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Narrow escape problem for Brownian particles in a microsphere with internal circulation
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This paper considers the narrow escape problem of a Brownian particle within a two-dimensional domain with
two escape windows and an internal circulation modeled by the flow within a Hill’s vortex. To account for the
spatially inhomogeneous flow within the domain, a Lagrangian study is undertaken using the complete equations
of motion for a dense particle which is necessary to distinguish between the various regimes as the strength of
the internal circulation is varied. For very low internal circulation the particle undergoes the conventional narrow
escape problem, and agreement is good with the asymptotic expression. As the internal circulation is increased,
regimes are identified with different scaling for the mean escape time. The potential application of this for drug
delivery (were nanoparticles are encased in a microsphere) is discussed.
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I. INTRODUCTION

The narrow escape problem, which can be dated back
to Rayleigh [1], involves a particle undergoing Brownian
motion in an enclosed domain, where the boundaries are all
reflecting except a small window, through which the particle
can escape [2]. There are many biological applications where
this occurs including calcium decay in dendritic spines [2]
and phototransduction [3], resulting in an intense period of
research in the field in the last decade. There are also many
variations of the problem which can be studied, including hav-
ing multiple windows [4], imperfect trapping [5], and mixed
transport boundaries [6]. Due to the very small time steps
required for this problem (to resolve the Brownian motion
timescales) the narrow escape problem is usually approached
using asymptotic methods (see review in Ref. [7]), although
some Monte Carlo studies have also been made [8]. Only
recently have studies been undertaken to look at the effect of
having a drift in the domain, which has included planar flow
[9] and flow in an annulus [10].

Particles moving within and around spherical bubbles and
vortices have been studied in the context of industrial and
environmental processes. Small water droplets dispersing and
depositing in a rising bubble, where the internal circulation
was modeled using a Hill’s vortex, were studied using an
Eulerian transport model [11] and a Lagrangian model [12].
It was found that the Eulerian model overpredicted the time
taken for particles to be deposited on the bubble. The disper-
sion of sedimenting small dense particles through and around
a rising Hill’s vortex was also studied [13]. Related to this
work is the enhanced diffusivity of impurities in Rayleigh-
Benard convection cells [14].

In this work we consider the narrow escape problem of
a Brownian particle within a moving microsphere that has
internal circulation modeled as a Hill’s vortex. To account
for this spatially inhomogeneous flow, the full equations of
motion for the particle are required, and a detailed study is
made when the various force contributions are important as
the strength of the internal circulation is varied and regimes

are identified with different scaling for the mean escape time.
The potential application of this study to drug delivery is then
discussed.

This paper is structured as follows: The numerical model-
ing is described in Sec. II, which will include the model for the
fluid phase, the equations of motion for a dense particle and
details of the numerical simulations. In Sec. III the results are
presented. Discussion and conclusions are given in Sec. IV.

II. METHODOLOGY

In this section the modeling of the fluid phase and the
equations of motion for the nanoparticle are described. After
this, details of the numerical simulations are given.

A. Fluid phase

In this work the fluid phase will be modeled as the flow
within a Hill’s vortex [15]. The Stokes stream function � for
a Hill’s vortex with radius R, propagating with speed U in the
x direction [see Fig. 1(a) for the schematic] is [13]

�(x, y) = − 3U
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In Fig. 1(b) the streamlines of the internal circulation are
plotted. In the frame of reference of the moving sphere, the
velocities in a cylindrical coordinate system in the sphere are
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and

uy = − 3U

2R2
xy. (3)

The azimuthal component of vorticity is

ωθ = 15Uy

2R2
. (4)
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FIG. 1. (a) Schematic of the narrow escape problem of a Brow-
nian particle within a microsphere (of radius R, traveling at speed
U ) of fluid. The Brownian particle moves according to (14) and is
reflected by all boundaries except two windows, of angle 2α, on
either side through which it can escape. (b) Streamlines of a Hill’s
vortex showing the circulatory pattern within a microsphere due to
its movement through the ambient fluid.

As can be seen from (2)–(4), U is not only the speed of the
microsphere but also a measure of the strength of the internal
circulation of the fluid.

B. Particle modeling

The position of a particle (with mass mp) with radius rp

and density ρp moving in a fluid with density ρ f and dynamic
viscosity μ f is given by

dx
dt

= v (5)

and

mp
dv

dt
= FD + FB + FA + F I + FS + FH + Fg, (6)

where FD, FB, FA, F I , FS , FH , and Fg are the drag, Brow-
nian, added mass, inertial, shear induced lift, history, and
gravitational force, respectively. This is the same equation as
in Ref. [13], except that this formulation also includes the
Brownian motion force. History effects are neglected, which
is appropriate when 9ρ f /2ρp � 1, as is the case in this study
[16]. The particle is assumed to stay in the horizontal, two-
dimensional plane shown in Fig. 1(b), so gravitational effects
are not considered. The drag force is given by the Stokes drag
law, which is

FD = 6μ f πrp

Cc
(u − v), (7)

where u and v are the fluid and particle velocity, respectively
[17]. Cc is the Cunningham correction factor, which is related
to the mean free path, λ, as

Cc = 1 + λ

rp
(1.257 + 0.4e−1.1rp/λ) (8)

and is significant for gases. The amplitudes of the Brownian
motion force components are given in Ref. [18] as

FB = ζ

√
2k2

bT 2
f

D	t
, (9)

where ζ is a zero-mean, unit-variance-independent Gaussian
random number, and 	t is the integration time step, where Tf

is the absolute temperature of the fluid, kb is the Boltzmann
constant, and the diffusion coefficient is given by

D = kbTf Cc

6πμ f rp
. (10)

The added mass force is

FA = ρ f Cm
4

3
πr3

p

(
Du
Dt

− dv

dt

)
, (11)

where the added mass of the particle is important when
ρp/ρ f ≈ 1. The added mass coefficient is Cm = 1/2 for a
spherical particle [13]. The shear-induced lift force is

FS = ρ f CL
4
3πr3

p(u − v) × ω, (12)

where CL = 2 for a spherical particle [19]. The inertial term is

F I = 4

3
πρ f r3

p

Du
Dt

. (13)

The expressions for FA and F I can be simplified as the flow
is steady in the frame of reference of the moving microsphere.
The full particle equation of motion is therefore

(mp + ma)
dv

dt

= 6μ f πrp

Cc
(u − v)︸ ︷︷ ︸

FD

+ ζ

√
2k2

bT 2

D	t︸ ︷︷ ︸
FB

+ (1 + Cm)
4

3
πρ f r3

pu · ∇u︸ ︷︷ ︸
F I+A

+ ρ f CL
4

3
πr3

p(u − v) × ω︸ ︷︷ ︸
FS

,

(14)

where ma = 4/3Cmπr3
p. The equations of motion can be

nondimensionalized using ṽ = v/U , ũ = u/U , x̃ = x/R, and
τ = tD/R2, which reduces (14) to

d ṽ

dτ
=

(
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)
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+
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D

)(
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)
(ũ − ṽ) × ω̃︸ ︷︷ ︸

FS

, (15)

where τR = R2/D is the time taken for the particle to diffuse to
the radius of the microsphere and τB = (mp + ma)/(6πμ f rp)
is the Brownian relaxation time. The time step has been set
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TABLE I. Simulation parameters for numerical simulations for rp = 10, 50, and 100 nm particles and U = 10−4−6 m/s.

ρp (kg m−3) μ f (Pa s) ρ f (kg m−3) T (K) λ (m) α R(m)

1000 1.8 × 10−5 1.22 308 65 × 10−9 π/60 10 × 10−6

to τB/2 to resolve the Brownian timescales. We can therefore
identify five dimensionless groups: τR/τB, Cc, β = ρp/ρ f ,
UR/D, and |v|′/U , where

|v|′ =
√

3kbTf

mp + ma
. (16)

The drag force can be further decomposed into FD = FDu +
FDv , which are the contributions due to the bulk flow and the
particle velocities, respectively. When U/|v|′ → 0, Brownian
motion is important. This nondimensionalization is different
from Ref. [20], which compared Brownian and turbulent
diffusion, which is not appropriate for this study.

C. Numerical simulations

In this work we use numerical simulations to investigate
the narrow escape problem with internal circulation. The
methodology is validated by numerical integration of (14) in
a quiescent, unbounded domain (u = 0) and comparing the
velocity and root-mean-square (rms) displacement statistics
against theoretical predictions. Results of this validation study
are given in the Appendix.

The large number of variations of this problem (as will be
discussed later) means that we have chosen three radii and
only one size escape window (2α = π/30) and focused on
the effect of varying the strength of the internal circulation.
Due to the internal circulation resulting in a symmetrical flow
field, two escape windows were used to maintain symmetry
of the problem. To give this work biological context the
radii of the particles were chosen to be 10, 50, and 100 nm
within a microsphere of R = 10 × 10−6 m. The microsphere
speeds studied included the range found in the human body,
which is approximately 10−4−1 m/s. The fluid within the

microsphere was assumed to be air (see Table I). Here 200 000
particles were released at the origin and were tracked for every
parameter set, and averages were taken. To conform to the
no-flux conditions, particles perform an elastic collision with
the boundaries.

III. RESULTS

A. Particles released from the origin

In Fig. 2 the nondimensionalized mean escape time T̄ D/R2

is plotted against varying internal strength U/|v|′ where three
regimes can be identified. Regime I occurs when the internal
circulation is very low (i.e., U/|v|′ → 0) so that the problem
reduces to that of a narrow escape problem with two windows.
Agreement with the asymptotic expression given in Ref. [18]
is good. For Regimes II and III, the scalings for the mean
escape time are ∼(U/|v|′)−2/3 and ∼(U/|v|′)−2, respectively.
To gain more insight into Regimes II and III, the histograms
of the escape time are plotted in Figs. 3(a)–3(c). In Regime II,
for low U/|v|′ (Regime IIa), the histogram plot is similar to
that in Regime I but is more concentrated at lower values of
T̄ D/R2 [7]. For Regime II, but higher U/|v|′ (Regime IIb), the
histograms indicate a multimodal distribution. By plotting the
particle trajectories [see Fig. 3(e)] it is possible to see that in
this regime the particle is no longer influenced by Brownian
forcing [in contrast to Regime IIb; see Fig. 3(d)] resulting in
it being convected by the bulk flow and towards the escape
window. However, each time it passes the escape window it
will not necessarily escape, and therefore if it does not, it will
be convected around the hemisphere until it does, resulting
in the observed distribution. When U/|v|′ > 1, the particle is
convected towards the stagnation point and around the edge
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100

102
Regime I Regime II Regime III

10-5 100
10-4

10-2

100

102
Regime I Regime II Regime III

(a) (b)

FIG. 2. Plot of variation of the nondimensional average escape time T̄ D/R2 with U/|v|′ for a particle starting at (a) x = {0, 0} and (b) x =
{0, 0.707a} [point A in Fig. 1(b)]. In Regimes II and III the scaling is (U/|v|′)−2/3 and (U/|v|′)−2, respectively. The symbols denote 10 nm
(×), 50 nm (�), and 100 nm (∗) radii particles, with the histograms of the escape time for the filled squares shown in Figs. 3(a)– 3(c). The gray
line is the asymptotic mean escape time with two windows and no background flow [21].
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Histogram of the nondimensional escape time [(a)–(c)] and typical particle trajectories [(d)–(f)] for the 50 nm radius particle for
U/|v|′ = 0.006 (a, d), 0.06 (b, e), and 19 (c, f) (filled squares in Fig. 2). In panel (e) the particle has an escape time of T D/R2 ≈ 0.045 showing
the multimodal nature in Regime II. The red circle in panels (d)–(f) marks where the particle leaves the domain (between the two ×’s, which
denote the edges of the escape window).

of the hemisphere and then (with high probability) escapes
immediately at the upper most point of the escape window
[see Figs. 3(c) and 3(f)].

For low U/|v|′, FB and FDv are the dominant terms. In
Regime II, FDu is also significant, which can be seen in
Fig. 3(d) where the particle is advected by the background

flow but is also subjected to the random motions associated
with Brownian motion. For high U/|v|′ the inertial term plays
a role in removing the particle out of the domain. The lift force
does not play a major role for these parameters. However, this
is significant only for the largest particle (i.e., 100 nm radius
particle). Therefore to summarize

Regime I: U/|v|′ < 10−3, FB ∼ FDv � FDu ∼ F I+A ∼ FS,

Regime II: 10−3 < U/|v|′ < 1, FB ∼ FDv ∼ FDu � F I+A ∼ FS,

Regime III: U/|v|′ > 1, FB ∼ FDv ∼ FDu ∼ F I+A � FS.

(17)

B. Effect of particle starting position

Additional numerical simulations were carried out to in-
vestigate the effect of particle starting position on the average
escape time. Particles were released at locations between the
origin and point A in Fig. 1(b). As the results were quite
similar to those released at the center of the microsphere, only
the results from particles released at point A are shown in
Fig. 2(b). For U/|v|′ → 0, there is a decrease in the mean

escape time as the particle is moved towards the escape
window. For example, a 10 nm particle released at the origin
takes (on average) 35% longer than a particle released at point
A. However, for U/|v|′ > 1, the mean escape time is greater
for particles released from the center of the vortical region
(i.e., point A). This is because there is zero background flow
at this point and the particle first needs to diffuse due to
Brownian motion to get advected towards the escape window.

TABLE II. Velocity statistics for the numerical simulations compared to the theoretical values given in (A1).

Velocity (ms−1)

Radius (nm) v′
1 v′

2 w′
3

√
kbTf /(mp + ma ) |v|′ √

3kbTf /(mp + ma)

10 1.02 1.02 1.02 1.01 1.76 1.74
50 0.09 0.09 0.09 0.09 0.16 0.16
100 0.032 0.032 0.032 0.032 0.055 0.055
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FIG. 4. Root-mean-square displacement of a (a) 10 nm, (b) 50 nm, and (c) 100 nm particle with time, where τd = 6πμr3
p/(kbTf ). The

dashed line is the theoretical prediction (A2).

IV. DISCUSSION AND CONCLUSIONS

This work has studied the narrow escape problem for a
Brownian particle with a background flow, which is modeled
with the internal flow of a Hill’s vortex. Three different
regimes are identified. For low U/|v|′, the particle under-
goes Brownian motion, and good agreement is found with
the asymptotic narrow escape relationship. As the internal
circulation is increased, the bulk flow has a significant effect
on the mean escape time, scaling first as (U/|v|′)−2/3 and
then (U/|v|′)−2. A general description for the particle motion
was given, and although not all forces were significant (i.e.,
the shear-induced lift force), it serves as a general framework
for future studies. Due to the computational expense of the
numerical simulations, these problems could benefit from
future investigations into analytical solutions.

There are many more variations of the problem which can
be explored including three dimensions and different number
and size of the escape window. Therefore, this work should be
seen as a preliminary study, and further work could include
the following. First, the circulation within the microsphere
was considered to be inviscid. This is a relatively good ap-
proximation for a gas bubble (as studied here) except for the
thin boundary layers adjacent to the surface [22]. However,
for liquid microspheres, this assumption is less valid as the
viscosity of the liquid needs to be taken into account. These
corrections to the velocity field could be made by using the
theory in Refs. [23,24]. Additional unsteady effects of the
microsphere decelerating or accelerating through a straining
flow will result in either spin up or spin down of the inter-
nal circulation, which could be studied [25]. The motion of
Brownian particles is significantly affected by the presence of
boundaries, whether no-slip or slip boundary conditions are
applied, and this could be considered in the future [26].

Drug delivery using bubbles and microgels which respond
to mechanical stimuli, including compression, tension, and

shear, are seen as a potential method for increasing therapeutic
efficacy [27,28]. Therefore one potential application of this
work is drug delivery from a microsphere; as the microsphere
moves through the body, the strength of the internal circu-
lation will be dependent on the speed of the microsphere.
As was shown, the strength of the internal circulation has
a profound influence on the mean escape time. Therefore,
this hydrodynamic effect could be exploited in future drug
delivery methods.
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APPENDIX

This validation study focused on the particle parameters
given in Table I. Here 2000 particles were released and tracked
in time. The diagnostics are the velocity statistics and the rms
displacement of the particles with time. The velocity statistics
can be deduced from the equipartition theorem

v′
1 = v′

2 = v′
3 =

√
kbTf

mp + ma
. (A1)

The rms displacement is given by

|x|′ =
√

6Dt . (A2)

Table II and Fig. 4 show the comparison of the velocity statis-
tics and rms displacement between the numerical simulations
and the theoretical values, respectively. Agreement is good in
all cases.
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