal
models use the same precision matrix. In this special case, the optimal ac-
tion is approximately solved as

ȧ ∝ −∂F
∂a

≈
∑
i∈M

γ ig
(i,1)

(
u(i,1),θ(i,1)

)
. (4.14)

4.3 Songbird Model. A generative model for birdsong generation is de-
fined as a two-layer hierarchical generative model as mentioned in previous
studies (Kiebel et al., 2008; Friston & Kiebel, 2009), in which each layer has
three or four hidden states that express biological neural circuits for bird-
song generation. For simulation purposes, several different teacher songs
and the same number of internal models were used.

4.3.1 For Figure 3. Two teacher songs were generated from two gener-
ative models with different parameters. A student was supposed to have
two internal models. A generative model with two layers was defined.
Each layer has three hidden states x(i, j)

1 , x(i, j)
2 , x(i, j)

3 that recapitulate the Laje-
Mindlin-style three-neuron circuit model for birdsong production (Laje &
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Mindlin, 2002). Layer 1 has one hidden cause v
(i,1)
1 and one parameter θ

(i,1)
1 ,

while layer 2 has no hidden cause or parameter. Several functions for the
generative model were defined as follows:

g(i,1) ≡
⎛
⎝ x(i,1)

1

x(i,1)
3

⎞
⎠ ,

f (i,1) ≡ 1
τ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

⎛
⎜⎜⎜⎝

x(i,1)
1

x(i,1)
2

4x(i,1)
3

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
intrinsic dynamics

+

⎛
⎜⎜⎜⎜⎝

sig
(

10x(i,1)
1 − 10x(i,1)

2

)
sig

(
8.5x(i,1)

1 + 2x(i,1)
2 + 2x(i,1)

3 − 5.5 − θ
(i,1)
1 + 2.7x(i,1)

v

)
4sig

(
−20x(i,1)

2 + 4x(i,1)
3 + 6

)

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
synaptic input

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g(i,2) ≡
(

x(i,2)
3

)
,

f (i,2) ≡ 1
τ2

⎡
⎢⎢⎢⎢⎣−

⎛
⎜⎜⎜⎝

x(i,2)
1

x(i,2)
2

4x(i,2)
3

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

sig
(

10x(i,2)
1 − 10x(i,2)

2

)
sig

(
8.5x(i,2)

1 + 2x(i,2)
2 + 2x(i,2)

3 − 5.5
)

4sig
(
−20x(i,2)

2 + 4x(i,2)
3 + 6

)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ .

(4.15)

Here, sig (x) ≡ 1/(1 + e−x) is the sigmoid function. Neurobiologically, x(i, j)
1

and x(i, j)
3 correspond to excitatory neurons, while x(i, j)

2 corresponds to an
inhibitory neuron. Different teacher songs use different parameter θ

(i,1)
1 (0

for teacher 1 and 1 for teacher 2). This parameter was learned by a student
without supervision. Training was repeated for 32 sessions. Each session
was a 4 s sequence. Time resolution dt = 1/64 [s] and the time constants
τ1 = 32/3 [s], τ2 = 128/3 [s] were used.

4.3.2 For Figures 4 and 5. Six natural zebra finch songs were used as
teacher songs, and a student that has six internal models was supposed.
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These models share the same structure while using different latent vari-
ables and parameters. To enable the model to accurately imitate natural ze-
bra finch songs, we extended the original three-neuron Laje-Mindlin model
to a four-neuron circuit by adding an inhibitory neuron (see Figure 8 in ap-
pendix A). This model was used in Figures 4 and 5B. This addition served to
introduce a delay in the attractor, whereas in Figure 5A, the original three-
neuron attractor was used for comparison. We also supposed a nonlinear
mapping from the four-neuron attractor to the outputs (songs), which af-
forded the capability to generate (imitate) complex songs. Each layer has
four hidden states: x(i, j)

1 and x(i, j)
4 correspond to excitatory neurons, whereas

x(i, j)
2 and x(i, j)

3 correspond to inhibitory neurons. Layer 1 has two hidden
causes v

(i,1)
1 , v

(i,1)
2 and 924-dimensional parameters (a 2 × 462 matrix θ (i,1)),

while layer 2 has no hidden cause or parameter. As before, several functions
for the generative model were defined as follows:

g(i,1) ≡
⎛
⎝ θ

(i,1)
1,1 θ

(i,1)
1,2 · · · θ

(i,1)
1,462

θ
(i,1)
2,1 θ

(i,1)
2,2 · · · θ

(i,1)
2,462

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

u(i,1)

u(i,1) ⊗ u(i,1)

u(i,1) ⊗ u(i,1) ⊗ u(i,1)

u(i,1) ⊗ u(i,1) ⊗ u(i,1) ⊗ u(i,1)

u(i,1) ⊗ u(i,1) ⊗ u(i,1) ⊗ u(i,1) ⊗ u(i,1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

f (i, j) ≡ 1
τ j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ

⎛
⎜⎜⎜⎜⎜⎜⎝

x(i,1)
1

x(i,1)
2

x(i,1)
3

x(i,1)
4

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
intrinsic dynamics

+

⎛
⎜⎜⎜⎜⎜⎜⎝

−x(i, j)
2

ψ
(

x(i, j)
1 − εx(i, j)

3

)
− εx(i, j)

3

−εx(i, j)
2 + x(i, j)

4

−λx(i, j)
3

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
synaptic input

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ( j = 1, 2) ,

g(i,2) ≡
⎛
⎝ x(i,2)

1

x(i,2)
4

⎞
⎠. (4.16)

Here u(i,1) =
(

x(i,1)
1 , x(i,1)

2 , x(i,1)
3 , x(i,1)

4 , v
(i,1)
1 , v

(i,1)
2

)T
is a vector of latent vari-

ables ⊗ expresses an outer product (arranging all pair-wise products of
elements of two vectors in vertical line except for duplicate terms), and
ψ (x) ≡ −x + x3 is a nonlinear activation function that exhibits bistable
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neural dynamics. This modification was implemented to ensure that this
circuit exhibited chaotic dynamics with separatrix crossing (Fukuda, Pet-
rosky, & Konishi, 2016; Ogawa et al., 2016), which is caused by the bistable
dynamics of an excitatory neuron (x(i, j)

1 ). For simplification, the other three
neurons were supposed to be linear functions instead of sigmoid functions.
In this circuit model, two excitatory-inhibitory couplings (x(i, j)

1 − x(i, j)
2 and

x(i, j)
3 − x(i, j)

4 ) exhibited oscillatory dynamics, whereas a weak mutual con-
nection between two inhibitory neurons x(i, j)

2 and x(i, j)
3 made the attractor

chaotic.
In the simulations, the leakage parameter ρ = 0.1 (to ensure stability),

a small inhibitory synaptic weight ε = 0.2 (which controlled the coupling
strength between the first and second oscillators), and a large inhibitory
synaptic weight λ = 1.2 (which determined the period of the second neural
oscillator) were used. We supposed that the hidden causes v (i,1) converged
to x(i,2) to simplify the simulation. The definition of g(i,1) was chosen to en-
sure that it could express a general quintic function by a linear product
of a 2 × 462 matrix and a 462-dimensional vector. These parameters were
learned by a student without supervision. When updating the posterior be-
lief of hidden states, we smoothed the posterior trajectory by adding small
amounts of components of the prior (i.e., a trajectory of an attractor with-
out perturbation) to avoid a divergence of variables induced by a large per-
turbation. Training was repeated for 60 sessions. Each session had a 10 s
sequence. Time resolution dt = 10−3 [s] was used.

The following procedure was applied before training: (1) the student’s
initial states of x(i,1), x(i,2) at time t = 0 and the time constants τ1, τ2 [s] were
optimized in relation to one of six teacher songs (these were in the range of
−1 ≤ x(i, j)

1 , x(i, j)
2 , x(i, j)

3 x(i, j)
4 ≤ 1, 1/60 ≤ τ1 ≤ 1/40, and 1/6 ≤ τ2 ≤ 1/4); (2) the

posterior expectation of parameters θ(i,1) was randomly generated; and (3)
θ(i,1) were modified by pretraining, in which each model randomly received
one of six teacher songs, made an inference, and updated the parameters
without model selection for 18 sessions to ensure that each internal model
initially represented an averaged song. Then the response songs of a stu-
dent were tested with different teacher songs (movie 1; see appendix B).
For training, we randomly selected one of six teacher songs and provided
it to a student (movie 2; see appendix B). Training was repeated for 60 ses-
sions. After training, we tested the response songs again (see Figure 4 and
movie 3; see appendix B).

4.4 Preprocessing for Natural Birdsong Data. The birdsong data
used for Figures 4 and 5 and the supplementary movies were downloa-
ded from http://ofer.sci.ccny.cuny.edu/song_database/zebra-finch-song
-library-2015/view. This data set was recorded by the Tchernichovski

http://ofer.sci.ccny.cuny.edu/song_database/zebra-finch-song-library-2015/view


Bayesian Filtering with Multiple Internal Models 2421

group (see Tchernichovski et al., 2001). We treated the data as follows. First,
we acquired a spectrogram of the song by performing a Fourier transform
with a 23.2 ms time window. As an analogy to a physiological model of
vocal coda that generates a birdsong by sequences of power and tone (fre-
quency) of the voice (Laje, 2002), we defined the leading frequency (s2) and
the amplitude (s1) of a song by the mode of its frequency and the power of
the mode frequency for each time step, respectively. They were normalized
and introduced as sensory inputs s = (s1, s2)T .

Appendix A: Supplementary Figures

Figure 6: A schematic illustrating an experimental procedure (A) and simula-
tion results of a synthetic bird with a single generative model (B,C). (A) Ex-
perimental procedure. Teacher bird 1 sings in odd sessions, while teacher bird 2
sings in even sessions. Our synthetic bird (student) listens to either song in turn.
(B) Trajectory of the posterior expectation of a parameter (θ) of the student that
employs a single generative model (black sold line). A black dashed line shows
another trajectory where θ started from a different initial value. Shaded areas
indicate the standard deviation. Red and blue dashed lines express the true pa-
rameter of teachers 1 and 2, respectively. The student tried to infer either pa-
rameter of teachers 1 or 2, but it failed to learn either parameter; even its poste-
rior belief was initialized to the same value as either teacher 1 or 2’s parameter.
This is because the student inferred the intermediate value of teacher 1 and 2’s
parameters. (C) Transition of free action (filled circles). Open circles show the
transition of free action with another initial θ.

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01239&iName=master.img-005.jpg&w=311&h=192
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Figure 7: Simulation results when learning two birdsongs using multiple gen-
erative models. Simulation setup and layout are the same as Figure 3, but initial
hidden states of teachers 1 and 2 were not reset for each session. This yielded
the chaotic dynamics in their songs. Even in this case, a student bird employing
the proposed scheme could learn from two distinct teachers. In this figure, to
generate various song trajectories, a chaotic attractor considered in Kiebel et al.
(2008) and Friston and Kiebel (2009) was used as the generative model instead
of the Laje-Mindlin style model.

Figure 8: Abirdsong generative model with two-layer four neuron circuits. This
model is defined by extending the Laje-Mindlin style model to facilitate the song
generation capability. The lower layer (level 1) corresponds to RA, while the
higher layer (level 2) corresponds to HVC. In each layer, x1 and x4 are associated
with excitatory neurons, while x2 and x3 are associated with inhibitory neurons.
Signals of x1 and x4 in the HVC are translated into v1 and v2 in the RA. The
sensory input (i.e., song) is generated through nonlinear functions g1 and g2

which receive inputs from x1, x2, x3, x4, v1, and v2 (see section 4 for details).

https://www.mitpressjournals.org/action/showImage?doi=10.1162/neco_a_01239&iName=master.img-006.jpg&w=293&h=188
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Appendix B: Supplementary Movies 1–3

Movies 1 to 3 are available online at https://www.mitpressjournals.org
/doi/suppl/10.1162/neco_a_01239. These movies show the dynamics of
teacher and student birds before, during, and after training. The details are
described in the caption to Figure 4.
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Kuśmierz, Ł., Isomura, T., & Toyoizumi, T. (2017). Learning with three factors: modu-
lating Hebbian plasticity with errors. Current Opinion in Neurobiology, 46, 170–177.
doi:10.1016/j.conb.2017.08.020. PMID:28918313.

Laje, R., Gardner, T. J., & Mindlin, G. B. (2002). Neuromuscular control of vocaliza-
tions in birdsong: A model. Physical Review E, 65, 051921. doi:10.1103/PhysRevE
.65.051921. PMID:12059607.

Laje, R., & Mindlin, G. B. (2002). Diversity within a birdsong. Physical Review Letters,
89, 288102. doi:10.1103/PhysRevLett.89.288102. PMID:12513182.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
doi:10.1038/nature14539. PMID:26017442.

Lee, T. W., Lewicki, M. S., & Sejnowski, T. J. (2000). ICA mixture models for unsu-
pervised classification of non-gaussian classes and automatic context switching
in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 22, 1078–1089. doi:10.1109/34.879789.

Lipkind, D., Marcus, G. F., Bemis, D. K., Sasahara, K., Jacoby, N., Takahasi, M., &
Tchernichorski, O. (2013). Stepwise acquisition of vocal combinatorial capacity
in songbirds and human infants. Nature, 498, 104–108. doi:10.1038/nature12173.
PMID:23719373.

Lipkind, D., Zai, A. T., Hanuschkin, A., Marcus, G. F., Tchernichovski, O., & Hahn-
loser, R. H. (2017). Songbirds work around computational complexity by learn-
ing song vocabulary independently of sequence. Nature Communications, 8, 1247.
doi:10.1038/s41467-017-01436-0. PMID:29089517.

Long, M. A., & Fee, M. S. (2008). Using temperature to analyse temporal dynamics
in the songbird motor pathway. Nature, 456, 189–194. doi:10.1038/nature07448.
PMID:19005546.

Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies
of attention. Trends in Cognitive Sciences, 4, 432–440. doi:10.1016/S1364-6613(00)
01545-X. PMID:11058821.

Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches.
Neuron, 44, 5–21. doi:10.1016/j.neuron.2004.09.012. PMID:15450156.

Mann, R. P., & Garnett, R. (2015). The entropic basis of collective behaviour. J. Royal
Soc. Interface., 12, 20150037. doi:10.1098/rsif.2015.0037. PMID:25833243.

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T. (2013). Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503, 78–84.
doi:10.1038/nature12742. PMID:24201281.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synap-
tic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.
doi:10.1126/science.275.5297.213. PMID:8985014.

Moutoussis, M., Trujillo-Barreto, N. J., El-Deredy, W., Dolan, R. J., & Friston, K. J.
(2014). A formal model of interpersonal inference. Front. Hum. Neurosci., 8, 160.
doi:10.3389/fnhum.2014.00160. PMID:24723872.

Ogawa, S., Cambon, B., Leoncini, X., Viltot, M., Castillo-Negrete, D., Dif-Pradalier,
G., & Garbet, X. (2016). Full particle orbit effects in regular and stochastic mag-
netic fields. Physics of Plasmas, 23, 072506. doi:10.1063/1.4958653.

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/j.conb.2017.08.020
http://dx.doi.org/10.1103/PhysRevE.65.051921
http://dx.doi.org/10.1103/PhysRevLett.89.288102
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/34.879789
http://dx.doi.org/10.1038/nature12173
http://dx.doi.org/10.1038/s41467-017-01436-0
http://dx.doi.org/10.1038/nature07448
http://dx.doi.org/10.1016/S1364-6613(00)01545-X
http://dx.doi.org/10.1016/j.neuron.2004.09.012
http://dx.doi.org/10.1098/rsif.2015.0037
http://dx.doi.org/10.1038/nature12742
http://dx.doi.org/10.1126/science.275.5297.213
http://dx.doi.org/10.3389/fnhum.2014.00160
http://dx.doi.org/10.1063/1.4958653
https://www.mitpressjournals.org/action/showLinks?crossref=10.1126%2Fscience.275.5297.213&citationId=p_84
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F34.879789&citationId=p_76
https://www.mitpressjournals.org/action/showLinks?crossref=10.1109%2F34.879789&citationId=p_76
https://www.mitpressjournals.org/action/showLinks?crossref=10.3389%2Ffnhum.2014.00160&citationId=p_85
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fnature12173&citationId=p_77
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fs41467-017-01436-0&citationId=p_78
https://www.mitpressjournals.org/action/showLinks?crossref=10.1063%2F1.4958653&citationId=p_86
https://www.mitpressjournals.org/action/showLinks?crossref=10.1214%2Faoms%2F1177729694&citationId=p_71
https://www.mitpressjournals.org/action/showLinks?crossref=10.1214%2Faoms%2F1177729694&citationId=p_71
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fnature07448&citationId=p_79
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS1364-6613%2800%2901545-X&citationId=p_80
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.conb.2017.08.020&citationId=p_72
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neuron.2004.09.012&citationId=p_81
https://www.mitpressjournals.org/action/showLinks?crossref=10.1103%2FPhysRevE.65.051921&citationId=p_73
https://www.mitpressjournals.org/action/showLinks?crossref=10.1098%2Frsif.2015.0037&citationId=p_82
https://www.mitpressjournals.org/action/showLinks?crossref=10.1103%2FPhysRevLett.89.288102&citationId=p_74
https://www.mitpressjournals.org/action/showLinks?crossref=10.1098%2Frsif.2015.0037&citationId=p_82
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fnature12742&citationId=p_83
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fnature14539&citationId=p_75


Bayesian Filtering with Multiple Internal Models 2429

Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J. H., & Ve-
nance, L. (2013). GABAergic circuits control spike-timing-dependent plastic-
ity. Journal of Neuroscience, 33, 9353–9363. doi:10.1523/JNEUROSCI.5796-12.2013.
PMID:23719804.

Parkinson, C., & Wheatley, T. (2015). The repurposed social brain. Trends in Cognitive
Sciences, 19, 133–141. doi:10.1016/j.tics.2015.01.003. PMID:25732617.

Pawlak, V., Wickens, J. R., Kirkwood, A., & Kerr, J. N. (2010). Timing is not every-
thing: Neuromodulation opens the STDP gate. Frontiers in Synaptic Neuroscience,
2, 146. doi:10.3389/fnsyn.2010.00146. PMID:21423532.

Perl, Y. S., Arneodo, E. M., Amador, A., Goller, F., & Mindlin, G. B. (2011). Recon-
struction of physiological instructions from zebra finch song. Physical Review E,
84, 051909. doi:10.1103/PhysRevE.84.051909. PMID:22181446.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience,
2, 79–87. doi:10.1038/4580. PMID:10195184.

Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced
brain size in primates. Proceedings of the National Academy of Sciences of the USA,
99, 4436–4441. doi:10.1073/pnas.062041299. PMID:11891325.

Reynolds, J. N., Hyland, B. I., & Wickens, J. R. (2001). A cellular mecha-
nism of reward-related learning. Nature, 413, 67–70. doi:10.1038/35092560.
PMID:11544526.

Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian
models. Neural Computation, 11, 305–345. doi:10.1162/089976699300016674.
PMID:9950734.

Saalmann, Y., & Kastner, S. (2009). Gain control in the visual thalamus during per-
ception and cognition. Current Opinion in Neurobiology, 19, 408–414. doi:10.1016
/j.conb.2009.05.007. PMID:19556121.

Salgado, H., Köhr, G., & Treviño, M. (2012). Noradrenergic “tone” determines di-
chotomous control of cortical spike-timing-dependent plasticity. Scientific Reports,
2, 417. doi:10.1038/srep00417. PMID:22639725.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–
464. doi:10.1214/aos/1176344136.

Schwing, R., Nelson, X. J., Wein, A., & Parsons, S. (2017). Positive emotional conta-
gion in a New Zealand parrot. Current Biology, 27, R213–R214. doi:10.1016/j.cub
.2017.02.020. PMID:28324733.

Seol, G. H., Ziburkus, Huang, S., Song, L., Kim, I. T., Takamiya, K., . . .
Kirkwood, A. (2007). Neuromodulators control the polarity of spike-timing-
dependent synaptic plasticity. Neuron, 55, 919–929. doi:10.1016/j.neuron.2007.08
.013. PMID:17880895.

Shipp, S. (2016). Neural elements for predictive coding. Frontiers in Psychology, 7,
1792. doi:10.3389/fpsyg.2016.01792. PMID:27917138.

Shultz, S., & Dunbar, R. I. M. (2010). Species differences in executive function cor-
relate with hippocampus volume and neocortex ratio across nonhuman pri-
mates. Journal of Comparative Psychology, 124, 252–260. doi:10.1037/a0018894.
PMID:20695656.

Suh, S., Chae, D. H., Kang, H. G., & Choi, S. (2016). Echo-state conditional varia-
tional autoencoder for anomaly detection. In Proceedings of the International Joint

http://dx.doi.org/10.1523/JNEUROSCI.5796-12.2013
http://dx.doi.org/10.1016/j.tics.2015.01.003
http://dx.doi.org/10.3389/fnsyn.2010.00146
http://dx.doi.org/10.1103/PhysRevE.84.051909
http://dx.doi.org/10.1038/4580
http://dx.doi.org/10.1073/pnas.062041299
http://dx.doi.org/10.1038/35092560
http://dx.doi.org/10.1162/089976699300016674
http://dx.doi.org/10.1016/j.conb.2009.05.007
http://dx.doi.org/10.1038/srep00417
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1016/j.cub.2017.02.020
http://dx.doi.org/10.1016/j.neuron.2007.08.013
http://dx.doi.org/10.3389/fpsyg.2016.01792
http://dx.doi.org/10.1037/a0018894
https://www.mitpressjournals.org/action/showLinks?crossref=10.1073%2Fpnas.062041299&citationId=p_92
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2F35092560&citationId=p_93
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089976699300016674&citationId=p_94
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.conb.2009.05.007&citationId=p_95
https://www.mitpressjournals.org/action/showLinks?crossref=10.1523%2FJNEUROSCI.5796-12.2013&citationId=p_87
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fsrep00417&citationId=p_96
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.tics.2015.01.003&citationId=p_88
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.tics.2015.01.003&citationId=p_88
https://www.mitpressjournals.org/action/showLinks?crossref=10.3389%2Ffpsyg.2016.01792&citationId=p_100
https://www.mitpressjournals.org/action/showLinks?crossref=10.3389%2Ffnsyn.2010.00146&citationId=p_89
https://www.mitpressjournals.org/action/showLinks?crossref=10.1214%2Faos%2F1176344136&citationId=p_97
https://www.mitpressjournals.org/action/showLinks?crossref=10.1037%2Fa0018894&citationId=p_101
https://www.mitpressjournals.org/action/showLinks?crossref=10.1103%2FPhysRevE.84.051909&citationId=p_90
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.cub.2017.02.020&citationId=p_98
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2F4580&citationId=p_91
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neuron.2007.08.013&citationId=p_99


2430 T. Isomura, T. Parr, and K. Friston

Conference on Neural Networks (pp. 1015–1022). Piscataway, NJ: IEEE. doi:10.1109
/IJCNN.2016.7727309.

Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for
compositional syntax in bird calls. Nature Communications, 7, 10986. doi:10.1038
/ncomms10986. PMID:26954097.

Taborsky, B., & Oliveira, R. F. (2012). Social competence: An evolutionary ap-
proach. Trends in Ecology and Evolution, 27, 679–688. doi:10.1016/j.tree.2012.09
.003. PMID:23040461.

Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An ap-
proach for hierarchical learning in sensory-motor systems. Neural Networks, 12,
1131–1141. doi:10.1016/S0893-6080(99)00060-X. PMID:12662649.

Tchernichovski, O., Mitra, P. P., Lints, T., & Nottebohm, F. (2001). Dynamics of the
vocal imitation process: How a zebra finch learns its song. Science, 291, 2564–2569.
doi:10.1126/science.1058522. PMID:11283361.

Vossel, S., Bauer, M., & Mathys, C. (2014). Cholinergic stimulation enhances Bayesian
belief updating in the deployment of spatial attention. Journal of Neuroscience, 34,
15735–15742. doi:10.1523/JNEUROSCI.0091-14.2014. PMID:25411501.

Whittington, J. C., & Bogacz, R. (2017). An approximation of the error backprop-
agation algorithm in a predictive coding network with local Hebbian synap-
tic plasticity. Neural Computation, 29, 1229–1262. doi:10.1162/NECO_a_00949.
PMID:28333583.

Womelsdorf, T., & Fries, P. (2006). Neuronal coherence during selective attentional
processing and sensory-motor integration. Journal of Physiology Paris, 100, 182–
193. doi:10.1016/j.jphysparis.2007.01.005. PMID:17317118.

Woolley, S. (2012). Early experience shapes vocal neural coding and perception
in songbirds. Developmental Psychobiology, 54, 612–631. doi:10.1002/dev.21014.
PMID:22711657.

Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48,
2070–2089. doi:10.1016/j.visres.2008.03.021. PMID:18513781.

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C., Urakubo, H., Ishii, S., . . .
Kasai, H. (2014). A critical time window for dopamine actions on the struc-
tural plasticity of dendritic spines. Science, 345, 1616–1620. doi:10.1126/science
.1255514. PMID:25258080.

Yanagihara, S., & Yazaki-Sugiyama, Y. (2016). Auditory experience-dependent cor-
tical circuit shaping for memory formation in bird song learning. Nature Commu-
nications, 7, 11946. doi:10.1038/ncomms11946. PMID:27327620.

Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation and attention. Neuron,
46, 681–692. doi:10.1016/j.neuron.2005.04.026. PMID:15944135.

Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335,
311–317. doi:10.1038/335311a0. PMID:3047584.

Zelinsky, G. J., & Bisley, J. W. (2015). The what, where, and why of priority maps and
their interactions with visual working memory. Annals of the New York Academy
of Sciences, 1339, 154–164. doi:10.1111/nyas.12606. PMID:25581477.

Zenke, F., Poole, B., & Ganguli, S. (2017). Continual learning through synaptic in-
telligence. In Proceedings of the International Conference on Machine Learning (pp.
3987–3995). http://proceedings.mlr.press/v70/zenke17a.html.

http://dx.doi.org/10.1109/IJCNN.2016.7727309
http://dx.doi.org/10.1038/ncomms10986
http://dx.doi.org/10.1016/j.tree.2012.09.003
http://dx.doi.org/10.1016/S0893-6080(99)00060-X
http://dx.doi.org/10.1126/science.1058522
http://dx.doi.org/10.1523/JNEUROSCI.0091-14.2014
http://dx.doi.org/10.1162/NECO_a_00949
http://dx.doi.org/10.1016/j.jphysparis.2007.01.005
http://dx.doi.org/10.1002/dev.21014
http://dx.doi.org/10.1016/j.visres.2008.03.021
http://dx.doi.org/10.1126/science.1255514
http://dx.doi.org/10.1038/ncomms11946
http://dx.doi.org/10.1016/j.neuron.2005.04.026
http://dx.doi.org/10.1038/335311a0
http://dx.doi.org/10.1111/nyas.12606
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.visres.2008.03.021&citationId=p_111
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fncomms10986&citationId=p_103
https://www.mitpressjournals.org/action/showLinks?crossref=10.1126%2Fscience.1255514&citationId=p_112
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.tree.2012.09.003&citationId=p_104
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fncomms11946&citationId=p_113
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0893-6080%2899%2900060-X&citationId=p_105
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2Fncomms11946&citationId=p_113
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.neuron.2005.04.026&citationId=p_114
https://www.mitpressjournals.org/action/showLinks?crossref=10.1126%2Fscience.1058522&citationId=p_106
https://www.mitpressjournals.org/action/showLinks?crossref=10.1038%2F335311a0&citationId=p_115
https://www.mitpressjournals.org/action/showLinks?crossref=10.1523%2FJNEUROSCI.0091-14.2014&citationId=p_107
https://www.mitpressjournals.org/action/showLinks?crossref=10.1111%2Fnyas.12606&citationId=p_116
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2FNECO_a_00949&citationId=p_108
https://www.mitpressjournals.org/action/showLinks?crossref=10.1111%2Fnyas.12606&citationId=p_116
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2Fj.jphysparis.2007.01.005&citationId=p_109
https://www.mitpressjournals.org/action/showLinks?crossref=10.1002%2Fdev.21014&citationId=p_110


Bayesian Filtering with Multiple Internal Models 2431

Zhang, J. C., Lau, P. M., & Bi, G. Q. (2009). Gain in sensitivity and loss in temporal
contrast of STDP by dopaminergic modulation at hippocampal synapses. Proceed-
ings of the National Academy of Sciences of the USA, 106, 13028–13033. doi:10.1073
/pnas.0900546106. PMID:19620735.

Received January 16, 2019; accepted July 25, 2019.

http://dx.doi.org/10.1073/pnas.0900546106
https://www.mitpressjournals.org/action/showLinks?crossref=10.1073%2Fpnas.0900546106&citationId=p_118
https://www.mitpressjournals.org/action/showLinks?crossref=10.1073%2Fpnas.0900546106&citationId=p_118

