
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
CCantor Meets Scott: Semantic

Foundations for Probabilistic Networks

Steffen Smolka
Cornell University, USA

Praveen Kumar
Cornell University, USA

Nate Foster
Cornell University, USA

Dexter Kozen
Cornell University, USA

Alexandra Silva
University College London, UK

Abstract
ProbNetKAT is a probabilistic extension of NetKAT with a de-
notational semantics based on Markov kernels. The language is
expressive enough to generate continuous distributions, which raises
the question of how to compute effectively in the language. This
paper gives an new characterization of ProbNetKAT’s semantics
using domain theory, which provides the foundation needed to build
a practical implementation. We show how to use the semantics to
approximate the behavior of arbitrary ProbNetKAT programs using
distributions with finite support. We develop a prototype implemen-
tation and show how to use it to solve a variety of problems including
characterizing the expected congestion induced by different rout-
ing schemes and reasoning probabilistically about reachability in a
network.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

Keywords Software-defined networking, Probabilistic semantics,
Kleene algebra with tests, Domain theory, NetKAT.

1. Introduction
The recent emergence of software-defined networking (SDN) has
led to the development of a number of domain-specific program-
ming languages (Foster et al. 2011; Monsanto et al. 2013; Voellmy
et al. 2013; Nelson et al. 2014) and reasoning tools (Kazemian et al.
2012; Khurshid et al. 2013; Anderson et al. 2014; Foster et al. 2015)
for networks. But there is still a large gap between the models pro-
vided by these languages and the realities of modern networks. In
particular, most existing SDN languages have semantics based on
deterministic packet-processing functions, which makes it impossi-
ble to encode probabilistic behaviors. This is unfortunate because in
the real world, network operators often use randomized protocols
and probabilistic reasoning to achieve good performance.

Previous work on ProbNetKAT (Foster et al. 2016) proposed
an extension to the NetKAT language (Anderson et al. 2014; Fos-
ter et al. 2015) with a random choice operator that can be used
to express a variety of probabilistic behaviors. ProbNetKAT has a
compositional semantics based on Markov kernels that conserva-
tively extends the deterministic NetKAT semantics and has been
used to reason about various aspects of network performance includ-
ing congestion, fault tolerance, and latency. However, although the
language enjoys a number of attractive theoretical properties, there
are some major impediments to building a practical implementation:

(i) the semantics of iteration is formulated as an infinite process
rather than a fixpoint in a suitable order, and (ii) some programs
generate continuous distributions. These factors make it difficult
to determine when a computation has converged to its final value,
and there are also challenges related to representing and analyzing
distributions with infinite support.

This paper introduces a new semantics for ProbNetKAT, fol-
lowing the approach pioneered by Saheb-Djahromi, Jones, and
Plotkin (Saheb-Djahromi 1980, 1978; Jones 1989; Plotkin 1982;
Jones and Plotkin 1989). Whereas the original semantics of Prob-
NetKAT was somewhat imperative in nature, being based on stochas-
tic processes, the semantics introduced in this paper is purely func-
tional. Nevertheless, the two semantics are closely related—we give
a precise, technical characterization of the relationship between
them. The new semantics provides a suitable foundation for build-
ing a practical implementation, it provides new insights into the
nature of probabilistic behavior in networks, and it opens up several
interesting theoretical questions for future work.

Our new semantics follows the order-theoretic tradition estab-
lished in previous work on Scott-style domain theory (Scott 1972;
Abramsky and Jung 1994). In particular, Scott-continuous maps
on algebraic and continuous DCPOs both play a key role in our
development. However, there is an interesting twist: NetKAT and
ProbNetKAT are not state-based as with most other probabilistic
systems, but are rather throughput-based. A ProbNetKAT program
can be thought of as a filter that takes an input set of packet histories
and generates an output randomly distributed on the measurable
space 2H of sets of packet histories. The closest thing to a “state”
is a set of packet histories, and the structure of these sets (e.g., the
lengths of the histories they contain and the standard subset relation)
are important considerations. Hence, the fundamental domains are
not flat domains as in traditional domain theory, but are instead the
DCPO of sets of packet histories ordered by the subset relation. An-
other point of departure from prior work is that the structures used
in the semantics are not subprobability distributions, but genuine
probability distributions: with probability 1, some set of packets is
output, although it may be the empty set.

It is not obvious that such an order-theoretic semantics should
exist at all. Traditional probability theory does not take order and
compositionality as fundamental structuring principles, but prefers
to work in monolithic sample spaces with strong topological prop-
erties such as Polish spaces. Prototypical examples of such spaces
are the real line, Cantor space, and Baire space. The space of sets of
packet histories 2H is homeomorphic to the Cantor space, and this

1 2016/11/22

ar
X

iv
:1

60
7.

05
83

0v
5

 [
cs

.P
L

]
 2

1
N

ov
 2

01
6

was the guiding principle in the development of the original Prob-
NetKAT semantics. Although the Cantor topology enjoys a number
of attractive properties (compactness, metrizability, strong separa-
tion) that are lost when shifting to the Scott topology, the sacrifice is
compensated by a more compelling least-fixpoint characterization
of iteration that aligns better with the traditional domain-theoretic
treatment. Intuitively, the key insight that underpins our develop-
ment is the observation that ProbNetKAT programs are monotone:
if a larger set of packet histories is provided as input, then the likeli-
hood of seeing any particular set of packets as a subset of the output
set can only increase. From this germ of an idea, we formulate an
order-theoretic semantics for ProbNetKAT.

In addition to the strong theoretical motivation for this work, our
new semantics also provides a source of practical useful reasoning
techniques, notably in the treatment of iteration and approximation.
The original paper on ProbNetKAT showed that the Kleene star
operator satisfies the usual fixpoint equation P ∗ = 1 & P ; P ∗,
and that its finite approximants P (n) converge weakly (but not
pointwise) to it. However, it was not characterized as a least fixpoint
in any order or as a canonical solution in any sense. This was a
bit unsettling and raised questions as to whether it was the “right”
definition—questions for which there was no obvious answer. This
paper characterizes P ∗ as the least fixpoint of the Scott-continuous
map X 7→ 1 & P ;X on a continuous DCPO of Scott-continuous
Markov kernels. This not only corroborates the original definition
as the “right” one, but provides a powerful tool for monotone
approximation. Indeed, this result implies the correctness of our
prototype implementation, which we have used to build and evaluate
several applications inspired by common real-world scenarios.

Contributions. This main contributions of this paper are as fol-
lows: (i) we develop a domain-theoretic foundation for probabilistic
network programming, (ii) using this semantics, we build a pro-
totype implementation of the ProbNetKAT language, and (iii) we
evaluate the applicability of the language on several case studies.

Outline. The paper is structured as follows. In §2 we give a high-
level overview of our technical development using a simple running
example. In §3 we review basic definitions from domain theory
and measure theory. In §4 we formalize the syntax and semantics
of ProbNetKAT abstractly in terms of a monad. In §5 we prove
a general theorem relating the Scott and Cantor topologies on 2H.
Although the Scott topology is much weaker, the two topologies
generate the same Borel sets, so the probability measures are the
same in both. We also show that the bases of the two topologies are
related by a countably infinite-dimensional triangular linear system,
which can be viewed as an infinite analog of the inclusion-exclusion
principle. The cornerstone of this result is an extension theorem
(Theorem 8) that determines when a function on the basic Scott-open
sets extends to a measure. In §6 we give the new domain-theoretic
semantics for ProbNetKAT in which programs are characterized as
Markov kernels that are Scott-continuous in their first argument. We
show that this class of kernels forms a continuous DCPO, the basis
elements being those kernels that drop all but fixed finite sets of input
and output packets. In §7 we show that ProbNetKAT’s primitives
are (Scott-)continuous and its program operators preserve continuity.
Other operations such as product and Lebesgue integration are also
treated in this framework. In proving these results, we attempt
to reuse general results from domain theory whenever possible,
relying on the specific properties of 2H only when necessary. We
supply complete proofs for folklore results and in cases where we
could not find an appropriate original source. We also show that
the two definitions of the Kleene star operator—one in terms of
an infinite stochastic process and one as the least fixpoint of a
Scott-continuous map—coincide. In §8 we apply the continuity
results from §7 to derive monotone convergence theorems. In §9

we describe a prototype implementation based on §8 and several
applications. In §10 we review related work. We conclude in §11 by
discussing open problems and future directions.

2. Overview
This section provides motivation for the ProbNetKAT language and
summarizes our main results using a simple example.

Example. Consider the topology shown in Figure 1 and suppose
we are asked to implement a routing application that forwards all
traffic to its destination while minimizing congestion, gracefully
adapting to shifts in load, and also handling unexpected failures.
This problem is known as traffic engineering in the networking
literature and has been extensively studied (Fortz et al. 2002; He
and Rexford 2008; Jain et al. 2013; Applegate and Cohen 2003;
Räcke 2008). Note that standard shortest-path routing (SPF) does not
solve the problem as stated—in general, it can lead to bottlenecks
and also makes the network vulnerable to failures. For example,
consider sending a large amount of traffic from host h1 to host
h3: there are two paths in the topology, one via switch S2 and one
via switch S4, but if we only use a single path we sacrifice half
of the available capacity. The most widely-deployed approaches
to traffic engineering today are based on using multiple paths
and randomization. For example, Equal Cost Multipath Routing
(ECMP), which is widely supported on commodity routers, selects
a least-cost path for each traffic flow uniformly at random. The
intention is to spread the offered load across a large set of paths,
thereby reducing congestion without increasing latency.

ProbNetKAT Language. Using ProbNetKAT, it is straightforward
to write a program that captures the essential behavior of ECMP. We
first construct programs that model the routing tables and topology,
and build a program that models the behavior of the entire network.

Routing: We model the routing tables for the switches using simple
ProbNetKAT programs that match on destination addresses and for-
ward packets on the next hop toward their destination. To randomly
map packets to least-cost paths, we use the choice operator (⊕). For
example, the program for switch S1 in Figure 1 is as follows:

p1, (dst=h1 ; pt←1)
& (dst=h2 ; pt←2)
& (dst=h3 ; (pt←2⊕ pt←4))
& (dst=h4 ; pt←4)

The programs for other switches are similar. To a first approximation,
this program can be read as a routing table, whose entries are
separated by the parallel composition operator (&). The first entry
states that packets whose destination is h1 should be forwarded
out on port 1 (which is directly connected to h1). Likewise, the
second entry states that packets whose destination is host h2 should
be forwarded out on port 2, which is the next hop on the unique
shortest path to h2. The third entry, however, is different: it states
that packets whose destination is h3 should be forwarded out on
ports 2 and 4 with equal probability. This divides traffic going to h3

among the clockwise path via S2 and the counter-clockwise path
via S4. The final entry states that packets whose destination is h4

should be forwarded out on port 4, which is again the next hop on
the unique shortest path to h4. The routing program for the network
is the parallel composition of the programs for each switch:

p , (sw=S1 ;p1)&(sw=S2 ;p2)&(sw=S3 ;p3)&(sw=S4 ;p4)

Topology: We model a directed link as a program that matches on the
switch and port at one end of the link and modifies the switch and
port to the other end of the link. We model an undirected link l as a
parallel composition of directed links in each direction. For example,

2 2016/11/22

the link between switches S1 and S2 is modeled as follows:

l1,2 , (sw=S1 ; pt=2 ; dup ; sw←S2 ; pt←1 ; dup)

& (sw=S2 ; pt=1 ; dup ; sw←S1 ; pt←2 ; dup)

Note that at each hop we use ProbNetKAT’s dup operator to store
the headers in the packet’s history, which records the trajectory of
the packet as it goes through the network. Histories are useful for
tasks such as measuring path length and analyzing link congestion.
We model the topology as a parallel composition of individual links:

t , l1,2 & l2,3 & l3,4 & l1,4

To delimit the network edge, we define ingress and egress predicates:

in , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .
out , (sw=1 ; pt=1) & (sw=2 ; pt=2) & . . .

Here, since every ingress is an egress, the predicates are identical.
Network: We model the end-to-end behavior of the entire network
by combining p, t, in and out into a single program:

net , in ; (p ; t)∗ ; p ; out

This program models processing each input from ingress to egress
across a series of switches and links. Formally it denotes a Markov
kernel that, when supplied with an input distribution on packet
histories µ produces an output distribution ν.
Queries: Having constructed a probabilistic model of the network,
we can use standard tools from measure theory to reason about
performance. For example, to compute the expected congestion on
a given link l, we would introduce a function Q from sets of packets
to R ∪ {∞} (formally a random variable):

Q(a) ,
∑
h∈a

#l(h)

where #l(h) is the function on packet histories that returns the
number of times that link l occurs in h, and then compute the
expected value of Q using integration:

E
ν

[Q] =

∫
Qdν

We can compute queries that capture other aspects of network
performance such as latency, reliability, etc. in similar fashion.

Limitations. Unfortunately there are several issues with the ap-
proach just described:

• One problem is that computing the results of a query can require
complicated measure theory since a ProbNetKAT program may
generate a continuous distribution in general (Lemma 4). For-
mally, instead of summing over the support of the distribution,
we have to use Lebesgue integration in an appropriate measur-
able space. Of course, there are also challenges in representing
infinite distributions in an implementation.
• Another issue is that the semantics of iteration is modeled in

terms of an infinite stochastic process rather than a standard
fixpoint. The original ProbNetKAT paper showed that it is
possible to approximate a program using a series of star-free
programs that weakly converge to the correct result, but the
approximations need not converge monotonically, which makes
this result difficult to apply in practice.
• Even worse, many of the queries that we would like to answer

are not actually continuous in the Cantor topology, meaning that
the weak convergence result does not even apply! The notion of
distance on sets of packet histories is d(a, b) = 2−n where n is
the length of the smallest history in a but not in b, or vice versa.
It is easy to construct a sequence of histories hn of length n such

S1 S2

S3S4

h1 h2

h3h4

1 2

34

2 1

3

2

43

1

4

(a)

1 2 3 4 5 6
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
a
x
 C

o
n
g
e
st

io
n

ECMP

SPF

(b)

SPF ECMP
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
ro
u
g
h
p
u
t

(c)

Figure 1. (a) topology, (b) congestion, (c) failure throughput.

that limn→∞ d({hn}, {}) = 0 but limn→∞Q({hn}) = ∞
which is not equal to Q({}) = 0.

Together, these issues are significant impediments that make it
difficult to apply ProbNetKAT in many scenarios.

Domain-Theoretic Semantics. This paper develops a new seman-
tics for ProbNetKAT that overcomes these problems and provides
the key building blocks needed to engineer a practical implemen-
tation. The main insight is that we can formulate the semantics in
terms of the Scott topology rather than the Cantor topology. It turns
out that these two topologies generate the same Borel sets, and the
relationship between them can be characterized using an extension
theorem that captures when functions on the basic Scott-open sets
extend to a measure. We show how to construct a DCPO equipped
with a natural partial order that also lifts to a partial order on Markov
kernels. We prove that standard program operators are continuous,
which allows us to formulate the semantics of the language—in par-
ticular Kleene star—using standard tools from domain theory, such
as least fixpoints. Finally, we formalize a notion of approximation
and prove a monotone convergence theorem.

The problems with the original ProbNetKAT semantics identified
above are all solved using the new semantics. Because the new
semantics models iteration as a least fixpoint, we can work with
finite distributions and star-free approximations that are guaranteed
to monotonically converge to the analytical solution (Corollary 23).
Moreover, whereas our query Q was not Cantor continuous, it is
straightforward to show that it is Scott continuous. Let A be an
increasing chain a0 ⊆ a1 ⊆ a2 ⊆ . . . ordered by inclusion. Scott
continuity requires

⊔
a∈AQ(a) = Q(

⊔
A
)

which is easy to prove.
Hence, the convergence theorem applies and we can compute a
monotonically increasing chain of approximations that converge to
Eν [Q].

Implementation and Applications. We developed the first imple-
mentation of ProbNetKAT using the new semantics. We built an
interpreter for the language and implemented a variety of traffic
engineering schemes including ECMP, k-shortest path routing, and
oblivious routing (Räcke 2008). We analyzed the performance of
each scheme in terms of congestion and latency on real-world de-
mands drawn from Internet2’s Abilene backbone, and in the pres-
ence of link failures. We showed how to use the language to reason
probabilistically about reachability properties such as loops and
black holes. Figures 1 (b-c) depict the expected throughput and max-

3 2016/11/22

imum congestion when using shortest paths (SPF) and ECMP on the
4-node topology as computed by our ProbNetKAT implementation.
We set the demand from h1 to h3 to be 1

2
units of traffic, and the

demand between all other pairs of hosts to be 1
8

units. The first
graph depicts the maximum congestion induced under successive
approximations of the Kleene star, and shows that ECMP achieves
much better congestion than SPF. With SPF, the most congested
link (from S1 to S2) carries traffic from h1 to h2, from h4 to h2,
and from h1 to h3, resulting in 3

4
total traffic. With ECMP, the same

link carries traffic from h1 to h2, half of the traffic from h2 to h4,
half of the traffic from h1 to h3, resulting in 7

16
total traffic. The

second graph depicts the loss of throughput when the same link fails.
The total aggregate demand is 1 7

8
. With SPF, 3

4
units of traffic are

dropped leaving 1 1
8

units, which is 60% of the demand, whereas
with ECMP only 7

16
units of traffic are dropped leaving 1 7

16
units,

which is 77% of the demand.

3. Preliminaries
This section briefly reviews basic concepts from topology, measure
theory, and domain theory, and defines Markov kernels, the objects
on which ProbNetKAT’s semantics is based. For a more detailed
account, the reader is invited to consult standard texts (Durrett 2010;
Abramsky and Jung 1994).

Topology. A topology O ⊆ 2X on a set X is a collection of
subsets including X and ∅ that is closed under finite intersection
and arbitrary union. A pair (X,O) is called a topological space and
the sets U, V ∈ O are called the open sets of (X,O). A function
f : X → Y between topological spaces (X,OX) and (Y,OY) is
continuous if the preimage of any open set in Y is open in X , i.e. if

f−1(U) = {x ∈ X | f(x) ∈ U} ∈ OX
for any U ∈ OY .

Measure Theory. A σ-algebra F ⊆ 2X on a set X is a collection
of subsets including X that is closed under complement, countable
union, and countable intersection. A measurable space is a pair
(X,F). A probability measure µ over such a space is a function
µ : F → [0, 1] that assigns probabilities µ(A) ∈ [0, 1] to the
measurable sets A ∈ F , and satisfies the following conditions:

• µ(X) = 1

• µ(
⋃
i∈I Ai) =

∑
i∈I µ(Ai) whenever {Ai}i∈I is a countable

collection of disjoint measurable sets.

Note that these conditions already imply that µ(∅) = 0. Elements
a, b ∈ X are called points or outcomes, and measurable sets
A,B ∈ F are also called events. The σ-algebra σ(U) generated by
a set U ⊆ X is the smallest σ-algebra containing U :

σ(U) ,
⋂
{F ⊆ 2X | F is a σ-algebra and U ⊆ F}.

Note that it is well-defined because the intersection is not empty (2X

is trivially a σ-algebra containing U) and intersections of σ-algebras
are again σ-algebras. If O ⊆ 2X are the open sets of X , then the
smallest σ-algebra containing the open sets B = σ(O) is the Borel
algebra, and the measurable sets A,B ∈ B are the Borel sets of X .

LetPµ , {a ∈ X | µ({a}) > 0} denote the points (not events!)
with non-zero probability. It can be shown that Pµ is countable. A
probability measure is called discrete if µ(Pµ) = 1. Such a measure
can simply be represented by a function Pr : X → [0, 1] with
Pr(a) = µ({a}). If |Pµ| < ∞, the measure is called finite and
can be represented by a finite map Pr : Pµ → [0, 1]. In contrast,
measures for which µ(Pµ) = 0 are called continuous, and measures
for which 0 < µ(Pµ) < 1 are called mixed. The Dirac measure or
point mass puts all probability on a single point a ∈ X: δa(A) = 1

if a ∈ A and 0 otherwise. The uniform distribution on [0, 1] is a
continuous measure.

A function f : X → Y between measurable spaces (X,FX)
and (Y,FY) is called measurable if the preimage of any measurable
set in Y is measurable in X , i.e. if

f−1(A) , {x ∈ X | f(x) ∈ A} ∈ FX
for allA ∈ FY . If Y = R∪{−∞,+∞}, then f is called a random
variable and its expected value with respect to a measure µ on X is
given by the Lebesgue integral

E
µ

[f] ,
∫
fdµ =

∫
x∈X

f(x) · µ(dx)

If µ is discrete, the integral simplifies to the sum

E
µ

[f] =
∑
x∈X

f(x) · µ({x}) =
∑
x∈Pµ

f(x) · Pr(x)

Markov Kernels. Consider a probabilistic transition system with
states X that makes a random transition between states at each step.
If X is finite, the system can be captured by a transition matrix
T ∈ [0, 1]X×X , where the matrix entry Txy gives the probability
that the system transitions from state x to state y. Each row Tx
describes the transition function of a state x and must sum to 1.
Suppose that the start state is initially distributed according to the
row vector V ∈ [0, 1]X , i.e. the system starts in state x ∈ X with
probability Vx. Then, the state distribution is given by the matrix
product V T ∈ [0, 1]X after one step and by V Tn after n steps.

Markov kernels generalize this idea to infinite state systems.
Given measurable spaces (X,FX) and (Y,FY), a Markov kernel
with source X and target Y is a function P : X × FY → [0, 1]
(or equivalently, X → FY → [0, 1]) that maps each source state
x ∈ X to a distribution over target states P (x,−) : FY → [0, 1]. If
the initial distribution is given by a measure ν on X , then the target
distribution µ after one step is given by Lebesgue integration:

µ(A) ,
∫
x∈X

P (x,A) · ν(dx) (A ∈ FY) (3.1)

If ν and P (x,−) are discrete, the integral simplifies to the sum

µ({y}) =
∑
x∈X

P (x, {y}) · ν({x}) (y ∈ Y)

which is just the familiar vector-matrix-product V T . Similarly, two
kernels P,Q from X to Y and from Y to Z, respectively, can be
sequentially composed to a kernel P ;Q from X to Z:

(P ;Q)(x,A) ,
∫
y∈Y

P (x, dy) ·Q(y,A) (3.2)

This is the continuous analog of the matrix product TT . A Markov
kernel P must satisfy two conditions:

(i) For each source state x ∈ X , the map A 7→ P (x,A) must be
a probability measure on the target space.

(ii) For each event A ∈ FY in the target space, the map x 7→
P (x,A) must be a measurable function.

Condition (ii) is required to ensure that integration is well-defined.
A kernel P is called deterministic if P (a,−) is a dirac measure for
each a.

Domain Theory. A partial order (PO) is a pair (D,v) where D
is a set and v is a reflexive, transitive, and antisymmetric relation
on D. For two elements x, y ∈ D we let x t y denote their v-least
upper bound (i.e., their supremum), provided it exists. Analogously,
the least upper bound of a subset C ⊆ D is denoted

⊔
C, provided

it exists. A non-empty subset C ⊆ D is directed if for any two
x, y ∈ C there exists some upper bound x, y v z in C. A directed

4 2016/11/22

complete partial order (DCPO) is a PO for which any directed
subset C ⊆ D has a supremum

⊔
C in D. If a PO has a least

element it is denoted by ⊥, and if it has a greatest element it is
denoted by >. For example, the nonnegative real numbers with
infinity R+ , [0,∞] form a DCPO under the natural order ≤ with
suprema

⊔
C = supC, least element ⊥ = 0, and greatest element

> =∞. The unit interval is a DCPO under the same order, but with
> = 1. Any powerset 2X is a DCPO under the subset order, with
suprema given by union.

A function f from D to E is called (Scott-)continuous if

(i) it is monotone, i.e. x v y implies f(x) v f(y), and

(ii) it preserves suprema, i.e. f(
⊔
C) =

⊔
x∈C f(x) for any

directed set C in D.

Equivalently, f is continuous with respect to the Scott topologies
on D and E (Abramsky and Jung 1994, Proposition 2.3.4), which
we define next. (Note how condition (ii) looks like the classical
definition of continuity of a function f , but with suprema taking the
role of limits). The set of all continuous functions f : D → E is
denoted [D → E].

A subset A ⊆ D is called up-closed (or an upper set) if a ∈ A
and a v b implies b ∈ A. The smallest up-closed superset of A is
called its up-closure and is denoted A↑. A is called (Scott-)open
if it is up-closed and intersects every directed subset C ⊆ D that
satisfies

⊔
C ∈ A. For example, the Scott-open sets of R+ are the

upper semi-infinite intervals (r,∞], r ∈ R+. The Scott-open sets
form a topology on D called the Scott topology.

DCPOs enjoy many useful closure properties:

(i) The cartesian product of any collection of DCPOs is a DCPO
with componentwise order and suprema.

(ii) If E is a DCPO and D any set, the function space D → E is
a DCPO with pointwise order and suprema.

(iii) The continuous functions [D → E] between DCPOs D and
E form a DCPO with pointwise order and suprema.

If D is a DCPO with least element ⊥, then any Scott-continuous
self-map f ∈ [D → D] has a v-least fixpoint, and it is given by
the supremum of the chain ⊥ v f(⊥) v f(f(⊥)) v . . . :

lfp(f) =
⊔
n≥0

fn(⊥)

Moreover, the least fixpoint operator, lfp ∈ [[D → D] → D]
is itself continuous, that is: lfp(

⊔
C) =

⊔
f∈C lfp(f), for any

directed set of functions C ⊆ [D → D].
An element a of a DCPO is called finite (Abramsky and Jung

(1994) use the term compact) if for any directed set A, if a v
⊔
A,

then there exists b ∈ A such that a v b. Equivalently, a is finite if
its up-closure {a}↑ is Scott-open. A DCPO is called algebraic if
for every element b, the finite elements v-below b form a directed
set and b is the supremum of this set. An element a of a DCPO
approximates another element b, written a� b, if for any directed
set A, a v c for some c ∈ A whenever b v

⊔
A. A DCPO is called

continuous if for every element b, the elements �-below b form
a directed set and b is the supremum of this set. Every algebraic
DCPO is continuous. A set in a topological space is compact-open
if it is compact (every open cover has a finite subcover) and open.

Here we recall some basic facts about DCPOs. These are all
well-known, but we state them as a lemma for future reference.

Lemma 1 (DCPO Basic Facts).

(i) LetE be a DCPO andD1, D2 sets. There is a homeomorphism
(bicontinuous bijection) curry between the DCPOs D1 ×
D2 → E and D1 → D2 → E, where the function spaces are
ordered pointwise. The inverse of curry is uncurry.

(ii) In an algebraic DCPO, the open sets {a}↑ for finite a form a
base for the Scott topology.

(iii) A subset of an algebraic DCPO is compact-open iff it is a finite
union of basic open sets {a}↑.

4. ProbNetKAT
This section defines the syntax and semantics of ProbNetKAT for-
mally (see Figure 2) and establishes some basic properties. Prob-
NetKAT is a core calculus designed to capture the essential forward-
ing behavior of probabilistic network programs. In particular, the
language includes primitives that model fundamental constructs such
as parallel and sequential composition, iteration, and random choice.
It does not model features such as mutable state, asynchrony, and dy-
namic updates, although extensions to NetKAT-like languages with
several of these features have been studied in previous work (Reit-
blatt et al. 2012; McClurg et al. 2016).

Syntax. A packet π is a record mapping a finite set of fields
f1, f2, . . . , fk to bounded integers n. Fields include standard header
fields such as the source (src) and destination (dst) of the packet,
and two logical fields (sw for switch and pt for port) that record
the current location of the packet in the network. The logical fields
are not present in a physical network packet, but it is convenient
to model them as proper header fields. We write π.f to denote the
value of field f of π and π[f :=n] for the packet obtained from π by
updating field f to n. We let Pk denote the (finite) set of all packets.

A history h = π::~ is a non-empty list of packets with head
packet π and (possibly empty) tail ~. The head packet models
the packet’s current state and the tail contains its prior states,
which capture the trajectory of the packet through the network.
Operationally, only the head packet exists, but it is useful to
discriminate between identical packets with different histories. We
write H to denote the (countable) set of all histories.

We differentiate between predicates (t, u) and programs (p, q).
The predicates form a Boolean algebra and include the primitives
false (0), true (1), and tests (f =n), as well as the standard Boolean
operators disjunction (t & u), conjunction (t ; u), and negation
(¬t). Programs include predicates (t) and modifications (f←n) as
primitives, and the operators parallel composition (p&q), sequential
composition (p ; q), and iteration (p∗). The primitive dup records
the current state of the packet by extending the tail with the head
packet. Intuitively, we may think of a history as a log of a packet’s
activity, and of dup as the logging command. Finally, choice p ⊕r q
executes p with probability r or q with probability 1− r. We write
p⊕ q when r = 0.5.

Predicate conjunction and sequential composition use the same
syntax (t ;u) as their semantics coincide (as we will see shortly). The
same is true for disjunction of predicates and parallel composition
(t& u). The distinction between predicates and programs is merely
to restrict negation to predicates and rule out programs like ¬(p∗).

Syntactic Sugar. The language as presented in Figure 2 is reduced
to its core primitives. It is worth noting that many useful constructs
can be derived from this core. In particular, it is straightforward to
encode conditionals and while loops:

if t then p else q , t ; p& ¬t ; q

while t do p , (t ; p)∗ ; ¬t
These encodings are well-known from KAT (Kozen 1997). While
loops are useful for implementing higher level abstractions such as
network virtualization in NetKAT (Smolka et al. 2015).

Example. Consider the programs

p1 , pt=1 ; (pt←2 & pt←3)

p2 , (pt=2 & pt=3) ; dst←10.0.0.1 ; pt←1

5 2016/11/22

Syntax

Naturals n ::= 0 | 1 | 2 | . . .
Fields f ::= f1 | . . . | fk

Packets Pk 3 π ::= {f1 = n1, . . . , fk = nk}
Histories H 3 h ::= π::~

~ ::= 〈〉 | π::~
Probabilities [0, 1] 3 r

Predicates t, u ::= 0 False/Drop
| 1 True/Skip
| f =n Test
| t& u Disjunction
| t ; u Conjunction
| ¬t Negation

Programs p, q ::= t Filter
| f←n Modification
| dup Duplication
| p& q Parallel Composition
| p ; q Sequential Composition
| p ⊕r q Choice
| p∗ Iteration

Semantics [[p]] ∈ 2H →M(2H)

[[0]](a) , η(∅)

[[1]](a) , η(a)

[[f =n]](a) , η({π::~ ∈ a | π.f = n})
[[¬t]](a) , [[t]](a)�=λb.η(a− b)

[[f←n]](a) , η({π[f :=n]::~ | π::~ ∈ a})
[[dup]](a) , η({π::π::~ | π::~ ∈ a})

[[p& q]](a) , [[p]](a)�=λb1.[[q]](a)�=λb2.η(b1 ∪ b2)

[[p ; q]](a) , [[p]](a)�=[[q]]

[[p ⊕r q]](a) , r · [[p]](a) + (1− r) · [[q]](a)

[[p∗]](a) ,
⊔
n∈N

[[p(n)]](a)

where p(0) , 1 and p(n+1) , 1 & p ; p(n)

Probability Monad

M(X) , {µ : B → [0, 1] | µ is a probability measure}

η(a) , δa µ�=P , λA.
∫
a∈X

P (a)(A) · µ(da)

Figure 2. ProbNetKAT: syntax and semantics.

The first program forwards packets entering at port 1 out of ports
2 and 3—a simple form of multicast—and drops all other packets.
The second program matches on packets coming in on ports 2 or 3,
modifies their destination to the IP address 10.0.0.1, and sends them
out through port 1. The program p1 & p2 acts like p1 for packets
entering at port 1, and like p2 for packets entering at ports 2 or 3.

Monads. We define the semantics of NetKAT programs paramet-
rically over a monadM. This allows us to give two concrete seman-
tics at once: the classical deterministic semantics (using the identity
monad), and the new probabilistic semantics (using the probabil-
ity monad). For simplicity, we refrain from giving a categorical
treatment and simply model a monad in terms of three components:

• a constructorM that lifts X to a domainM(X);
• an operator η : X →M(X) that lifts objects into the domain
M(X); and
• an infix operator

�= :M(X)→ (X →M(X))→M(X)

that lifts a function f : X →M(X) to a function

(−�= f) :M(X)→M(X)

These components must satisfy three axioms:

η(a)�= f = f(a) (M1)
m�= η = m (M2)

(m�= f)�= g = m�=(λx.f(x)�= g) (M3)

The semantics of deterministic programs (not containing probabilis-
tic choices p ⊕r q) uses as underlying objects the set of packet
histories 2H and the identity monad M(X) = X: η is the iden-
tify function and x�= f is simply function application f(x). The
identity monad trivially satisfies the three axioms.

The semantics of probabilistic programs uses the probability
(or Giry) monad (Giry 1982; Jones and Plotkin 1989; Ramsey
and Pfeffer 2002) that maps a measurable space to the domain of
probability measures over that space. The operator η maps a to the
point mass (or Dirac measure) δa on a. Composition µ�=(λa.νa)
can be thought of as a two-stage probabilistic experiment where
the second experiment νa depends on the outcome a of the first

experiment µ. Operationally, we first sample from µ to obtain a
random outcome a; then, we sample from νa to obtain the final
outcome b. What is the distribution over final outcomes? It can be
obtained by observing that λa.νa is a Markov kernel (§3), and so
composition with µ is given by the familiar integral

µ�=(λa.νa) = λA.

∫
a∈X

νa(A) · µ(da)

introduced in (3.1). It is well known that these definitions satisfy the
monad axioms (Kozen 1981; Giry 1982; Jones and Plotkin 1989).
(M1) and (M2) are trivial properties of the Lebesgue Integral. (M3)
is essentially Fubini’s theorem, which permits changing the order of
integration in a double integral.

Deterministic Semantics. In deterministic NetKAT (without p ⊕r
q), a program p denotes a function [[p]] ∈ 2H → 2H mapping a
set of input histories a ∈ 2H to a set of output histories [[p]](a).
Note that the input and output sets do not encode non-determinism
but represent sets of “in-flight” packets in the network. Histories
record the processing done to each packet as it traverses the network.
In particular, histories enable reasoning about path properties and
determining which outputs were generated from common inputs.

Formally, a predicate t maps the input set a to the subset b ⊆ a
of histories satisfying the predicate. In particular, the false primitive
0 denotes the function mapping any input to the empty set; the
true primitive 1 is the identity function; the test f =n retains those
histories with field f of the head packet equal to n; and negation
¬t returns only those histories not satisfying t. Modification f←n
sets the f -field of all head-packets to the value n. Duplication dup
extends the tails of all input histories with their head packets, thus
permanently recording the current state of the packets.

Parallel composition p& q feeds the input to both p and q and
takes the union of their outputs. If p and q are predicates, a history
is thus in the output iff it satisfies at least one of p or q, so that union
acts like logical disjunction on predicates. Sequential composition
p ;q feeds the input to p and then feeds p’s output to q to produce the
final result. If p and q are predicates, a history is thus in the output
iff it satisfies both p and q, acting like logical conjunction. Iteration
p∗ behaves like the parallel composition of p sequentially composed
with itself zero or more times (because

⊔
is union in 2H).

6 2016/11/22

Probabilistic Semantics. The semantics of ProbNetKAT is given
using the probability monad applied to the set of history sets 2H

(seen as a measurable space). A program p denotes a function

[[p]] ∈ 2H → {µ : B → [0, 1] | µ is a probability measure}
mapping a set of input histories a to a distribution over output sets
[[p]](a). Here, B denotes the Borel sets of 2H (§5). Equivalently,
[[p]] is a Markov kernel with source and destination (2H,B). The
semantics of all primitive programs is identical to the deterministic
case, except that they now return point masses on output sets (rather
than just output sets). In fact, it follows from (M1) that all programs
without choices and iteration are point masses.

Parallel composition p& q feeds the input a to p and q, samples
b1 and b2 from the output distributions [[p]](a) and [[q]](a), and
returns the union of the samples b1 ∪ b2. Probabilistic choice
p ⊕r q feeds the input to both p and q and returns a convex
combination of the output distributions according to r. Sequential
composition p ; q is just sequential composition of Markov kernels.
Operationally, it feeds the input to p, obtains a sample b from p’s
output distribution, and feeds the sample to q to obtain the final
distribution. Iteration p∗ is defined as the least fixpoint of the map
on Markov kernelsX 7→ 1&[[p]];X , which is continuous in a DCPO
that we will develop in the following sections. We will show that this
definition, which is simple and is based on standard techniques from
domain theory, coincides with the semantics proposed in previous
work (Foster et al. 2016).

Basic Properties. To clarify the nature of predicates and other
primitives, we establish two intuitive properties:

Lemma 2. Any predicate t satisfies [[t]](a) = η(a ∩ bt), where
bt , [[t]](H) in the identity monad.
Proof. By induction on t, using (M1) in the induction step.

Lemma 3. All atomic programs p (i.e., predicates, dup, and
modifications) satisfy

[[p]](a) = η({fp(h) | h ∈ a})
for some partial function fp : H⇀ H.
Proof. Immediate from Figure 2 and Lemma 2.

Lemma 2 captures the intuition that predicates act like packet
filters. Lemma 3 establishes that the behavior of atomic programs is
captured by their behavior on individual histories.

Note however that ProbNetKAT’s semantic domain is rich
enough to model interactions between packets. For example, it
would be straightforward to extend the language with new primitives
whose behavior depends on properties of the input set of packet
histories—e.g., a rate-limiting construct @n that selects at most
n packets uniformly at random from the input and drops all other
packets. Our results continue to hold when the language is extended
with arbitrary continuous Markov kernels of appropriate type, or
continuous operations on such kernels.

Another important observation is that although ProbNetKAT
does not include continuous distributions as primitives, there are
programs that generate continuous distributions by combining
choice and iteration:

Lemma 4 (Theorem 3 in Foster et al. (2016)). Let π0, π1 denote
distinct packets. Let p denote the program that changes the head
packet of all inputs to either π0 or π1 with equal probability. Then

[[p ; (dup ; p)∗]]({π},−)

is a continuous distribution.

Hence, ProbNetKAT programs cannot be modeled by functions
of type 2H → (2H → [0, 1]) in general. We need to define a measure
space over 2H and consider general probability measures.

5. Cantor Meets Scott
To define continuous probability measures on an infinite set X , one
first needs to endow X with a topology—some additional structure
that, intuitively, captures which elements of X are close to each
other or approximate each other. Although the choice of topology is
arbitrary in principle, different topologies induce different notions
of continuity and limits, thus profoundly impacting the concepts
derived from these primitives. Which topology is the “right” one for
2H? A fundamental contribution of this paper is to show that there
are (at least) two answers to this question:

• The initial work on ProbNetKAT (Foster et al. 2016) uses the
Cantor topology. This makes 2H a standard Borel space, which
is well-studied and known to enjoy many desirable properties.
• This paper is based on the Scott topology, the standard choice

of domain theorists. Although this topology is weaker in the
sense that it lacks much of the useful structure and properties
of a standard Borel space, it leads to a simpler and more
computational account of ProbNetKAT’s semantics.

Despite this, one view is not better than the other. The main
advantage of the Cantor topology is that it allows us to reason in
terms of a metric. With the Scott topology, we sacrifice this metric,
but in return we are able to interpret all program operators and
programs as continuous functions. The two views yield different
convergence theorem, both of which are useful. Remarkably, we
can have the best of both worlds: it turns out that the two topologies
generate the same Borel sets, so the probability measures are the
same regardless. We will prove (Theorem 21) that the semantics in
Figure 2 coincides with the original semantics (Foster et al. 2016),
recovering all the results from previous work. This allows us to
freely switch between the two views as convenient. The rest of
this section illustrates the difference between the two topologies
intuitively, defines the topologies formally and endows 2H with
Borel sets, and proves a general theorem relating the two.

Cantor and Scott, Intuitively. The Cantor topology is best under-
stood in terms of a distance d(a, b) of history sets a, b, formally
known as a metric. Define this metric as d(a, b) = 2−n, where n is
the length of the shortest packet history in the symmetric difference
of a and b if a 6= b, or d(a, b) = 0 if a = b. Intuitively, history sets
are close if they differ only in very long histories. This gives the
following notions of limit and continuity:

• a is the limit of a sequence a1, a2, . . . iff the distance d(a, an)
approaches 0 as n→∞.
• a function f : 2H → [0,∞] is continuous at point a iff f(an)

approaches f(a) whenever an approaches a.

The Scott topology cannot be described in terms of a metric. It is
captured by a complete partial order (2H,v) on history sets. If we
choose the subset order (with suprema given by union) we obtain
the following notions:

• a is the limit of a sequence a1 ⊆ a2 ⊆ . . . iff a =
⋃
n∈N an.

• a function f : 2H → [0,∞] is continuous at point a iff f(a) =
supn∈N f(an) whenever a is the limit of a1 ⊆ a2 ⊆

Example. To illustrate the difference between Cantor-continuity
and Scott-continuity, consider the function f(a) , |a| that maps
a history set to its (possibly infinite) cardinality. The function is
not Cantor-continuous. To see this, let hn denote a history of
length n and consider the sequence of singleton sets an , {hn}.
Then d(an,∅) = 2−n, i.e. the sequence approaches the empty set
as n approaches infinity. But the cardinality |an| = 1 does not
approach |∅| = 0. In contrast, the function is easily seen to be
Scott-continuous.

7 2016/11/22

As a second example, consider the function f(a) , 2−k, where
k is the length of the smallest history not in a. This function is
Cantor-continuous: if d(an, a) = 2−n, then

|f(an)− f(a)| ≤ 2−(n−1) − 2−n ≤ 2−n

Therefore f(an) approaches f(a) as the distance d(an, a) ap-
proaches 0. However, the function is not Scott-continuous1, as all
Scott-continuous functions are monotone.

Approximation. The computational importance of limits and con-
tinuity comes from the following idea. Assume a is some compli-
cated (say infinite) mathematical object. If a1, a2, . . . is a sequence
of simple (say finite) objects with limit a, then it may be possible
to approximate a using the sequence (an). This gives us a com-
putational way of working with infinite objects, even though the
available resources may be fundamentally finite. Continuity captures
precisely when this is possible: we can perform a computation f
on a if f is continuous in a, for then we can compute the sequence
f(a1), f(a2), . . . which (by continuity) converges to f(a).

We will show later that any measure µ can be approximated
by a sequence of finite measures µ1, µ2, . . . , and that the expected
value Eµ[f] of a Scott-continuous random variable f is continuous
with respect to the measure. Our implementation exploits this to
compute a monotonically improving sequence of approximations
for performance metrics such as latency and congestion (§9).

Notation. We use lower case letters a, b, c ⊆ H to denote history
sets, uppercase letters A,B,C ⊆ 2H to denote measurable sets
(i.e., sets of history sets), and calligraphic letters B,O, · · · ⊆ 22H

to denote sets of measurable sets. For a set X , we let ℘ω(X) ,
{Y ⊆ X | |Y | < ∞} denote the finite subsets of X and 1X the
characteristic function of X. For a statement φ, such as a ⊆ b, we
let [φ] denote 1 if φ is true and 0 otherwise.

Cantor and Scott, Formally. For h ∈ H and b ∈ 2H, define

Bh , {c | h ∈ c} Bb ,
⋂
h∈b

Bh = {c | b ⊆ c}. (5.3)

The Cantor space topology, denoted C, can be generated by closing
{Bh ,∼Bh | h ∈ H} under finite intersection and arbitrary union.
The Scott topology of the DCPO (2H,⊆), denoted O, can be
generated by closing {Bh | h ∈ H} under the same operations
and adding the empty set. The Borel algebra B is the smallest σ-
algebra containing the Cantor-open sets, i.e. B , σ(C). We write
Bb for the Boolean subalgebra of B generated by {Bh | h ∈ b}.

Lemma 5.

(i) b ⊆ c⇔ Bc ⊆ Bb
(ii) Bb ∩Bc = Bb∪c

(iii) B∅ = 2H

(iv) BH =
⋃
b∈℘ω(H)) Bb.

Note that if b is finite, then so is Bb. Moreover, the atoms
of Bb are in one-to-one correspondence with the subsets a ⊆ b.
The subsets a determine which of the Bh occur positively in the
construction of the atom,

Aab ,
⋂
h∈a

Bh ∩
⋂

h∈b−a

∼Bh

= Ba −
⋃

a⊂c⊆b

Bc = {c ∈ 2H | c ∩ b = a},
(5.4)

where ⊂ denotes proper subset. The atoms Aab are the basic open
sets of the Cantor space. The notation Aab is reserved for such sets.

1 with respect to the orders ⊆ on 2H and ≤ on R

Lemma 6 (Figure 3). For b finite and a ⊆ b, Ba =
⋃
a⊆c⊆bAcb.

Proof. By (5.4),⋃
a⊆c⊆b

Acb =
⋃

a⊆c⊆b

{d ∈ 2H | d ∩ b = c}

= {d ∈ 2H | a ⊆ d} = Ba.

Scott Topology Properties. LetO denote the family of Scott-open
sets of (2H,⊆). Following are some facts about this topology.

• The DCPO (2H,⊆) is algebraic. The finite elements of 2H are the
finite subsets a ∈ ℘ω(H), and their up-closures are {a}↑ = Ba.
• By Lemma 1(ii), the up-closures {a}↑ = Ba form a base for the

Scott topology. The sets Bh for h ∈ H are therefore a subbase.
• Thus, a subset B ⊆ 2H is Scott-open iff there exists F ⊆ ℘ω(H)

such that B =
⋃
a∈F Ba.

• The Scott topology is weaker than the Cantor space topology,
e.g.,∼Bh is Cantor-open but not Scott-open. However, the Borel
sets of the topologies are the same, as ∼Bh is a Π0

1 Borel set.2

• Although any Scott-open set in 2H is also Cantor-open, a Scott-
continuous function f : 2H → R+ is not necessarily Cantor-
continuous. This is because for Scott-continuity we consider R+

(ordered by≤) with the Scott topology, but for Cantor-continuity
we consider R+ with the standard Euclidean topology.
• Any Scott-continuous function f : 2H → R+ is measurable,

because the Scott-open sets of (R+,≤) (i.e., the upper semi-
infinite intervals (r,∞] = {r}↑ for r ≥ 0) generate the Borell
sets on R+.
• The open sets O ordered by the subset relation forms an ω-

complete lattice with bottom ∅ and top B∅ = 2H.
• The finite sets a ∈ ℘ω(H) are dense and countable, thus the

space is separable.
• The Scott topology is not Hausdorff, metrizable, or compact.

It is not Hausdorff, as any nonempty open set contains H, but
it satisfies the weaker T0 separation property: for any pair of
points a, b with a 6⊆ b, a ∈ Ba but b 6∈ Ba.
• There is an up-closed Π0

2 Borel set with an uncountable set of
minimal elements.
• There are up-closed Borel sets with no minimal elements; for

example, the family of cofinite subsets of H , a Σ0
3 Borel set.

• The compact-open sets are those of the form F↑, where F is a
finite set of finite sets. There are plenty of open sets that are not
compact-open, e.g. B∅ − {∅} =

⋃
h∈HBh .

Lemma 7 (see Halmos (1950, Theorem III.13.A)). Any probability
measure is uniquely determined by its values on Bb for b finite.

Proof. For b finite, the atoms of Bb are of the form (5.4). By the
inclusion-exclusion principle (see Figure 3),

µ(Aab) = µ(Ba −
⋃

a⊂c⊆b

Bc) =
∑
a⊆c⊆b

(−1)|c−a|µ(Bc). (5.5)

Thus µ is uniquely determined on the atoms of Bb and therefore
on Bb. As BH is the union of the Bb for finite b, µ is uniquely
determined on BH. By the monotone class theorem, the Borel
sets B are the smallest monotone class containing BH, and since
µ(
⋃
nAn) = supn µ(An) and µ(

⋂
nAn) = infn µ(An), we have

that µ is determined on all Borel sets.

2 References to the Borel hierarchy Σ0
n and Π0

n refer to the Scott topology.
The Cantor and Scott topologies have different Borel hierarchies.

8 2016/11/22

Aπστ

Aπ

Aσ AτAστ

AτπAπσ

A∅

Bπ

Bσ Bτ

Figure 3. Relationship of the basic Scott-open sets Ba to the
basic Cantor-open sets Aab for b = {π, σ, τ} and a ⊆ b. The
regions labeled A∅, Aπ , Aπσ , etc. represent the basic Cantor-
open sets A∅,b, A{π},b, A{π,σ},b, etc. These are the atoms of the
Boolean algebra Bb. Several basic Scott-open sets are not shown,
e.g. B{π,σ} = Bπ ∩Bσ = A{π,σ},b ∪A{π,σ,τ},b.

Extension Theorem. We now prove a useful extension theorem
(Theorem 8) that identifies necessary and sufficient conditions for
extending a function O → [0, 1] defined on the Scott-open sets of
2H to a measure B → [0, 1]. The theorem yields a remarkable linear
correspondence between the Cantor and Scott topologies (Theorem
10). We prove it for 2H only, but generalizations may be possible.

Theorem 8. A function µ : {Bb | b finite} → [0, 1] extends to a
measure µ : B → [0, 1] if and only if for all finite b and all a ⊆ b,∑

a⊆c⊆b

(−1)|c−a|µ(Bc) ≥ 0.

Moreover, the extension to B is unique.
Proof. The condition is clearly necessary by (5.5). For sufficiency
and uniqueness, we use the Carathéodory extension theorem. For
each atom Aab of Bb, µ(Aab) is already determined uniquely by
(5.5) and nonnegative by assumption. For each B ∈ Bb, write B
uniquely as a union of atoms and define µ(B) to be the sum of
the µ(Aab) for all atoms Aab of Bb contained in B. We must show
that µ(B) is well-defined. Note that the definition is given in terms
of b, and we must show that the definition is independent of the
choice of b. It suffices to show that the calculation using atoms of
b′ = b ∪ {h}, h 6∈ b, gives the same result. Each atom of Bb is the
disjoint union of two atoms of Bb′ :

Aab = Aa∪{h},b∪{h} ∪Aa,b∪{h}
It suffices to show the sum of their measures is the measure of Aab:

µ(Aa,b∪{h}) =
∑

a⊆c⊆b∪{h}

(−1)|c−a|µ(Bc)

=
∑
a⊆c⊆b

(−1)|c−a|µ(Bc) +
∑

a∪{h}⊆c⊆b∪{h}

(−1)|c−a|µ(Bc)

= µ(Aab)− µ(Aa∪{h},b∪{h}).

To apply the Carathéodory extension theorem, we must show that µ
is countably additive, i.e. that µ(

⋃
nAn) =

∑
n µ(An) for any

countable sequence An ∈ BH of pairwise disjoint sets whose
union is in BH. For finite sequences An ∈ BH, write each An
uniquely as a disjoint union of atoms of Bb for some sufficiently
large b such that all An ∈ Bb. Then

⋃
nAn ∈ Bb, the values of

the atoms are given by (5.5), and the value of µ(
⋃
nAn) is well-

defined and equal to
∑
n µ(An). We cannot have an infinite set

of pairwise disjoint nonempty An ∈ BH whose union is in BH by
compactness. All elements of BH are clopen in the Cantor topology.
If
⋃
nAn = A ∈ BH, then {An | n ≥ 0} would be an open cover

of A with no finite subcover.

Cantor Meets Scott. We now establish a correspondence between
the Cantor and Scott topologies on 2H. Proofs omitted from this
section can be found in Appendix C. Consider the infinite triangular
matrix E and its inverse E−1 with rows and columns indexed by
the finite subsets of H, where

Eac = [a ⊆ c] E−1
ac = (−1)|c−a|[a ⊆ c].

These matrices are indeed inverses: For a, d ∈ ℘ω(H),

(E · E−1)ad =
∑
c

Eac · E−1
cd

=
∑
c

[a ⊆ c] · [c ⊆ d] · (−1)|d−c|

=
∑
a⊆c⊆d

(−1)|d−c| = [a = d],

thus E · E−1 = I , and similarly E−1 · E = I .
Recall that the Cantor basic open sets are the elements Aab

for b finite and a ⊆ b. Those for fixed finite b are the atoms of
the Boolean algebra Bb. They form the basis of a 2|b|-dimensional
linear space. The Scott basic open sets Ba for a ⊆ b are another
basis for the same space. The two bases are related by the matrix
E[b], the 2b×2b submatrix of E with rows and columns indexed by
subsets of b. One can show that the finite matrix E[b] is invertible
with inverse E[b]−1 = (E−1)[b].

Lemma 9. Let µ be a measure on 2H and b ∈ ℘ω(H). Let X,Y
be vectors indexed by subsets of b such that Xa = µ(Ba) and
Ya = µ(Aab) for a ⊆ b. Let E[b] be the 2b × 2b submatrix of E.
Then X = E[b] · Y .

The matrix-vector equation X = E[b] · Y captures the fact that
for a ⊆ b, Ba is the disjoint union of the atoms Acb of Bb for
a ⊆ c ⊆ b (see Figure 3), and consequently µ(Ba) is the sum of
µ(Acb) for these atoms. The inverse equation X = E[b]−1 · Y
captures the inclusion-exclusion principle for Bb.

In fact, more can be said about the structure of E. For any
b ∈ 2H, finite or infinite, let E[b] be the submatrix of E with
rows and columns indexed by the subsets of b. If a ∩ b = ∅, then
E[a ∪ b] = E[a]⊗E[b], where ⊗ denotes Kronecker product. The
formation of the Kronecker product requires a notion of pairing
on indices, which in our case is given by disjoint set union. For
example,

E[{h1}] =

[∅ {h1}

∅ 1 1
{h1} 0 1

]
E[{h2}] =

[∅ {h2}

∅ 1 1
{h2} 0 1

]
E[{h1, h2}] = E[{h1}]⊗ E[{h2}]

=

∅ {h1} {h2} {h1,h2}

∅ 1 1 1 1
{h1} 0 1 0 1
{h2} 0 0 1 1
{h1,h2} 0 0 0 1

As (E⊗F)−1 = E−1⊗F−1 for Kronecker products of invertible
matrices, we also have

E[{h1}]−1 =

[
1 −1
0 1

]
E[{h2}]−1 =

[
1 −1
0 1

]
E[{h1, h2}]−1 = E[{h1}]−1 ⊗ E[{h2}]−1

=

 1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

 .

9 2016/11/22

E can be viewed as the infinite Kronecker product
⊗

h∈HE[{h}].

Theorem 10. The probability measures on (2H,B) are in one-to-
one correspondence with pairs of matrices M,N ∈ R℘ω(H)×℘ω(H)

such that

(i) M is diagonal with entries in [0, 1],
(ii) N is nonnegative, and

(iii) N = E−1ME.

The correspondence associates the measure µ with the matrices

Nab = µ(Aab) Mab = [a = b] · µ(Ba). (5.6)

6. A DCPO on Markov Kernels
In this section we define a continuous DCPO on Markov kernels.
Proofs omitted from this section can be found in Appendix D.

We will interpret all program operators defined in Figure 2 also
as operators on Markov kernels: for an operator [[p⊗ q]] defined on
programs p and q, we obtain a definition ofP⊗Q on Markov kernels
P and Q by replacing [[p]] with P and [[q]] with Q in the original
definition. Additionally we define & on probability measures as
follows:

(µ& ν)(A) , (µ× ν)({(a, b) | a ∪ b ∈ A})

The corresponding operation on programs and kernels as defined in
Figure 2 can easily be shown to be equivalent to a pointwise lifting
of the definition here.

For measures µ, ν on 2H, define µ v ν if µ(B) ≤ ν(B) for all
B ∈ O. This order was first defined by Saheb-Djahromi (Saheb-
Djahromi 1980).

Theorem 11 ((Saheb-Djahromi 1980)). The probability measures
on the Borel sets generated by the Scott topology of an algebraic
DCPO ordered by v form a DCPO.

Because (2H,⊆) is an algebraic DCPO, Theorem 11 applies.3 In
this case, the bottom and top elements are δ∅ and δH respectively.

Lemma 12. µ v µ& ν and ν v µ& ν.

Surprisingly, despite Lemma 12, the probability measures do not
form an upper semilattice under v, although counterexamples are
somewhat difficult to construct. See Appendix A for an example.

Next we lift the orderv to Markov kernels P : 2H×B → [0, 1].
The order is defined pointwise on kernels regarded as functions
2H ×O → [0, 1]; that is,

P v Q 4⇐⇒ ∀a ∈ 2H. ∀B ∈ O. P (a,B) ≤ Q(a,B).

There are several ways of viewing the lifted order v, as shown in
the next lemma.

Lemma 13. The following are equivalent:

(i) P v Q, i.e., ∀a ∈ 2H and B ∈ O, P (a,B) ≤ Q(a,B);
(ii) ∀a ∈ 2H, P (a,−) v Q(a,−) in the DCPOM(2H);

(iii) ∀B ∈ O, P (−, B) v Q(−, B) in the DCPO 2H → [0, 1];
(iv) curryP v curryQ in the DCPO 2H →M(2H).

A Markov kernel P : 2H × B → [0, 1] is continuous if it is
Scott-continuous in its first argument; i.e., for any fixed A ∈ O,
P (a,A) ≤ P (b, A) whenever a ⊆ b, and for any directed set D ⊆
2H we have P (

⋃
D,A) = supa∈D P (a,A). This is equivalent

to saying that curryP : 2H → M(2H) is Scott-continuous as
a function from the DCPO 2H ordered by ⊆ to the DCPO of
probability measures ordered by v. We will show later that all
ProbNetKAT programs give rise to continuous kernels.

3 A beautiful proof based on Theorem 8 can be found in Appendix D.

Theorem 14. The continuous kernels P : 2H×B → [0, 1] ordered
by v form a continuous DCPO with basis consisting of kernels of
the form b ;P ;d for P an arbitrary continuous kernel and b, d filters
on finite sets b and d; that is, kernels that drop all input packets
except for those in b and all output packets except those in d.

It is not true that the space of continuous kernels is algebraic
with finite elements b ; P ; d. See Appendix B for a counterexample.

7. Continuity and Semantics of Iteration
This section develops the technology needed to establish that all
ProbNetKAT programs give continuous Markov kernels and that
all program operators are themselves continuous. These results are
needed for the least fixpoint characterization of iteration and also
pave the way for our approximation results (§8).

The key fact that underpins these results is that Lebesgue
integration respects the orders on measures and on functions:

Theorem 15. Integration is Scott-continuous in both arguments:
(i) For any Scott-continuous function f : 2H → [0,∞], the map

µ 7→
∫
f dµ (7.7)

is Scott-continuous with respect to the order v onM(2H).
(ii) For any probability measure µ, the map

f 7→
∫
f dµ (7.8)

is Scott-continuous with respect to the order on [2H → [0,∞]].

The proofs of the remaining results in this section are somewhat
long and mostly routine, but can be found in Appendix E.

Theorem 16. The deterministic kernels associated with any Scott-
continuous function f : D → E are continuous, and the following
operations on kernels preserve continuity: product, integration,
sequential composition, parallel composition, choice, iteration.

The above theorem implies that Q 7→ 1 & P ;Q is a continuous
map on the DCPO of continuous Markov kernels. Hence P ∗ =⊔
n P

(n) is well-defined as the least fixed point of that map.

Corollary 17. Every ProbNetKAT program denotes a continuous
Markov kernel.

The next theorem is the key result that enables a practical
implementation:

Theorem 18. The following semantic operations are continuous
functions of the DCPO of continuous kernels: product, parallel com-
position, curry, sequential composition, choice, iteration. (Figure 4.)

The semantics of iteration presented in (Foster et al. 2016),
defined in terms of an infinite process, coincides with the least
fixpoint semantics presented here. The key observation is the
relationship between weak convergence in the Cantor topology and
fixpoint convergence in the Scott topology:

Theorem 19. Let A be a directed set of probability measures with
respect to v and let f : 2H → [0, 1] be a Cantor-continuous
function. Then

lim
µ∈A

∫
c∈2H

f(c) · dµ =

∫
c∈2H

f(c) · d(
⊔
A).

This theorem implies that P (n) weakly converges to P ∗ in the
Cantor topology. (Foster et al. 2016) showed that P (n) also weakly
converges to P~ in the Cantor topology, where we let P~ denote
the iterate of P as defined in (Foster et al. 2016). But since (2H, C)
is a Polish space, this implies that P ∗ = P~.

10 2016/11/22

(⊔
n≥0

Pn
)

&Q =
⊔
n≥0

(
Pn &Q

)
(⊔
n≥0

Pn
)
⊕r Q =

⊔
n≥0

(
Pn ⊕r Q

)
(⊔
n≥0

Pn
)

;Q =
⊔
n≥0

(
Pn ;Q

)
Q ;
(⊔
n≥0

Pn
)

=
⊔
n≥0

(
Q ; Pn

)
(⊔
n≥0

Pn
)∗

=
⊔
n≥0

(
P ∗n

)
Figure 4. Scott-Continuity of program operators (Theorem 18).

Lemma 20. In a Polish space D, the values of∫
a∈D

f(a) · µ(da)

for continuous f : D → [0, 1] determine µ uniquely.

Corollary 21. P~ =
⊔
n P

(n) = P ∗.

8. Approximation
We now formalize a notion of approximation for ProbNetKAT
programs. Given a program p, we define the n-th approximant [p]n
inductively as

[p]n , p (for p primitive)

[q ⊕r r]n , [q]n ⊕r [r]n

[q & r]n , [q]n & [r]n

[q ; r]n , [q]n ; [r]n

[q∗]n , ([q]n)(n)

Intuitively, [p]n is just p where iteration −∗ is replaced by bounded
iteration −(n). Let [[p]]n denote the Markov kernel obtained from
the n-th approximant: [[[p]n]].

Theorem 22. The approximants of a program p form a v-
increasing chain with supremum p, that is

[[p]]1 v [[p]]2 v . . . and
⊔
n≥0

[[p]]n = [[p]]

Proof. By induction on p and continuity of the operators.

This means that any program can be approximated by a sequence
of star-free programs, which—in contrast to general programs
(Lemma 4)—can only produce finite distributions. These finite
distributions are sufficient to compute the expected values of Scott-
continuous random variables:

Corollary 23. Let µ ∈ M(2H) be an input distribution, p be a
program, and Q : 2H → [0,∞] be a Scott-continuous random
variable. Let

ν , µ�=[[p]] and νn , µ�=[[p]]n

denote the output distribution and its approximations. Then

E
ν0

[Q] ≤ E
ν1

[Q] ≤ . . . and sup
n∈N

E
νn

[Q] = E
ν

[Q]

Proof. Follows directly from Theorems 22 and 15.

Note that the approximations νn of the output distribution
ν are always finite, provided the input distribution µ is finite.
Computing an expected value with respect to ν thus simply amounts

to computing a sequence of finite sums Eν0 [Q],Eν1 [Q], . . . , which
is guranteed to converge monotonically to the analytical solution
Eν [Q]. The approximate semantics [[−]]n can be thought of as an
executable version of the denotational semantics [[−]]. We implement
it in the next section and use it to approximate network metrics
based on the above result. The rest of this section gives more general
approximation results for measures and kernels on 2H, and shows
that we can in fact handle continuous input distributions as well.

A measure is a finite discrete measure if it is of the form∑
a∈F raδa, where F ∈ ℘ω(℘ω(H)) is a finite set of finite subsets

of packet histories H , ra ≥ 0 for all a ∈ F ,
∑
a∈F ra = 1.

Without loss of generality, we can write any such measure in the
form

∑
a⊆b raδa for any b ∈ ℘ω(H) such that

⋃
F ⊆ b by taking

ra = 0 for a ∈ 2b − F .
Saheb-Djahromi (Saheb-Djahromi 1980, Theorem 3) shows that

every measure is a supremum of a directed set of finite discrete
measures. This implies that the measures form a continuous DCPO
with basis consisting of the finite discrete measures. In our model,
the finite discrete measures have a particularly nice characterization:

For µ a measure and b ∈ ℘ω(H), define the restriction of µ to b
to be the finite discrete measure

µ�b ,
∑
a⊆b

µ(Aab)δa.

Theorem 24. The set {µ � b | b ∈ ℘ω(H)} is a directed set with
supremum µ. Moreover, the DCPO of measures is continuous with
basis consisting of the finite discrete measures.

We can lift the result to continuous kernels, which implies that
every program is approximated arbitrarily closely by programs
whose outputs are finite discrete measures.

Lemma 25. Let b ∈ ℘ω(H). Then (P ; b)(a,−) = P (a,−)�b.

Now suppose the input distribution µ in Corollary 23 is con-
tinuous. By Theorem 24, µ is the supremum of an increasing
chain of finite discrete measures µ1 v µ2 v If we redefine
νn , µn�=[[p]]n then by Theorem 15 the νn still approximate
the output distribution ν and Corollary 23 continues to hold. Even
though the input distribution is now continuous, the output distri-
bution can still be approximated by a chain of finite distributions
and hence the expected value can still be approximated by a chain
of finite sums.

9. Implementation and Case Studies
We built a simple interpreter for ProbNetKAT in OCaml that imple-
ments the denotational semantics as presented in Figure 2. Given a
query, the interpreter approximates the answer through a monotoni-
cally increasing sequence of values (Theorems 22 and 23). Although
preliminary in nature—more work on data structures and algroithms
for manipulating distributions would be needed to obtain an effi-
cient implementation—we were able to use our implementation to
conduct several case studies involving probabilistic reasoning about
properties of a real-world network: Internet2’s Abilene backbone.

Routing. In the networking literature, a large number of traffic
engineering (TE) approaches have been explored. We built Prob-
NetKAT implementations of each of the following routing schemes:

• Equal Cost Multipath Routing (ECMP): The network uses all
least-cost paths between each source-destination pair, and maps
incoming traffic flows onto those paths randomly. ECMP can
reduce congestion and increase throughput, but can also perform
poorly when multiple paths traverse the same bottleneck link.
• k-Shortest Paths (KSP): The network uses the top k-shortest

paths between each pair of hosts, and again maps incoming
traffic flows onto those paths randomly. This approach inherits

11 2016/11/22

S11

S10 S4

S8

S5
S1

S7
S3

S6
S9

S12S2

(a) Topology

1 2 3 4 5 6 7 8 9 101112
source

1
2
3
4
5
6
7
8
9

10
11
12

d
e
st
in
a
ti
o
n

0

15

30

45

60

75

90

105

M
b
p
s

(b) Traffic matrix

2 4 6 8 10 12
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

M
a
x
 C

o
n
g
e
st

io
n

ECMP

KSP

Multi
Räcke

(c) Max congestion

2 4 6 8 10 12
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

ECMP

KSP

Multi
Räcke

(d) Throughput

2 4 6 8 10 12
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

M
a
x
 C

o
n
g
e
st

io
n

ECMP

KSP

Multi
Räcke

(e) Max congestion

2 4 6 8 10 12
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

ECMP

KSP

Multi
Räcke

(f) Throughput

2 4 6 8 10 12
Iterations

0

1

2

3

4

5

6

M
e
a
n
 L

a
te

n
cy

ECMP

KSP

Multi
Räcke

(g) Path length

2 4 6 8 10 12 14
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro
u
g
h
p
u
t

ECMP

RW

(h) Random walk

Figure 5. Case study with Abilene: (c, d) without loss. (e, f) with
faulty links. (h) random walk in 4-cycle: all packets are eventually
delivered.

the benefits of ECMP and provides improved fault-tolerance
properties since it always spreads traffic across k distinct paths.
• Multipath Routing (Multi): This is similar to KSP, except

that it makes an independent choice from among the k-shortest
paths at each hop rather than just once at ingress. This approach
dynamically routes around bottlenecks and failures but can use
extremely long paths—even ones containing loops.
• Oblivious Routing (Räcke): The network forwards traffic using

a pre-computed probability distribution on carefully constructed
overlays. The distribution is constructed in such a way that
guarantees worst-case congestion within a polylogarithmic factor
of the optimal scheme, regardless of the demands for traffic.

Note that all of these schemes rely on some form of randomization
and hence are probabilistic in nature.

Traffic Model. Network operators often use traffic models con-
structed from historical data to predict future performance. We built
a small OCaml tool that translates traffic models into ProbNetKAT
programs using a simple encoding. Assume that we are given a
traffic matrix (TM) that relates pairs of hosts (u, v) to the amount of
traffic that will be sent from u to v. By normalizing each TM entry
using the aggregate demand

∑
(u,v) TM(u, v), we get a probability

distribution d over pairs of hosts. For a pair of source and destination
(u, v), the associated probability d(u, v) denotes the amount of traf-
fic from u to v relative to the total traffic. Assuming uniform packet
sizes, this is also the probability that a random packet generated in
the network has source u and destination v. So, we can encode a
TM as a program that generates packets according to d:

inp , ⊕d(u,v)π(u,v)!

where, π(u,v)! , src←u ; dst←v ; sw←u
π(u,v)! generates a packet at u with source u and destination v. For
any (non-empty) input, inp generates a distribution µ on packet
histories which can be fed to the network program. For instance,
consider a uniform traffic distribution for our 4-switch example (see
Figure 1) where each node sends equal traffic to every other node.
There are twelve (u, v) pairs with u 6= v. So, d(u, v)u6=v = 1

12
and

d(u, u) = 0. We also store the aggregate demand as it is needed to
model queries such as expected link congestion, throughput etc.

Queries. Our implementation can be used to answer probabilistic
queries about a variety of network performance properties. §2
showed an example of using a query to compute expected congestion.
We can also measure expected mean latency in terms of path length:

let path_length (h:Hist.t) : Real.t =
Real.of_int ((Hist.length h)/2 + 1)

let lift_query_avg
(q:Hist.t -> Real.t) : (HSet.t -> Real.t) =
fun hset ->
let n = HSet.length hset in
if n = 0 then Real.zero else
let sum = HSet.fold hset ∼init:Real.zero
∼f:(fun acc h -> Real.(acc + q h)) in

Real.(sum / of_int n)

The latency function (path length) counts the number of
switches in a history. We lift this function to sets and compute
the expectation (lift query avg) by computing the average
over all histories in the set (after discarding empty sets).

Case Study: Abilene. To demonstrate the applicability of Prob-
NetKAT for reasoning about a real network, we performed a case
study based on the topology and traffic demands from Internet2’s
Abilene backbone network as shown in Figure 5 (a). We evaluate the
traffic engineering approaches discussed above by modeling traffic
matrices based on NetFlow traces gathered from the production
network. A sample TM is depicted in Figure 5 (b).

Figures 5 (c,d,g) show the expected maximum congestion,
throughput and mean latency. Because we model a network using
the Kleene star operator, we see that the values converge monotoni-
cally as the number of iterations used to approximate Kleene star
increases, as guaranteed by Corollary 23.

Failures. Network failures such as a faulty router or a link going
down are common in large networks (Gill et al. 2011). Hence, it is
important to be able to understand the behavior and performance of a
network in the presence of failures. We can model failures by assign-
ing empirically measured probabilities to various components—e.g.,
we can modify our encoding of the topology so that every link in
the network drops packets with probability 1

10
:

`1,2 , sw=S1 ; pt=2 ; dup ; ((sw←S2 ; pt←1 ; dup)⊕0.9 0)
& sw=S2 ; pt=1 ; dup ; ((sw←S1 ; pt←2 ; dup)⊕0.9 0)

Figures 5 (e-f) show the network performance for Abilene under
this failure model. As expected, congestion and throughput decrease
as more packets are dropped. As every link drops packets probabilis-
tically, the relative fraction of packets delivered using longer links
decreases—hence, there is a decrease in mean latency.

12 2016/11/22

Loop detection. Forwarding loops in a network are extremely
undesirable as they increase congestion and can even lead to black
holes. With probabilistic routing, not all loops will necessarily result
in a black hole—if there is a non-zero probability of exiting a loop,
every packet entering it will eventually exit. Consider the example
of random walk routing in the four-node topology from Figure 1.
In a random walk, a switch either forwards traffic directly to its
destination or to a random neighbor. As packets are never duplicated
and only exit the network when they reach their destination, the
total throughput is equivalent to the fraction of packets that exit
the network. Figure 5 (h) shows that the fraction of packets exiting
increases monotonically with number of iterations and converges
to 1. Moreover, histories can be queried to test if it encountered a
topological loop by checking for duplicate locations. Hence, given
a model that computes all possible history prefixes that appear in
the network, we can query it for presence of loops. We do this
by removing out from our standard network model and using
in ;(p;t)∗;p instead. This program generates the required distribution
on history prefixes. Moreover, if we generalize packets with wildcard
fields, similar to HSA (Kazemian et al. 2012), we can check for
loops symbolically. We have extended our implementation in this
way, and used it to check whether the network exhibits loops on a
number of routing schemes based on probabilistic forwarding.

10. Related Work
This paper builds on previous work on NetKAT (Anderson et al.
2014; Foster et al. 2015) and ProbNetKAT (Foster et al. 2016), but
develops a semantics based on ordered domains as well as new
applications to traffic engineering.

Domain Theory. The domain-theoretic treatment of probability
measures goes back to the seminal work of Saheb-Djahromi (Saheb-
Djahromi 1980), who was the first to identify and study the CPO of
probability measures. Jones and Plotkin (Jones and Plotkin 1989;
Jones 1989) generalized and extended this work by giving a category-
theoretical treatment and proving that the probabilistic powerdomain
is a monad. It is an open problem if there exists a cartesian-closed
category of continuous DCPOs that is closed under the probabilistic
powerdomain; see (Jung and Tix 1998) for a discussion. This
is an issue for higher-order probabilistic languages, but not for
ProbNetKAT, which is strictly first-order. Edalat (Edalat 1994,
1996; Edalat and Heckmann 1998) gives a computational account of
measure theory and integration for general metric spaces based on
domain theory. More recent papers on probabilistic powerdomains
are (Jung and Tix 1998; Heckmann 1994; Graham 1988). All this
work is ultimately based on Scott’s pioneering work (Scott 1972).

Probabilistic Logic and Semantics. Computational models and
logics for probabilistic programming have been extensively stud-
ied. Denotational and operational semantics for probabilistic while
programs were first studied by Kozen (Kozen 1981). Early logical
systems for reasoning about probabilistic programs were proposed
in (Kozen 1985; Ramshaw 1979; Saheb-Djahromi 1978). There
are also numerous recent efforts (Gordon et al. 2014; Gretz et al.
2015; Kozen et al. 2013; Larsen et al. 2012; Morgan et al. 1996).
Sankaranarayanan et al. (Sankaranarayanan et al. 2013) propose
static analysis to bound the the value of probability queries. Prob-
abilistic programming in the context of artificial intelligence has
also been extensively studied in recent years (Borgström et al. 2011;
Roy 2011). Probabilistic automata in several forms have been a
popular model going back to the early work of Paz (Paz 1971), as
well as more recent efforts (McIver et al. 2008; Segala 2006; Segala
and Lynch 1995). Denotational models combining probability and
nondeterminism have been proposed by several authors (McIver
and Morgan 2004; Tix et al. 2009; Varacca and Winskel 2006), and
general models for labeled Markov processes, primarily based on

Markov kernels, have been studied extensively (Doberkat 2007;
Panangaden 1998, 2009).

Our semantics is also related to the work on event struc-
tures (Nielsen et al. 1979; Varacca et al. 2006). A (Prob)NetKAT
program denotes a simple (probabilistic) event structure: packet
histories are events with causal dependency given by extension and
with all finite subsets consistent. We have to yet explore whether the
event structure perspective on our semantics could lead to further
applications and connections to e.g. (concurrent) games.

Networking. Network calculus is a general framework for ana-
lyzing network behavior using tools from queuing theory (Cruz.
1991). It has been used to reason about quantitative properties such
as latency, bandwidth, and congestion. The stochastic branch of
network calculus provides tools for reasoning about the probabilistic
behavior, especially in the presence of statistical multiplexing, but
is often considered difficult to use. In contrast, ProbNetKAT is a
self-contained framework based on a precise denotational semantics.

Traffic engineering has been extensively studied and a wide vari-
ety of approaches have been proposed for data-center networks (Al-
Fares et al. 2010; Jeyakumar et al. 2013; Perry et al. 2014; Zhang-
Shen and McKeown 2005; Shieh et al. 2010) and wide-area net-
works (Hong et al. 2013; Jain et al. 2013; Fortz et al. 2002; Applegate
and Cohen 2003; Räcke 2008; Kandula et al. 2005; Suchara et al.
2011; He and Rexford 2008). These approaches optimize for met-
rics such as congestion, throughput, latency, fault tolerance, fairness
etc. Optimal techniques typically have high overheads (Danna et al.
2012), but oblivious (Kodialam et al. 2009; Applegate and Cohen
2003) and hybrid approaches with near-optimal performance (Hong
et al. 2013; Jain et al. 2013) have recently been adopted.

11. Conclusion
This paper presents a new order-theoretic semantics for ProbNetKAT
in the style of classical domain theory. The semantics allows a
standard least-fixpoint treatment of iteration, and enables new modes
of reasoning about the probabilistic network behavior. We have
used these theoretical tools to analyze several randomized routing
protocols on real-world data.

The main technical insight is that all programs and the operators
defined on them are continuous, provided we consider the right
notion of continuity: that induced by the Scott topology. Continuity
enables precise approximation, and we exploited this to build an
implementation. But continuity is also a powerful tool for reasoning
that we expect to be very helpful in the future development of
ProbNetKAT’s meta theory. To establish continuity we had to switch
from the Cantor to the Scott topology, and give up reasoning in terms
of a metric. Luckily we were able to show a strong correspondence
between the two topologies and that the Cantor-perspective and the
Scott-perspective lead to equivalent definitions of the semantics.
This allows us to choose whichever perspective is best-suited for the
task at hand.

Future Work. The results of this paper are general enough to ac-
commodate arbitrary extensions of ProbNetKAT with continuous
Markov kernels or continuous operators on such kernels. An obvi-
ous next step is therefore to investigate extension of the language
that would enable richer network models. Previous work on deter-
ministic NetKAT included a decision procedure and a sound and
complete axiomatization. In the presence of probabilities we expect
a decision procedure will be hard to devise, as witnessed by several
undecidability results on probabilistic automata. We intend to ex-
plore decision procedures for restricted fragments of the language.
Another interesting direction is to compile ProbNetKAT programs
into suitable automata that can then be analyzed by a probabilis-
tic model checker such as PRISM (Kwiatkowska et al. 2011). A

13 2016/11/22

sound and complete axiomatization remains subject of further in-
vestigation, we can draw inspiration from recent work (Kozen et al.
2013; Mardare et al. 2016). Another opportunity is to investigate
a weighted version of NetKAT, where instead of probabilities we
consider weights from an arbitrary semiring, opening up several
other applications—e.g. in cost analysis. Finally, we would like to
explore efficient implementation techniques including compilation,
as well as approaches based on sampling, following several other
probabilistic languages (Park et al. 2008; Borgström et al. 2011).

Acknowledgments
The authors wish to thank Arthur Azevedo de Amorim, David
Kahn, Anirudh Sivaraman, Hongseok Yang, the Cornell PLDG,
and the Barbados Crew for insightful discussions and helpful
comments. Our work is supported by the National Security Agency;
the National Science Foundation under grants CNS-1111698, CNS-
1413972, CCF-1422046, CCF-1253165, and CCF-1535952; the
Office of Naval Research under grant N00014-15-1-2177; the Dutch
Research Foundation (NWO) under project numbers 639.021.334
and 612.001.113; and gifts from Cisco, Facebook, Google, and
Fujitsu.

References
S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay,

and T. Maibaum, editors, Handbook of Logic in Computer Science,
volume 3, pages 1–168. Clarendon Press, 1994.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In NSDI,
pages 19–19, 2010.

C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger,
and D. Walker. NetKAT: Semantic foundations for networks. In POPL,
pages 113–126, January 2014.

D. Applegate and E. Cohen. Making intra-domain routing robust to changing
and uncertain traffic demands: understanding fundamental tradeoffs. In
SIGCOMM, pages 313–324, Aug. 2003.

J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. V. Gael.
Measure transformer semantics for Bayesian machine learning. In ESOP,
July 2011.

R. Cruz. A calculus for network delay, parts I and II. IEEE Transactions on
Information Theory, 37(1):114–141, Jan. 1991.

E. Danna, S. Mandal, and A. Singh. A practical algorithm for balancing
the max-min fairness and throughput objectives in traffic engineering. In
INFOCOM, pages 846–854, 2012.

E.-E. Doberkat. Stochastic Relations: Foundations for Markov Transition
Systems. Studies in Informatics. Chapman Hall, 2007.

R. Durrett. Probability: Theory and Examples. Cambridge University Press,
2010.

A. Edalat. Domain theory and integration. In LICS, pages 115–124, 1994.
A. Edalat. The scott topology induces the weak topology. In LICS, pages

372–381, 1996.
A. Edalat and R. Heckmann. A computational model for metric spaces.

Theoretical Computer Science, 193(1):53–73, 1998.
B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional

IP routing protocols. IEEE Communications Magazine, 40(10):118–124,
Oct. 2002.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story,
and D. Walker. Frenetic: A network programming language. In ICFP,
pages 279–291, Sept. 2011.

N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic
decision procedure for NetKAT. In POPL, pages 343–355. ACM, Jan.
2015.

N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva. Probabilistic
NetKAT. In ESOP, pages 282–309, Apr. 2016.

P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data
centers: Measurement, analysis, and implications. In SIGCOMM, pages
350–361, Aug. 2011.

M. Giry. A categorical approach to probability theory. In Categorical aspects
of topology and analysis, pages 68–85. Springer, 1982.

A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. Probabilistic
programming. In FOSE, May 2014.

S. Graham. Closure properties of a probabilistic powerdomain construction.
In MFPS, pages 213–233, 1988.

F. Gretz, N. Jansen, B. L. Kaminski, J. Katoen, A. McIver, and F. Olmedo.
Conditioning in probabilistic programming. CoRR, abs/1504.00198,
2015.

P. R. Halmos. Measure Theory. Van Nostrand, 1950.
J. He and J. Rexford. Toward internet-wide multipath routing. IEEE Network

Magazine, 22(2):16–21, 2008.
R. Heckmann. Probabilistic power domains, information systems, and

locales. In MFPS, volume 802, pages 410–437, 1994.
C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and

R. Wattenhofer. Achieving high utilization with software-driven WAN.
In SIGCOMM, pages 15–26, Aug. 2013.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-
deployed software defined WAN. In SIGCOMM, pages 3–14, Aug. 2013.

V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg, and
C. Kim. Eyeq: Practical network performance isolation at the edge. In
NSDI, pages 297–311, 2013.

C. Jones. Probabilistic Non-determinism. PhD thesis, University of
Edinburgh, August 1989.

C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In
LICS, pages 186–195, 1989.

A. Jung and R. Tix. The troublesome probabilistic powerdomain. ENTCS,
13:70–91, 1998.

S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
Responsive yet stable traffic engineering. In SIGCOMM, pages 253–264,
Aug. 2005.

P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In NSDI, 2012.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In NSDI, 2013.

M. Kodialam, T. Lakshman, J. B. Orlin, and S. Sengupta. Oblivious routing
of highly variable traffic in service overlays and ip backbones. IEEE/ACM
Transactions on Networking (TON), 17(2):459–472, 2009.

A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Prentice
Hall, 1970.

D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22:
328–350, 1981.

D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178, April
1985.

D. Kozen. Kleene algebra with tests. ACM TOPLAS, 19(3):427–443, May
1997.

D. Kozen, R. Mardare, and P. Panangaden. Strong completeness for
Markovian logics. In MFCS, pages 655–666, August 2013.

M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In CAV, pages 585–591, 2011.

K. G. Larsen, R. Mardare, and P. Panangaden. Taking it to the limit:
Approximate reasoning for Markov processes. In MFCS, 2012.

R. Mardare, P. Panangaden, and G. Plotkin. Quantitative algebraic reasoning.
In LICS, 2016.

J. McClurg, H. Hojjat, N. Foster, and P. Cerny. Event-driven network
programming. In PLDI, June 2016.

A. McIver and C. Morgan. Abstraction, Refinement And Proof For Proba-
bilistic Systems. Springer, 2004.

A. K. McIver, E. Cohen, C. Morgan, and C. Gonzalia. Using probabilistic
Kleene algebra pKA for protocol verification. J. Logic and Algebraic
Programming, 76(1):90–111, 2008.

14 2016/11/22

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
software defined networks. In NSDI, Apr. 2013.

C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers.
ACM TOPLAS, 18(3):325–353, May 1996.

T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi. Tierless
programming and reasoning for software-defined networks. In NSDI,
2014.

M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures
and domains. In Semantics of Concurrent Computation, pages 266–284,
1979.

P. Panangaden. Probabilistic relations. In PROBMIV, pages 59–74, 1998.
P. Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on

sampling functions. ACM TOPLAS, 31(1):1–46, Dec. 2008.
A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass:

A Centralized Zero-Queue Datacenter Network. In SIGCOMM, August
2014.

G. D. Plotkin. Probabilistic powerdomains. In CAAP, pages 271–287, 1982.
H. Räcke. Optimal hierarchical decompositions for congestion minimization

in networks. In STOC, pages 255–264, 2008.
N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of

probability distributions. In POPL, pages 154–165, Jan. 2002.
L. H. Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis,

Stanford University, 1979.
M. M. Rao. Measure Theory and Integration. Wiley-Interscience, 1987.
M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstrac-

tions for network update. In SIGCOMM, pages 323–334, Aug. 2012.
D. M. Roy. Computability, inference and modeling in probabilistic program-

ming. PhD thesis, Massachusetts Institute of Technology, 2011.

N. Saheb-Djahromi. Probabilistic LCF. In MFCS, pages 442–451, May
1978.

N. Saheb-Djahromi. CPOs of measures for nondeterminism. Theoretical
Computer Science, 12:19–37, 1980.

S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for
probabilistic programs: inferring whole program properties from finitely
many paths. In PLDI, pages 447–458, June 2013.

D. S. Scott. Continuous lattices. In Toposes, Algebraic Geometry and Logic,
pages 97–136. 1972.

R. Segala. Probability and nondeterminism in operational models of
concurrency. In CONCUR, pages 64–78, 2006.

R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic
processes. In NJC, pages 250–273, 1995.

A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim. Seawall: Performance
isolation for cloud datacenter networks. In HotCloud, 2010.

S. Smolka, S. Eliopoulos, N. Foster, and A. Guha. A fast compiler for
NetKAT. In ICFP, Sept. 2015.

M. Suchara, D. Xu, R. Doverspike, D. Johnson, and J. Rexford. Network
architecture for joint failure recovery and traffic engineering. ACM
SIGMETRICS, pages 97–108, 2011.

R. Tix, K. Keimel, and G. Plotkin. Semantic domains for combining
probability and nondeterminism. ENTCS, 222:3–99, 2009.

D. Varacca and G. Winskel. Distributing probability over non-determinism.
Mathematical Structures in Computer Science, 16(1):87–113, 2006.

D. Varacca, H. Völzer, and G. Winskel. Probabilistic event structures and
domains. TCS, 358(2-3):173–199, 2006.

A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple: Simplifying
SDN programming using algorithmic policies. In SIGCOMM, 2013.

R. Zhang-Shen and N. McKeown. Designing a predictable Internet backbone
with Valiant load-balancing. In International Workshop on Quality of
Service (IWQoS), pages 178–192, 2005.

15 2016/11/22

A. (M,v) is not a Semilattice
Despite the fact that (M,v) is a directed set (Lemma 12), it is not
a semilattice. Here is a counterexample.

Let b = {π, σ, τ}, where π, σ, τ are distinct packets. Let

µ1 = 1
2
δ{π} + 1

2
δ{σ} µ2 = 1

2
δ{σ} + 1

2
δ{τ}

µ3 = 1
2
δ{τ} + 1

2
δ{π}.

The measures µ1, µ2, µ3 would be the output measures of the
programs π!⊕ σ!, σ!⊕ τ !, τ !⊕ π!, respectively.

We claim that µ1 t µ2 does not exist. To see this, define

ν1 = 1
2
δ{τ} + 1

2
δ{π,σ} ν2 = 1

2
δ{π} + 1

2
δ{σ,τ}

ν3 = 1
2
δ{σ} + 1

2
δ{τ,π}.

All νi are v-upper bounds for all µj . (In fact, any convex combi-
nation rν1 + sν2 + tν3 for 0 ≤ r, s, t and r + s + t = 1 is an
upper bound for any convex combination uµ1 + vµ2 + wµ3 for
0 ≤ u, v, w and u+v+w = 1.) But we show by contradiction that
there cannot exist a measure that is both v-above µ1 and µ2 and
v-below ν1 and ν2. Suppose ρ was such a measure. Since ρ v ν1
and ρ v ν2, we have

ρ(Bστ) ≤ ν1(Bστ) = 0 ρ(Bτπ) ≤ ν1(Bτπ) = 0

ρ(Bπσ) ≤ ν2(Bπσ) = 0.

Since µ1 v ρ and µ2 v ρ, we have

ρ(Bπ) ≥ µ1(Bπ) = 1
2

ρ(Bσ) ≥ µ1(Bσ) = 1
2

ρ(Bτ) ≥ µ2(Bτ) = 1
2
.

But then

ρ(Aπb) = ρ(Bπ)− ρ(Bπσ ∪Bτπ) ≥ 1
2

ρ(Aσb) = ρ(Bσ)− ρ(Bστ ∪Bπσ) ≥ 1
2

ρ(Aτb) = ρ(Bτ)− ρ(Bτπ ∪Bστ) ≥ 1
2
,

which is impossible, because ρ would have total weight at least 3
2

.

B. Non-Algebraicity
Here is a counterexample to the conjecture that the elements
continuous DCPO of continuous kernels is algebraic with finite
elements b ; P ; d. Let σ, τ be packets and let σ! and τ ! be
the programs that set the current packet to σ or τ , respectively.
For r ∈ [1

2
, 1], let Pr = (σ! ⊕r τ !) & (τ ! ⊕r σ!). On any

nonempty input, Pr produces {σ} with probability r(1− r), {τ}
with probability r(1−r), and {σ, τ} with probability r2 +(1−r)2.
In particular, P1 produces {σ, τ} with probability 1. The kernels Pr
for 1/2 ≤ r < 1 form a directed set whose supremum is P1, yet
{σ} ; P1 ; {σ, τ} is not v-bounded by any Pr for r < 1, therefore
the up-closure of {σ} ; P1 ; {σ, τ} is not an open set.

C. Cantor Meets Scott
This appendix contains proofs omitted from §5.

Proof of Lemma 9. For any a ⊆ b,

Xa = µ(Ba) =
∑
a⊆c⊆b

µ(Acb)

=
∑
c

[a ⊆ c] · [c ⊆ b] · µ(Acb)

=
∑
c

E[b]ac · Yc = (E[b] · Y)a.

Proof of Theorem 10. Given a probability measure µ, certainly (i)
and (ii) hold of the matrices M and N formed from µ by the rule
(5.6). For (iii), we calculate:

(E−1ME)ab =
∑
c,d

E−1
ac McdEdb =

∑
c,d

E−1
ac McdEdb

=
∑
c,d

[a ⊆ c] · (−1)|c−a| · [c = d] · µ(Mcd) · [d ⊆ b]

=
∑
a⊆c⊆b

(−1)|c−a| · µ(Bc) = µ(Aab) = Nab.

That the correspondence is one-to-one is immediate from Theo-
rem 8.

D. A DCPO on Markov Kernels
This appendix contains proofs omitted from §6.

Proof of Theorem 11. We prove the theorem for our concrete in-
stance (2H,B). The relation v is a partial order. Reflexivity and
transitivity are clear, and antisymmetry follows from Lemma 7.

To show that suprema of directed sets exist, let D be a directed
set of measures, and define

(
⊔
D)(B) , sup

µ∈D
µ(B), B ∈ O.

This is clearly the supremum of D, provided it defines a valid
measure.4 To show this, choose a countable chain µ0 v µ1 v · · · in
D such that µm v µn for all m < n and (

⊔
D)(Bc)− µn(Bc) ≤

1/n for all c such that |c| ≤ n. Then for all finite c ∈ 2H,
(
⊔
D)(Bc) = supn µn(Bc).
Then

⊔
D is a measure by Theorem 8 because for all finite b and

a ⊆ b,∑
a⊆c⊆b

(−1)|c−a|(
⊔
D)(Bc) =

∑
a⊆c⊆b

(−1)|c−a| sup
n
µn(Bc)

= lim
n

∑
a⊆c⊆b

(−1)|c−a|µn(Bc)

≥ 0.

To show that δ∅ is v-minimum, observe that for all B ∈ O,

δ∅(B) = [∅ ∈ B] = [B = B∅ = 2H]

as B∅ = 2H is the only up-closed set containing ∅. Thus for all
measures µ, δ∅(2H) = 1 = µ(2H), and for all B ∈ O, B 6= 2H,
δ∅(B) = 0 ≤ µ(B).

Finally, to show that δH is v-maximum, observe that every
nonemptyB ∈ O containsH because it is up-closed. Therefore, δH
is the constant function 1 onO−{∅}, making itv-maximum.

Proof of Lemma 12. For any up-closed measurable set B,

µ(B) = µ(B) · ν(2H) = (µ× ν)(B × 2H)

= (µ× ν)({(b, c) | b ∈ B})
≤ (µ× ν)({(b, c) | b ∪ c ∈ B}) = (µ& ν)(B).

and similarly for ν.

4 This is actually quite subtle. One might be tempted to define

(
⊔
D)(B) , sup

µ∈D
µ(B), B ∈ B

However, this definition would not give a valid probability measure in general.
In particular, an increasing chain of measures does not generally converge to
its supremum pointwise. However, it does converge pointwise on O.

16 2016/11/22

Proof of Lemma 13. To show that (i), (ii), and (iv) are equivalent,

∀a ∈ 2H ∀B ∈ O P (a,B) ≤ Q(a,B)

⇔ ∀a ∈ 2H (∀B ∈ O P (a,B) ≤ Q(a,B))

⇔ ∀a ∈ 2H P (a,−) v Q(a,−)

⇔ ∀a ∈ 2H (curryP)(a) v (curryQ)(a)

⇔ curryP v curryQ.

To show that (i) and (iii) are equivalent,

∀a ∈ 2H ∀B ∈ O P (a,B) ≤ Q(a,B)

⇔ ∀B ∈ O (∀a ∈ 2H P (a,B) ≤ Q(a,B))

⇔ ∀B ∈ O P (−, B) v Q(−, B).

Proof of Theorem 14. We must show that the supremum of any
directed set of continuous Markov kernels is a continuous Markov
kernel. In general, the supremum of a directed set of continuous
functions between DCPOs is continuous. Given a directed set D of
continuous kernels, we apply this to the directed set {curryP :
2H → M(2H) | P ∈ D} to derive that

⊔
P∈D curryP is

continuous, then use the fact that curry is continuous to infer that⊔
P∈D curryP = curry

⊔
D, therefore curry

⊔
D is continuous.

This says that the function P : 2H × B → [0, 1] is continuous in its
first argument.

We must still argue that the supremum
⊔
D is a Markov kernel,

that is, a measurable function in its first argument and a probability
measure in its second argument. The first statement follows from
the fact that any continuous function is measurable with respect to
the Borel sets generated by the topologies of the two spaces. For the
second statement, we appeal to Theorem 11 and the continuity of
curry:

(curry
⊔
D)(a) = (

⊔
P∈D curryP)(a) =

⊔
P∈D(curryP)(a),

which is a supremum of a directed set of probability measures,
therefore by Theorem 11 is itself a probability measure.

To show that it is a continuous DCPO with basis of the indicated
form, we note that for any a ∈ 2H and B ∈ O,

(b ; P ; d)(a,B) = P (a ∩ b, {c | c ∩ d ∈ B}). (D.9)

Every element of the space is the supremum of a directed set of such
elements. Given a continuous kernel P , consider the directed set
D of all elements b ; P ; d for b, d finite. Then for any a ∈ 2H and
B ∈ O,

(
⊔
D)(a,B) = sup

b,d∈℘ω(H)

P (a ∩ b, {c | c ∩ d ∈ B}) (D.10)

= sup
d∈℘ω(H)

P (a, {c | c ∩ d ∈ B}) (D.11)

= P (a,B), (D.12)

the inference (D.10) from (D.9), the inference (D.11) from the fact
that P is continuous in its first argument, and the inference (D.11)
from the fact that the sets {c | c ∩ d ∈ B} for d ∈ ℘ω(H) form
a directed set of Scott-open sets whose union is B and that P is a
measure in its second argument.

E. Continuity of Kernels and Program Operators
and a Least-Fixpoint Characterization of
Iteration

This appendix contains lemmas and proofs omitted from §7.

E.1 Products and Integration
This section develops some properties of products and integration
needed for from the point of view of Scott topology.

As pointed out by Jones (Jones 1989, §3.6), the product σ-algebra
of the Borel sets of two topological spacesX,Y is in general not the
same as the Borel sets of the topological product X × Y , although
this property does hold for the Cantor space, as its basic open sets are
clopen. More importantly, as also observed in (Jones 1989, §3.6), the
Scott topology on the product of DCPOs with the componentwise
order is not necessarily the same as the product topology. However,
in our case, the two topologies coincide.

Theorem 26. Let Dα, α < κ, be a collection of algebraic DCPOs
with Fα the finite elements of Dα. Then the product

∏
α<κDα with

the componentwise order is an algebraic DCPO with finite elements

F = {c ∈
∏
α Fα | πα(c) = ⊥ for all but finitely many α}.

Proof. The projections πβ :
∏
αDα → Dβ are easily shown to

be continuous with respect to the componentwise order. For any
d ∈

∏
α<κDα, the set {d}↓∩F is directed, and d =

⊔
({d}↓∩F):

for any α, the set πα({d}↓∩F) = {πα(d)}↓∩Fα is directed, thus

πα(d) =
⊔

({πα(d)}↓ ∩ Fα) =
⊔

(πα({d}↓ ∩ F))

= πα(
⊔

({d}↓ ∩ F)),

and as α was arbitrary, d =
⊔

({d}↓ ∩ F).
It remains to show that {c}↑ =

∏
α<κ{πα(c)}↑ is open for

c ∈ F . Let A be a directed set with
⊔
A ∈ {c}↑. For each α,

{πα(a) | a ∈ A} is directed, and⊔
a∈A

πα(a) = πα(
⊔
A) ∈ πα({c}↑) = {πα(c)}↑,

so there exists aα ∈ A such that πα(aα) ∈ {πα(c)}↑. Since A is
directed, there is a single a ∈ A that majorizes the finitely many
aα such that πα(c) 6= ⊥. Then πα(a) ∈ {πα(c)}↑ for all α, thus
a ∈ {c}↑.

Corollary 27. The Scott topology on a product of algebraic DCPOs
with respect to the componentwise order coincides with the product
topology induced by the Scott topology on each component.

Proof. Let
∏
α<κDα be a product of algebraic DCPOs withO0 the

product topology and O1 the Scott topology. As noted in the proof
of Theorem 26, the projections πβ :

∏
αDα → Dβ are continuous

with respect toO1. By definition,O0 is the weakest topology on the
product such that the projections are continuous, so O0 ⊆ O1.

For the reverse inclusion, we use the observation that the sets
{c}↑ for finite elements c ∈ F as defined in Theorem 26 form a
base for the topology O1. These sets are also open in O0, since
they are finite intersections of sets of the form π−1

α ({πα(c)}↑), and
{πα(c)}↑ is open in Dα since πα(c) ∈ Fα. As O1 is the smallest
topology containing its basic open sets, O1 ⊆ O0.

A function g : 2H → R+ is O-simple if it is a finite linear
combination of the form

∑
A∈F rA1A, where F is a finite subset

of O. Let SO denote the set of O-simple functions.

Theorem 28. Let f be a bounded Scott-continuous function f :
2H → R+. Then

sup
g∈SO
g≤f

∫
g dµ =

∫
f dµ = inf

g∈SO
f≤g

∫
g dµ

under Lebesgue integration.

Proof. Let ε > 0 and rN = supa∈2H f(a). Let

0 = r0 < r1 < · · · < rN

17 2016/11/22

such that ri+1 − ri < ε, 0 ≤ i ≤ N − 1, and set

Ai = {a | f(a) > ri} = f−1((ri,∞)) ∈ O, 0 ≤ i ≤ N.
Then Ai+1 ⊆ Ai and

Ai −Ai+1 = {a | ri < f(a) ≤ ri+1} = f−1((ri, ri+1]).

Let

f• =

N−1∑
i=0

ri1Ai−Ai+1 f• =

N−1∑
i=0

ri+11Ai−Ai+1 .

For a ∈ Ai −Ai+1,

f•(a) =

N−1∑
i=0

ri1Ai−Ai+1(a) = ri < f(a)

≤ ri+1 =

N−1∑
i=0

ri+11Ai−Ai+1(a) = f•(a),

and as a was arbitrary, f• ≤ f ≤ f• pointwise. Thus∫
f• dµ ≤

∫
f dµ ≤

∫
f• dµ.

Moreover,∫
f• dµ−

∫
f• dµ =

N−1∑
i=0

ri+1µ(Ai −Ai+1)

−
N−1∑
i=0

riµ(Ai −Ai+1)

=

N−1∑
i=0

(ri+1 − ri)µ(Ai −Ai+1)

< ε ·
N−1∑
i=0

µ(Ai −Ai+1) = ε · µ(2H) = ε,

so the integral is approximated arbitrarily closely from above and
below by the f• and f•. Finally, we argue that f• and f• are O-
simple. Using the fact that r0 = 0 and AN = ∅ to reindex,

f• =

N−1∑
i=0

ri1Ai−Ai+1 =

N−1∑
i=0

ri1Ai −
N−1∑
i=0

ri1Ai+1

=

N−1∑
i=0

ri+11Ai+1 −
N−1∑
i=0

ri1Ai+1 =

N−1∑
i=0

(ri+1 − ri)1Ai+1 ,

f• =

N−1∑
i=0

ri+11Ai−Ai+1 =

N−1∑
i=0

ri+11Ai −
N−1∑
i=0

ri+11Ai+1

=

N−1∑
i=0

ri+11Ai −
N−1∑
i=0

ri1Ai =

N−1∑
i=0

(ri+1 − ri)1Ai ,

and both functions are O-simple since all Ai are in O.

We can prove a stronger version of Theorem 28 that also works
for functions taking on infinite value. A function g is simple if it
is a finite linear combination of indicator functions of the form
g =

∑k
i=1 ri1Ai , where k ∈ N and the Ai are measurable. Let S

denote the set of all simple functions.

Theorem 29. Let f : 2H → [0,∞] be Scott-continuous and let µ
be a probability measure. Then∫

f dµ = sup
g∈SO
g≤f

∫
g dµ

Proof. It suffices to show that

sup
g∈S
g≤f

∫
g dµ = sup

g∈SO
g≤f

∫
g dµ (E.13)

since the left side of this equation defines the integral of f . We
trivially have

sup
g∈S
g≤f

∫
g dµ ≥ sup

g∈SO
g≤f

∫
g dµ (E.14)

because SO ⊆ S. To show the reverse inequality, let g ∈ S with g ≤
f be arbitrary. We will show that there exists a family of functions
gε ∈ SO , ε > 0 with gε ≤ f such that

∫
g dµ −

∫
gε dµ ≤ ε.

Together with (E.14), this proves (E.13) because it implies that

sup
g∈S
g≤f

∫
g dµ ≤ sup

g∈S
g≤f

sup
ε>0

∫
gε dµ ≤ sup

g∈SO
g≤f

∫
g dµ

Let’s turn to constructing the family of functions gε ∈ SO . Since
g is simple, we may w.l.o.g. assume that it has the form g =∑k
i=1 ri1Ai with disjoint Ai ∈ B and r1 < r2 < · · · < rk.

Define

r0 , ε

Bi,ε , f
−1((ri − ε,∞]) ∈ O

βi , ri − ri−1

gε ,
k∑
i=1

βi · 1Bi,ε ∈ SO

Then we have gε ≤ f because for all a ∈ 2H

(

k∑
i=1

βi · 1Bi,ε)(a) =

k∑
i=1

βi · [a ∈ Bi,ε]

=

k∑
i=1

(ri − ri−1) · [f(a) > ri − ε]

= max{ri | 1 ≤ i ≤ k and f(a) > ri − ε} − r0
< f(a)

Moreover, we have that g − gε ≤ ε because

(

k∑
i=1

βi · 1Bi,ε)(a) = max{ri | 1 ≤ i ≤ k and f(a) > ri − ε} − r0

≥ max{ri | 1 ≤ i ≤ k and f(a) ≥ ri} − ε
≥ max{ri | 1 ≤ i ≤ k and g(a) = ri} − ε
= g(a)− ε

Thus it follows that∫
g dµ−

∫
gε dµ =

∫
(g − gε)dµ ≤

∫
ε dµ = ε

Proof of Theorem 15. (i) We prove the result first for O-simple
functions. If µ v ν, then for anyO-simple function g =

∑
A rA1A,∫

g dµ =

∫ ∑
A

rA1A dµ =
∑
A

rAµ(A)

≤
∑
A

rAν(A) =

∫ ∑
A

rA1A dν =

∫
g dν.

18 2016/11/22

Thus the map (7.7) is monotone. If D is a directed set of measures
with respect to v, then∫

g d(
⊔
D) =

∫ ∑
A

rA1A d(
⊔
D) =

∑
A

rA(
⊔
D)(A)

= sup
µ∈D

∑
A

rAµ(A) = sup
µ∈D

∫ ∑
A

rA1A dµ

= sup
µ∈D

∫
g dµ.

Now consider an arbitrary Scott-continuous function f : 2H →
[0,∞]. Let SO be the family of O-simple functions. By Theorem
29, if µ v ν, we have∫

f dµ = sup
g∈SO
g≤f

∫
g dµ ≤ sup

g∈SO
g≤f

∫
g dν =

∫
f dν,

and if D is a directed set of measures with respect to v, then∫
f d(

⊔
D) = sup

g∈SO
g≤f

∫
g d(

⊔
D) = sup

g∈SO
g≤f

sup
µ∈D

∫
g dµ

= sup
µ∈D

sup
g∈SO
g≤f

∫
g dµ = sup

µ∈D

∫
f dµ.

(ii) This just the monotone convergence theorem for Lebesgue
Integration.

E.2 Continuous Operations on Measures
In this section we show that certain operations on measures are
continuous. These properties will be lifted to kernels as required.

Lemma 30. For any probability measure µ on an algebraic DCPO
and open set B, the value µ(B) is approximated arbitrarily closely
from below by µ(C) for compact-open sets C.

Proof. Since the sets {a}↑ for finite a form a base for the topology,
and every compact-open set is a finite union of such sets, the set
K(B) of compact-open subsets of B is a directed set whose union
is B. Then

µ(B) = µ(
⋃
K(B)) = sup{µ(C) | C ∈ K(B)}.

Lemma 31. The product operator on measures in algebraic DCPOs
is Scott-continuous in each argument.

Proof. The difficult part of the argument is monotonicity. Once we
have that, then for any B,C ∈ O, we have (µ × ν)(B × C) =
µ(B) · ν(C). Thus for any directed set D of measures,

(
⊔
D × ν)(B × C)

= (
⊔
D)(B) · ν(C) = (sup

µ∈D
µ(B)) · ν(C)

= sup
µ∈D

(µ(B) · ν(C)) = sup
µ∈D

((µ× ν)(B × C))

= (
⊔
µ∈D(µ× ν))(B × C).

By Theorem 26, the sets B × C for B,C ∈ O form a basis for
the Scott topology on the product space 2H × 2H, thus

⊔
D × ν =⊔

µ∈D(µ× ν).
To show monotonicity, we use approximability by compact-

open sets (Lemma 30). We wish to show that if µ1 v µ2, then

µ1 × ν v µ2 × ν. By Lemma 30, it suffices to show that

(µ1 × ν)(
⋃
n

Bn × Cn) ≤ (µ2 × ν)(
⋃
n

Bn × Cn),

where the index n ranges over a finite set, and Bn and Cn are open
sets of the component spaces. Consider the collection of all atoms
A of the Boolean algebra generated by the Cn. For each such atom
A, let

N(A) = {n | Cn occurs positively in A}.
Then ⋃

n

Bn × Cn =
⋃
A

(
⋃

n∈N(A)

Bn)×A.

The right-hand side is a disjoint union, since the A are pairwise
disjoint. Then

(µ1 × ν)(
⋃
n

Bn × Cn) = (µ1 × ν)(
⋃
A

(
⋃

n∈N(A)

Bn)×A)

=
∑
A

(µ1 × ν)((
⋃

n∈N(A)

Bn)×A)

=
∑
A

µ1(
⋃

n∈N(A)

Bn) · ν(A)

≤
∑
A

µ2(
⋃

n∈N(A)

Bn) · ν(A)

= (µ2 × ν)(
⋃
n

Bn × Cn).

Let S and T be measurable spaces and f : S → T a measurable
function. For a measure µ on S, the push-forward measure f∗(µ) is
the measure µ ◦ f−1 on T .

Lemma 32. If f : (2H)κ → 2H is Scott-continuous with respect to
the subset order, then the push-forward operator f∗ :M((2H)κ)→
M(2H) is Scott-continuous with respect to v.

Proof. Let µ, ν ∈ M((2H)κ), µ v ν. If B ∈ O, then f−1(B) is
Scott-open in (2H)κ, so f∗(µ)(B) = µ(f−1(B)) ≤ ν(f−1(B)) =
f∗(ν)(B). As B ∈ O was arbitrary, f∗(µ) v f∗(ν). Similarly, if
D is any v-directed set inM((2H)κ), then so is {f∗(µ) | µ ∈ D},
and

f∗(
⊔
D)(B) = (

⊔
D)(f−1(B)) = sup

µ∈D
µ(f−1(B))

= sup
µ∈D

f∗(µ)(B) = (
⊔
µ∈Df∗(µ))(B)

for any B ∈ O, thus f∗(
⊔
D) =

⊔
µ∈Df∗(µ).

Lemma 33. Parallel composition of measures (&) is Scott-
continuous in each argument.

Proof. By definition, µ&ν = (µ×ν);
⋃−1, where

⋃
: 2H×2H →

2H is the set union operator. The set union operator is easily shown to
be continuous with respect to the Scott topologies on 2H×2H and the
2H. By Lemma 32, the push-forward operator with respect to union
is Scott-continuous with respect to v. By Lemma 31, the product
operator is Scott-continuous in each argument with respect to v.
The operator & is the composition of these two Scott continuous
operators, therefore is itself Scott-continuous.

19 2016/11/22

E.3 Continuous Kernels
Lemma 34. The deterministic kernel associated with any Scott-
continuous function f : D → E is a continuous kernel.

Proof. Recall from (Foster et al. 2016) that deterministic kernels
are those whose output measures are Dirac measures (point masses).
Any measurable function f : D → E uniquely determines a
deterministic kernel Pf such that Pf (a,−) = δf(a) (or equivalently,
P = η ◦f) and vice versa (this was shown in (Foster et al. 2016) for
D = E = 2H). We show that if in addition f is Scott-continuous,
then the kernel Pf is continuous.

Let f : D → E be Scott-continuous. For any open B, if a v b,
then f(a) v f(b) since f is monotone. Since B is up-closed, if
f(a) ∈ B, then f(b) ∈ B. Thus

Pf (a,B) = [f(a) ∈ B] ≤ [f(b) ∈ B] = Pf (b,B).

If A ⊆ D is a directed set, then f(
⊔
A) =

⊔
a∈A f(a). Since B is

open,
⊔
a∈A f(a) ∈ B iff there exists a ∈ A such that f(a) ∈ B.

Then

Pf (
⊔
A,B) = [f(

⊔
A) ∈ B] = [

⊔
a∈Af(a) ∈ B]

= sup
a∈A

[f(a) ∈ B] = sup
a∈A

Pf (a,B).

Lemma 35. All atomic ProbNetKAT programs (including predi-
cates) denote deterministic and Scott-continuous kernels.

Proof. By Lemma 3, all atomic programs denote kernels of the form
a 7→ η({f(h) | h ∈ a}), where f is a partial function H ⇀ H .
Hence they are deterministic. Using Lemma 34, we see that they are
also Scott-continuous:

• If a ⊆ b, then {f(h) | h ∈ a} ⊆ {f(h) | h ∈ b}; and
• If D ⊆ 2H is a directed set, then {f(h) | h ∈

⋃
D} =⋃

a∈D{f(h) | h ∈ a}.

Lemma 36. Let P be a continuous Markov kernel and f : 2H →
R+ a Scott-continuous function. Then the map

a 7→
∫
c∈2H

f(c) · P (a, dc) (E.15)

is Scott-continuous.

Proof. The map (E.15) is the composition of the maps

a 7→ P (a,−) P (a,−) 7→
∫
c∈2H

P (a, dc) · f(c),

which are Scott-continuous by Lemmas 44 and 15, respectively, and
the composition of Scott-continuous maps is Scott-continuous.

Lemma 37. Product preserves continuity of Markov kernels: If P
and Q are continuous, then so is P ×Q.

Proof. We wish to show that if a ⊆ b, then (P ×Q)(a,−) v (P ×
Q)(b,−), and ifA is a directed subset of 2H, then (P×Q)(

⋃
A) =

supa∈A(P × Q)(a,−). For the first statement, using Lemma 31
twice,

(P ×Q)(a,−) = P (a,−)×Q(a,−) v P (b,−)×Q(a,−)

v P (b,−)×Q(b,−) = (P ×Q)(b,−).

For the second statement, for A a directed subset of 2H,

(P ×Q)(
⊔
A,−) = P (

⊔
A,−)×Q(

⊔
A,−)

= (
⊔
a∈AP (a,−))× (

⊔
b∈AQ(b,−))

=
⊔
a∈A

⊔
b∈AP (a,−)×Q(b,−)

=
⊔
a∈AP (a,−)×Q(a,−)

=
⊔
a∈A(P ×Q)(a,−).

Lemma 38. Sequential composition preserves continuity of Markov
kernels: If P and Q are continuous, then so is P ;Q.

Proof. We have

(P ;Q)(a,A) =

∫
c∈2H

P (a, dc) ·Q(c, A).

Since Q is a continuous kernel, it is Scott-continuous in its first
argument, thus so is P ;Q by Lemma 36.

Lemma 39. Parallel composition preserves continuity of Markov
kernels: If P and Q are continuous, then so is P &Q.

Proof. Suppose P and Q are continuous. By definition, P &Q =
(P×Q);

⋃
. By Lemma 37, P×Q is continuous, and

⋃
: 2H×2H →

2H is continuous. Thus their composition is continuous by Lemma
38.

Lemma 40. The probabilistic choice operator (⊕r) preserves
continuity of kernels.

Proof. If P and Q are continuous, then P ⊕r Q = rP + (1− r)Q.
If a ⊆ b, then

(P ⊕r Q)(a,−) = rP (a,−) + (1− r)Q(a,−)

≤ rP (b,−) + (1− r)Q(b,−)

= (P ⊕r Q)(b,−).

If A ⊆ 2H is a directed set, then

(P ⊕r Q)(
⋃
A,−) = rP (

⋃
A,−) + (1− r)Q(

⋃
A,−)

=
⊔
a∈A(rP (a,−) + (1− r)Q(a,−))

=
⊔
a∈A(P ⊕r Q)(a,−).

Lemma 41. The iteration operator (*) preserves continuity of
kernels.

Proof. Suppose P is continuous. It follows inductively using Lem-
mas 39 and 38 that P (n) is continuous. Since P ∗ =

⊔
n P

(n) and
since the supremum of a directed set of continuous kernels is con-
tinuous by Theorem 14, P ∗ is continuous.

Proof of Theorem 16. The result follows from Lemmas 34, 36, 37,
38, 39, 40, and 41.

Proof of Corollary 17. This follows from Theorem 16. All primi-
tive programs are deterministic, thus give continuous kernels, and
continuity is preserved by all the program operators.

20 2016/11/22

E.4 Continuous Operations on Kernels
Lemma 42. The product operation on kernels (×) is Scott-
continuous in each argument.

Proof. We use Lemma 31. If P1 v P2, then for all a ∈ 2H,

(P1 ×Q)(a,−) = P1(a,−)×Q(a,−)

v P2(a,−)×Q(a,−) = (P2 ×Q)(a,−).

Since a was arbitrary, P1 ×Q v P2 ×Q. For a directed set D of
kernels,

(
⊔
D ×Q)(a,−) = (

⊔
D)(a,−)×Q(a,−)

=
⊔
P∈DP (a,−)×Q(a,−)

=
⊔
P∈D(P (a,−)×Q(a,−))

=
⊔
P∈D(P ×Q)(a,−)

= (
⊔
P∈D(P ×Q))(a,−).

Since a was arbitrary,
⊔
D ×Q =

⊔
P∈D(P ×Q).

Lemma 43. Parallel composition of kernels (&) is Scott-continuous
in each argument.

Proof. By definition, P &Q = (P ×Q) ;
⋃

. By Lemmas 42 and
45, the product operation and sequential composition are continuous
in both arguments, thus their composition is.

Lemma 44. LetP be a continuous Markov kernel. The map curryP
is Scott-continuous with respect to the subset order on 2H and the
order v onM(2H).

Proof. We have (curryP)(a) = P (a,−). Since P is monotone in
its first argument, if a ⊆ b and B ∈ O, then P (a,B) ≤ P (b,B).
As B ∈ O was arbitrary,

(curryP)(a) = P (a,−) v P (b,−) = (curryP)(b).

This shows that curryP is monotone.
Let D ⊆ 2H be a directed set. By the monotonicity of curryP ,

so is the set {(curryP)(a) | a ∈ D}. Then for any B ∈ O,

(curryP)(
⋃
D)(B) = P (

⋃
D,B) = sup

a∈D
P (a,B)

= sup
a∈D

(curryP)(a)(B)

= (
⊔
a∈D(curryP)(a))(B),

thus (curryP)(
⋃
D) =

⊔
a∈D(curryP)(a).

Lemma 45. Sequential composition of kernels is Scott-continuous
in each argument.

Proof. To show that ; is continuous in its first argument, we wish
to show that if P1, P2, Q are any continuous kernels with P1 v P2,
and if D is any directed set of continuous kernels, then

P1 ;Q ≤ P2 ;Q (
⊔
D) ;Q =

⊔
P∈D(P ;Q).

We must show that for all a ∈ 2H and BO,∫
c

P1(a, dc) ·Q(c,B) ≤
∫
c

P2(a, dc) ·Q(c,B)∫
c

(
⊔
D)(a, dc) ·Q(c,B) = sup

P∈D

∫
c

P (a, dc) ·Q(c,B).

By Lemma 13, for all a ∈ 2H, P1(a,−) v P2(a,−) and
(
⊔
D)(a,−) =

⊔
P∈DP (a,−), andQ(−, B) is a Scott-continuous

function by assumption. The result follows from Lemma 15(i).

The argument that ; is continuous in its second argument is
similar, using Lemma 15(ii). We wish to show that if P,Q1, Q2 are
any continuous kernels with Q1 v Q2, and if D is any directed set
of continuous kernels, then

P ;Q1 ≤ P ;Q2 P ;
⊔
D =

⊔
Q∈D(P ;Q).

We must show that for all a ∈ 2H and B ∈ O,∫
c

P (a, dc) ·Q1(c,B) ≤
∫
c

P (a, dc) ·Q2(c,B)∫
c

P (a, dc) · (
⊔
D)(c,B) = sup

Q∈D

∫
c

P (a, dc) ·Q(c,B).

By Lemma 13, for all B ∈ O, Q1(−, B) v Q2(−, B) and
(
⊔
D)(−, B) =

⊔
Q∈DQ(−, B). The result follows from Lemma

15(ii).

Lemma 46. The probabilistic choice operator applied to kernels
(⊕r) is continuous in each argument.

Proof. If P and Q are continuous, then P ⊕r Q = rP + (1− r)Q.
If P1 v P2, then for any a ∈ 2H and B ∈ O,

(P1 ⊕r Q)(a,B) = rP1(a,B) + (1− r)Q(a,B)

≤ rP2(a,B) + (1− r)Q(a,B)

= (P2 ⊕r Q)(a,B),

so P1 ⊕r Q v P2 ⊕r Q. If D is a directed set of kernels and BO,
then

(
⊔
D ⊕r Q)(a,B) = r(

⊔
D)(a,B) + (1− r)Q(a,B)

= sup
P∈D

(rP (a,B) + (1− r)Q(a,B))

= sup
P∈D

(P ⊕r Q)(a,B).

Lemma 47. If P v Q then P (n) v Q(n).

Proof. By induction on n ∈ N. The claim is trivial for n = 0. For
n > 0, we assume that P (n−1) v Q(n−1) and deduce

P (n) = 1 & P ; P (n−1) v 1 &Q ;Q(n−1) = Q(n)

by monotonicity of sequential and parallel composition (Lemmas 45
and 43, respectively).

Lemma 48. If m ≤ n then P (m) v P (n).

Proof. We have P (0) v P (1) by Lemmas 12 and 13. Proceeding by
induction using Lemma 47, we have P (n) v P (n+1) for all n. The
result follows from transitivity.

Lemma 49. The iteration operator applied to kernels (*) is contin-
uous.

Proof. It is a straightforward consequence of Lemma 47 and Theo-
rem 21 that if P v Q, then P ∗ v Q∗. Now let D be a directed set
of kernels. It follows by induction using Lemmas 43 and 45 that the
operator P 7→ P (n) is continuous, thus

(
⊔
D)∗ =

⊔
n(
⊔
D)(n) =

⊔
n

⊔
P∈DP

(n)

=
⊔
P∈D

⊔
nP

(n) =
⊔
P∈DP

∗.

Proof of Theorem 18. The result follows from Lemmas 42, 43, 44,
45, 46, and 49.

21 2016/11/22

E.5 Iteration as Least Fixpoint
In this section we show that the semantics of iteration presented in
(Foster et al. 2016), defined in terms of an infinite process, coincides
with the least fixpoint semantics presented here.

In this section, we use the notation P ∗ refers to the semantics of
(Foster et al. 2016). For the iterate introduced here, we use

⊔
n P

(n).
Recall from (Foster et al. 2016) the approximants

P (0) = 1 P (m+1) = 1 & P ; P (m).

It was shown in (Foster et al. 2016) that for any c ∈ 2H, the measures
P (m)(c,−) converge weakly to P ∗(c,−); that is, for any bounded
(Cantor-)continuous real-valued function f on 2H, the expected
values of f with respect to the measures P (m)(c,−) converge to
the expected value of f with respect to P ∗(c,−):

lim
m→∞

∫
a∈2H

f(a) · P (m)(c, da) =

∫
a∈2H

f(a) · P ∗(c, da).

Theorem 50. The kernel Q =
⊔
n∈N P

(n) is the unique fixpoint of
(λQ. 1 &P ;Q) such that P (n)(a) weakly converges to Q(a) (with
respect to the Cantor topology) for all a ∈ 2H.

Proof. Let P ∗ denote any fixpoint of (λQ. 1 & P ; Q) such that
the measure µn = P (n)(a) weakly converges to the measure
µ = P ∗(a), i.e. such that for all (Cantor-)continuous bounded
functions f : 2H → R

lim
n→∞

∫
fdµn =

∫
fdµ

for all a ∈ 2H. Let ν = Q(a). Fix an arbitrary Scott-open set V .
Since 2H is a Polish space under the Cantor topology, there exists
an increasing chain of compact sets

C1 ⊆ C2 ⊆ · · · ⊆ V such that sup
n∈N

µ(Cn) = µ(V).

By Urysohn’s lemma (see (Kolmogorov and Fomin 1970; Rao
1987)), there exist continuous functions fn : 2H → [0, 1] such
that fn(x) = 1 for x ∈ Cn and f(x) = 0 for x ∈ ∼V . We thus
have

µ(Cn) =

∫
1Cndµ

≤
∫
fndµ by monotonicity of

∫
= lim
m→∞

∫
fndµm by weak convergence

≤ lim
m→∞

∫
1V dµm by monotonicity of

∫
= lim
m→∞

µm(V)

= ν(V) by pointwise convergence on O
Taking the supremum over n, we get that µ(V) ≤ ν(V). Since ν
is the v-least fixpoint, the measures must therefore agree on V ,
which implies that they are equal by Theorem 8. Thus, any fixpoint
of (λQ. 1 & P ; Q) with the weak convergence property must be
equal to Q. But the fixpoint P ∗ defined in previous work does enjoy
the weak convergence property, and therefore so does Q = P ∗.

Proof of Lemma 20. Let A be a Borel set. Since we are in a Polish
space, µ(A) is approximated arbitrarily closely from below by µ(C)
for compact sets C ⊆ A and from above by µ(U) for open sets
U ⊇ A. By Urysohn’s lemma (see (Kolmogorov and Fomin 1970;
Rao 1987)), there exists a continuous function f : D → [0, 1] such
that f(a) = 1 for all a ∈ C and f(a) = 0 for all a 6∈ U . We thus
have

µ(C) =

∫
a∈C

f(a) · µ(da) ≤
∫
a∈D

f(a) · µ(da)

=

∫
a∈U

f(a) · µ(da) ≤ µ(U),

µ(C) ≤ µ(A) ≤ µ(U),

thus ∣∣∣∣µ(A)−
∫
a∈D

f(a) · µ(da)

∣∣∣∣ ≤ µ(U)− µ(C),

and the right-hand side can be made arbitrarily small.

By Lemma 20, if P,Q are two Markov kernels and∫
a∈2H

f(a) · P (c, da) =

∫
a∈2H

f(a) ·Q(c, da)

for all Cantor-continuous f : 2H → [0, 1], then P (c,−) = Q(c,−).
If this holds for all c ∈ 2H, then P = Q.

Proof of Theorem 19. Let ε > 0. Since all continuous functions on
a compact space are uniformly continuous, for sufficiently large
finite b and for all a ⊆ b, the value of f does not vary by more than
ε on Aab; that is, supc∈Aab f(c) − infc∈Aab f(c) < ε. Then for
any µ,∫

c∈Aab
f(c) · µ(dc)−

∫
c∈Aab

inf
c∈Aab

f(c) · µ(dc)

≤
∫
c∈Aab

(sup
c∈Aab

f(c)− inf
c∈Aab

f(c)) · µ(dc) < ε · µ(Aab).

Moreover,

(
⊔
A)(Aab) =

∑
a⊆c⊆b

(−1)|c−a|(
⊔
A)(Bc)

=
∑
a⊆c⊆b

(−1)|c−a| sup
µ∈A

µ(Bc)

= lim
µ∈A

∑
a⊆c⊆b

(−1)|c−a|µ(Bc) = lim
µ∈A

µ(Aab),

so for sufficiently large µ ∈ A, µ(Aab) does not differ from
(
⊔
A)(Aab) by more than ε ·2−|b|. Then for any constant r ∈ [0, 1],∣∣∣∣∣

∫
c∈Aab

r · (
⊔
A)(dc)−

∫
c∈Aab

r · µ(dc)

∣∣∣∣∣
= r · |(

⊔
A)(Aab)− µ(Aab)|

≤ |(
⊔
A)(Aab)− µ(Aab)| < ε · 2−|b|.

22 2016/11/22

Combining these observations,∣∣∣∣∫
c∈2H

f(c) · (
⊔
A)(dc)−

∫
c∈2H

f(c) · µ(dc)

∣∣∣∣
=

∣∣∣∣∣∣
∑
a⊆b

∫
c∈Aab

f(c) · (
⊔
A)(dc)−

∑
a⊆b

∫
c∈Aab

f(c) · µ(dc)

∣∣∣∣∣∣
≤
∑
a⊆b

(∣∣∣∣∣
∫
c∈Aab

f(c) · (
⊔
A)(dc)−

∫
c∈Aab

inf
c∈Aab

f(c) · (
⊔
A)(dc)

∣∣∣∣∣
+

∣∣∣∣∣
∫
c∈Aab

inf
c∈Aab

f(c) · (
⊔
A)(dc)−

∫
c∈Aab

inf
c∈Aab

f(c) · µ(dc)

∣∣∣∣∣
+

∣∣∣∣∣
∫
c∈Aab

inf
c∈Aab

f(c) · µ(dc)−
∫
c∈Aab

f(c) · µ(dc)

∣∣∣∣∣
)

≤
∑
a⊆b

(
ε · (
⊔
A)(Aab) + ε · 2−|b| + ε · µ(Aab)

)
= 3ε.

As ε > 0 was arbitrary,

lim
µ∈A

∫
c∈2H

f(c) · µ(dc) =

∫
c∈2H

f(c) · (
⊔
A)(dc).

Proof of Theorem 21. Consider the continuous transformation

TP (Q) , 1 & P ;Q

on the DCPO of continuous Markov kernels. The continuity of TP
follows from Lemmas 43 and 45. The bottom element ⊥ is 0 in this
space, and

TP (⊥) = 1 = P (0) TP (P (n)) = 1 & P ; P (n) = P (n+1),

thus Tn+1
P (⊥) = P (n), so

⊔
TnP (⊥) =

⊔
n P

(n), and this is the
least fixpoint of TP . As shown in (Foster et al. 2016), P~ is also a
fixpoint of TP , so it remains to show that P~ =

⊔
n P

(n).
Let c ∈ 2H. As shown in (Foster et al. 2016), the measures

P (n)(c,−) converge weakly to P~(c,−); that is, for any Cantor-
continuous function f : 2H → [0, 1], the expected values of f
relative to P (n) converge to the expected value of f relative to P~:

lim
n

∫
f(a) · P (n)(c, da) =

∫
f(a) · P~(c, da).

But by Theorem 19, we also have

lim
n

∫
f(a) · P (n)(c, da) =

∫
f(a) · (

⊔
n

P (n))(c, da),

thus ∫
f(a) · P~(c, da) =

∫
f(a) · (

⊔
nP

(n))(c, da).

As f was arbitrary, we have P~(c,−) = (
⊔
nP

(n))(c,−) by
Lemma 20, and as c was arbitrary, we have P~ =

⊔
nP

(n).

F. Approximation and Discrete Measures
This section contains the proofs of §8. We need the following
auxiliary lemma to prove Theorem 24.

Lemma 51.

(i) For any Borel set B, (µ�b)(B) = µ({c | c ∩ b ∈ B}).
(ii) (µ�b)�d = µ�(b ∩ d).

(iii) If a, b ∈ ℘ω(H) and a ⊆ b, then µ�a v µ�b v µ.
(iv) µ v δb iff µ = µ�b.
(v) The function µ 7→ µ�b is continuous.

Proof. (i)

(µ�b)(B) =
∑
a⊆b

µ(Aab)δa(B) =
∑
a⊆b

µ({c | c ∩ b = a})[a ∈ B]

=
∑
a⊆b
a∈B

µ({c | c ∩ b = a}) = µ(
⋃
a⊆b
a∈B

{c | c ∩ b = a})

= µ({c | c ∩ b ∈ B}).
(ii) For any Borel set B,

((µ�b)�d)(B) = (µ�b)({c | c ∩ d ∈ B})
= µ({c | c ∩ b ∈ {c | c ∩ d ∈ B}})
= µ({c | c ∩ b ∩ d ∈ B})
= (µ�(b ∩ d))(B).

(iii) If a ⊆ b, then for any up-closed Borel set B,

{c | c ∩ a ∈ B} ⊆ {c | c ∩ b ∈ B} ⊆ B,
µ({c | c ∩ a ∈ B}) ≤ µ({c | c ∩ b ∈ B}) ≤ µ(B),

(µ�a)(B) ≤ (µ�b)(B) ≤ µ(B).

As this holds for all B ∈ O, we have µ�a v µ�b v µ.
(iv) First we show that µ � b v δb. For any up-closed Borel set

B,

(µ�b)(B) =
∑
a⊆b

µ(Aab)[a ∈ B]

≤
∑
a⊆b

µ(Aab)[b ∈ B] = [b ∈ B] = δb(B).

Now we show that if µ v δb, then µ = µ�b. From

d ⊆ b ∧ d ⊆ c⇔ d ⊆ c ∩ b c ∈ Bd ⇔ d ⊆ c
we have

(∃d ∈ F d ⊆ b ∧ c ∈ Bd)⇔ (∃d ∈ F c ∩ b ∈ Bd)

c ∈
⋃
d∈F
d⊆b

Bd ⇔ c ∩ b ∈
⋃
d∈F

Bd

(µ�b)(
⋃
d∈F

Bd) = µ({c | c ∩ b ∈
⋃
d∈F

Bd}) = µ(
⋃
d∈F
d⊆b

Bd).

(F.16)

Now if µ v δb, then

µ(
⋃
d∈F
d6⊆b

Bd) ≤ δb(
⋃
d∈F
d6⊆b

Bd) = [b ∈
⋃
d∈F
d 6⊆b

Bd] = 0,

so

µ(
⋃
d∈F

Bd) ≤ µ(
⋃
d∈F
d⊆b

Bd) + µ(
⋃
d∈F
d 6⊆b

Bd) = µ(
⋃
d∈F
d⊆b

Bd).

Combining this with (F.16), we have that µ and µ � b agree on all
B ∈ O, therefore they agree everywhere.

(v) If µ v ν, then for all B ∈ O,

(µ�b)(B) = µ({c | c ∩ b ∈ B})
≤ ν({c | c ∩ b ∈ B}) = (ν �b)(B).

23 2016/11/22

Also, for any directed set D of measures and B ∈ O,

((
⊔
D)�b)(B) = (

⊔
D)({c | c ∩ b ∈ B})

= sup
µ∈D

µ({c | c ∩ b ∈ B}) = sup
µ∈D

(µ�b)(B)

= (
⊔
µ∈D(µ�b))(B),

therefore (
⊔
D)�b =

⊔
µ∈D(µ�b).

Proof of Theorem 24. The set {µ�b | b ∈ ℘ω(H)} is a directed set
below µ by Lemma 51(iii), and for any up-closed Borel set B,

(
⊔

b∈℘ω(H)

µ�b)(B) = sup
b∈℘ω(H)

µ({c | c ∩ b ∈ B})

= µ(
⋃

b∈℘ω(H)

{c | c ∩ b ∈ B}) = µ(B).

An approximating set for µ is the set

L = {
∑
a⊆b

raδa | b ∈ ℘ω(H), ra < µ(Aab) for all a 6= ∅}.

If L is empty, then µ(A∅b) = 1 for all finite b, in which case
µ = δ∅ and there is nothing to prove. Otherwise, L is a nonempty
directed set whose supremum is µ.

Now we show that ν � µ for any ν ∈ L. Suppose D is a
directed set and µ v

⊔
D. By Lemma 51(iii) and (v),

µ�b v (
⊔
D)�b =

⊔
ρ∈D

ρ�b.

Moreover, for any B ∈ O, B 6= B∅, and
∑
a⊆b raδa ∈ L,

(ν �b)(B) =
∑
a∈B

ν(Aab)[a ∈ B]

<
∑
a∈B

µ(Aab)[a ∈ B] = (µ�b)(B).

Then ν(B∅) = ρ(B∅) = 1 for all ρ ∈ D, and for any B ∈ O,
B 6= B∅,

(ν �b)(B) < (µ�b)(B) ≤ sup
ρ∈D

(ρ�b)(B) (F.17)

so there exists ρ ∈ D such that (ν �b)(B) ≤ (ρ�b)(B). But since
B can intersect 2H in only finitely many ways and D is directed, a
single ρ ∈ D can be found such that (F.17) holds uniformly for all
B ∈ O, B 6= B∅. Then ν �b v ρ ∈ D.

Proof of Corollary 25. Let f : 2H → 2H map a to a ∩ b. This is a
continuous function that gives rise to a deterministic kernel. Then
for any B ∈ O,

(P ; b)(a,B) = P (a, f−1(B)) = P (a, {c | c ∩ b ∈ B})
= (P (a,−)�b)(B).

24 2016/11/22

	1 Introduction
	2 Overview
	3 Preliminaries
	4 ProbNetKAT
	5 Cantor Meets Scott
	6 A DCPO on Markov Kernels
	7 Continuity and Semantics of Iteration
	8 Approximation
	9 Implementation and Case Studies
	10 Related Work
	11 Conclusion
	A (M,) is not a Semilattice
	B Non-Algebraicity
	C Cantor Meets Scott
	D A DCPO on Markov Kernels
	E Continuity of Kernels and Program Operators and a Least-Fixpoint Characterization of Iteration
	E.1 Products and Integration
	E.2 Continuous Operations on Measures
	E.3 Continuous Kernels
	E.4 Continuous Operations on Kernels
	E.5 Iteration as Least Fixpoint

	F Approximation and Discrete Measures

