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COUNTING AUTOMORPHIC FORMS ON NORM ONE

TORI

ERNEST HUNTER BROOKS AND IAN PETROW

Abstract. We give an asymptotic formula for the number of auto-

morphic forms on the non-split norm one torus T associated with an

imaginary quadratic extension of Q, ordered by analytic conductor.

1. Introduction

In the study of automorphic forms, an interesting question is whether

they are more abundant on some groups than on others. To study this

phenomenon precisely, it is necessary to count automorphic forms, which

requires ordering them by some positive real invariant with the property

that the number of automorphic forms with invariant below a fixed bound

is finite. To this end, Sarnak, Shin, and Templier [SST16] have proposed

using the analytic conductor, motivated by an analogy between the set of

automorphic forms of bounded analytic conductor and the set of points of

bounded height on a variety over a global field.

Accordingly, for a connected reductive group G, write A(G) for the set

of all automorphic forms on G and consider

fG(X) = #{π ∈ A(G) with analytic conductor ≤ X}.

In recent work, Brumley and Milićević [BM17] have computed an asymp-

totic formula for fG(x) when G = GL1 or G = GL2 over an arbitrary

number field, confirming a conjecture of Michel and Venkatesh for these

cases [MV10, p. 204]. In this paper we give a formula for the case where

G = T is the non-split one-dimensional torus over Q associated with an

imaginary quadratic field K.

The analytic conductor, first introduced by Iwaniec and Sarnak (see

[IS00, Eq. 31]), is a product of local terms which can be read off of the com-

pleted global L-function attached to an automorphic form π ∈ A(GLn). To

define analytic conductors (and L-functions) for automorphic forms on more

general reductive groups G, one must choose a finite-dimensional complex
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2 E. HUNTER BROOKS AND IAN PETROW

representation of the L-group of G. For an arbitrary group G there is no

privileged choice of representation, however for G = T there is a natural

such choice, as explained in §2. The analytic conductor must also be nor-

malized at archimedean places v | ∞. This paper takes the convention that

the local analytic conductor at v | ∞ is C(s, ψv) = (|s+κv|+1)[Kv:R], where

[Kv : R] = 1 or 2.

Write hK , wK and dK for the class number, number of units and discrim-

inant of K. Write also C(ψ) = C(0, ψ).

Theorem 1.1. For X ≥ 3|dK |,

fT (X) =
hK
wK

2ζ(2)− 1

ζK(2)

X

|dK |
+O(hK

(
X

|dK |

)2/3

(logX/|dK|)3),

and

∑

ψ∈A(T )

ψ(K×
∞)=1

C(ψ)≤X

1 =
hK
wK

1

ζK(2)

X

|dK |
+O(hK

(
X

|dK |

)2/3

(logX/|dK|)2).

The implied constants are absolute, i.e., they do not depend on K.

Theorem 1.1 follows, after a generating series computation, from the

following more precise result. For p a rational prime, write

φ∗(pj) =





1 if j = 0

0 if j is odd

p− 2 if j = 2 and p splits

p
j
2
−2(p− 1)2 if j ≥ 4, is even, and p splits

p if j = 2 and p is inert

p
j
2
−2(p2 − 1) if j ≥ 4, is even, and p is inert

p
j
2
−1(p− 1) if j ≥ 2, is even, and p is ramified,

and extend the function φ∗ to all n ∈ N multiplicatively.

Theorem 1.2.

∑

ψ∈A(T )

ψ(K×
∞)=1

C(ψ)=n|dK |

1 =





hKφ
∗(n) if K 6= Q(i),Q(ζ3)

hK
(
1
2
φ∗(n) + 1

2
µ(
√
n)
)

if K = Q(i)

hK
(
1
3
φ∗(n) + 2

3
µ(
√
n)
)

if K = Q(ζ3),

where µ(m) is the Möbius function and µ(
√
n) = 0 if n is not a perfect

square.

Remarks:
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(i) The first statement in Theorem 1.1 above depends on the aforemen-

tioned choice of definition of the analytic conductor at the archimedean

place, whereas the second statement does not.

(ii) Recall the classical analytic class number formula for K an imaginary

quadratic field of discriminant d < 0: hK/wK = (2π)−1
√
|d|L(1, χd),

where χd(n) =
(
d
n

)
is given by the Kronecker symbol. The leading

constants in Theorem 1.1 then admit the expected factorizations over

the places of Q.

(iii) Theorem 1.2 counts only those ψ ∈ A(T ) with trivial infinity type.

The proof in §4 also gives a count for any other specified infinity type,

with a similar formula.

(iv) The special value ζK(2) is not critical in the sense of Deligne and

thus is not expected to admit a closed-form description in terms of

familiar constants. A theorem of Borel relates it to the volume of

SL(2,C)/SL(2,OK) for Tamagawa’s normalization of the Haar mea-

sure and to the third K-group of K (see [Bor77]).

(v) It is interesting to compare these results to the case of a split torus

over Q, that is, the case GL1 /Q. The natural analogue of Theorem

1.1 is to count ψ ∈ A(GL1) according to the conductor defined via the

representation z ⊕ z−1 of the L-group C× of GL1. The automorphic

form associated to ψ by functoriality is the Eisenstein series ψ ⊕ ψ−1,

whose conductor is C(ψ)2, where C(ψ) is the classical conductor of ψ.

Counting via this conductor, a classical computation gives
∑

ψ∈A(GL1 /Q)
ψ(R×)=1

C(ψ⊕ψ−1)≤X

1 ∼ 1

2ζ(2)2
X.

(vi) The implied constant in the error term in Theorem 1.1 is effectively

computable. The error term in Theorem 1.1 could be improved slightly,

but at the cost of introducing an ineffective dependence on K in the

implied constant owing to the fact that one cannot rule out the exis-

tence of Siegel zeros for the Dirichlet L-functions L(s, χd).

(vii) A similar result to Theorem 1.1 is expected to hold for the non-split

one-dimensional torus over Q splitting over a real quadratic field. In

this case, the space A(T ) is no longer discrete and one needs to be

more careful in setting up the problem.

For the purpose of comparison to Theorem 1.1, we recall below the results

of Brumley and Milićević on GL1 and GL2. The counting problem for inner

forms of GL2 has also been studied by Lesesvre.
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Let F be a number field and let F be the set of unitary cuspidal auto-

morphic representations π of GLn(AF ), such that the central character of π

is trivial on R>0, diagonally embedded in A×
F as t 7→

∏
v|∞ t1/[F :Q]. Brumley

and Milićević choose this normalization to eliminate continuous families of

automorphic forms. For any finite place v of F let

∆v(s) = ζv(s)ζv(s+ 1) · · · ζv(s+ n− 1).

Let ∆F (s) =
∏

v∆v(s) and write ∆∗
F (1) for its residue at s = 1. Write also

ζ∗F (1) for the residue of ζF (s) at s = 1. Let

‖ν̂(F)‖ =
ζ∗F (1)

ζF (n+ 1)n+1
‖ν̂∞‖,

where

‖ν̂∞‖ =

∫

Π(GLn(F∞)1)

q(π∞)−n−1 dµ̂pl
∞(π∞).

Here, Π(GLn(F∞)) is the local unitary dual at infinity, the superscript 1

means the subset where the above mentioned normalization on the central

character holds, and µ̂pl
∞ is the Plancherel measure on Π(GLn(F∞)), normal-

ized so that the Plancherel formula holds relative to the canonical measure

∆∞(1) det(g)−n(dg11 ∧ · · · ∧ dgnn).
Let F be fixed and n = 1 or n = 2. Brumley and Milićević prove that as

X → ∞ we have

|{π ∈ F : Q(π) ≤ X}| ∼ 1

n+ 1
|dF |n

2/2∆∗
F (1)‖ν̂(F)‖Xn+1,

where Q(π) is the global analytic conductor of π.

To prove Theorem 1.1, in §2 we define the analytic conductor for forms

on T by calculating their L-functions; the main difficulty here is the cal-

culation of Euler factors at ramified primes, which is done automorphically

and Galois-theoretically, with part of the latter calculation taking place in

an appendix. In §3, the ψ ∈ A(T ) and their analytic conductors are related

to more readily countable objects. Finally, §4 contains counting arguments

to arrive at Theorem 1.2, from which Theorem 1.1 follows from a generating

series computation.

2. L-functions and the Analytic Conductor

2.1. L-functions. To give a definition of the analytic conductor for charac-

ters ψ ∈ A(T ), we first study their L-functions. If one were only interested

in counting on T and not on more general groups, one could define an

L-function for ψ in an essentially ad hoc fashion (by taking Proposition

2.3 below as a definition). However, in order to meaningfully compare the
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growth rates in Theorem 1.1 to those for other groups, it is necessary to

take an approach which generalizes.

Given an arbitrary reductive group G over Q, an automorphic form π on

G, and a representation ρ : LG→ GLn(C) of the Langlands dual group of G,

one has a recipe for defining Euler factors Ep(s, π, ρ) at all but finitely many

places p (see [AG91, p. 10], or [Bor79, p. 49], or read §2.3 for the application

of this recipe to the specific case G = T ). The analytic conductor depends

crucially on the data at all places p, and so one needs a definition of the

correct Euler factors at other places.

There are (at least) two possible approaches in general, both of which

depend on significant auxiliary results for G, and which (in this generality)

only conjecturally yield the same answer:

• If one knows the global Langlands correspondence for G (see [Bor79,

Chap. III] or §2.5 of this paper for definitions), then there is a Lang-

lands parameter απ : WQ → LG attached to π, where WQ denotes

the Weil (or Weil-Deligne) group of Q, and one may compose απ

with ρ to define an Artin L-function, whose Euler factors will be

defined at all places and which will agree with Ep(s, π, ρ) at the set

of places where the latter are defined. This is the definition given in

[Bor79, §12.1], for example.

• The representation ρ induces a unique L-homomorphism LG →
LGLn. If one knows the Langlands functoriality conjecture (see [Bor79,

§17] or §2.4 of this paper) for this morphism, then there is an auto-

morphic form ρ∗(π) on GLn for which there is a purely automorphic

construction of Euler factors at all places, and these agree with the

previously defined local factors where both are defined. By mul-

tiplicity one for GLn, the missing Euler factors are then uniquely

determined from the ones that can be calculated directly. This is

the approach taken in [Kow13].

Either approach works for tori, because in this case the global Langlands

correspondence is a theorem of Langlands ([Lan97]), and functoriality can

be shown by a combination of simple arguments for tori and known results

for two-dimensional representations of LResK/QGm. We take the latter ap-

proach, but also calculate the relevant Artin L-functions in §2.5 to show

that the definitions agree.

It should be noted that the analytic conductor of an automorphic form

can, given a choice of ρ as above, be defined as a product of local factors

without explicit mention of the theory of L-functions, as in [Kow13, 1.9].
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2.2. The torus T and its L-group. The non-split torus T is the kernel

of the norm map ResK/QGm → Gm.

If K = Q(
√
d) and p splits in K/Q, then there is an x ∈ Qp such that

x2 = d, and one has an identification of Qp algebras

K ⊗Qp = Qp ×Qp

given by a+ b
√
d 7→ (a+ bx, a− bx). Under this identification, the generator

σ of Gal(K/Q) identifies with the involution of Qp ×Qp given by (α, β) 7→
(β, α), so the norm map identifies with the product map Q×

p × Q×
p → Q×

p

and T (Qp) identifies with the set of anti-diagonal elements of Q×
p ×Q×

p . Its

maximal compact subgroup corresponds under this identification to the set

of anti-diagonal elements of Z×
p × Z×

p .

If p is non-split in K/Q, then T (Qp) is the set of norm one elements in

the field K ⊗Qp, and in particular T (Qp) is compact.

The character lattice of T is isomorphic to Z, with the non-trivial element

of Gal(K/Q) acting by −1. It follows that LT = C× ⋊ Gal(K/Q), where

Gal(K/Q) acts by inversion on C× (see [Bor79, §2] for the general definition
of L-groups; our definition is the variant in Remark 2.4.(2) of loc. cit.). A

complete list of isomorphism classes of irreducible finite-dimensional com-

plex algebraic representations of LT is given by:

• The trivial representation C.

• The sign representation C(−), the one-dimensional representation

on which LT acts via LT → Gal(K/Q).

• For n ≥ 1, the 2-dimensional representation Vn := Ind
LT
C× C(n),

where C(n) is C with z ∈ C× acting by zn. A model for Vn is given

by z ⋊ 1 7→
(
zn 0
0 z−n

)
, and 1⋊ σ 7→

(
0 1
1 0

)
.

We refer to V1 as the standard representation (see §2.6).

2.3. Euler factors at unramified places. For each prime p unramified in

K/Q, the Satake correspondence gives a bijection between the unramified

characters ψp of T (Qp) (for T , these are exactly the characters which are

trivial on the maximal compact subgroup) and the conjugacy classes in LT

whose projection onto the factor Gal(K/Q) is equal to the Frobenius at

p (see [Bor79, §9.5]). To write this correspondence explicitly for T , write

ψ ∈ A(T ) as ψ =
⊗

v ψv.

The set Mbig = {z ⋊ σ : z ∈ C×} ⊂ LT forms a single conjugacy class.

The other conjugacy classes in LT are given by the setsMz = {z⋊1, z−1⋊1}.
If p is inert in K/Q and ψ is unramified at p, then ψp is necessarily trivial

as T (Qp) is compact, corresponding to the conjugacy class Mbig.
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At split places p, an unramified character ψp is determined by its image

on (p, p−1) ∈ T (Qp), and the correspondence is given by

ψp ↔Mψp((p,p−1)).

Given a representation ρ : LT → GLm(C) and a ψ ∈ A(T ), unramified

at p, the Euler factor Ep(s, ψ, ρ) at p is defined to be the reciprocal of the

(co-)characteristic polynomial of the image under ρ of any element of the

conjugacy class corresponding to ψp, evaluated at p−s. These polynomials

are recorded in the table below for the various irreducible representations

of LT .
Rep. ρ Char. poly. at split p Char. poly. at inert p

C 1− x 1− x
C(−) 1− x 1 + x
Vn (1− ψp(p, p

−1)nx)(1− ψp(p, p
−1)−nx) 1− x2

Let P be the set of places of Q given by the union of the ramified

places of K/Q, the ramified places of ψ, and the archimedean place ∞.

From the table, it is clear that, away from Euler factors at places in P , the

various L-functions of ψ (as ρ varies) identify with classical L-functions.

More precisely, given ψ ∈ A(T ), define a Hecke character ψ♯ ∈ A(GL1 /K)

by the rule

ψ♯(x)
def
= ψ(x/xσ).

Then
Rep. ρ LP (s, ψ, ρ)

C ζP (s)
C(−) LP (s, χK)
Vn LP (s, (ψ

♯)n)

where the subscript P means that in the Euler product defining each of the

above L-functions the factors at primes dividing any prime in P are omitted,

ζ(s) denotes the Riemann zeta function, and L(s, χK) denotes the Dirichlet

L-function of the quadratic character associated with the extension K/Q.

2.4. The torus S and functoriality. The above table makes it easy to

guess the missing Euler factors for each representation ρ of LT ; namely,

they coincide with the ones attached to the corresponding classical L-

functions. As explained in §2.1, to make this rigorous, one must estab-

lish, given a choice of ρ, the functoriality conjecture for the corresponding

L-homomorphism LT → LGLn. (Here,
LGLn denotes the direct product

GLn(C)×Gal(K/Q), an L-homomorphism is one commuting with the pro-

jections to Gal(K/Q), and one sees easily that a homomorphism LT → GLn

extends uniquely to an L-homomorphism LT → LGLn.)
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Recall (see e.g. [AG91, pp. 11–12]) that an L-homomorphism of L-groups
Lr : LG→ LH is said to satisfy the functoriality conjecture if there is a map

♯ : A(G) → A(H) such that for each π ∈ A(G) and each representation ρ

of LH , one has, for some finite set P of places,

LP (s, π, ρ ◦ Lr) = LP (s, π
♯, ρ).

Write S = ResK/QGm. We will show that all of the above representa-

tions factor through a universal inclusion LT →֒ LS, which satisfies the

functoriality conjecture, and conclude by appealing to known functoriality

results for a particular embedding LS → LGL2 which induces the standard

representation of LT .

We follow the same steps as above to compute the L-functions of forms

χ ∈ A(S) and representations ρ of LS. Observe that LS = (C×)2⋊Gal(K/Q),

with Gal(K/Q) acting by interchanging the factors. The following is a com-

plete list of its irreducible finite-dimensional complex algebraic representa-

tions:

• For m ∈ Z, the one-dimensional representations C(m) on which Ŝ

acts via (z1z2)
m and Gal(K/Q) acts trivially.

• For m ∈ Z, the one-dimensional representations C(m)(−) on which

Ŝ acts via (z1z2)
m and Gal(K/Q) acts via negation.

• For m > n ∈ Z, the representation Vm,n := Ind
LS
Ŝ

C(m,n), where

C(m,n) is C with (z1, z2) acting by zm1 z
n
2 . Explicitly, (z1, z2) 7→(

zm1 z
n
2 0

0 zn1 z
m
2

)
and σ 7→

(
0 1
1 0

)
.

Writing the two elements of Gal(K/Q) as 1, σ, the conjugacy classes within
LS are given by

• Mz = {(z1, z2)⋊ σ : z1z2 = z}
• Mz1,z2 = {(z1, z2)⋊ 1, (z2, z1)⋊ 1}.

To a prime p unramified in K/Q and an unramified character χp of S(Qp),

one assigns the following conjugacy class of LS:

• If p = pp splits then χp ↔ Mχp(π),χp(π), where π, π are local uni-

formizers of p, p, respectively.

• If p is inert then χp ↔ Mχp(p).

The tables below list the characteristic polynomials and partial L-functions

for S:
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Rep. ρ Char. poly. at split p = ππ Char. poly. at inert p

C(m) 1− (χ(π)χ(π))mx 1− χ(p)mx
C(m)(−) 1− (χ(π)χ(π))mx 1 + χ(p)mx
Vm,n (1− χ(π)mχ(π)nx)(1 − χ(π)nχ(π)mx) (1− χ(p)m+nx2)

Rep. ρ LP (s, χ, ρ)

C(m) LP (s, χ
m|A×

Q
)

C(m)(−) LP (s, χK · χm|A×
Q
)

Vm,n LP (s, χ
m ⊗ χσn)

Let Lr : LT → LS be given by z ⋊ σǫ 7→ (z, z−1) ⋊ σǫ. Under this

representation, C(m) restricts to the trivial representation of LT , C(m)(−)

to the sign representation, and Vm,n to Vm−n.

Explicit comparison of the tables for T and S establishes functoriality

for the morphism Lr, where the association ♯ : A(T ) → A(S) is given by

ψ♯(x) = ψ(x/xσ) (note that ψ♯|A×
Q
is trivial). The morphism Lr is universal

in the sense that every irreducible representation of LT arises as a restriction

of an irreducible representation of LS along this embedding. Moreover, it is

the unique L-homomorphism from LT to LS with this property.

Remark. If one is not interested in the explicit L-functions, one may more

easily prove functoriality for Lr as follows: the map Lr is induced by a

map r : S → T , given on A-points by x 7→ x/xσ. The correspondence ♯ is

pullback of characters along r, and functoriality follows formally from the

functoriality of the Satake correspondence. The same argument generalizes

to any morphism of tori.

To complete the proof that the morphism LT → LGL2 given by the

standard representation satisfies functoriality, we need to show that the

morphism of L-groups induced by the representation V1,0 of S satisfies the

functoriality conjecture. This is the principle of automorphic induction, the

n = 1 case of [AG91, Example 1b, p. 12]. It then follows that for ρ the

standard representation of LT , the L-function L(s, ψ, ρ) with all finite places

is the usual Hecke L-function L(s, ψ♯).

2.5. Comparison with Artin L-functions. For the purpose of general-

izations to other groups where a proof of functoriality may not be available,

and to verify that the two definitions of §2.1 agree, we quickly show that

the L-factors computed at ramified places above agree with those of the

Artin L-functions attached to ψ ∈ A(T ). For more detail on Weil groups

and Artin L-functions, see [Tat79].

Recall the Weil group WQ, its quotient

WK/Q =WQ/[WK ,WK ],
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and the exact sequence

(1) 1 → CK → WK/Q → Gal(K/Q) → 1,

where CK is the idèle class group of K. The conjugation action of Gal(K/Q)

on CK induced by (1) coincides with the usual action. For each p there is a

local Weil group WQp and a restriction map, well-defined up to conjugacy,

WQ → WQp. The local Weil group sits in an exact sequence

1 → Ip → WQp → Z → 0,

where Ip is the inertia subgroup of the absolute Galois group of Qp and any

lift of 1 ∈ Z is called a Frobenius element.

A Langlands parameter for T is a map WQ → LT inducing the iden-

tity map on their common quotient Gal(K/Q). Composition with the (set-

theoretic) projection LT → T̂ gives a 1-cocycle ξ ∈ H1(WQ, T̂ ). Say that

two Langlands parameters are equivalent if the associated cocycles are ev-

erywhere locally equal in cohomology, i.e. if their difference restricts to a

coboundary in H1(WQp, T̂ ) for all p.

Given a Langlands parameter α and a representation (ρ, V ) of LT , one

has Artin L-functions LArt(s, α, ρ). The Euler factor at p is the reciprocal

of the (co-)characteristic polynomial of a Frobenius element of WQp acting

via ρ ◦ α on the invariants of V for Ip, evaluated at p−s.

The Langlands correspondence, which is a theorem of Langlands in the

case of tori, attaches a Langlands parameter (well-defined up to equivalence)

αψ to any automorphic form ψ on any torus (see [Lan97, Theorem 2.b]). In

the case of T , one has the following:

Lemma 2.1. Choose a lift σ̃ of the generator σ of Gal(K/Q) to WK/Q. For

ψ ∈ A(T ), the Langlands parameter αψ :WQ → LT is given by the following

formula:

• It is trivial on the kernel [WK ,WK ] of the map WQ →WK/Q.

• For x ∈ CK ⊂ WK/Q, one has

αψ(x) = ψ(x/xσ).

• For x = σ̃y ∈ WK/Q \ CK, one has

αψ(x) = ψ(yσ/y)⋊ σ.

(A different choice of σ̃ does not change the equivalence class of the Lang-

lands parameter.)
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Proof. This follows from the explicit construction of [Lan97]. Because the

calculations involve notation that will not be used elsewhere in the paper,

we have relegated them to the appendix. �

Corollary 2.2. For any character ψ ∈ A(T ) and ρ the standard represen-

tation of LT , the Artin L-function LArt(s, αψ, ρ) coincides with the Hecke

L-function L(s, ψ♯).

Proof. Let ψ be a character of T (A)/T (Q), and write ρψ for ρ ◦ αψ, where
ρ is the standard representation.

By the formalism of Artin L-functions, it suffices to give an isomorphism

of representations

ρψ = Ind
WQ

WK
ψ♯.

where ψ♯ is viewed as a representation of WK acting via its abelianization

CK . Both representations being trivial on [WK ,WK ], it then suffices to give

an isomorphism of representations

ρψ = Ind
WK/Q

CK
ψ♯,

where ρψ : WK/Q → Aut(V1) is the representation whose lift to WK is ρψ.

Consider the model for V1 of §2.2. By Lemma 2.1, under ρψ, for x ∈ CK ,

one has

x 7→
(
ψ♯(x) 0
0 ψ♯(x)−1

)
,

and for x ∈ WK/F \ CK , one has

x 7→
(
ψ♯(σ̃−1x)−1 0

0 ψ♯(σ̃−1x)

)(
0 1
1 0

)
=

(
0 ψ♯(σ̃−1x)−1

ψ♯(σ̃−1x) 0

)
.

This is exactly the usual realization of the induced representation of ψ♯. �

2.6. Remarks on the choice of representation V1. For the purpose of

generalization to other groups, we list the reasons to choose the particular

representation V1 of LT :

• The representation V1,0 of LS is the representation that occurs in

the automorphic induction theorem which allows one to view Hecke

characters of K as GL2 L-functions, and its restriction under the

universal embedding LT →֒ LS is V1.

• For any non-exceptional group, Gan, Gross, and Prasad give a con-

jectural standard representation of the L-group. The standard repre-

sentation of this paper coincides with theirs ([GGP12, pp.25-26]), in

the case that T is viewed as the unitary group of a one-dimensional

Hermitian space over K.
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• It is the unique faithful irreducible representation of LT , and even

(among the irreducible representations) the unique one for which the

counting problem is well-defined: for any other irreducible represen-

tation, there will be infinitely many characters of bounded analytic

conductor.

2.7. The Analytic Conductor. The results of the preceding sections may

be summarized by the following:

Proposition 2.3. For ψ ∈ A(T ), with the choice of the standard represen-

tation ρ of the L-group of T , the L-function attached to ψ is given by

L(s, ψ, ρ) = L(s, ψ♯)

where ψ♯ : A×
K/K

× → C× is the Hecke character ψ♯(x) = ψ(x/xσ) and the

right-hand side is the usual Hecke L-function.

Given ψ ∈ A(T ), let a be the largest ideal of OK such that ψ♯ is a Hecke

character modulo a. Then ψ♯ has completed L-function

Λ(s, ψ♯) = (|dK |N(a))s/2ΓC(s+ κ)L(s, ψ♯),

where dK is the discriminant of the extension K/Q and κ is a non-negative

integer. This completed L-function admits a functional equation

Λ(s, ψ♯) = W (ψ♯)Λ(1− s, ψ♯)

with |W (ψ♯)| = 1. Note that ψ♯(x) = ψ♯(x)
−1

= ψ♯(xσ) so that L(s, ψ, ρ) =

L(s, ψ, ρ) and, so in fact we have W (ψ♯) = ±1 for any ψ ∈ A(T ), see for

example [IK04, §3.8] or [Roh11, Lecture 2].

Definition 2.4 (Analytic conductor with respect to V1). The positive real-

valued function of s ∈ C given by

C(s, ψ)
def
= |dK|N(a)(|s+ κ|+ 1)2

is called the analytic conductor of ψ ∈ A(T ).

A few remarks:

(i) the normalization at the infinite place in the above definition differs

from others in the literature in that (|s+ κj |+ 1) is replaced by:

• |s+ κj |+ 2 (in [MV10])

• |s+ κj |+ 3 (in [IK04])

• |iIm(s) + κj |+ 1 (in [IS00]).

(ii) For counting purposes, we take C(ψ) = C(0, ψ) and also call this the

analytic conductor of ψ.
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(iii) It is interesting to see what definition of analytic conductor one would

obtain upon choosing a non-standard representation ρ of the L-group.

If one takes ρ = C then C(ψ) = 1 for all ψ ∈ A(T ) and if one chooses

ρ = C(−) one obtains C(ψ) = |dK|, or 4|dK | or all ψ ∈ A(T ) depend-

ing on whether
(
dK
−1

)
is +1 or −1, respectively. For either of these two

choices the “analytic conductor” does not satisfy the finiteness prop-

erty of height mentioned in the introduction. For Vn one gets the same

definition for “analytic conductor” where the N(a) and κj are now

taken from the completed L-function for the Hecke character (ψ♯)n.

3. The set-up for counting

In this section we formulate the counting problem in classical terms

which are more amenable to computation. As in the previous section, write

S = ResK/QGm and T = ker norm : S → Gm. Recall the map r : S → T

given on A-points, for A a Q-algebra, by x 7→ x/xσ. By Hilbert’s theorem

90, this map is surjective on Q-points, so one has an exact sequence

1 → Gm(Q) → S(Q) → T (Q) → 1.

For any place v of Q, one similarly has

1 → Q×
v → (K ⊗Qv)

× → T (Qv) → 1,

where at the archimedean place and non-split places one again appeals to

Hilbert’s theorem 90, and at split places, the result is clear from the de-

scription of the norm map in §2.2.
The torus S admits the integral model ResOK/ZGm, and extending the

norm map in the obvious way to this model gives a model for T as well;

abusing notation, we will continue to write S and T for these models (note

that they are not tori over Spec Z). For p a split prime, the argument of §2.2,
with Qp replaced by Zp, identifies T (Zp) with the antidiagonal elements in

Z×
p ×Z×

p (if p = 2, the argument needs a modification, which we omit as we

do not use it).

For all but finitely many primes, one has an exact sequence

1 → Gm(Zp) → S(Zp) → T (Zp) → 1.

This is again obvious at split places (at least other than p = 2). At inert

places, given β ∈ T (Zp) there exists β ∈ S(Qp) with β
σ/β = α, and, as p is

a uniformizer of K ⊗Qp, one may multiply β by a power of p to make it a

unit. (The sequence is not exact at ramified places).
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It follows that there is an exact sequence

1 → Gm(AQ) → S(AQ) → T (AQ) → 1.

By Pontryagin duality, the sequences of character groups

1 → T (Q)∨ → K×∨ → Q×∨ → 1

and

1 → T (AQ)
∨ → A×

K
∨ → A×

Q
∨ → 1

are also exact. As the restriction T (AQ)
∨ → T (Q)∨ is surjective, one has an

exact sequence

1 → A(T ) → A(S) → A(Gm) → 1.

where for a commutative reductive group G, A(G) denotes the group of

characters of G(AQ) trivial on G(Q). Caution: note that ψ♯|T (Af ) = ψ2.

Now we write the characters ψ♯ in terms of more computable classical

data. The following notation system will be used frequently: if A and B are

abelian subgroups of some ambient group, then A∨×cB
∨ denotes the set of

pairs (χA, χB) of characters of A and B agreeing on A ∩B. (The subscript

c is for “compatible”.)

Recall the exact sequence

0 → K×Ô×
KC

× → A×
K → Cl(K) → 0.

Dualizing, one has

0 → Cl(K)∨ → A×
K

∨ res→ (K×Ô×
KC

×)∨ → 0

The subgroup A(S) of A×
K

∨
maps under res to the group of functionals

trivial on K×, which is naturally isomorphic to

C×∨ ×c

(
Ô×
K

)∨
,

i.e. to pairs (χ∞, χf ) of characters on C× and Ô×
K whose restrictions to O×

K

agree. For χ a Hecke character of K, write res(χ) = (χ∞, χf) under the

above decomposition.

The analytic conductor of χ (viewed as a form on S with the standard

representation V1,0 of LS tacitly chosen, or equivalently viewed as a form

on GL1 over K) is completely determined by the pair (χ∞, χf), as follows

from the calculation of the functional equation for the L-function of a Hecke

character, as e.g. in Tate’s thesis. The local L-function of a χ∞ ∈ C×∨
is of

the form

L(s, χ∞) = ΓC(s+ κ)
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for some κ ∈ C. Then c(χ∞) = (|κ|+ 1)2 (following the conventions of §2.7
at the archimedean place). The conductor ideal or “finite conductor” of χ

is the largest ideal I (smallest by divisibility) such that χf factors through

(OK/I)
×. We write I = cf(χ) or sometimes I = cf(χf ) for this conductor.

Define the analytic conductor C((χ∞, χf )) of a pair such that for χ ∈
A(S), one has C(res(χ)) = C(χ, 0), where C(χ, s) is the analytic conductor

for χ as a form on S. Explicitly, this amounts to

C((χ∞, χf)) = |dK|N (cf(χf )) c(χ∞).

Proposition 3.1. Automorphic forms φ ∈ A(T ) are in analytic conductor-

preserving hK-to-one correspondence with pairs (χ∞, χf) ∈ (C×)∨×c (Ô×
K)

∨

such that χ∞|R× = 1 and χf |Ẑ× = 1.

In particular, for a fixed positive integer C, the number of automorphic

forms on T of conductor C is given by

hK ·#{(χ∞, χf) ∈ (C×)∨ ×c (Ô×
K)

∨ : χ∞|R× = 1, χf |Ẑ× = 1,

and c(ψ∞)N(cf(χf ))|dK| = C}.

Proof. The following diagram commutes ,and the vertical and horizontal

sequences are short exact:

Cl(K)∨
� _

��

A(T ) �
� ♯

// A(Gm/K) // //

��
��

A(Gm/Q)

��

∼

(C×)∨ ×c (Ô×)∨ // // (R×)∨ ×c (Ẑ
×)∨

The diagram characterizes the image of the map ♯ in the space of Hecke

characters in terms of the constituents (χ∞, χf). For each pair (χ∞, χf)

satisfying the conditions of the proposition (i.e. in the bottom middle of the

diagram), there are exactly hK Hecke characters of K lifting it. Each such

lift has analytic conductor c(χ∞)N(cf(χf ))|dK| and is of the form φ♯ for a

unique φ ∈ A(T ), from which the proposition follows. �

4. The Generating Series

It remains to count the set in Proposition 3.1. For n ≥ 1, let Φ(n) be

Φ(n)
def
= #{(χ∞, χf) ∈ (C×)∨ ×c (Ô×)∨ : χ∞|R× = 1, χf |Ẑ× = 1,

and c(ψ∞)N(cf(χf )) = n}
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and

Φ1(n)
def
= #{χ ∈ (Ô×)∨ : (1, χ) ∈ (C×)∨ ×c (Ô×)∨, χ|Ẑ× = 1,N(cf(χ)) = n}.

By Proposition 3.1 one has (cf. Theorem 1.1):
∑

ψ∈A(T )
C(ψ)≤X

1 = hK
∑

|dk|n≤X

Φ(n)
(2)

and ∑

ψ∈A(T )

ψ(K×
∞)

C(ψ)≤X

1 = hK
∑

|dk|n≤X

Φ1(n).

(3)

Let

φ∗(a) = #{χf ∈ (Ô×)∨ : χf |Ẑ× = 1, and cf (χf) = a}

and

φ∞(n) = #{χ∞ ∈ (C×)∨ : χ∞|R× = 1, and c(χ∞) = n}.

In the case that K 6= Q(i),Q(ζ3) the compatibility condition ×c is auto-

matically satisfied, i.e. ×c = ×. For K 6= Q(i),Q(ζ3), it follows that

Φ(n) =
∑

ab=n


 ∑

N(a)=a

φ∗(a)


φ∞(b)(4)

and

Φ1(n) =
∑

N(a)=n

φ∗(a).(5)

In the case that K = Q(i), set for u = 1,−1

φ∗
u(a) = #{χ ∈ (Ô×)∨ : χ|Ẑ× = 1, cf(χ) = a, and χ(i) = u}

and similarly, in the case K = Q(ζ3), set u = 1, ζ3, ζ3 we set

φ∗
u(a) = #{χ ∈ (Ô×)∨ : χ|Ẑ× = 1, cf(χ) = a, and χ(ζ6) = u}.

There is a conflict of notation if u = 1, but in this case it will be clear from

context which of the above two functions is intended by φ∗
u(a). In the case

K = Q(i),

Φ(n) =
∑

ab=n


 ∑

N(a)=a

φ∗
(−1)b−1(a)


φ∞(b)(6)

and

Φ1(n) =
∑

N(a)=n

φ∗
1(a).(7)
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In the case K = Q(ζ3),

Φ(n) =
∑

ab=n


 ∑

N(a)=a

φ∗

ζ
√
b−1

3

(a)


φ∞(b)(8)

and

Φ1(n) =
∑

N(a)=n

φ∗
1(a).(9)

The count at archimedean places follows from the following lemma.

Lemma 4.1. We have

φ∞(n) =





2 if n ≥ 4, n = �

1 if n = 1

0 else.

.

Proof. The characters of T (R) = S1 are of the form χk(z) = zk for k ∈ Z,

and thus χ♯k = z2k|z|−2k with k ∈ Z. So, for ψ∞ ∈ T (R), ψ∞(z) = z2k|z|−2k

with k ∈ Z; write k = kψ for this integer. Recall from §3 that c(ψ∞) =

(1 + |kψ|)2. �

We now turn to the non-archimedean places. Let

φ(a) = #{χf ∈ (Ô×)∨ : χf |Ẑ× = 1, and χf factors through (O/a)×}.

By definition, χf factors through (O/a)× if and only if cf (χf) | a, so
∑

d|a

φ∗(d) = φ(a).

Let µ(d) be the Möbius function on ideals of O. By Möbius inversion,

φ∗(a) =
∑

d|a

µ(d)φ(ad−1).(10)

Lemma 4.2. Let p, p be a pair of primes of O lying over a split prime p.

Then

φ(pnpm) =

{
1 if min(n,m) = 0

pmin(n,m)−1(p− 1) else.

If p is lying over an inert prime p, then

φ(pn) =

{
1 if n = 0

pn−1(p+ 1) else,

and if p2 is lying over a ramified prime p ,then

φ(pn) = p⌊
n
2
⌋.
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Proof. For an ideal a, the quantity φ(a) is equal to the number of characters

of (OK/a)
× which are trivial on (Z/a ∩ Z)×, which is just equal to the index

of the finite subgroup (Z/a ∩ Z)× in (OK/a)
×. The orders of these groups

are readily computable in the case where a is one of the ideals in the lem. �

The next argument moves from φ to φ∗ with Mobius inversion, i.e. (10).

Lemma 4.3. We have if p, p be a pair of primes of O lying over a split

prime p then

φ∗(pnpm) =





p− 2 if n = m = 1

pn−2(p− 1)2 if n = m ≥ 2

0 if n 6= m,

and

∑

N(a)=pn

φ∗(a) =





p− 2 if n = 2

p
n
2
−2(p− 1)2 if n ≥ 4 even

0 otherwise.

If p lies over an inert prime p we have

φ∗(pn) =

{
p if n = 1

pn − pn−2 if n ≥ 2,

and

∑

N(a)=pn

φ∗(a) =





p if n = 2

p
n
2 − p

n
2
−2 if n ≥ 4 even

0 otherwise.

If p lies over a ramified prime p then

φ∗(pn) =

{
p

n
2 − p

n
2
−1 if n even

0 if n odd,

and

∑

N(a)=pn

φ∗(a) =

{
p

n
2 − p

n
2
−1 if n even

0 if n odd.

Proof. The statements in the cases of p inert and ramified are a simple

consequence of (10) and Lemma 4.2 along with the fact that N(p) = p2 if

p lies over an inert prime p, and N(p) = p if p lies over a ramified prime p.

Now consider the case that p, p are a pair of primes lying over a split

prime p. If n 6= m, we may assume without loss of generality that n > m

and in this case by (10),

φ∗(pnpm) = φ(pnpm)− φ(pn−1p
m)−

(
φ(pnpm−1)− φ(pn−1p

m−1)
)
= 0

by Lemma 4.2 since in any case n− 1 ≥ m.
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If n = m, then φ∗(pnpn) can be calculated directly from (10) and Lemma

4.2. There is at most one non-vanishing summand in
∑

N(a)=pn φ
∗(a) if p is

split because φ∗(pnpm) vanishes unless n = m. If n = m is even, then there

is one non-vanishing term, and if n = m is odd, there are none. �

This proves Theorem 1.2 in the case that K 6= Q(i),Q(ζ3). We now give

the analogous result for the functions φ∗
u(a) for Q(i) and Q(ζ3) to finish the

proof of Theorem 1.2.

Lemma 4.4. If K = Q(i) and u = ±1, then

φ∗
u(a) =

1

2
φ∗(a) + u

1

2

∑

d|a
(n)∤d

for all n

µ(a/d).

If K = Q(ζ3) and u = 1, ζ3, ζ3, then

φ∗
u(a) =

1

3
φ∗(a) + (u+ u)

1

3

∑

d|a
(n)∤d

for all n

µ(a/d).

Proof. Let δA be 0 or 1 according as the statement A is false or true. The

condition that χ(i) or χ(ζ6) be a specified root of unity can be expressed

via the following formulas: for K = Q(i) and u = ±1,

δχ(i)=u =
1

2
(1 + uχ(i)),

and for K = Q(ζ3) and u = 1, ζ3, ζ3, one has

δχ(ζ6)=u =
1

3
(1 + uχ(ζ6) + uχ(ζ3)).

Thus for Q(i),

φ∗
u(a) =

1

2

∑

cf (χ)=a

χ|
Ẑ×=1

1 +
1

2

∑

cf (χ)=a

χ|
Ẑ×=1

χ(i)

=
1

2
φ∗(a) +

1

2

∑

cf (χ)=a

χ|
Ẑ×=1

χ(i),

and similarly for Q(ζ3),

φ∗
u(a) =

1

3
φ∗(a) +

1

3

∑

cf (χ)=a

χ|
Ẑ×=1

χ(ζ6) +
1

3

∑

cf (χ)=a

χ|
Ẑ×=1

χ(ζ3).

These last sums can be calculated using orthogonality of characters and

Möbius inversion.
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Indeed, for x ∈ Ô×,

∑

cf (χ)|a
χ|

Ẑ×=1

χ(x)

=

{
φ(a) if x ∈ 〈Ẑ×, 1 (mod a)〉 = Image((Z/a ∩ Z)× →֒ (O/a)×)
0 else

by orthogonality of characters. Writing Ia for the image of (Z/a ∩ Z)× in

(O/a)×, it suffices to determine for which ideals of Z[i] one has i ∈ Ia or

similarly for which ideals of Z[ζ3] one has ζ6, ζ3 ∈ Ia.

We claim that any of i, ζ6, ζ3 ∈ Ia if and only if φ(a) = 1 if and only if

(p) ∤ a for all rational primes p. The second equivalence in this claim can be

seen immediately from the computation in Lemma 4.2.

For the first equivalence, in the “if” direction, note that if φ(a) = 1 then

i, ζ6, ζ3 ∈ (O/a)× = (Z/a ∩ Z)× by the proof of Lemma 4.2. Conversely, if

b | a and e.g. ζ6 ∈ Ia, then automatically ζ6 ∈ Ib. Thus it suffices to show

that for each rational prime p one has i, ζ6, ζ3 6∈ I(p), but this is clear.

Therefore, by Möbius inversion again, for u = i, ζ6, ζ3 one has
∑

cf (χ)=a

χ|
Ẑ×=1

χ(u) =
∑

d|a
(p)∤d

for all p

φ(d)µ(a/d).

By the claim, (p) ∤ d for all p if and only if φ(d) = 1, so in fact
∑

cf (χ)=a

χ|
Ẑ×=1

χ(u) =
∑

d|a
(p)∤d

for all p

µ(a/d).

�

Now for Re(s) > 1, let

L(s,Φ)
def
=
∑

n≥1

Φ(n)

ns
, L(s,Φ1)

def
=
∑

n≥1

Φ1(n)

ns
,

L(s, φ∗)
def
=
∑

a

φ∗(a)

N(a)s
, and L(s, φ∗

u)
def
=
∑

a

φ∗
u(a)

N(a)s
.

The relations among these generating series are summarized in the following

lemma:

Lemma 4.5. When K 6= Q(i),Q(ζ3),

L(s,Φ) = (2ζ(2s)− 1)L(s, φ∗)
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and

L(s,Φ1) = L(s, φ∗).

When K = Q(i),

L(s,Φ) = 2

(
1− 1

22s

)
ζ(2s)L(s, φ∗

1) +
2

22s
ζ(2s)L(s, φ∗

−1)− L(s, φ∗
1)

and

L(s,Φ1) = L(s, φ∗
1).

When K = Q(ζ3),

L(s,Φ) =

((
1− 1

32s

)
ζ(2s) + L(2s, χ3)

)
L(s, φ∗

1)

+

((
1− 1

32s

)
ζ(2s)− L(2s, χ3)

)
L(s, φ∗

ζ3
)

+ 2
1

32s
ζ(2s)L(s, φ∗

ζ3
)− L(s, φ∗

1),

where L(s, χ3) is the classical Dirichlet L-function of the unique non-trivial

Dirichlet character mod 3, and

L(s,Φ1) = L(s, φ∗
1).

Proof. The first, second, fourth and sixth statements of the lemma follow

directly from equations (4), (5), (7), (9) and Lemma 4.1.

For the third statement, note from (6) and Lemma 4.1 that if K = Q(i)

then

L(s,Φ) = 2


 ∑

n≡1 (mod 2)

1

n2s


L(s, φ∗

1)

+ 2


 ∑

n≡0 (mod 2)

1

n2s


L(s, φ∗

−1)− L(s, φ∗
1)
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and if K = Q(ζ3) then

L(s,Φ) = 2


 ∑

n≡1 (mod 3)

1

n2s


L(s, φ∗

1)

+ 2


 ∑

n≡2 (mod 3)

1

n2s


L(s, φ∗

ζ3
)

+ 2


 ∑

n≡0 (mod 3)

1

n2s


L(s, φ∗

ζ3
)− L(s, φ∗

1).

The lemma then follows from standard simplifications of the above Dirichlet

series. �

In the special cases K = Q(i) and K = Q(ζ3), we additionally relate the

functions L(s, φ∗
u) back to L(s, φ∗).

Lemma 4.6. If K = Q(i),

L(s, φ∗
±1) =

1

2
L(s, φ∗)± 1

2
ζ(2s)−1.

When K = Q(ζ3),

L(s, φ∗
1) =

1

3
L(s, φ∗) +

2

3
ζ(2s)−1

and

L(s, φ∗
ζ3
) = L(s, φ∗

ζ3
) =

1

3
L(s, φ∗)− 1

3
ζ(2s)−1.

Proof. Let

WK(s) =
∑

a
(n)∤a

for all n

1

N(a)s
.

Directly from Lemma 4.4, for K = Q(i),

L(s, φ∗
±1) =

1

2
L(s, φ∗)± 1

2

1

ζK(s)
WK(s),

and for K = Q(ζ3),

L(s, φ∗
1) =

1

3
L(s, φ∗) +

2

3

1

ζK(s)
WK(s)

and

L(s, φ∗
ζ3
) = L(s, φ∗

ζ3
) =

1

3
L(s, φ∗)− 1

3

1

ζK(s)
WK(s).
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For all ideals a there exists a unique pair n ∈ N and s having the property

that (m) ∤ s for any m ∈ N such that a = (n)s. Then

ζK(s) =
∑

a

1

N(a)s
=

(
∑

n≥1

1

n2s

)


∑

s
(m)∤s

for all m

1

N(s)s


 = ζ(2s)WK(s).

Thus WK(s) = ζK(s)ζ(2s)
−1. �

Proposition 4.7. One has

L(s, φ∗) =
ζ(2s− 1)

ζK(2s)
.(11)

Proof. Consider the case of p a split prime. Expanding in geometric series,

(
1− 1

p2s

)2(
1− 1

p2s−1

)−1

= 1 +
p− 2

p2s
+
p2 − 2p+ 1

p4s
+
p3 − 2p2 + p

p6s
+ · · ·

which by Lemma 4.3 shows that the Euler factors at split primes on both

sides of (11) match. If p is an inert prime, then
(
1− 1

p4s

)(
1− 1

p2s−1

)−1

= 1 +
p

p2s
+
p2 − 1

p4s
+
p3 − p

p6s
+ · · ·

and if p is a ramified prime, then
(
1− 1

p2s

)(
1− 1

p2s−1

)−1

= 1 +
p− 1

p2s
+
p2 − p

p4s
+ · · · .

These computations show that the Euler factors at inert and ramified primes

match on both sides of (11). �

Note in particular that for each fixed ε > 0 one has, uniformly in K and

s in the region Re(s) ≥ 1/2 + ε, that

1

ζK(2s)
≤ ζ(1 + 2ε)2 ≤ (1 + (2ε)−1)2.(12)

We next use Perron’s formula to move from the Dirichlet series just

computed to the counts in Theorem 1.1. Perron’s formula (see e.g. [Dav00,

Lemma page 105]) states that for any κ > 0, T > 0, and y > 0,

1

2πi

∫ κ+iT

κ−iT

ys
ds

s
=

{
1 if y > 1

0 if y < 1
+O

(
yκ

max(1, T | log y|)

)
.

By Lemma 4.3, Φ(n) ≤ 2δn=�σ1(
√
n) ≪ δn=�

√
n log log n if n ≥ 3. To prove

the first formula in Theorem 1.1 in the cases K 6= Q(i),Q(ζ3) it suffices by
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(2), Lemma 4.5, Proposition 4.7 and Perron’s formula to estimate for Y ≥ 3

(13)
∑

n≤Y

Φ(n) =
1

2πi

∫ κ+iT

κ−iT

(2ζ(2s)− 1)

ζK(2s)
ζ(2s− 1)Y sds

s

+O

(
Y
∑

n=�

σ1(
√
n)

nκmax(1, T | logY/n|)

)
,

where we have chosen κ = 1 + 1/ log Y , T = Y α, and 0 < α ≤ 1 to be

determined later.

We first estimate the O term above. Let U = exp((2T )−1). Make the

change of variable m2 = n and break the range of summation into three

parts: m ≤ Y 1/2/U , Y 1/2/U < m ≤ Y 1/2U , and m > Y 1/2U . In the first

range, the O term in (13) is bounded by

≪ Y log log Y

T

Y 1/2/U∑

m=1

1

m log(X/m2)
≪ Y log log Y

T

∫ log Y

1/T

du

u

≪ Y log Y log log Y

T

by a change of variables. In the second range, the O term in (13) is bounded

by

≪ Y log log Y
Y 1/2U∑

m=Y 1/2/U+1

1

m
≪ Y log log Y

T
.

In the third range, the O term in (13) is bounded by

≪ Y

T

∑

m>Y 1/2U

log logm

m1+2/ log Y log(m2/Y )

≪ Y

T

∫ ∞

1/T

log
(
v+log Y

2

)
exp(−v/ log Y )
v

dv

by a change of variables. But v+log Y
2

≤ max(v, log Y ), so upon splitting the

integral and making a change of variables, one sees that the sum in this

third piece is also ≪ Y log Y/T .

The next estimate is for the contour integral term in (13). Let ε >

0. Shift the contour to the other three sides of a box having corners at

κ+ iT, 1/2 + ε+ iT, 1/2 + ε− iT, κ− iT and pick up the residue at s = 1.
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Then

(14)
∑

m≤Y

Φ(n) =
1

2

2ζ(2)− 1

ζK(2)
Y

+

(∫ 1/2+ε+iT

κ+iT

+

∫ 1/2+ε−iT

1/2+ε+iT

+

∫ κ−iT

1/2+ε−iT

)
2ζ(2s)− 1

ζK(2s)
ζ(2s− 1)Y sds

s

+O

(
Y log Y log log Y

T

)
.

Using the bound (12) and a similar bound for the Riemann zeta function,

the first of the three integrals in (14) is bounded by

≪ (1 + (2ε)−1)3
∫ 1+1/ logY

1/2+ε

|ζ(2u− 1 + 2iT )|
|u+ iT | Y u du,

which is, by a convexity bound on the zeta function,

≪ (1 + (2ε)−1)3
∫ 1+1/ logY

1/2+ε

(
Y

T

)u
du≪ (1 + (2ε)−1)3

log Y

Y

T
.

The third of three integrals in (14) is treated similarly. Similarly, the second

integral in (14) is

≪ (1 + (2ε)−1)3Y 1/2+ε

∫ T

−T

|ζ(2ε+ 2it)|
|1
2
+ ε+ it| dt≪ (1 + (2ε)−1)3Y 1/2+εT 1/2.

Grouping these estimates together,

∑

n≤Y

Φ(n) =
1

2

2ζ(2)− 1

ζK(2)
Y +O

(
(1 + (2ε)−1)3Y 1/2+εT 1/2

+
(1 + (2ε)−1)3

log Y

Y

T
+
Y log Y log log Y

T

)
.

Now taking T = Y 1/3, ε = 1/ logY and inserting this to (2) gives the first

statement of Theorem 1.1 in the case K 6= Q(i),Q(ζ3). When K = Q(i),

L(s,Φ) =
1

2

2ζ(2s)− 1

ζK(2s)
ζ(2s− 1) +

1

2

(
2(1− 2

22s
)ζ(2s)− 1

)
ζ(2s)−1,

and when K = Q(ζ3),

L(s,Φ)

=
1

3

2ζ(2s)− 1

ζK(2s)
ζ(2s− 1) +

(
1

3

(
1− 3

32s

)
ζ(2s) + L(2s, χ)− 2

3

)
ζ(2s)−1.

Running the same computation as above with these Dirichlet series com-

pletes the proof of the first claim in Theorem 1.1.
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For the second claim in Theorem 1.1 we work with L(s,Φ1). In the

K 6= Q(i),Q(ζ3) case,

L(s,Φ1) =
1

ζK(2s)
ζ(2s− 1).

In the K = Q(i) case,

L(s,Φ1) =
1

2

1

ζK(2s)
ζ(2s− 1) +

1

2
ζ(2s)−1,

and in the K = Q(ζ3) case,

L(s,Φ1) =
1

3

1

ζK(2s)
ζ(2s− 1) +

2

3
ζ(2s)−1.

Running the same computation as above with these Dirichlet series com-

pletes the proof of the second claim of Theorem 1.1.

Appendix A. Explicit calculation of the Langlands

parameter

This appendix contains a proof of Lemma 2.1. The lemma holds in a

bit more generality; thus, for the appendix only, the extension K/F is an

arbitrary quadratic extension of number fields or local fields. In the local

case, CK denotes K×, and in the global case, it denotes the idèle class group

A×
K/K

×; C
(1)
K denotes the norm one elements of CK .

Before proving the lemma, we summarize the construction of [Lan97]; in

this summary, T denotes an arbitrary torus over F , and K/F can be any

extension splitting T (not just a quadratic one). Write L for the character

lattice of T , and L̂ for the cocharacter lattice. Write T (F )! for T (F ) if F is

local, and for T (AF )/T (F ) is F is global. Then one has

T (F )! → HomGal(K/F )(L,CK)(15)

= (CK ⊗ L̂)Gal(K/F )(16)

= H1(CK , L̂)
Gal(K/F )(17)

= H1(WK/F , L̂)(18)

Maps (15) - (17) are straightforward, whereas identification (18) follows

from a computation of Langlands showing that the trace map

H1(WK/F , L̂) → H1(CK , L̂)
Gal(K/F )

is an isomorphism (this map is called restriction in [Lan97]). Writing T̂ for

the dual torus to T , the cup product gives a perfect pairing

(19) H1(WK/F , L̂)⊗H1(WK/F , T̂ ) → C×,
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Dualizing, there is therefore a map

(20) H1(WK/F , T̂ ) → T (F )!
∨
.

In the local case, map (15), and hence map (20), is a bijection and the

desired correspondence; in the global case, (20) is a finite-to-one surjection,

but any choice of ξ ∈ H1(WK/F , T̂ ) mapping to a fixed ψ ∈ T (F )!
∨
gives

rise to an equivalent Langlands parameter.

Returning to the case where T is the non-split torus associated to K/F ,

choosing a lift σ̃ of the generator σ of Gal(K/F ) to WK/F , and given a

character ψ of T (F ), Lemma 2.1 asserts the following of the Langlands

parameter αψ:

• It is trivial on the kernel [WK ,WK ] of the map WF → WK/F

• For x ∈ CK ⊂WK/F , one has

αψ(x) = ψ(x/xσ).

• For x = σ̃y ∈ WK/F \ CK , one has

αψ(x) = ψ(yσ/y)⋊ σ.

To check this, one needs to make explicit calculations in group homology

and cohomology, for which we use the usual “inhomogeneous” free resolution

of Z. Since the necessary formulas on the homology side are not as widely

standardized as those on the cohomology side, we list them explicitly.

Let G be a group and M a left G-module. Computing via the inhomo-

geneous resolution gives the usual description

H1(G,M) =
{maps ξ : G→M satisfying ξ(gh) = ξ(g) + gξ(h)}

{maps such that there exists m ∈ M, ξ(g) = gm−m}
If ⊕SN is a direct sum of copies of an abelian group N indexed by a set S,

the symbol δs(n) refers to the element which is n in the spot indexed by s

and 0 elsewhere. Computing via the inhomogeneous resolution then gives

H1(G,M) =
{(mg)g∈G|

∑
g(g

−1mg −mg) = 0}
d(⊕G×GM)

,

where d(δg,h(m)) = δh(g
−1m)− δgh(m) + δg(m). The cup product pairing

H1(G,N)⊗H1(G,M) →M ⊗Z[G] N

is given by ξ ⊗ (mg) 7→
∑

gmg ⊗ ξ(g). If G′ < G is a finite-index normal

subgroup, one has an action of G/G′ on H1(G
′,M) by the rule g ∗ δg′(m) =

δgg′g−1(gm), and the trace map

H1(G,M) → H1(G
′,M)G/G

′
,
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may be computed as follows: pick coset representatives g1, g2, . . . , gn for

G/G′. Then any g ∈ G determines a permutation τ ∈ Sn by the rule

gig = g′gτ(i) (where g
′ ∈ G′), and

Trace(δg(m)) =
∑

i

δgigg−1
τ(i)

(gim).

If A is an abelian group and G is an arbitrary group with a surjection

to Z/2Z, write A for the G-module with underlying group A such that G

acts via Z/2Z via inversion, and write a ∈ A for the element a ∈ A. Then

one has L = L̂ = Z , and T̂ = C× .

Now given a character ψ of T (F )! = C
(1)
K , to complete the calculation,

we must show that

ξψ(x) =

{
ψ(x/xσ) for x ∈ CK

ψ((xσ̃−1)/(σ̃−1x)) for x ∈ WK/F \ CK .

is the cohomology class given by the recipe above. To prove this claim, given

α ∈ T (F )!, pick x ∈ CK with x/xσ = α. With the explicit formulas for trace

and cup product above, one computes:

• that identifications (15)-(17) send α to the 1-cycle δα( 1 ).

• that the image of δx( 1 ) ∈ H1(WK/F , L̂) under the traceH1(WK/F , L̂) →
H1(CK , L̂)

Gal(K/F ) is δα( 1 ).

• that ξψ satisfies the cocycle condition (using σ̃2 ∈ CF ).

• that the cup product (δx( 1 ), ξψ) is ψ(α) ⊗ 1 = ψ(α).
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(346):1–109, 2012. Sur les conjectures de Gross et Prasad. I.

[IK04] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory.

American Mathematical Society Colloquium Publications, 2004.

[IS00] Henryk Iwaniec and Peter C. Sarnak. Perspectives on the analytic

theory of L-functions. GAFA, Special Volume – GAFA2000:705–741,

2000.

[Kow13] E. Kowalski. Families of cusp forms. In Actes de la Conférence
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Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne,

Bâtiment MA, Station 8, 1015 Lausanne, Switzerland

E-mail address : ernest.brooks@epfl.ch
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