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A neural circuit model of decision uncertainty
and change-of-mind
Nadim A. A. Atiya 1, Iñaki Rañó1,2, Girijesh Prasad 1 & KongFatt Wong-Lin1

Decision-making is often accompanied by a degree of confidence on whether a choice is

correct. Decision uncertainty, or lack in confidence, may lead to change-of-mind. Studies have

identified the behavioural characteristics associated with decision confidence or change-of-

mind, and their neural correlates. Although several theoretical accounts have been proposed,

there is no neural model that can compute decision uncertainty and explain its effects on

change-of-mind. We propose a neuronal circuit model that computes decision uncertainty

while accounting for a variety of behavioural and neural data of decision confidence and

change-of-mind, including testable model predictions. Our theoretical analysis suggests that

change-of-mind occurs due to the presence of a transient uncertainty-induced choice-neutral

stable steady state and noisy fluctuation within the neuronal network. Our distributed net-

work model indicates that the neural basis of change-of-mind is more distinctively identified

in motor-based neurons. Overall, our model provides a framework that unifies decision

confidence and change-of-mind.
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The decisions we make are often accompanied by a degree of
uncertainty—how likely a decision will be correct1–3. Some
decisions are more difficult than others, inducing an

internal conflict that may lead to reconsideration or change-of-
mind4,5. Likewise, challenging decisions are associated with
higher uncertainty, more errors and longer response times1,6,7.
This high uncertainty could also result in subsequent behavioural
adjustments, affecting how quickly and accurately we make
consecutive decisions8,9. Several theoretical and experimental
accounts posit that uncertainty is computed while making
decisions6,7,10–15. However, how decision uncertainty is encoded
in the brain and the neural mechanism by which it affects
changes-of-mind and subsequent behavioural adjustments has, so
far, remained elusive16–18.

The neural correlates of decision uncertainty have been gra-
dually revealed in animal and human studies6,7,13,19–21. For
instance, neural recordings from animals demonstrated a strong
correlation between lower-rate neuronal firing activity in the
lateral intraparietal area of the cortex and high decision uncer-
tainty7. Computational models have accounted for this, suggest-
ing that neural responses are represented by probability
distributions, where uncertainty can be quantified by evaluating
the posterior probability10,22. These models, however, imply
Bayesian optimality23, with no consensus on how this optimality
emerges from the neurobiology8,24.

Other experimental studies have shown weaker linkage between
choice accuracy and uncertainty-level reporting6,11,19,25,26.
For instance, patients with lesions in the prefrontal cortex (PFC)
demonstrated poor confidence reporting performance, while
choice accuracy was largely unaffected19. Several computational
models support this view by predicting a dissociation between
uncertainty and the formation of a perceptual decision27,28. For
instance, in one model27, an extension of the drift-diffusion
decision-making model (for evidence accumulation)29,30, the
evidence accumulation continues after a decision is reached, and
hence a post-decision confidence rating can be provided. Specifi-
cally, the parameters controlling the post-decision stage are
independent from the ones that control initial decision
processing stage.

Changing one’s mind has been attributed to processing new
evidence that negates a previous judgement4. More recent neu-
rophysiological evidence has shown that some changes-of-mind
occur as a result of an internal error-correction mechanism25,
suggesting decision uncertainty plays a role in inducing changes-
of-mind31. However, the neural mechanism of decision uncer-
tainty (within a single trial or across consecutive ones) and its link
to change-of-mind has so far remained ambiguous. In particular,
there is no neural circuit model that explains this shared neural
mechanism17.

Within the studies of perceptual decision confidence/uncer-
tainty and change-of-mind, there are some common findings
that have been identified (Supplementary Figs. 1 and 2). First,
more difficult tasks, associated with lower (sensory) evidence
quality, lead to higher decision uncertainty, which is also asso-
ciated with lower choice accuracy (Supplementary Fig. 1)6,32.
Second, higher decision uncertainty is associated with lower
evidence quality for correct choices while counter-intuitively
associated with better evidence quality for incorrect choices
(forming the often observed “<” pattern) (Supplementary
Fig. 1)6,11,33,34. Third, changes-of-mind are more likely to occur
when the task is more difficult and more often accompanied by
correcting an initial impending error choice—hence more error-
to-correct changes than correct-to-error changes4,35 (although
the difference has been shown to vary in some cases35). Further,
the likelihood of correct changes-of-mind (to the subsequent
correct choices) may peak at an intermediate level of task

difficulty and then decrease gradually when the task becomes
much easier (Supplementary Fig. 2)4,35.

In this work, and to the best of our knowledge, guided by the
above findings and related neural data (Supplementary Fig. 3), we
have developed the first cortical neural circuit computational
model that can mechanistically quantify and monitor decision
uncertainty, which may subsequently cause a change-of-mind,
hence unifying the two areas of study. Our multi-layer recurrent
network model not only accounts for the abovementioned key
characteristics of decision uncertainty6,10,36 and change-of-
mind4,35 across a wide variety of experiments (of both beha-
vioural and neural data) but also sheds light on their neural
circuit mechanisms. In particular, using dynamical systems ana-
lysis, we show that change-of-mind occurs due to the presence of
a transient choice-neutral stable steady state together with noisy
fluctuations within the neuronal network. Interestingly, because
our model consists of multiple layers of neural integrators, we
found that the reversal of competing neural activities encoding
the choices (neural basis for change-of-mind) is more likely to be
more distinctive for neurons near the motor execution area,
without necessarily requiring a clear reversal of neural activities at
more upstream sensory or sensorimotor neurons.

Results
Neural circuit model computes decision uncertainty. We pro-
pose a novel neural circuit model that can encode, quantify, and
monitor decision uncertainty, which we named the decision
uncertainty-monitoring module (Fig. 1a, Uncertainty monitoring
box). This circuit is built on our previous biologically motivated
neural circuit model of decision-making that focusses on sensory
evidence accumulation37 (Fig. 1a).

The uncertainty-monitoring module receives input based on
the summed sensorimotor neuronal population activities (Fig. 1a,
b). In particular, a population of inhibitory neurons (Fig. 1a,
green circle) integrates these summed activities (Fig. 1a, blue and
orange pointed arrows; “Methods”). This neuronal population in
turn inhibits a neighbouring excitatory neuronal population that
encodes decision uncertainty (Fig. 1a, magenta circle). Hence,
decision uncertainty can be continuously monitored (Fig. 1b,
middle). Together, the network structure with these two neuronal
populations is reminiscent of a cortical column38.

Further, decision uncertainty information from the
uncertainty-monitoring module is continuously fed back equally
to the sensorimotor neuronal populations (Fig. 1a, Sensorimotor
box), thus providing, effectively, an excitatory feedback mechan-
ism between the two brain systems, which consequently may
affect the final decision outcome and, in some instances, even lead
to change-of-mind, as we shall demonstrate below. This feedback
loop, as in control theory, provides the key computational basis of
linking decision uncertainty and change-of-mind. Without this
feedback loop, the model does not exhibit change-of-mind
behaviour. (Supplementary Fig. 4). However, it can still encode
decision uncertainty and produce the experimentally observed
relationship between decision uncertainty and task difficulty
(Supplementary Fig. 5). In addition, the neural circuit model also
has motor-based neuronal populations either located within the
same brain region or downstream in the decision-processing
pathway (Fig. 1a, Motor box). Inputs to these populations are
temporally integrated based on the neural firing rate outputs of
the associated sensorimotor neuronal populations (Fig. 1b,
bottom; “Methods”).

The general model behaviour, ultimately reported at the
motor neuronal populations, is qualitatively similar to the
neuronal firing rates and psychophysical (choice accuracy and
response time) data observed in two-choice reaction time
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experiments4,39,40. Specifically, the neural activity of the winning
(sensorimotor/motor) neuronal population ramps up faster with
higher evidence quality (ε= 25.6% cf. 3.2%; equivalent to motion
coherence in random dot stimulus—see “Methods”) (Fig. 1b, top
and bottom panels); accuracy increases monotonically with
evidence quality (Fig. 1c) while reaction time decreases (with
error choices slower than correct choices) (Fig. 1d; compared
with39,41). A choice is considered to be made when one of the
activities of the motor neuronal populations crosses a prescribed
threshold of 17.4 Hz. The motor neuronal population activity is
also directly mapped onto the motor output or positional space
(see “Methods” and below).

Importantly, the (phasic) activity of the uncertainty-encoding
neuronal population is higher for trials with higher uncertainty
(due to lower evidence quality) (Fig. 1b, middle panel). This rise-
and-decay activity around the motor movement onset is

consistent with observations from neural recordings in animal
and human studies6,11,25,42. More specifically, single neuronal firing
activity in the orbitofrontal cortex (OFC) (from rodents)6,11,
electroencephalogram (EEG)25 and functional magnetic resonance
imaging (fMRI)42 recordings in humans exhibited this rise-and-
decay pattern in experimental studies of decision-making under
uncertainty (Supplementary Fig. 3), and these activities are higher
with higher decision uncertainty. We shall henceforth use this phasic
neural activity as an indicator of decision uncertainty monitoring in
real time, and the temporal integral of its neural activity (i.e. area
under the curve as a proxy for any downstream neural integrator) as
a readout of the decision uncertainty (see “Methods”). Further, a
tonic constant excitatory bias input to the uncertainty-encoding
population (Fig. 1a) is required to provide overall excitation (see
“Methods”). As will be shown below, when trials are sequentially
dependant (i.e. a reward is only received when a pair of coupled
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Fig. 1 Schematic diagram and performance of the distributed neural circuit model. a The model consists of three modules. The uncertainty-monitoring
module consists of two neuronal populations. Inhibitory neuronal population (green) receives excitatory input (straight arrows) from output of
sensorimotor module while inhibiting the uncertainty-encoding neuronal population (lines with filled circles), which in turn provides excitatory feedback to
sensorimotor module. The uncertainty-encoding population (magenta) receives a constant tonic excitatory input that varies across trials in specific cases
(i.e. multi-stage paradigm, see “Methods” and below). The sensorimotor module consists of two competing (mutually inhibitory) neuronal populations
each selective to noisy sensory information (e.g. rightward or leftward random-dot motion stimulus) favouring one of the two (e.g. right R or left L) choice
options. The motor module, receiving inputs from sensorimotor module, also consist of neural integrators that report the choice made. See Supplementary
Note 1 for justifications of our modelling choices. b Timecourse of neuronal population firing rates averaged over non-change-of-mind trials with evidence
quality, ε= 25.6% (easy task; solid lines) and ε= 3.2% (difficult task; dashed lines), where ε is equivalent to motion coherence in the classic random-dot
stimulus. Faster ramping activity (top and bottom panels) with lower uncertainty quantification (middle panel; red) with larger ε. Colour of activity traces
reflects the associated neural populations in a. To reveal the full network dynamics, the network activities (greyed out) were not reset after a choice was
made. c Psychometric function used to fit choice accuracy (using a Weibull function, see “Methods”). d Response times for correct (black) and error (grey)
responses from the model. In this example, the activation onset times for the inhibitory and uncertainty-encoding neuronal populations are 400 and
500ms after stimulus onset, respectively
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trials results in two correct choices), this same parameter is linearly
varied based on the level of uncertainty in the first trial, influencing
the uncertainty level (and response time) of the second trial43 (see
below and “Methods”).

Model accounts for behavioural patterns of choice uncertainty.
We next simulate with our network model to replicate the key
experimental findings related to decision uncertainty and con-
fidence as discussed in the “Introduction” section. As most of the
decision uncertainty and change-of-mind tasks are based on two-
choice reaction-time task paradigms, we shall only focus on such
paradigms. Our model first replicates choice accuracy decreasing
monotonically with decision uncertainty (Fig. 2a), while produ-
cing the “<” pattern6,11,33,34 of decision uncertainty (Fig. 2b), in
which decision uncertainty is higher for lower (higher) evidence
quality in correct (error) choices6,34 (compared to Supplementary
Fig. 1). This pattern also correlates with the response time pattern
in Fig. 1d. We further explore this by performing a linear
regression on all our simulated response times with decision
uncertainty levels (maximum activity, see “Methods”) and found
a very strong correlation (Pearson’s r= 0.85) between the two as
observed in experiments12 (see Supplementary Fig. 6).

To explain the results in Fig. 2a, b, we map out the neural
activity of the uncertainty-encoding population (denoted by the
colours in Fig. 2c, d) with respect to the evidence quality and total
input to the uncertainty-encoding neuronal population. Based on
Fig. 2c, d, it is clear that, as long as the total input is high, and

there is sufficient time (i.e. long response time—see Fig. 1d) for
the uncertainty-encoding population to integrate its input, the
uncertainty level will be high, regardless of correct or error
responses. From the perspective of the network dynamics, for
correct responses with low evidence quality, the inhibition to the
uncertainty-encoding population will initially be higher, i.e. lower
total input. This leads to an initial weaker excitatory feedback to
the sensorimotor neural populations, causing the ramping-up
speed of the latter’s activity to become slower, which in turn
results in a prolonged response time. The longer response time
allows the uncertainty-encoding population to have more time to
integrate and eventually attains a higher activity level, i.e. encodes
higher uncertainty. The activities of the competing sensorimotor
populations will also eventually deviate (i.e. have a clear winner),
resulting in higher total input (i.e. less inhibition) to the
uncertainty-encoding population (moving vertically upwards in
Fig. 2c, left side). For correct responses with higher evidence
quality, the response times are typically faster (Fig. 1d, black) and
hence allowing for less time for the uncertainty-encoding
population to integrate, leading to lower uncertainty activity
levels (moving vertically upwards in Fig. 2c, right side; see also
Supplementary Fig. 7). However, for error responses, the response
times are longer for higher evidence quality (Fig. 1d, grey), and
that allows for more time for the uncertainty-encoding popula-
tion to integrate. This results in higher uncertainty levels (Fig. 2d,
right side). See Supplementary Fig. 8 for a sample trial with a long
response time where the uncertainty-monitoring module has
sufficient time to integrate.
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Fig. 2 Model accounts for behavioural patterns of decision uncertainty. a Choice accuracy as a function of decision uncertainty (based on peak value of
uncertainty-encoding neuronal population activity). The break in the horizontal axis is at 0.6. b Decision uncertainty as a function of evidence quality ε.
Grey (black): error (correct) choices. Bold (dashed): Uncertainty measure based on averaged peak (peak) or temporal integral (area) of the uncertainty-
encoding neuronal population activity (“Methods”). Error bars are s.e.m. c, d Activity level of uncertainty-encoding population depends on the total input to
the uncertainty-encoding population and evidence quality. Uncertainty activity level is normalized (see “Methods”). c Correct responses. Activity of
uncertainty-encoding population is higher for correct responses in difficult tasks (lower ε) due to prolonged response times (RTs) (Fig. 1d), allowing the
uncertainty-encoding population longer time to integrate. See text for more detailed description. d Error responses. Activity of uncertainty-encoding
population is higher during errors in easier tasks (higher ε) due to prolonged RTs (Fig. 1d), allowing the uncertainty-encoding population longer time to
integrate
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Previous work using a multi-stage decision task paradigm has
shown that the level of decision uncertainty can affect the
response time in a subsequent decision—a form of optimal
strategy43. Specifically, this only occurs if the reward is tied to two
consecutive decisions being answered correctly (i.e. coupled
trials). By allowing the same tonic bias input to the uncertainty-
encoding population in the second trial to vary linearly based on
the decision uncertainty in the first trial of each pair of coupled
trials (see “Methods”), our model can replicate this behaviour
(Fig. 3a), exhibiting a prolonged response time in the second
decision if the first decision is correct. (Fig. 3a). This trend holds
regardless of the evidence quality, with the exception of the
lowest difficulty level (due to very low uncertainty levels during
these tasks; see Figs. 1d and 2c). The model naturally accounts for
this as the neural activity encoding the uncertainty level in the
first decision is carried over to the second decision—e.g. higher
tonic input with higher decision uncertainty level in the previous
trial (“Methods”). This in turn accelerates (decelerates) the
ramping up of neural activity in the sensorimotor populations
and hence decreases (increases) the response time.

Next, we sort the simulated trials based on the outcome of both
the first and second decisions (in each coupled pair) (Fig. 3b), i.e.
correct–error combinations (see Supplementary Note 1 for more

details on how we simulated the multi-stage paradigm).
Interestingly, the model predicts a slightly larger difference when
the second responses are error choices (grey lines) than when the
second responses are correct choices (black lines). This difference
(between the correct and error choices) is more pronounced with
increasing evidence quality. This can be explained by Fig. 2d: due
to the prolonged response time during error choices with higher
evidence quality (Fig. 1d) (leading to longer integration time for
the uncertainty-encoding population) and a higher total input to
the uncertainty-encoding population, higher uncertainty level is
reached. Hence, the larger difference.

Model accounts for change-of-mind. Previous studies have
shown that change-of-mind during decision-making usually
leads to the correction of an impending error4,35. Although
previous studies have linked change-of-mind to the temporal
integration of noisy stimulus4,35, we demonstrate that the
simulated change-of-mind in our biologically motivated model is
due not only to noise but also, more importantly, to the necessity
of an excitatory feedback mechanism induced by decision
uncertainty (Supplementary Figs. 4, 7, and 8). In particular, our
network model replicates the observation4,35 that the probability
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of change-of-mind decreases monotonically with evidence
quality with the majority of trials leading to ultimately correct
choices (Fig. 4a). Further, and consistent with existing
observations4,35, changes to correct choices peak at an inter-
mediate evidence quality level before gradually decreasing
(Fig. 4a). Moreover, our model predicts that response times are
slower during change-of-mind, regardless of evidence quality
(Fig. 4b, overlapping bold and dashed lines). When there is no
uncertainty excitatory feedback loop, decision uncertainty can
still be encoded (Supplementary Fig. 5) but there is no change-
of-mind (Supplementary Fig. 4). This suggests that, for the
biophysically constrained network model, noisy fluctuation may
be necessary but not sufficient to allow significant change-of-
mind behaviour. Importantly, a choice-neutral stable steady state
(or attractor) due to nonlinearity may be needed.

Experimental observations have shown that the neural
instantiation of change-of-mind is associated with a reversal
of dominance of neural activities over time within a trial44. In
our model simulation with change-of-mind, the firing-rate
activities of the competing sensorimotor neuronal populations
reverse their order of dominance over time within a trial (see
Supplementary Figs. 8 and 9a for sample change-of-mind
trials). Figure 5a shows the trial-averaged activity traces of
such reversal condition, which can be directly mapped, via the
motor neuronal population activity (activity is shown in
Fig. 5a, middle panel) into a motor output position in the
spatial X direction (Fig. 5a, bottom; see Supplementary Fig. 9a
bottom for a sample trial). We can observe switching of neural
activity dominance of the sensorimotor neuronal populations
(Fig. 5a, top). Note that, although the switching of dominance
can be small, the difference in activities is integrated and

amplified by the motor neuronal populations (Fig. 5a, middle),
leading to an initial bias towards choice 1/Left (negative X
position) (see also Supplementary Figs. 8 and 9a). Further, it
should be noted that activities of both sensorimotor neural
populations can return to their spontaneous levels—but the
activities of the motor neuronal populations could still
continue to integrate over time, magnifying the difference in
sensory evidence, and hence the motor output can move
towards a choice target (Fig. 5a, bottom; see also Supplemen-
tary Fig. 9a for a sample trial).

A neural circuit mechanism of change-of-mind. Next, we will
apply dynamical systems analysis37 to demonstrate that this
reversal phenomenon is caused not only by noise and strong
sensory evidence favouring one population over the other, as
indicated in previous modelling work35, but also due to the
effective excitatory feedback of the uncertainty-monitoring
module. Similar to our previous work37,45, we plotted the phase
planes of the activities of the sensorimotor neuronal populations
—which are governed by their slow (N-methyl-D-aspartate
(NMDA) mediated) population-averaged synaptic gating vari-
ables, S1 and S2 (Fig. 5b–d). These gating variables are monotonic
functions of their associated neuronal population firing rates37,45.
The stimulus is presented with low evidence quality (ε= 3.2%).
Shown in blue and orange curves in Fig. 5b–d are the nullclines of
the sensorimotor module, and their intersections are the steady
states—the middle saddle-like steady state (or saddle fixed point)
in Fig. 5b, d is unstable while the more off-diagonal ones are
stable steady states associated with the choices (or choice attractor
states) (“Methods”). For the latter, the choice attractor closer to
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Fig. 5 Neural circuit mechanism of change-of-mind behaviour. a Trial-averaged (n= 17) timecourse of firing rates in sensorimotor module (top), motor
module (middle) and corresponding motor trajectory (bottom). Evidence quality ε= 3.2 (favouring population/choice 2/Right). Populations compete after
stimulus onset (time 0). As motor starts moving in one direction (without reaching the target), a reversal of neural activity dominance in sensorimotor
module occurs, leading to a change-of-mind. Note: final decision is made by the motor output in X space (bottom). b Immediately upon stimulus onset
(ε= 3.2, favouring choice 2/Right), the sensorimotor population activity trajectory (black dotted line) in phase space deviates from phase plane diagonal.
Black filled circles: stable steady states representing the two choices i.e. choice attractors; grey filled circle: saddle-like unstable steady state. Refer to main
manuscript regarding content of the phase plane (e.g. nullclines). c During the middle epoch of the trial, large excitatory feedback from uncertainty-
monitoring module causes phase plane to reconfigure, and a new choice-neutral stable steady state appears that aids the initially losing neural population
(population 2). Trajectory is now drawn towards this stable steady state, towards the phase plane diagonal. Inset: Zoom in. d During the later epoch of the
trial, both sensorimotor populations receive lesser excitatory feedback from the uncertainty-monitoring module, resulting in the phase plane reverting
closer to the previous condition during the early epoch of the trial
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the S1 (S2) axis represents the stable (final) state for making
choice 1/Left (2/Right).

With a difficult task (small bias in the phase plane), the
sensorimotor neuronal populations integrate sensory evidence
and ramp up their activities towards one of the two choice
attractors and, on average, almost along the phase-plane diagonal
(Fig. 5b, black dotted trajectory). Fluctuations due to noise
contribute mainly to the initial dominance in the neural activities,
in this case favouring choice 1/Left. This leads to high inhibition
of the uncertainty-encoding population and weak excitatory
feedback to the sensorimotor populations. The prolonged
ramping up of the activities of the sensorimotor populations
eventually allows integration of the activity of the uncertainty-
encoding neuronal population and provides excitatory feedback
to the sensorimotor module. This leads to the reconfiguration of
the phase space and the creation of a new central and choice-
neutral stable steady state, to which the trajectory of
the sensorimotor module activity is now drawn into (Fig. 5c).
Notice that the choice attractors have vanished. Furthermore,
while the trajectory is being drawn, it moves closer towards and
crosses the diagonal line (Fig. 5c). Importantly, the model
suggests that this new stable steady state plays an important role
in change-of-mind—it provides the initially losing neuronal
population a higher chance of winning.

Owing to the transient nature of the uncertainty-encoding
neuronal population activity (Fig. 1b, middle, and Supplementary
Fig. 8), the excitatory feedback returns to baseline level, and the
phase plane reverts to its initial configuration (Fig. 5d) (prior to
the activation of the uncertainty-monitoring module (Fig. 5b)).
This causes the trajectory to move towards the higher part of the
phase plane and, coupled with noise, leads to a change-of-mind
behaviour. Overall, this is reflected in the reversal of dominance
in the neural activities of the motor populations (Fig. 5a, middle)
and motor movement (negative-to-positive) direction (Fig. 5a,
bottom) (see also Supplementary Fig. 9). It should be noted that,
in the model, the final decision is determined by whether the
firing rate of motor neural populations, which themselves
are neural integrators, reach a prescribed target threshold (see
“Methods”). Thus change-of-mind could still occur even if the
activity reversal is not clearly observed in the sensorimotor
module.

In our analyses, we found that the new central choice-neutral
stable steady state is less likely to emerge with higher evidence
quality due to shorter response time and weaker excitatory
feedback from the uncertainty-monitoring module (Fig. 2c, d;
Supplementary Fig. 7). This explains why higher evidence quality
generally leads to lower probability of change-of-mind4,35 (Fig. 4a,
black). For lower evidence quality, the phase plane is almost
symmetrical (Fig. 5b). Thus the network is likely to make an error
choice initially due to noisy fluctuations. This can lead to longer
integration time for the uncertainty-monitoring module and
provides stronger excitatory feedback—in the form of a transient,
centralized attractor state—and consequently, correcting the
decision. Hence, this explains why there are more correct
change-of-mind trials than error change-of-mind trials. However,
increasing the evidence quality leads to lower probability of
change-of-mind, as discussed above. This explains the observed
peak in probability of correct changes-of-mind (Fig. 4a and
Supplementary Fig. 2).

Discussion
We have proposed a novel neural circuit computational model
that encodes decision uncertainty, the reciprocal of decision
confidence. Decision uncertainty in the model can be represented
in real time for online excitatory feedback and for controlling

decision dynamics. Our uncertainty-monitoring module was
developed based on transient neural dynamics observed in animal
and human studies6,25,42 and the relationship between choice
certainty, evidence and response time12,33,34 (e.g. Supplementary
Figs. 1–3). Building on our previous decision-making model37,
our extended neural circuit model can account for several
observations commonly found in experimental studies of decision
confidence and change-of-mind4,6,34,35.

A seminal paper has shown that neuronal firing rates from the
OFC6 can signal decision uncertainty encoded through its phasic
activity, as in our model’s uncertainty-encoding population.
Specifically, the magnitude of the firing rates in single neuronal
recordings in OFC6, peaking around the response initiation time.
This peak is higher the longer the animal waits before opting out
(a measure of decision uncertainty level) (see Supplementary
Fig. 3a). This work was extended11 by showing that inactivation
of OFC neurons during an opt-out waiting task causally affected
the animal opting out (i.e. decision uncertainty reporting) beha-
viour. More recently, EEG (theta band) and fMRI recordings have
also shown neural activities exhibiting similar characteristics25,42,
with phasic activities peaking around the response initia-
tion times, and the peak was higher with higher reported
uncertainty or when an error was detected by the participants.

We have proposed a model that was able to exhibit higher
levels of decision uncertainty and lower choice accuracy with
more difficult tasks6,10,36 (Fig. 2a). Further, the model showed
higher decision uncertainty with lower evidence quality for cor-
rect choices, but counter-intuitively, lower decision uncertainty
for incorrect choices, in line with the previously observed “<”
pattern6,11,33,34 (Fig. 2b, Supplementary Fig. 1). This was
explained by the faster response times for correct choices, with
lesser integration time for the uncertainty-monitoring module,
which led to lower decision uncertainty (Fig. 2c, d). For error
choices, the integration time was longer with higher evidence
quality (Fig. 1d). This led to longer integration time for the
uncertainty-monitoring module and hence higher decision
uncertainty. Furthermore, the uncertainty-monitoring module
provided a closed-loop recurrent network mechanism of excita-
tory feedback with the sensorimotor neuronal population,
enhancing the latter’s responses. This was reminiscent of a
dynamic gain or urgency mechanism46,47. Future work could test
this mechanism, e.g. using a task paradigm that produces fast
error choices48 and determining whether the “<” pattern is
absent.

By utilizing a proxy memory mechanism instantiated in the
existing tonic bias input to the uncertainty-encoding neural
population, our model was also able to show that decision
uncertainty from a correct first trial caused a slower response
time in the second trial, compared to when the first trial was
incorrect (Fig. 3a). Moreover, the model predicted a slightly larger
difference in response times when the second responses were
error choices than when the second responses were correct
choices (Fig. 3b). This difference was more pronounced with
increasing evidence quality. Future work could test our model’s
prediction, for instance, by direct micro-stimulation or inactiva-
tion of the uncertainty-encoding (or outcome anticipation) neu-
rons in the medial frontal cortex, e.g. OFC in rodents6,11 or
subregions in the human frontal cortex49.

The results in Fig. 3a, b could be explained by the uncertainty
level mappings (Fig. 2b–d). Specifically, in pairs of coupled trials,
errors in first decisions led to a higher tonic bias input (and
subsequently, higher overall input, Fig. 2d) in second decisions,
due to higher uncertainty levels in first error decisions (Fig. 2b,
grey) than correct decisions (Fig. 2b, black), which resulted in
stronger excitatory feedback to the sensorimotor module. This led
to faster activity ramping up of the sensorimotor populations,
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which in turn caused faster error (than correct) response times in
second decisions. Furthermore, Fig. 3b showed that such differ-
ential effect would be more prominent for higher evidence
quality.

The same model could exhibit changes-of-mind which were
more likely to occur with lower evidence quality4,35 (Fig. 4a,
grey). Specifically, the model showed that changes-of-mind were
more often accompanied by correcting an impending error choice
—hence more error-to-correct changes than correct-to-error
changes (Fig. 4a, bold black vs. dashed black), consistent with
previous observations4,35. Furthermore, the likelihood of error-
to-correct changes slightly peaked at an intermediate level of
evidence quality before decreasing as the task becomes easier4,35

(Fig. 4a, bold black). The model predicted slower response times
during changes-of-mind, regardless of evidence quality (Fig. 4b).
Critically, when we removed the excitatory feedback from the
uncertainty-monitoring module to the sensorimotor module,
decision uncertainty could still be encoded, but there was no
change-of-mind (Supplementary Figs. 4 and 5). This demon-
strated the importance of the uncertainty-induced excitatory
feedback on changes-of-mind.

We used phase-plane analysis to explain the change-of-mind
phenomenon. First, the process of change-of-mind could be
understood in terms of the sensorimotor network state being
attracted to three distinct basins of attraction: the initial choice,
then to the central choice-neutral “uncertain” state, and finally to
the other choice. With higher evidence quality, we found that the
correct choice attractor dominated the phase plane, with its
generally larger basin of attraction (e.g. Supplementary Fig. 10;
see also ref. 37) and the central attractor was less likely to appear
due to the weaker uncertainty-based excitatory feedback (e.g.
compare Supplementary Fig. 7 to Supplementary Fig. 8). This
explains the monotonic decrease of the probability of change-of-
mind (Fig. 4a). In other words, changes-of-mind did not occur
due to the heavily biased phase plane and fast response times.
However, at low evidence quality levels (ε < 4%), the phase plane
was almost symmetric (Fig. 5b), which led to more initial errors
(Fig. 4a). Under such low-evidence quality, it was increasingly
likely that the network would make an initial error choice37. This
led to longer integration time of the decision uncertainty-
monitoring module and provided stronger excitatory feedback—
in the form of a transient, central choice-neutral stable steady
state—and eventually, correcting the decision (Fig. 5c, d, and
Supplementary Figs. 8 and 9). On the contrary, increasing the
evidence quality led to lower probability of changes-of-mind. This
explains the peak in probability of correct changes-of-mind at an
intermediate evidence quality (Fig. 4a; Supplementary Fig. 2). The
model further suggested that, during changes-of-mind, noisy
fluctuation around the phase-plane diagonal led to subtle devia-
tions early in the trial (Fig. 5). The downstream motor module,
which was itself a neural integrator, amplified any slight deviation
and led to movement being initiated towards a choice target
(Fig. 5a, and Supplementary Figs. 8 and 9).

Figure 6a illustrates a hypothetical decision “potential well”37

that summarizes our key findings for change-of-mind—the cen-
tral attractor, caused by the excitatory feedback from the decision
uncertainty-monitoring module and, coupled with noise, can
allow an initial choice to be altered. The strength and basin of this
attractor depends on the evidence (and elapsed time) for tem-
poral integration based on the outputs of the sensorimotor neu-
ronal populations.

To provide further insights, we have provided a bifurcation (or
stability) analysis of the activity of a neuronal population
(selective to choice 1/Left) in the sensorimotor module, S1, with
respect to the systematic variation (bifurcation parameter) of the
overall excitatory feedback input current from the uncertainty

module with evidence quality ε= 0 (Fig. 6b). The stable steady
states are denoted by black lines, while dotted lines represent the
unstable saddle steady states. During the initial epoch of a trial,
this excitatory feedback input from the uncertainty-monitoring
module (specifically the uncertainty-encoding neuronal popula-
tion) to the sensorimotor population is very low or zero (green
vertical dashed line). This is the regular winner-take-all regime37.
As sensory evidence is accumulated in the sensorimotor popu-
lations, the uncertainty level is increased, which leads to higher
excitatory feedback from the uncertainty-monitoring module.
When the overall excitatory feedback is sufficiently large (~>0.03
nA in our simulations (vertical magenta dashed line)), the net-
work is attracted towards the only present stable steady state, i.e.
the choice-neutral stable steady state. However, this effect is only
transient—in a later epoch of a trial, the neural activity of the
uncertainty-encoding neuronal population may return towards a
lower level, and the decision network would once again revert to
the winner-take-all regime37 (vertical green dashed line).

Unlike previous neurocomputational models35,50, our model
does not rely on explicitly reversing the stimulus input to neural
populations or having a relatively low (first) decision threshold
(to induce faster errors). Further, it does not rely on abstract
mathematical calculation of decision uncertainty28. Inspired by
neural evidence of decision confidence6,25, we have a dedicated
neural module that has a plausible circuit architecture resembling
a cortical column that monitors and quantifies decision uncer-
tainty and controls decision dynamics via excitatory feedback.

Our model complements simpler computational cognitive
models such as the extended drift-diffusion models4,27,51, by
providing a neural circuit perspective on the neural mechanism
behind decision confidence/uncertainty and change-of-mind.
Specifically, our model links to psychophysical data (Figs. 1c, d,
2a, b, 3a, and 4a) and also directly relates to neurophysiological
data (Figs. 1b and 5a and Supplementary Figs. 7, 8, and 9a), which
simpler models cannot readily do. Hence, both psychophysical
(Figs. 3b and 4b) and neural (Figs. 1 and 5 and Supplementary
Figs. 7–10) predictions are naturally embedded in the model.
That said, such biologically motivated (mean-field) models can be
linked back (through various model reductions and assumptions)
to simpler cognitive models such as the drift-diffusion
models37,45,51.

Several cognitive models have been proposed to model differ-
ent roles of the medial PFC and anterior cingulate cortex (ACC),
which include error prediction52. However, it is unclear how the
predicted ACC signals (i.e. negative and positive “surprise” sig-
nals) in such models can influence the dynamics of decision
formation53. In addition to explicitly modelling the dynamics of
perceptual decision uncertainty, our model provides an account
of the effect of decision uncertainty on the dynamics of the
decision formation process: from sensory evidence integration up
to motor output. This results in decision changes “on the fly”
leading to change-of-mind within a trial.

Our distributed neural circuit model is more realistic than
other biologically motivated computational models of decision
confidence or change-of-mind35,50. Evidence shows perceptual
decisions are performed and distributed across multiple brain
regions54. Specifically, the activity of our motor module can be
directly transformed to motor positional coordinates, hence
directly maps to physical output. Our model, with feedforward
connections from sensorimotor to motor modules, suggests that
the reversal of neural activities resembling a change-of-mind
could be more clearly identified in more motor-based neurons
than sensory-based neurons (Fig. 5 and Supplementary Figs. 8
and 9). Future experiments could show the difference in neural
dynamics in different brain regions during change-of-mind tasks,
e.g. via dual recordings at the sensory and motor-based brain
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regions. Importantly, we consider our proposed model to be a
reconciliation of both the bottom-up and top-down views on how
changes-of-mind can occur. Specifically, in our model,
bottom–up evidence4,55 is continually accumulated after the
choice is made through recurrent excitation and noise fluctua-
tion in the sensorimotor and motor modules, while
top–down evidence25,42 is accumulated through the excitatory
feedback loop via the uncertainty-encoding module.

In summary, our work has provided a neural circuit model that
can compute decision confidence or uncertainty within and
across trials while also occasionally exhibiting changes-of-mind.
The model can replicate several important observations of deci-
sion confidence and change-of-mind and is sufficiently simple to
allow rigorous understanding of its mechanisms. Taken together,
our modelling work has shed light on the neural circuit
mechanisms underlying decision confidence and change-of-mind.

Methods
Psychometric and chronometric function. We used a Weibull function56 to fit the
psychometric function, p= 1− 0.5 exp(−ε/α)β, where p is the probability of a
correct choice, ε is the evidence quality, which, in the case of the random-dot
stimulus57,58, is equal to the motion coherence level (c′). With the parameters used
with our model (see Supplementary Table 1), α (the threshold at which the per-
formance is 85%) is set to 7.32%, while β, the slope, is equal to 1.32. We defined the
model’s initial response (or reaction) time as the overall time it took for the sen-
sorimotor neuronal population activity to reach a threshold value of 35.5 Hz from
stimulus onset time.

Modelling sensorimotor populations using two-variable model. We used the
reduced version of the spiking neural network model50 described by its two slowest
dynamical variables, which are the population-averaged NMDA-mediated synaptic
gating variables37. The dynamics of the two neuronal populations can be described
by:

dS1
dt

¼ � S1
τs

þ ð1� S1ÞγHðx1; x2Þ ð1Þ

dS2
dt

¼ � S2
τs

þ ð1� S2ÞγHðx2; x1Þ ð2Þ

where the two excitatory neuronal populations representing the two choice options
are labelled 1 and 2, and the S’s are the population-averaged NMDA-mediated
synaptic gating variables. γ is some fitting constant based on previous work37. τS

denotes the synaptic gating time constant (100 ms) constrained by NMDA receptor
physiology. H denotes the nonlinear single-cell input-output function fitted to that
of a spiking neuronal model. The firing rates of the sensorimotor populations can
be described by these three equations:

Hi ¼
axi � b

1� e�dðaxi�bÞ ð3Þ

xi ¼ JN;iiSi � JN;ijSj þ I0 þ Ii þ Jmc0yU ð4Þ

Ii ¼ JA;ext μ0 1 ±
ε

100%

� �
ð5Þ

where a, b, and d are parameters for the input–output function fitted to a leaky
integrate-and-fire neuronal model37. The dynamical variables Si and Sj are from
Eqs. (1) and (2). JN,ii and JN,ij are synaptic coupling constants from recurrent
connections. I0 denotes a constant value that represents an effective bias input from
the rest of the brain. Ii denotes the excitatory stimulus input to population i and is
proportional to the evidence quality ε, with the stimulus strength constant denoted
by μ0: Ii ¼ JA;ext μ0 1 ± ε

100

� �
. JA,ext represents the external synaptic coupling con-

stant. In addition to the features in the previous work37, the strength of excitatory
feedback from the uncertainty-encoding population is controlled by Jmc0. Hence,
decision uncertainty is monitored and fed back to the sensorimotor populations via
excitatory feedback.

Uncertainty monitoring neuronal populations. A key aim of our modelling work
is to understand how the neural circuit dynamics and choice behaviour can be
modulated by decision uncertainty. In particular, our proposed uncertainty-
monitoring module can lead to error correction through change-of-mind within a
trial. It should be noted that, while modelling decision uncertainty, the model was
constrained by the neural profile of uncertainty-encoding neurons (or brain
regions) observed in experiments (single neuronal recording6, EEG recordings25,
and fMRI recordings42).

Two neural populations mimicking a canonical cortical microcircuit were
implemented. One population, an inhibitory population, integrates the summed
output of the two sensorimotor neuronal populations while another population, an
excitatory population, monitors decision uncertainty. Their dynamics are described
by:

τmc
dyinh
dt

¼ ½JV ;inhðHi þ HjÞ � g�þ � yinh ð6Þ

τmc
dyU
dt

¼ ½μ� JN;inh yinh � g�þ � yU ð7Þ

where yinh and yU are the dynamical variables of the inhibitory neuronal population
and uncertainty-encoding population, respectively. []+ denotes a threshold-linear
input–output function (with a threshold of 0), with its input argument in units of
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Fig. 6 Uncertainty-induced, symmetric stable steady state causes change-of-mind. a Top-to-bottom: Hypothetical “potential well” of network changes over
epochs within a trial (arrow). When making a choice between two alternatives, the strength of the stimulus (and noise) drives the ball towards one of the
two wells (in this case, an error choice). A transient strong excitatory input (due to excitatory feedback from uncertainty-monitoring module) changes the
“energy” landscape into one centralized deep well, allowing a higher chance to change its initial decision. b Bifurcation (or stability) diagram of the activity
of a neuronal population selective to choice 1/Left in the sensorimotor module, S1, with respect to variation in the overall excitatory feedback input current
from the uncertainty-monitoring module. Evidence quality ε= 0. Black bold: stable steady states; black dotted: unstable saddle steady states. Dashed
green: initial low uncertainty-induced excitatory feedback and lying within the winner-take-all regime. Dashed magenta: intermediate epoch of a trial with
large uncertainty-induced excitatory feedback—only one stable steady state exists. Later epoch of a trial reverts back to green dashed line
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nA. JV,inh denotes a synaptic coupling constant from the sensorimotor populations
to the inhibitory neuronal population. Hi and Hj are the neuronal population firing
rates from the sensorimotor populations i, j. g represents some top–down
inhibition (1000 nA) on the uncertainty-encoding (and inhibitory) population
from beginning of trial, which is removed 500 ms from Eqs. (6) and (7) after
stimulus onset, respectively (see Supplementary Fig. 11 where the effect of this
timing feature on the model performance was explored). We used these delay
values for all the figures in the main text and in Supplementary Information, unless
noted otherwise (see Fig. 1). When the activity of one of the sensorimotor neuronal
populations crosses a threshold value (35.5 Hz), g is reactivated (3000 nA). This
results in the activity pattern of uncertainty-monitoring module to mimic data
observed in neural recordings6,25 (see Fig. 1b, middle panel). JN,inh denotes the
inhibition strength from the inhibitory neuronal population to uncertainty-
encoding neuronal population, while μ is some excitatory constant bias input that
can be modulated (only in multi-stage decisions) by decision uncertainty from the
first trial in a pair of coupled trials (see below).

Motor neuronal populations. Similar to the uncertainty-monitoring neuronal
populations, we dynamically modelled the motor output module using threshold-
linear functions (with a threshold value of 0). Two neural populations selective for
right and left—with mutual inhibition—were used. The persistent activity can be
maintained using mutual inhibition to create a line attractor model59. The
dynamics of the neuronal populations for the two choices (1 and 2) are described
by:

τh
dyL
dt

¼ ½J H1 � JN;LR yR � g�þ � yL ð8Þ

τh
dyR
dt

¼ ½J H2 � JN;RL yL � g�þ � yR ð9Þ

where yR and yL are the dynamical variables of the left and right motor neuronal
populations, respectively. H1 and H2 are the firing rates from the two corre-
sponding sensorimotor populations (Fig. 1) and the associated coupling constant
J= 1 nA Hz−1. JN,ij denotes a coupling constant from population i to population j.
The negative sign indicates connectivity is effectively inhibitory. Similar to the
uncertainty-monitoring module, g represents some top–down inhibition (1000 nA)
on the motor populations from beginning of trial and is removed when the activity
of one of the sensorimotor neuronal populations crosses a threshold value
(35.5 Hz).

Mapping the activity of the motor module to X position. The motor module
output as a position in the x directional space is approximated by a linear function:

x ¼ qðyL � yRÞ ð10Þ
where q is a constant scaling factor with a value determined by the equation:

q ¼ jTposj=Mth ð11Þ
where Tpos is the hypothetical position of the two opposing choice targets. 1366 ×
768 is one of the most commonly used screen resolutions. Therefore, in the model,
this value is set to 750 or −750 (close to the edge of the x dimension). Mth is the
motor target threshold, set to 17.4 Hz.

Uncertainty within a single trial. We used two measures to quantify the level of
decision uncertainty in a trial. For the first measure, we used the maximum firing
rate value of the uncertainty-encoding population for each trial n, allowing real-
time monitoring of decision uncertainty. For a specific evidence quality value, we
calculated the trial-averaged and SEM of these maximal values. For the second
measure, we calculated the area under the curve of the firing rate activity over time
of the uncertainty-encoding population using the trapezoidal numerical integration
scheme for each trial n. This provides an overall quantification of decision con-
fidence after a choice is made. It also acts as a proxy for any downstream neural
integrator that temporally integrates real-time decision uncertainty information.
Again, for each evidence quality value, we calculated the mean and SEM of the
areas. Either measure of decision uncertainty is then normalized using feature
scaling to bring all values within the range [0,1]. This is done by:

X′ ¼ X � Xmin

Xmax � Xmin
ð12Þ

Uncertainty across coupled trials. In coupled trials, the evidence quality of the
second trial was selected probabilistically from a uniform distribution, where ε∈ [0,
3.2, 6.4, 12.8, 25.6, 51.2]. The area under the curve of the summed activity of the
uncertainty-encoding population at trial n, Xn, is transformed and stored into some
activity measure C in the subsequent trial. We used a simple linear transformation
described by

Cnþ1 ¼ αXn þ β ð13Þ
where n denotes the trial number and α and β are scaling parameters. The para-
meter values set in this work are α= 0.008 nA and β= 0.5 nA. This value of Cn+1 is

then used to modulate the tonic input (and hence baseline activity) of the
uncertainty-encoding population (μ, in Eq. (7)) in the second trial using the fol-
lowing update:

μ ! μþ Cnþ1 ð14Þ
Upon the completion of a pair of coupled trials, the uncertainty bias Cn+1,

stored in μ, is reset to 0.

Regression and classification of model outputs. We used a smoothing spline
function in MATLAB to fit the model’s decision accuracy as function of uncer-
tainty level. We also performed a linear regression on all our simulated response
times with decision uncertainty levels (R2= 0.993). The two variables were highly
correlated (Pearson’s r= 0.85, p value= 0) (see Supplementary Fig. 6). The model
behaviour is identified to have a change-of-mind if there is a reversal in the order of
dominance between the two motor neuronal population firing rates, i.e. if there is a
change in the sign of x (Eq. 10), and a choice target is eventually reached (before a
4 s timeout—see below) (see Fig. 5a and Supplementary Figs. 8 and 9).

Simulation and analysis. The code to simulate the model was written in MATLAB
(version 2018a) and was run on a Mac OS X workstation. The forward
Euler–Maruyama numerical integration scheme with an integration time step of
0.5 ms was used for numerical integration of the dynamical equations (describing
dynamics within a trial). Smaller time steps were checked (e.g. 0.01 ms) without
affecting the results. XPPAUT60 was used to perform dynamical systems (phase-
plane) analysis and for parameter search on each neural module and for the
bifurcation analysis. The model’s parameter values are summarized in Supple-
mentary Table 1. The model was simulated under a response-time task paradigm
with a timeout of 4 s. The stimulus appeared 900 ms after a trial has begun. Only
2.2% of the total simulated trials (8000 trials per condition) were indecision trials in
which the motor activity did not cross the 17.4 Hz threshold, i.e. choice target was
not reached. These simulated trials were discarded and not included in our
analyses.

Selection of parameter values. Please refer to Supplementary Table 1 for more
information on how the parameter values were selected. In some cases, parameters
were adopted from previous work37. Some parameter values, such as Jmc0 (coupling
strength between the uncertainty-encoding and sensorimotor populations) and the
integration timing parameters were selected to fit qualitative aspects of existing
observations (“<” pattern6,11,33,34, probability of changes-of-mind4, neural profile
of experimentally observed uncertainty-encoding neurons and regions6,25). We
describe the effect of changing these parameter values on model behaviour in
Supplementary Figs. 4 and 11.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Code written in MATLAB and XPPAUT was used to simulate the model and generate
the figures. The code is hosted at the following GitHub repository: https://github.com/
nidstigator/uncertainty_com_modelling. The accompanied “README” file includes
detailed instructions on how to reproduce all the figures in the main manuscript and
Supplementary Information. All data shown were generated via simulating the model
(see above). No data collection was performed. The “README” file in our Github repo
(see above) clearly outlines instructions on how to generate the data.
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