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Abstract. In this keynote I introduce the use of Predictive Analytics
for Software Engineering (SE) and then focus on the use of search-based
heuristics to tackle long-standing SE prediction problems including (but
not limited to) software development effort estimation and software de-
fect prediction. I review recent research in Search-Based Predictive Mod-
elling for SE in order to assess the maturity of the field and point out
promising research directions. I conclude my keynote by discussing best
practices for a rigorous and realistic empirical evaluation of search-based
predictive models, a condicio sine qua non to facilitate the adoption of
prediction models in software industry practices.
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1 Introduction

Nowadays software pervades almost every aspect of our life. This allows the pro-
duction and collection of a large amount of information about people’s decisions
and behaviours. Predictive Analytics exploits such information through intelli-
gent systems which are able to identify patterns and predict future outcomes
and trends. Applied to Software Engineering, predictive analytics helps us bet-
ter understand software processes, products and customers in order to maximise
product quality, users satisfaction, and revenues [27].

One of the most important use of Predictive Analytics for Software Engi-
neering is building prediction systems to estimate crucial software aspects and
support engineers throughout the software production life-cycle (a.k.a Predictive
Modelling for Software Engineering). Examples of software engineering predic-
tion problems are: estimating the amount of effort likely required to develop or
maintain software [25, 11], estimating the successes of mobile applications [29]
and identifying software that will most likely contain defects [12], cause crashes
[33] or fail tests [19].

Predictive Modelling for Software Engineering has been an important and
active research field that can be dated back to 1971, when the first attempt to
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estimate the number of software defects was made [18]. Since then, predictive
systems of various nature have been proposed ranging from statistical models
and analogy-based techniques to machine learning and search-based methods.
In particular, over the past 10 years, search-based prediction systems have been
specifically devised to tackle long-standing software engineering prediction prob-
lems such as software development effort, defect proneness, maintainability and
change proneness [14, 21]. These systems are either stand-alone systems able to
build optimal prediction models [6, 10, 25] or ones that are used in combination
with other (usually machine learning-based) estimators [3–5, 20, 24]. A variety
of meta-heuristics based on both local and global search techniques (e.g., Sim-
ulated Annealing, Tabu Search, Genetic Algorithm, Genetic Programming) has
been used, with the latter being definitively the most studied [8, 21, 26] and with
Multi-Objective Evolutionary Algorithm usually resulting in the most effective
approach for different prediction tasks (see e.g. [2, 25]).

In this keynote I explain how to use search-based heuristics to tackle software
engineering prediction problems. I also highlight their strengths and weaknesses
with respect to more traditional statistical or machine learning-based estima-
tors. Some of these are the possibility to use one or multiple desired measures as
a fitness function to evolve optimal prediction models [2, 7, 25, 28] and the need
of scalable solutions [9, 23]. I review the most promising results in this field and
also envisage novel applications of search-based heuristics to predictive modelling
for SE; this includes using them to analyse interesting trade-offs (e.g. models’
predictive quality vs. interpretability) and to test machine learning-based predic-
tors, both of which are challenges currently faced by the wider SE community. I
conclude my keynote by discussing best practices for a rigorous [1, 16, 22, 30, 31]
and realistic [13, 15, 17, 32] empirical assessment and evaluation of search-based
predictive models, which is a condicio sine qua non to grow this field and to
facilitate the adoption of prediction models in software industry practices.
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