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Abstract—In this paper, we study an unmanned aerial vehicle
(UAV)-assisted mobile edge computing (MEC) architecture, in
which a UAV roaming around the area may serve as a computing
server to help user equipment (UEs) compute their tasks or act
as a relay for further offloading their computation tasks to the
access point (AP). We aim to minimize the weighted sum energy
consumption of the UAV and UEs subject to the task constraints,
the information-causality constraints, the bandwidth allocation
constraints and the UAV’s trajectory constraints. The required
optimization is nonconvex, and an alternating optimization algo-
rithm is proposed to jointly optimize the computation resource
scheduling, bandwidth allocation, and the UAV’s trajectory in an
iterative fashion. Numerical results demonstrate that significant
performance gain is obtained over conventional methods. Also,
the advantages of the proposed algorithm are more prominent
when handling computation-intensive latency-critical tasks.

Index Terms—UAV, mobile edge computing, resource schedul-
ing, bandwidth allocation, trajectory optimization.

I. INTRODUCTION

A. Motivation and Prior Works
With the popularization of Internet of things (IoT) and the

increasingly complex mobile applications, such as virtual and
augmented reality, online gaming, automatic driving, etc., the
computing demands at user equipment (UEs) are reaching an
unprecedented level. Mobile edge computing (MEC), widely
regarded as the technology to help the resource-limited UEs
handle computation-intensive latency-critical tasks, has attract-
ed great attention from both the academia and the industry.
The standardization organizations and industry associations
such as ETSI and 5GAA have identified several use cases for
MEC, from the intelligent video acceleration and application-
aware performance optimization to vehicle-to-everything and
massive machine-type communications, etc. [1, 2].
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The rationale behind MEC is that UEs’ computing tasks can
be offloaded and completed at the edge of wireless networks
by deploying cloud servers at the access points (APs), so as to
liberate the UEs from heavy computing workloads and prolong
their battery lifetime [3, 4]. Recently, MEC has been widely
used in cellular networks, focusing on improving the energy
efficiency or reducing the latency of various cellular-based
MEC systems [5–14]. A multicell MEC system was studied
in [5], where the total energy consumption was minimized by
jointly optimizing the radio and computational resources. In
[6], the resource allocation for minimizing the weighted sum
energy consumption of users was addressed with a derived
threshold-based optimal policy. Later in [7], the scenario of
a UE with multiple tasks was considered, where multiple
APs assisted the UE to reduce its total task execution latency
and energy consumption. A two-tier heterogeneous network
with the coexistence of edge and central cloud computing was
studied in [8], and the cloud selection was optimized to min-
imize the network’s energy consumption. In [9], a device-to-
device (D2D) fogging was explored to achieve energy-efficient
task completion by sharing computation and communication
resources amongst mobile devices. The sum of computation
efficiency defined as the calculated data bits divided by the
energy consumption was maximized in [10] with iterative and
gradient descent methods. In addition, the works in [11–14]
introduced the use of energy harvesting or wireless power
transfer (WPT) technologies into the cellular-based MEC
systems, which has enabled the UEs to have sustainable energy
support to their transmissions and computation, but at the cost
of increasing the computational complexity of the systems.

Due to the attractive advantages of unmanned aerial vehicle
(UAV) for its easy deployment, flexible movement, and line-
of-sight (LoS) connections, and so on, UAV-enabled wireless
communication networks have been much researched in recent
years [15–19]. For instance, an energy-efficient UAV commu-
nication was investigated in [16], in which an UAV flew at a
fixed altitude and had the initial and final locations preset on
its trajectory design. In [17], the UAV-enabled mobile relaying
systems were studied, where the throughput was maximized
by optimizing the transmit power allocation and the UAV’s
trajectory. Recently, [18] proposed a generic framework for the
analysis and optimization of the air-to-ground systems, and an
optimum altitude for UAV in maximizing the coverage region
with a guaranteed minimum outage performance was derived.
WPT technology was considered for UAV wireless networks
in [19], and the UAV trajectory was optimized to maximize
the sum energy or the minimum energy transferred to all the



UEs. It was revealed that UAV-enabled WPT can significantly
enhance the WPT performance over the traditional WPT
system with fixed energy transmitters.

It is a great attempt to leverage the technology of the UAV in
MEC systems, and the performance improvement of the UAV-
enabled MEC architecture has been shown to be substantial
[20–22]. A UAV-based MEC system was investigated in [20],
where a moving UAV equipped with a processing server was
considered to help UEs compute their offloaded tasks. The
total mobile energy consumption was minimized by jointly
optimizing the task-bit allocation and the UAV trajectory
using the successive convex approximation (SCA) methods.
Later in [21], a wireless-powered UAV-enabled MEC system
was studied, where the UAV was endowed with an energy
transmitter and an MEC server to provide energy as well as
MEC services for the UEs. The computation rate maximization
problems were addressed under both the partial and binary
computation offloading modes by alternating algorithms. In
another study [22], the UAV acted as a UE rather than an MEC
server, which was served by multiple cellular ground base
stations to compute its offloaded tasks. The UAV’s mission
completion time was minimized by optimizing the resource
allocation and the UAV trajectory through an SCA algorithm.

B. Our Contributions

The aforementioned MEC works concentrate either on the
cellular-based MEC networks, where the UEs’ tasks are com-
pleted by using the computing resources at the APs; or the
UAV-enabled MEC architectures by exploiting the computing
capability of the UAV processing server. However, for the UEs
with seriously degraded links to the AP due to severe blockage,
it is impossible to take full use of the computing resources at
the AP directly. Besides, due to the size-constrained resource-
limited property of the UAVs, it is risky to rely only on the
UAVs to assist the UEs for completing their computation-
intensive latency-critical tasks. For these reasons, this paper s-
tudies a UAV-assisted MEC architecture, where the computing
resources at the UAV and the AP are utilized at the same time.
In addition, the energy-efficient LoS transmissions of the UAV
have been fully exploited since the UAV is not only served as a
mobile computing server to help the UEs compute their tasks
but also as a relay to further offload UEs’ tasks to the AP
for computing. To our best knowledge, this is the first work
considering the UAV-assisted MEC architecture by letting the
UAV act as an MEC server and a relay simultaneously.

Our main contributions are summarized as follows:
• UAV-Assisted MEC Architecture—We consider a UAV-

assisted MEC architecture where the cellular-connected
UAV is served as a mobile computing server as well as a
relay to help the UEs complete their computing tasks or
further offload their tasks to the AP for computing. This
architecture takes full advantages of the UAV’s energy-
efficient LoS transmissions, and makes proper use of the
computing resources at both the UAV and AP.

• Problem Formulation with Joint Computation Re-
source Scheduling, Bandwidth Allocation and UAV’s
Trajectory Optimization—Our aim is to minimize the

weighted sum energy consumption (WSEC) of the UAV
and the UEs subject to the UEs’ task constraints, the
information-causality constraints, the bandwidth alloca-
tion constraints and the UAV’s trajectory constraints, by
jointly optimizing the computation resource scheduling,
the bandwidth allocation and UAV’s trajectory iteratively.
The formulated problem is complicated and non-convex
due to the coupled optimization variables.

• Alternating Algorithm with Guaranteed Convergence
—An alternating optimization algorithm is devised to
decouple the optimization variables, through which the
formulated problem can be properly solved by addressing
three subproblems iteratively. Note that the computation
resource scheduling parameters, including the offload-
ing/downloading task sizes and the CPU frequencies at
each UE and the UAV, as well as the bandwidth allocation
parameters are obtained in closed form by leveraging
the Lagrange duality method, and that the correspond-
ing Lagrange multipliers associated with the inequality
constraints can be obtained using the subgradient method
while those associated with the equality constraints can
be obtained through bi-section search. The subproblem
relating to the UAV’s trajectory optimization can be
efficiently solved by CVX [23] based on the SCA method.
Besides, the convergence of the proposed algorithm can
be guaranteed, and the required complexity appears to be
acceptable.

• Considerable Performance Improvement—Simulation
results are presented to show the optimized trajectories
of the UAV under different scenarios and the significant
performance enhancement by leveraging the proposed
algorithm when compared to existing schemes, such as
the one with a preset UAV trajectory, the scheme with
task offloading only, the scheme with equal bandwidth
allocation, and the local computing scheme without of-
floading. Moreover, the proposed algorithm is capable
of providing more stable performance in adapting to the
change in the operating environment, and its advantages
will become much more prominent when dealing with
the computation-intensive and latency-critical tasks.

The rest of this paper is organized as follows. In Section II,
we introduce our system model and then formulate the op-
timization problem. The proposed method that decouples the
problem into three subproblems then solving it iteratively is
presented in Section III. Section IV provides the simulation
results. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, a UAV-assisted MEC system is consid-
ered, which consists of an AP, a cellular-connected UAV, and
K ground UEs, all being equipped with a single antenna. The
UAV and UEs are all assumed to have an on-board communi-
cation circuit and on-board computing processor powered by
their embedded battery, while the AP is capable of providing
high-speed transmission rate with grid power supply and is
endowed with an ultra-high performance processing server.
It is also assumed that each UE has a bit-wise-independent
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Fig. 1. An illustration of the UAV-assisted MEC architecture, where the UAV
serves as an MEC server to help the ground UEs compute their offloaded tasks
or as a possible relay to further forward the offloaded tasks to the AP with
more powerful computing resources.

computation-intensive task, and the UAV acts as an assistant
to help the UEs complete their computation tasks by providing
both MEC and relaying services. For providing MEC service,
the UAV shares its computing resources with the UEs to
help compute their tasks; while for the relaying service, the
UAV forwards part of the UEs’ offloaded tasks to the AP for
computing with the purpose of saving its own energy.

A. Channel Model and Coordinate System

A three-dimensional (3D) Euclidean coordinate system is
adopted, whose coordinates are measured in meters. We as-
sume that the locations of the AP and all the UEs are fixed
on the ground with zero altitude, with the location of the AP
being ṽ0 = (x0, y0, 0). Let K = {1, . . . ,K} denote the set of
the UEs, with ṽk = (xk, yk, 0) representing the location of UE
k ∈ K. It is assumed that the locations of UEs are known to
the UAV for designing its trajectory [16]. We assume that the
UAV flies at a fixed altitude H > 0 during the task completion
time T , which corresponds to the minimum altitude that is
appropriate to the work terrain and can avoid buildings without
the requirement of frequent descending and ascending.

For ease of exposition, the finite task completion time T is
discretized into N equal time slots each with a duration of
τ = T/N , where τ is sufficiently small such that the UAV’s
location can be assumed to be unchanged during each slot.
The initial and final horizontal locations of the UAV are preset
as uI = (xI, yI) and uF = (xF, yF), respectively. Let N =
{1, . . . , N} denote the set of the N time slots. At the n-th
time slot, the UAV’s horizontal location is denoted as u[n] ≡
u(nτ) = (x[n], y[n]) with u[0] = uI and u[N ] = uF. It
is assumed that the UAV flies with a constant speed in each
time slot, denoted as v[n], which should satisfy the following
maximum speed constraint

v[n] =
∥u[n]− u[n− 1]∥

τ
≤ Vmax, n ∈ N , (1)

where Vmax is the predetermined maximum speed of the UAV,
and Vmax ≥ ∥uF−uI∥/T establishes to make sure that at least
one feasible trajectory of the UAV exists.

Similar to [16], the wireless channels between the UAV and
the AP as well as the UEs are assumed to be dominated by
LoS links, which is verified by recent field experiments done
by Qualcomm [24].1 Thus, the channel power gain between
the UAV and the AP and between the UAV and UE k at the
time slot n can be, respectively, given by

hAP[n] = h0d
−2
AP =

h0

∥u[n]− v0∥2 +H2
, n ∈ N , (2)

hk[n] = h0d
−2
k =

h0

∥u[n]− vk∥2 +H2
, k ∈ K, n ∈ N , (3)

where h0 is the channel power gain at a reference distance of
d0 = 1m; dAP and dk are respectively the distances between
the UAV and the AP as well as the UE k at the n-th time slot
with v0 = (x0, y0) and vk = (xk, yk) denoting the horizontal
locations of the AP and UE k, k ∈ K. It is assumed that
the channel reciprocity establishes in our considered scenario,
and thus the offloading and downloading channels between the
UEs and the UAV are identical. In this paper, the direct links
between UEs and the AP are assumed to be negligible due
to e.g., severe blockage,2 which means that the UEs cannot
directly offload their task-input bits to the AP unless with the
assistance of the UAV. The motivation behind this scenario
is based on the fact that it is more important to guarantee
the UEs’ computation tasks being completed within the given
limited time T with as little UEs’ energy as possible, than
dropping their tasks or letting the UEs compute their takes
locally at the cost of exhausting their energy.

B. Computation Task Model and Execution Methods

The computation task of UE k ∈ K is denoted as a positive
tuple [Ik, Ck, Ok, Tk], where Ik denotes the size (in bits) of
the computation task-input data (e.g., the program codes and
input parameters), Ck is the amount of required computing
resource for computing 1-bit of input data (i.e., the number
of CPU cycles required), Ok ∈ (0, 1) is the ratio of task-
output data size to that of the task-input data, i.e., the output
data size should be OkIk, and Tk is the maximum tolerable
latency with Tk ≤ T, k ∈ K. In this paper, we only consider
the case that Tk = T for all k ∈ K. It should be noted that
the UEs’ task-input bits are bit-wise independent and can be
arbitrarily divided to facilitate parallel trade-offs between local
computing at the UEs and computation offloading to the UAV
or further to the AP with the assistance of the UAV. In other
words, the UEs can accomplish their computation tasks in a
partial offloading fashion [4] with the following three ways.

1) Local Computing at UEs: Each UE can perform local
computing and computation offloading simultaneously since
local computing at the UEs does not need radio resources
such as bandwidth. To efficiently use the energy for local
computing, the UEs leverage a dynamic voltage and frequency
scaling (DVFS) technique, and thus the energy consumed for
local computing can be adaptively controlled by adjusting

1It is of great value to extend our work on the probabilistic LoS and Rician
fading channel models when we consider the scenarios where the UAV’s flying
altitude changes according to the work terrain.

2The general case with direct links between the UEs and the AP will be
considered as one of our future works.



the UEs’ CPU frequency during each time slot [25]. The
CPU frequency of UE k during time slot n is denoted as
fk[n] (cycles/second). Thus, the computation bits and energy
consumption of UE k during time slot n for local computing
can be, respectively, expressed as3

Llocal
k [n] = τfk[n]/Ck, k ∈ K, n ∈ N , (4)

Elocal
k [n] = τκkf

3
k [n], k ∈ K, n ∈ N , (5)

where κk is the effective capacitance coefficient of UE k that
depends on its processor’s chip architecture.

2) Task Offloaded to the UAV for Computing: The UEs’
remaining task-input data should be computed remotely, first
by offloading to the UAV, and then one part of the data being
computed at the UAV while the other part further offloaded to
the AP for computing. In order to avoid interference among the
UEs during the offloading process, we adopt the time-division
multiple access (TDMA) protocol. Each slot is further divided
into K equal durations δ = T/(NK), and UE k offloads
its task-input data in the k-th duration. Let lk[n] denote the
offloaded bits of UE k in its allocated duration at time slot n,
and thus the corresponding energy consumption of UE k at
slot n for computation offloading can be calculated as

Eoff
k [n] = δpk[n]

≡ δN0

hk[n]

(
2

lk[n]

δBoff
k

[n] − 1

)
, k ∈ K, n ∈ N , (6)

where pk[n] is the transmit power of UE k for offloading lk[n]
computation bits to the UAV at time slot n, Boff

k [n] is the
corresponding allocated bandwidth for UE k, and N0 denotes
the noise power at the UAV.4

Assume that the UAV also adopts the DVFS technique to
improve its energy efficiency for computing, and its adjustable
CPU frequency in the k-th duration of slot n for computing UE
k’s offloaded task is denoted as fU,k[n]. Hence, the completed
computation bits and the energy consumption of the UAV for
computing UE k’s task at slot n can be, respectively, given by

LU,k[n] = δfU,k[n]/Ck, k ∈ K, n ∈ N , (7)

EU,k[n] = δκUf
3
U,k[n], k ∈ K, n ∈ N , (8)

where κU is the effective capacitance coefficient of the UAV.
Note that computing LU,k[n] bits of UE k’s task-input data
will produce OkLU,k[n] bits of task-output data, which should
be downloaded from the UAV to the UE k later.

3) Task Offloaded to the AP for Computing: Part of the
UEs’ offloaded task-input data at the UAV will be offloaded to
the AP’s processing server for computing. To better distinguish
the offloading signals from different UEs, the TDMA protocol
with K equal time divisions (δ = T/(NK)) is also adopted in
this case. Let loffU,k[n] denote the number of UE k’s task-input
bits being offloaded from the UAV to the AP at time slot n.
Thus, the corresponding energy consumption of the UAV for
offloading UE k’s task at slot n can be calculated as

Eoff
U,k[n] = δpoffU,k[n]

3All the energy consumption in this paper uses the unit of Joule.
4Without loss of generality, we assume that the noise power at any node

in the system is considered the same as N0.

≡ δN0

hAP[n]

(
2

loffU,k[n]

δBoff
U,k

[n] − 1

)
, k ∈ K, n ∈ N , (9)

where poffU,k[n] and Boff
U,k[n] are respectively the transmit power

and the allocated bandwidth of the UAV for offloading UE
k’s task to the AP at time slot n. After computing the loffU,k[n]

input bits at the AP, Okl
off
U,k[n] bits of computation results

for UE k will be generated. As the AP is integrated with an
ultra-high-performance processing server, the computing time
is negligible. The AP will send the computation results back
to the UAV in the TDMA manner using a separate bandwidth.
Since the AP is supplied with grid power and can support
ultra-high transmission rate, the download transmission time
from the AP to the UAV is also assumed negligible.5

For the later two offloading methods, the generated com-
putation results at the UAV (including the results from UAV’s
computing and received from the AP) will then be downloaded
back to the corresponding UEs. It is assumed that the UAV
is equipped with a data buffer with sufficiently large size,
and it is capable of storing each UE’s offloaded data and
the corresponding computation results separately. Besides, we
assume that the UAV operates in a frequency-division-duplex
(FDD) mode in each UE’s operation duration δ with separate
bandwidths allocated for task reception from UEs ({Boff

k [n]}),
task offloading transmission to the AP ({Boff

U,k[n]}), and task
results downloading transmission to the UEs ({Bdown

U,k [n]}),
with a total bandwidth B satisfying the constraint

Boff
k [n] +Boff

U,k[n] +Bdown
U,k [n] = B, k ∈ K, n ∈ N . (10)

The UEs’ computation results are subsequently transmitted
by the UAV using TDMA similar to the UEs’ offloading
process, each with an equal duration δ in each time slot. Let
ldown
U,k [n] denote the bits of task-output data being downloaded

from the UAV to UE k at time slot n. Hence, the corresponding
energy consumption of the UAV can be calculated as

Edown
U,k [n] = δpdown

U,k [n]

≡ δN0

hk[n]

(
2

ldown
U,k [n]

δBdown
U,k

[n] − 1

)
, k ∈ K, n ∈ N , (11)

where pdown
U,k [n] is the transmit power of the UAV for down-

loading UE k’s task-output data at time slot n.
Note that at each time slot n, the UAV can only compute

or forward the task-input data that has already been received
from the UEs. By assuming that the processing delay, e.g., the
delay for decoding and computing preparation, at the UAV is
one time slot, then we have the following information-causality
constraint:

n∑
i=2

(
δfU,k[i]

Ck
+ loffU,k[i]

)
≤

n−1∑
i=1

lk[i], (12)

5Once the AP receives the forwarded loffU,k[n] bits input data from the UAV
in the k-th duration of the n-th time slot, it will immediately decode, compute
the data, and then send the induced Okl

off
U,k[n] bits of output data back to the

UAV, all with ultra-low latency that is negligible compared with the length of
each duration δ, which means that the UAV can receive the task-output data
from the AP in the same duration of its offloading process.



for n ∈ N2 and k ∈ K where N2 = {2, . . . , N−1}. Similarly,
at each time slot n, the UAV can only transmit the task-output
data corresponding to the task-input data that has already been
computed at the UAV or offloaded for computing at the AP.
Thus, we have another information-causality constraint:

n∑
i=3

ldown
U,k [i] ≤ Ok

n−1∑
i=2

(
δfU,k[i]

Ck
+ loffU,k[i]

)
, (13)

for n ∈ N3 and k ∈ K where N3 = {3, . . . , N}. It is clear
that the UEs should not offload at the last two slots, while the
UAV should not compute or forward the received input data of
UEs’ at the first and the last slots as well as not transmit the
output data to the UEs in the first two slots. Hence, we have
lk[N − 1] = lk[N ] = 0, fU,k[1] = fU,k[N ] = 0, loffU,k[1] =

loffU,k[N ] = 0, and ldown
U,k [1] = ldown

U,k [2] = 0.

C. Problem Formulation

Considering the fact that the traditional battery-based UEs
and UAVs are usually power-limited, one major problem the
UAV-assisted MEC system faces will be energy. Hence, in this
paper, we try to minimize the WSEC of the UAV as well as
all the UEs during the whole task completion time T . In the
previous subsection, we have obtained the energy consumption
of the UEs and the UAV for task offloading/downloading
and computation. In fact, the energy consumption for UAV’s
propulsion is also considerable which is greatly affected by
the UAV’s trajectory, and hence should be taken into account.
With the assumption that the time slot duration τ is sufficiently
small, the UAV’s flying during each slot can be regarded as
straight-and-level flight with constant speed v[n]. Taking a
fixed-wing UAV as an example [16, 26], its propulsion energy
consumption at time slot n can be expressed as

Efly
U [n] = τ

(
θ1v

3[n] +
θ2
v[n]

)
, n ∈ N , (14)

where θ1 and θ2 are two parameters related to the UAV’s
weight, wing area, wing span efficiency, and air density, etc.
Combining with the above analysis, we obtain the total energy
consumption of UE k and the UAV in each time slot n as

Ek[n] = Elocal
k [n] + Eoff

k [n], k ∈ K, n ∈ N , (15)

EU[n] =

K∑
k=1

(
EU,k[n] + Eoff

U,k[n] +

Edown
U,k [n]

)
+ Efly

U [n], n ∈ N . (16)

In our considered scenario, the UEs’ CPU computing fre-
quencies {fk[n]}, their offloading task-input bits {lk[n]} and
the corresponding allocated bandwidth {Boff

k [n]}; the UAV’s
CPU computing frequencies {fU,k[n]}, its forwarding (further
offloading) task-input bits {loffU,k[n]} and downloading task-
output bits {ldown

U,k [n]} as well as the corresponding allocated
bandwidths {Boff

U,k[n]}, {Bdown
U,k [n]} for different UEs; along

with the UAV’s trajectory {u[n]} will be optimized to mini-
mize the WSEC. To this end, the WSEC minimization problem
can be formulated as problem (P1) given below

min
z,B,u

N∑
n=1

(
wUEU[n] +

K∑
k=1

wkEk[n]

)
(17a)

s.t.

n∑
i=2

(
δfU,k[i]

Ck
+ loffU,k[i]

)
≤

n−1∑
i=1

lk[i], ∀n ∈ N2, ∀k ∈ K, (17b)

n∑
i=3

ldown
U,k [i] ≤ Ok

n−1∑
i=2

(
δfU,k[i]

Ck
+ loffU,k[i]

)
,∀n ∈ N3, ∀k ∈ K,(17c)

N−1∑
n=2

(
δfU,k[n]

Ck
+ loffU,k[n]

)
=

N−2∑
n=1

lk[n], ∀k ∈ K, (17d)

N∑
n=3

ldown
U,k [n] = Ok

N−1∑
n=2

(
δfU,k[n]

Ck
+ loffU,k[n]

)
, ∀k ∈ K, (17e)

N∑
n=1

τ

Ck
fk[n] +

N−2∑
n=1

lk[n] = Ik, ∀k ∈ K, (17f)

Boff
k [n] +Boff

U,k[n] +Bdown
U,k [n] = B, ∀n ∈ N , ∀k ∈ K, (17g)

fk[n] ≥ 0, ∀n ∈ N , ∀k ∈ K, (17h)
lk[N − 1] = lk[N ] = 0, lk[n] ≥ 0, ∀n ∈ N1, ∀k ∈ K, (17i)
fU,k[1] = fU,k[N ] = 0, fU,k[n] ≥ 0, ∀n ∈ N2, ∀k ∈ K, (17j)

loffU,k[1] = loffU,k[N ] = 0, loffU,k[n] ≥ 0, ∀n ∈ N2, ∀k ∈ K, (17k)

ldown
U,k [1] = ldown

U,k [2] = 0, ldown
U,k [n] ≥ 0, ∀n ∈ N3, ∀k ∈ K, (17l)

Boff
k [N − 1] = Boff

k [N ] = 0, Boff
k [n] ≥ 0, ∀n ∈ N1, ∀k ∈ K,(17m)

Boff
U,k[1] = Boff

U,k[N ] = 0, Boff
U,k[n] ≥ 0, ∀n ∈ N2, ∀k ∈ K, (17n)

Bdown
U,k [1] = Bdown

U,k [2] = 0, Bdown
U,k [n] ≥ 0,∀n ∈ N3, ∀k ∈ K, (17o)

u[0] = uI, u[N ] = uF, (17p)
∥u[n]− u[n− 1]∥ ≤ Vmaxτ, ∀n ∈ N , (17q)

where z , {zk[n]}k∈K,n∈N and B , {Bk[n]}k∈K,n∈N
with zk[n] , {fk[n], lk[n], fU,k[n], l

off
U,k[n], l

down
U,k [n]} and

Bk[n] , {Boff
k [n], Boff

U,k[n], B
down
U,k [n]}, respectively, denote

the sets of the computational resource scheduling variables
and the bandwidth allocation variables for UE k in time slot
n, u , {u[n]}n∈N denotes the set of the UAV’s horizontal
locations for all the slots, i.e., the trajectory of the UAV, and
N1 = {1, . . . , N − 2}. In (P1), (17a) is the objective function
for minimizing the WSEC where wU and {wk}k∈K represent
the weights of the UAV and UEs, respectively, which trade-offs
between the UAV and UEs, and the priority/fairness among the
UEs. Also, (17b) and (17c) are the two information-causality
constraints, while (17d)–(17f) are the UEs’ computation task
constraints to make sure that all the UEs’ computation task-
input data has been computed and the task-output data has
been received. The bandwidth constraints are in (17g), while
(17h)–(17o) ensure the non-negativeness of the optimization
variables. (17p) and (17q) specify the UAV’s initial and final
horizontal locations, and its maximum speed constraints.

III. ALGORITHM DESIGN

The problem (P1) is a complicated non-convex optimization
problem because of the non-convex objective function where
non-linear couplings exist among the variables lk[n] and
Boff

k [n], loffU,k[n] and Boff
U,k[n], l

down
U,k [n] and Bdown

U,k [n] for k ∈
K, n ∈ N , and these variables are also strongly coupled with
the trajectory of the UAV, i.e., u[n]. To address these issues,
we propose a three-step alternating optimization algorithm to



solve the problem. In the first step, the computation resource
scheduling variables in z are optimized by solving the problem
with given UAV trajectory u and bandwidth allocation B; and
then in the second step, the bandwidth allocation variables in
B will be optimized with the same given UAV trajectory u
and the optimized z obtained in the first step; and finally in the
third step, we focus on designing the UAV trajectory u with
the optimized variables z and B. The details for the three-step
algorithm are presented as follows.

A. Computation Resource Scheduling with Fixed UAV Trajec-
tory and Bandwidth Allocation

A sub-problem of (P1) is the computation resource schedul-
ing problem (P1.1), where the UAV’s trajectory u and band-
width allocation B are given as fixed. In this case, the
time-dependent channels {hAP[n]}n∈N and {hk[n]}k∈K,n∈N
defined in (2) and (3) are also known. Besides, the non-linear
couplings among the offloading/downloading task-input/task-
output bits (lk[n], loffU,k[n], l

down
U,k [n]) with their corresponding

allocated bandwidths (Boff
k [n], Boff

U,k[n], B
down
U,k [n]) no longer

exist. The resource scheduling problem (P1.1) is convex with
a convex objective function and convex constraints, which is
expressed as

(P1.1) : min
z

N∑
n=1

(
wUE

(1)
U [n] +

K∑
k=1

wkEk[n]

)
(18a)

s.t. (17b) − (17f), (17h) − (17l), (18b)

where E
(1)
U [n] =

K∑
k=1

(
EU,k[n] + Eoff

U,k[n] + Edown
U,k [n]

)
. In

order to gain more insights of the solution, we leverage the
Lagrange method [27] to solve problem (P1.1), and the optimal
solution of problem (P1.1) is given in the following theorem.

Theorem 1. The optimal solution of problem (P1.1) related
to UE k ∈ K is given in (19)–(23) at the top of the next page,
where

φk[n] = log2
Boff

k [n]hk[n]

wkN0 ln 2
, n ∈ N1, (24)

φoff
U,k[n] = log2

Boff
U,k[n]hAP[n]

wUN0 ln 2
, n ∈ N2, (25)

φdown
U,k [n] = log2

Bdown
U,k [n]hk[n]

wUN0 ln 2
, n ∈ N3, (26)

are denoted as the offloading/downloading priority indicators
for the UEs in each given slot. Also, λ∗

k,n ≥ 0 and µ∗
k,n ≥ 0 for

k ∈ K, n ∈ N are respectively the optimal Lagrange multipli-
ers (dual variables) associated with the inequality constraints
(17b) and (17c) in problem (P1.1) (or P1), while η∗k, ρ∗k and β∗

k

are respectively the optimal Lagrange multipliers associated
with the equality constraints (17d)–(17f) for k ∈ K.

Proof. See Appendix A.

Remark 1. (Intuitive Explanation). From the expressions
relating to the computation resource scheduling parameters in
Theorem 1, we observe that {lk[n]}, {loffU,k[n]}, and {ldown

U,k [n]}
are monotonically increasing with {φk[n]}, {φoff

U,k[n]} and

{φdown
U,k [n]} when they are positive. It coincides with the intu-

ition that more input (or output) data should be offloaded (or
downloaded) with larger {φk[n]}, {φoff

U,k[n]} and {φdown
U,k [n]},

corresponding to the scenarios with larger bandwidths, chan-
nel power gains and smaller weights for energy consumption.

Remark 2. (Decreasing Offloading and Increasing Down-
loading Data Size). Theorem 1 sheds light on the fact that l∗k[n]
decreases with the time slot index n while ldown∗

U,k [n] increases
with n for the reason that

∑N−1
i=n+1 λ

∗
k,i and

∑N
i=n µ

∗
k,i in

(20) and (23) decrease with n as λ∗
k,i ≥ 0 and µ∗

k,i ≥ 0. This
indicates that the resource allocated for UEs’ task offloading
gradually decreases while that for UAV’s downloading grad-
ually increases as time goes by.

It is necessary to obtain the optimal values of the Lagrange
multipliers, i.e., λ∗ = {λ∗

k,n}k∈K,n∈N , µ∗ = {µ∗
k,n}k∈K,n∈N ,

η∗ = {η∗k}k∈K, ρ∗ = {ρ∗k}k∈K and β∗ = {β∗
k}k∈K since they

play important roles in determining the optimal computation
resource scheduling z∗ according to Theorem 1. In this paper,
we adopt a subgradient-based algorithm to obtain the optimal
dual variables in λ∗ and µ∗ related to the inequality constraints
(17b), (17c), as described in the following Lemma 1.

Lemma 1. The dual variables {λk,n} and {µk,n} obtained
at the (j + 1)-th (j = 1, 2, . . . ) iteration of the subgradient-
based algorithm are expressed as

λk,n,j+1 = [λk,n,j − ε
(λ)
j ∆λk,n,j ]

+, k ∈ K, n ∈ N2, (27)

µk,n,j+1 = [µk,n,j − ε
(µ)
j ∆µk,n,j ]

+, k ∈ K, n ∈ N3, (28)

with the corresponding subgradients given as

∆λk,n,j =

n−1∑
i=1

l∗k,j [i]−
n∑

i=2

(
δf∗

U,k,j [i]

Ck
+ loff∗

U,k,j [i]

)
, (29)

∆µk,n,j = Ok

n−1∑
i=2

(
δf∗

U,k,j [i]

Ck
+ loff∗

U,k,j [i]

)
−

n∑
i=3

ldown∗
U,k,j [i], (30)

where ε
(λ)
j and ε

(µ)
j respectively denote the iterative steps

for obtaining the dual variables in λ and µ at the j-
th iteration [28]. Also, {l∗k,j [n]}, {f∗

U,k,j [n]}, {loff∗
U,k,j [n]},

{ldown∗
U,k,j [n]} are the computation resource scheduling vari-

ables obtained through Theorem 1 with the dual variables
obtained at the j-th iteration, i.e., λj = {λk,n,j}k∈K,n∈N ,
µj = {µk,n,j}k∈K,n∈N , ηj = {ηk,j}k∈K, ρj = {ρk,j}k∈K
and βj = {βk,j}k∈K.

Besides, the bi-section search method is used to obtain the
optimal dual variables in η∗, ρ∗ and β∗ related to the equality
constraints (17d)–(17f), as summarized in Lemma 2.

Lemma 2. With the obtained λj+1 and µj+1 above,
the corresponding ηj+1, ρj+1 and βj+1 can be obtained
by bi-section search of {βk,j+1}k∈K ∈ [0, {βk,max}k∈K)
where βk,max = 3Ckwkκk(

IkCk

T )2. For each given βk,j+1 ∈
[0, βk,max), the corresponding ηk,j+1 and ρk,j+1 can be
obtained with another two bi-section searches within ηk,j+1 ∈
[ηlowk,j+1, η

up
k,j+1] and ρk,j+1 ∈ [ρlowk,j+1, ρ

up
k,j+1] to make the

expressions satisfy (B.1)=(B.2) and (B.1)=(B.3), respectively,
in Appendix B, where the expressions of ηlowk,j+1, ηupk,j+1, ρlowk,j+1,



f∗
k[n] =

√
[β∗

k]
+

3Ckwkκk
, n ∈ N , (19)

l∗k[n] =


δBoff

k [n]

[
φk[n] + log2

[ N−1∑
i=n+1

λ∗
k,i + β∗

k − η∗k

]+]+
, n ∈ N1,

0, n = N − 1 or N,

(20)

f∗
U,k[n] =


√√√√√
[
η∗k −Okρ∗k +Ok

N∑
i=n+1

µ∗
k,i −

N−1∑
i=n

λ∗
k,i

]+
3CkwUκU

, n ∈ N2,

0, n = 1 or N,

(21)

loff∗
U,k [n] =


δBoff

U,k[n]

[
φoff
U,k[n] + log2

[
η∗k −Okρ

∗
k +Ok

N∑
i=n+1

µ∗
k,i −

N−1∑
i=n

λ∗
k,i

]+]+
, n ∈ N2,

0, n = 1 or N,

(22)

ldown∗
U,k [n] =


δBdown

U,k [n]

[
φdown
U,k [n] + log2

[
ρ∗k −

N∑
i=n

µ∗
k,i

]+]+
, n ∈ N3,

0, n = 1 or 2,

(23)

and ρupk,j+1 are given in (B.5)–(B.8) in Appendix B. The
optimal βk,j+1, ηk,j+1 and ρk,j+1 should satisfy (B.1)=(B.4).

Proof. See Appendix B.

The optimal dual variables λ∗,µ∗ and η∗,ρ∗,β∗ can be fi-
nally obtained when the subgradient algorithm converges, and
the bi-section searches terminate. Note that the corresponding
convergence can be guaranteed according to [27].

B. Bandwidth Allocation with Fixed UAV Trajectory and Com-
putation Resource Scheduling

Here, another sub-problem of (P1), denoted as the band-
width allocation problem (P1.2) is considered to optimize B
with the same given UAV’s trajectory u and the optimized
computation resource scheduling parameters in z. The band-
width allocation problem (P1.2) is expressed as

(P1.2) : min
B

N∑
n=1

(
wUE

(2)
U [n] +

K∑
k=1

wkE
off
k [n]

)
(31a)

s.t. (17g), (17m) − (17o), (31b)

where E
(2)
U [n] =

K∑
k=1

(
Eoff

U,k[n] +Edown
U,k [n]

)
. It can be easily

proved that problem (P1.2) is convex with convex objective
function and constraints. To gain more insights on the structure
of the optimal solution, we again leverage the Lagrange
method [27] to solve this problem, and the optimal solution
to problem (P1.2) is given in the following theorem.

Theorem 2. The optimal solution of problem (P1.2) related
to UE k ∈ K is given by

Boff∗
k [n] =


ln 2
2
lk[n]

δW0

[
ln 2
2
(
ϕk,n

wk
hk[n]lk[n])

1
2

] , n ∈ N1,

0, n = N − 1 or N,

(32)

Boff∗
U,k [n] =


ln 2
2
loffU,k[n]

δW0

[
ln 2
2
(
ϕk,n

wU
hAP[n]loffU,k[n])

1
2

] , n ∈ N2,

0, n = 1 or N,

(33)

Bdown∗
U,k [n] =


ln 2
2
ldown
U,k [n]

δW0

[
ln 2
2
(
ϕk,n

wU
hk[n]ldown

U,k [n])
1
2

] , n ∈ N3,

0, n = 1 or 2,

(34)

where ϕk,n =
ν∗
k,n

δ2N0 ln 2 with {ν∗k,n}k∈K,n∈N being the optimal
Lagrange multipliers (dual variables) associated with the
equality constraints in (17g) of problem (P1.2) (or P1), and
W0(x) is the principal branch of the Lambert W function
defined as the solution of W0(x)e

W0(x) = x [29].

Proof. See Appendix C.

Lemma 3. (Exclusive Bandwidth Allocation). According
to the optimal bandwidth allocation results in Theorem 2
combining with the equality constraints in (17g), we have

Boff∗
k [n] = B, if lk[n] > 0, loffU,k[n] = ldown

U,k [n] = 0, (35)

Boff∗
U,k [n] = B, if loffU,k[n] > 0, lk[n] = ldown

U,k [n] = 0, (36)

Bdown∗
U,k [n] = B, if ldown

U,k [n] > 0, lk[n] = loffU,k[n] = 0, (37)

where the whole bandwidth is exclusively occupied when only
one of lk[n], loffU,k[n], l

down
U,k [n] is positive for any k ∈ K, n ∈

N . Also, it is always sure that

Boff∗
k [1] = B, Bdown∗

U,k [N ] = B, k ∈ K. (38)

The optimal Lagrange multipliers {ν∗k,n} for obtaining the
optimal bandwidth allocation in Theorem 2 correspond to
{ϕk,n}, which should make the equality constraints in (17g)
satisfied. In fact, ϕk,n can be obtained effectively with the bi-
section search when the bandwidth is not exclusively occupied,
i.e., at least two of lk[n], loffU,k[n], l

down
U,k [n] are positive, since

{Boff∗
k [n]}n∈N1 , {Boff∗

U,k [n]}n∈N2 and {Bdown∗
U,k [n]}n∈N3 are



all monotonically decreasing functions with respect to (w.r.t.)
{ϕk,n} according to the property of the W0 function. Besides,
we can obtain tight search ranges using the results in Lemma 4.

Lemma 4. A tight bi-section search range of ϕk,n (k ∈ K)
for any slot n ∈ N with non-exclusive bandwidth is given as
ϕk,n ∈ [ϕmin

k,n , ϕ
max
k,n ] where

ϕmin
k,n (or ϕmax

k,n ) = min (or max) (39)
{ϕUE,k,n(B/3), ϕoff

U,k,n(B/3), ϕdown
U,k,n(B/3)}, case 1

{ϕUE,k,n(B/2), ϕoff
U,k,n(B/2)}, case 2

{ϕUE,k,n(B/2), ϕdown
U,k,n(B/2)}, case 3

{ϕoff
U,k,n(B/2), ϕdown

U,k,n(B/2)}, case 4

where case 1-case 4 are distinguished by the values of lk[n],
loffU,k[n] and ldown

U,k [n] for each n ∈ N . For case 1, all the three
parameters have positive values; for case 2, ldown

U,k [n] = 0; for
case 3, loffU,k[n] = 0; for case 4, lk[n] = 0. In (39),

ϕUE,k,n(x) =
wklk[n]

δ2x2hk[n]
e

lk[n] ln 2

δx , k ∈ K, n ∈ N , (40)

ϕoff
U,k,n(x) =

wUl
off
U,k[n]

δ2x2hAP[n]
e

loffU,k[n] ln 2

δx , k ∈ K, n ∈ N , (41)

ϕdown
U,k,n(x) =

wUl
down
U,k [n]

δ2x2hk[n]
e

ldown
U,k [n] ln 2

δx , k ∈ K, n ∈ N , (42)

which are the value of ϕk,n obtained by letting the expressions
of Boff∗

k [n], Boff∗
U,k [n] and Bdown∗

U,k [n] in (32)–(34) equal to x.

C. UAV Trajectory Design With Fixed Computation Resource
Scheduling and Bandwidth Allocation

Here, the sub-problem for designing the UAV’s trajectory
u is considered, which we refer to it as the UAV trajectory
design problem (P1.3), by assuming that the computation
resource scheduling z and bandwidth allocation B are given
as fixed with the previously optimized values. Hence, the UAV
trajectory design problem (P1.3) can be rewritten as

(P1.3) : min
u

N∑
n=1

(
wUE

(3)
U [n] +

K∑
k=1

wkE
off
k [n]

)
(43a)

s.t. (17p), (17q), (43b)

where E
(3)
U [n] = Efly

U [n] +
K∑

k=1

(
Eoff

U,k[n] + Edown
U,k [n]

)
. It is

noted that the Efly
U [n] defined in (14) with v[n] in (1) is not a

convex function of u. In order to address this issue, we define
an upper bound of Efly

U [n] as follows

Ẽfly
U [n] = τ

(
θ1v

3[n] +
θ2
ṽ[n]

)
, n ∈ N , (44)

by introducing a variable ṽ[n] and a constraint v[n] ≥ ṽ[n],
which is equivalent to ∥u[n] − u[n − 1]∥2 ≥ ṽ2[n]τ2. This
constraint is still non-convex, and we leverage the SCA tech-
nique to solve this issue. The left hand side of the constraint is
convex versus u and can be approximated as its linear lower
bound by using the first-order Taylor expansion at a local point
ui, where i = 1, 2, . . . denotes the iteration index of the SCA

method. Hence, the additional constraint can be approximated
as a convex one as follows

ṽ2[n]τ2 − 2(ui[n]− ui[n− 1])T (u[n]− u[n− 1]) (45)

≤ ∥ui[n]− ui[n− 1]∥2, n ∈ N .

The approximated problem of (P1.3) with {Ẽfly
U [n]}, {ṽ[n]}

and the additional constraint (45) is convex w.r.t. u and {ṽ[n]}.
However, the UAV’s locations in different slots are coupled
with each other as in (17q), and thus it is difficult to obtain
a closed-form solution of u. In this case, we resort to the
software CVX [23] to solve the approximated problem of
(P1.3).

D. Algorithm, Convergence and Complexity

Based on the aforementioned analysis of the alternating
optimization for the computation resource scheduling z, the
bandwidth allocation B and the UAV trajectory u in each
subproblem, Algorithm 1 is proposed to solve the original
problem (P1) for obtaining the solution {z∗,B∗,u∗}.6

Algorithm 1 Three-Step Algorithm for Solving Problem (P1)
1: Set B, T , N , K, h0, N0, H , Vmax, θ1, θ2, uI, uF, wU, κU,

v0, {vk, wk, Ik, Ck, Ok, κk}k∈K, two tolerant thresholds
ϵ1 and ϵ, and the iterative steps {ε(λ)j } and {ε(µ)j };

2: Initialize the iteration index ζ = 1 and u1, B1;
3: Repeat 1
4: Initialize j = 1, as well as λ1, µ1;
5: Step 1: Repeat 1.1
6: a) Obtain ηj , ρj , βj with λj , µj through Lemma 2;

b) Obtain z∗ζ,j =
{
{f∗

k,j [n]}, {l∗k,j [n]}, {f∗
U,k,j [n]},

{loff∗
U,k,j [n]}, {ldown∗

U,k,j [n]}
}

through Theorem 1 with
λj , µj , ηj , ρj , βj and uζ , Bζ ;

c) Calculate the WSEC E
(1)
j by substituting z∗ζ,j , Bζ ,

uζ into the objective function of problem (P1.1);
d) j = j + 1;
e) Update λj and µj according to Lemma 1;

7: End Repeat 1.1 until convergence, i.e., |E(1)
j −E

(1)
j−1| <

ϵ1 (j > 1), and obtain optimal zζ+1 = z∗ζ,j ;
8: Step 2: Bi-section search of {νk,n} to find the optimal

{ν∗k,n} and obtain the Bζ+1 = B∗
ζ =

{
{Boff∗

k [n]},
{Boff∗

U,k [n]}, {Bdown∗
U,k [n]}

}
according to Theorem 2,

Lemma 3 and Lemma 4 with given uζ and zζ+1;
9: Step 3: Solve the approximated problem of (P1.3) by

CVX based on the SCA method, so as to obtain the
optimal solution uζ+1 with the given zζ+1, Bζ+1;

10: ζ = ζ + 1;
11: Calculate the WSEC Eζ , by substituting zζ , Bζ , and uζ

into the objective function of problem (P1);
12: End Repeat 1 until convergence, i.e., |Eζ − Eζ−1| < ϵ

(ζ > 2), and obtain the minimum WSEC Eζ with the
solution z∗ = zζ , B∗ = Bζ , u∗ = uζ ;

The convergence of Algorithm 1 is easy to prove in light of
the guaranteed convergence of the loop Repeat 1.1 in Step 1,

6The proposed method is not theoretically optimal due to problem non-
convexity, but its performance gain is verified by the simulation results.



the bi-section search in Step 2 and the CVX solving process
based on the SCA method in Step 3 [27]. The lower-bounded
objective function of problem (P1) will monotonically de-
crease with the iteration index ζ by optimizing z, B and u
alternatingly in each sub-problem, which further guarantees
the convergence of the algorithm.

In addition, Algorithm 1 is easy to implement and the corre-
sponding complexity is acceptable. In Step 1, the complexity
mainly comes from the subgradient method for obtaining
{λk,n}, {µk,n}, and the bi-section searches of {βk}, {ρk}
and {ηk} in each iteration of Repeat 1.1. Let εsub > 0, and
εβ , ερ, εη > 0 denote the computational accuracies of the
subgradient method and the bi-section searches for {βk}, {ρk}
and {ηk}. Thus, the corresponding complexity can be calcu-
lated as O(1/ε2sub+K log2(1/εβ)(log2(1/ερ)+log2(1/εη))).
In Step 2, the complexity is from the bi-section search of
{νk,n}, which is calculated as O(KN log2(1/εν)), where
εν is the corresponding computational accuracy. In Step 3,
the complexity mainly focuses on solving the approximation
problem of (P1.3) by CVX, which is acceptable in general.

IV. SIMULATION RESULTS

In this section, simulation results are presented to evalu-
ate the performance of the proposed algorithm against the
benchmarking schemes. The effects of the key parameters will
be analyzed, including the relative location of the AP (v0),7

the computation task sizes of UEs (Ik for k ∈ K), the task
completion time for UEs (T ), the size ratio of task-output
data to task-input data (Ok for k ∈ K), the weight for energy
consumption of the UAV (wU), and the iteration index of the
alternating optimization algorithm (ζ). The basic simulation
parameters are listed in Table I unless specified otherwise.

A. Trajectory of the UAV

In this subsection, numerical results for the trajectory of the
UAV are given to shed light on the effects of the task sizes of
UEs ([I1, I2, I3, I4]) and the relative location of the AP (v0).
In Fig. 2, the UAV’s flying trajectories are depicted in different
scenarios. It should be noted that the total task size of UEs
is same for the cases in (a), (c), (d) and (f), i.e., 1400 Mbits,
while the cases for (b) and (e) are with larger total task size,
e.g., 1800 Mbits. From these results in Fig. 2, we can observe
that the trajectory of the UAV is heavily reliant on the relative
location of the AP and the distribution of UEs’ task sizes.

For the scenario of v0 = (0, 0), the AP is surrounded by
the UEs and at the center of the UEs’ distributed area. We
can observe that the UAV tends to fly close to the UEs with
large task sizes and tries to be not too far away from the AP
when the total task sizes of UEs are moderate as the results
in cases (a) and (c). When the total task size becomes larger
and the distribution of UEs’ task sizes becomes more average,
the UAV tends to fly close to the AP as the result in case (b).
These three cases indicate that for the scenario where the AP is
located at the center of UEs’ distributed area, the distribution

7In order to properly show the effects of the relative location of the AP
to UEs on UAV’s trajectory and the performance, we fix the locations of the
UEs and vary the location of AP even though AP is usually fixed in practice.
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Fig. 2. The trajectories of the UAV in the situations with different location of
the AP and task size allocation of the UEs: v0 = (0, 0) for (a), (b) and (c),
v0 = (10, 5) for (d), (e) and (f); [I1, I2, I3, I4] = [6, 2, 4, 2] × 102Mbits
for (a) and (d), [I1, I2, I3, I4] = [6, 4, 6, 2] × 102Mbits for (b) and (e),
[I1, I2, I3, I4] = [2, 2, 6, 4]× 102Mbits for (c) and (f).

of the UEs’ task sizes plays an important role on the UAV’s
trajectory, while the effect of the AP’s location will become
more dominant when the UEs’ total task size becomes larger,
which coincides with the intuition that more task-input data
will be offloaded to the AP in this situation so as to reduce
the WSEC by making use of the super computing resources
at the AP. For the scenario of v0 = (10, 5), the AP is located
outside the distributed area of the UEs and its average distance
to the UEs is relatively larger than the above scenario. In this
situation, the effects of AP’s location on the trajectories are
more prominent, where the comparison between (a) and (d),
(b) and (e), (c) and (f) can properly explain this.

The reason behind these results in Fig. 2 is that there exists
a tradeoff between the distribution of UEs’ task sizes and
the relative location of the AP to the UEs. In other words,
getting close to the UEs with large task sizes can reduce
UEs’ offloading and UAV’s downloading energy consumption,
while being closer to the AP will reduce the UAV’s offloading
energy consumption, and thus the UAV has to find a balance
between these two factors meanwhile taking its own flying
energy consumption into consideration, so as to minimize the
WSEC through optimizing its flying trajectory.

B. Performance Improvement

Here, we focus on the performance gain of the proposed
algorithm. The performance of the baselines is also provided
for comparison, including the “Direct Trajectory” scheme
where the UAV flies from its initial location to the final
location directly with an average speed; the “Offloading Only”
scheme where the UEs just rely on task offloading to the UAV
and the AP for computing without local computing by the
UEs themselves; the “Equal Bandwidth” scheme indicating the
solution that the whole bandwidth are equally divided by the
active Boff

k [n], Boff
U,k[n], and Bdown

U,k [n], for n ∈ N and k ∈ K
without bandwidth optimization; and the “Local Computing”
scheme, where the UEs rely on their own computing resources
to complete their computation tasks without offloading. Note
that the former four schemes are all offloading schemes. To



TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value
The total system bandwidth B 30 MHz
The total task completion time T 10 seconds
Number of time slots N 50
Number of ground UEs K 4
The channel power gain at a reference distance of d0=1 m h0 −30dB
The noise power N0 −60dBm
The fixed altitude of the UAV H 10 m
The maximum available speed of the UAV Vmax 10 m/s
The UAV’s propulsion energy consumption related parameters (θ1, θ2) (0.00614,15.976)
The initial and final position of the UAV uI, uF (−5,−5), (5,−5)
The horizontal positions of the UEs v1, v2, v3, v4 (5, 5), (−5, 5), (−5,−5), (5,−5)
The effective switched capacitance of the UAV and UEs κU, κk(k ∈ K) 10−28

The weight for energy consumption of the UAV wU 0.2
The weight for energy consumption of the UEs wk (k ∈ K) 1
Required CPU cycles per bit Ck (k ∈ K) 1000 cycles/bit
UEs’ task-input data size Ik (k ∈ K) 400 Mbits
UEs’ task size ratio of output data to input data Ok (k ∈ K) 0.8
The tolerant thresholds ϵ1 and ϵ 10−4
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Fig. 3. The WSEC of the UAV and UEs versus the uniform task size: I = Ik
for k ∈ K.

better illustrate the effects of AP’s relative location on the
performance, we present all the results in two scenarios given
in Fig. 2, i.e., v0 = (0, 0) and v0 = (10, 5).

Fig. 3 shows the WSEC results versus the uniform task
size I = Ik for k ∈ K. All the curves in the figures increase
with I as expected since more energy will be consumed by
completing tasks with more input data. It can be seen that great
performance improvement can be achieved by leveraging the
proposed solution in comparison with all the baseline schemes
in both scenarios. It is clear that the performance of the
“Local Computing” scheme is far worse that the other schemes
with computation offloading, verifying the importance of edge
computing through offloading. Specifically, the WSECs of the
“Proposed Solution” are almost one thousandth of that for
the “Local Computing” scheme, presenting the tremendous
benefits the UEs obtained by deploying the UAV as an
assistant for computing and relaying. In addition, the WSECs
of the proposed solution are half less than those of the “Equal
Bandwidth” scheme and they are almost quarter less than those
of the “Direct Trajectory” scheme. The “Offloading Only”
scheme performs well with relatively small task sizes, e.g.,
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Fig. 4. The WSEC of the UAV and UEs versus the total task completion
time: T (s).

I = 400 Mbits, but its gaps between the “Proposed Solution”
are even larger than those of the “Direct Trajectory” scheme
when task sizes are large, e.g., I = 500 Mbits. All these results
verify that the proposed optimization on bandwidth allocation
and UAV’s trajectory, as well as making full use of the
computing resources at UEs have great effects on minimizing
the WSEC of the UAV and UEs. Note that the gaps between
the proposed solution and the baselines become larger when I
increases, which further indicates that the proposed algorithm
is more capable of handling the computation-intensive tasks.

In Fig. 4, the WSEC w.r.t. the total task completion time
T is depicted. We can see that the WSECs of all the schemes
decrease with T , coinciding with the intuition that a tradeoff
exists between the energy consumption and time consumption
for completing the same tasks, and the energy consumption
will decrease when the consumed time increases. It is notable
that the proposed solution is superior than the four baseline
schemes in both scenarios, and the performance improvement
is even more prominent with strict time restriction (small T ),
which further confirms that the proposed algorithm is good
at dealing with the latency-critical computation tasks and can
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Fig. 5. The WSEC of the UAV and UEs versus the uniform size ratio of
task-output data to task-input data: O = Ok for k ∈ K.

achieve a better energy-delay tradeoff. Besides, some similar
insights can also be obtained as from Fig. 3.

Fig. 5 depicts the WSEC w.r.t. the uniform size ratio of the
task-output data to the task-input data O = Ok for k ∈ K. We
see that the proposed scheme outperforms the baselines in both
scenarios as in Fig. 3 and Fig. 4. The WSEC of the “Local
Computing” scheme is constant w.r.t O, while the WSECs
of all the other schemes increase with O since more output
data will be downloaded to the UEs in the cases with larger
O. However, the curves of the “Equal Bandwidth” scheme are
almost unchanged for O ∈ [0.2, 0.8] due to the fact that equally
allocated bandwidth to the downloading transmissions should
be sufficient to complete the downloading missions, and its
performance is much worse than the other offloading schemes
for smaller O because of the irrational bandwidth allocation.
Note that the gaps between the proposed solution and the
“Direct Trajectory” scheme decrease as O increases since it
becomes more difficult to balance the tradeoff between UEs’
task sizes and the relative location of the AP. In comparison,
the gaps between the proposed solution and the “Offloading
Only” scheme become large as O increases for the reason that
local computing may be an energy-saving way when with a
large O. In the scenario of v0 = (10, 5), the “Offloading Only”
scheme performs even worse than the “Equal Bandwidth”
scheme when O = 1, which further verifies that the effect
of partial local computing in minimizing the WSEC.

Results for the WSEC versus the UAV’s weight wU are
shown in Fig. 6. It is clear that the proposed scheme still
performs best in both scenarios. All the curves increase with
wU except that for “Local Computing” scheme, since larger
proportion of UAV’s energy consumption will be calculated
into the WSEC with a larger wU. Note that the gaps between
the proposed solution and the “Direct Trajectory” scheme
become obviously larger as wU increases in both scenarios
especially compared with those gaps related to the “Offloading
Only” and the “Equal Bandwidth” schemes. This is due to
the fact that the energy consumption for UAV’s propulsion
contributes a larger part for WSEC of the “Direct Trajectory”
scheme without trajectory optimization, and thus its WSEC
increases much faster w.r.t. wU than the other schemes.
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Fig. 6. The WSEC of the UAV and UEs versus the weight for energy
consumption of the UAV: wU.
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Fig. 7. Separate energy consumption of the UEs and the UAV versus the
weight for energy consumption of the UAV: wU.

From the above results, we can observe that the WSEC for
the scenario of v0 = (10, 5) is higher than that for the scenario
of v0 = (0, 0) for all the schemes. It is easy to understand that
more energy will be used for UAV’s offloading transmission
and flying because of the farther average distance between the
AP and UEs. The performance of the proposed scheme is also
more stable than that of the baseline schemes considering the
changing of the relative location of the AP to UEs since its
relative WSEC increment is the smallest among the schemes.

Based on Fig. 6, we depict the energy consumption of the
UEs (also the weighted energy consumption of the UEs with
w1 = w2 = w3 = w4 = 1), the weighted energy consumption
and the energy consumption of the UAV versus wU in Fig. 7
(a), (b) and (c), respectively. It is clear that the weighted
energy consumption of the UEs and the UAV for the four
offloading schemes increase with wU as in (a) and (b), while
their energy consumption of the UAV decreases with wU as
in (c). This is due to the fact that we aim at minimizing the
WSEC, and the objectives increase with wU similar to the
results in Fig. 6. Meanwhile minimizing the UAV’s energy
consumption becomes more important as wU increases. From
this figure, we can better see the tremendous benefits obtained
by the UEs from the UAV, especially when wU is smaller.
In the case of wU = 0.2, the UAV consumes 120 Joule of
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Fig. 8. The WSEC of the UAV and UEs versus the number of iteration: ζ.

energy to help the UEs decrease their energy consumption
from 2.56∗105 Joule of the “Local Computing” scheme to 20
Joule of the “Proposed Solution”, by providing assistance of
task computing and relaying (further offloading to the AP for
computing) through the proposed algorithm.

Fig. 8 shows the WSEC of the proposed solution w.r.t to the
iteration index ζ under different settings. From the figure, we
can see that the proposed solution almost converges at ζ = 3,
i.e., after twice iteration of optimizing z, B and u, regardless
of the UEs’ task sizes or the position of the AP.

V. CONCLUSION

This paper investigated the UAV-assisted MEC architecture,
where the UAV acts as an MEC server and a relay to assist
the UEs to compute their tasks or further offload their tasks
to the AP for computing. We minimized the WSEC of the
UAV and the UEs under some practical constraints, using an
alternating algorithm iteratively optimizing the computation
resource scheduling, bandwidth allocation, and the UAV’s tra-
jectory. The simulation results have confirmed that the UAV’s
trajectory is greatly affected by the relative location of the AP
and the distribution of UEs’ task sizes. Besides, significant
performance improvement and more stable performance can be
achieved by the proposed algorithm over the baseline schemes.

APPENDIX A: PROOF OF THEOREM 1

The partial Lagrange function of (P1.1) can be expressed
as

L(1)(z,λ,µ,η,ρ,β) =

K∑
k=1

{
N∑

n=1

(
wk

(
Elocal

k [n] + Eoff
k [n]

)
+ wU

(
EU,k[n] + Eoff

U,k[n] + Edown
U,k [n]

))
+

(
N−1∑
n=2

λ̃k,n

(
δfU,k[n]

Ck
+ loffU,k[n]

)
−

N−2∑
n=1

λ̂k,nlk[n]

)

+

(
N∑

n=3

µ̃k,nl
down
U,k [n]−Ok

N−1∑
n=2

µ̂k,n

(
δfU,k[n]

Ck
+ loffU,k[n]

))

+ ηk

(
N−2∑
n=1

lk[n]−
N−1∑
n=2

(
δfU,k[n]

Ck
+ loffU,k[n]

))

+ ρk

(
Ok

N−1∑
n=2

(
δfU,k[n]

Ck
+ loffU,k[n]

)
−

N∑
n=3

ldown
U,k [n]

)

+ βk

(
Ik −

N−2∑
n=1

lk[n]−
N∑

n=1

τ

Ck
fk[n]

)}
, (A.1)

where λ = {λk,n}k∈K,n∈N , µ = {µk,n}k∈K,n∈N , η =

{ηk}k∈K, ρ = {ρk}k∈K, β = {βk}k∈K, λ̃k,n =
∑N−1

i=n λk,i,
λ̂k,n =

∑N−1
i=n+1 λk,i, µ̃k,n =

∑N
i=n µk,i, and µ̂k,n =∑N

i=n+1 µk,i. The Lagrangian dual function of problem (P1.1)
can be presented as

d(1)(λ,µ,η,ρ,β) = min
z

L(1)(z,λ,µ,η,ρ,β) (A.2)

s.t. (17h) − (17l).

Hence, the solution of z with given dual variables λ,µ,η,ρ,β
can be obtained by solving problem (A.2). If the given dual
variables are optimal, denoted as λ∗,µ∗,η∗,ρ∗,β∗, then the
corresponding solutions are optimal, i.e., z∗. According to the
structures of L(1)(z,λ,µ,η,ρ,β) and the constraints (17h)-
(17l), it is noted that the problem (A.2) can be equivalently
divided into K subproblems w.r.t. each UE k ∈ K to facilitate
parallel execution. Apply the Karush-Kuhn-Tucker (KKT)
conditions [27] and let the derivations of L(1)(z,λ,µ,η,ρ,β)
w.r.t. fk[n], lk[n], fU,k[n], l

off
U,k[n], l

down
U,k [n] equal to zero, we

can thus obtain the corresponding optimal solution given in
Theorem 1 with some straightforward calculations.

APPENDIX B: PROOF OF LEMMA 2

With the achieved λj+1 and µj+1 in Lemma 1, we can then
obtain the ηj+1, ρj+1 and βj+1 correspondingly. According
to the expressions of the optimal solution in Theorem 1 and the
equality constraints in (17d)–(17f), we can express the value
of
∑N−2

n=1 l∗k,j+1[n] in the following forms in (B.1)–(B.4)

N−2∑
n=1

l∗k,j+1[n] = Ik − T

Ck

√
βk,j+1

3Ckwkκk
(B.1)

= δ

N−2∑
n=1

Boff
k [n]

[
φk[n] + log2

[
λ̂k,n,j+1 + βk,j+1 − ηk,j+1

]+]+
(B.2)

=
δ

Ok

N∑
n=3

Bdown
U,k [n]

[
φdown

U,k [n] + log2

[
ρk,j+1 − µ̃k,n,j+1

]+]+
(B.3)

=

N−1∑
n=2

{
δ

Ck

√
[ηk,j+1 −Okρk,j+1 +Okµ̂k,n,j+1 − λ̃k,n,j+1]+

3CkwUκU

+ δBoff
U,k[n]

[
φoff

U,k[n] + log2

[
ηk,j+1 −Okρk,j+1

+Okµ̂k,n,j+1 − λ̃k,n,j+1

]+]+}
, (B.4)

where λ̃k,n,j+1, λ̂k,n,j+1, µ̃k,n,j+1, and µ̂k,n,j+1 are defined
similar to λ̃k,n, λ̂k,n, µ̃k,n, and µ̂k,n in Appendix A. The
expression (B.1) is obtained from (17f), (B.2) comes from
the expression of {l∗k,j+1[n]}, (B.3) is derived from (17d) and
(17e) with equation

∑N−2
n=1 l∗k,j+1[n] =

1
Ok

∑N
n=3 l

down∗
U,k,j+1[n],

and (B.4) is obtained from (17d).



According to (B.1) and the facts that
∑N−2

n=1 lk,j+1[n] ∈
[0, Ik], f∗

k[n] ≥ 0, we can derive the range of βk,j+1 ∈
[0, βk,max) with βk,max = 3Ckwkκk(

IkCk

T )2 for k ∈ K. It is
observed from (B.1)–(B.3) that ηk,j+1 and ρk,j+1 are respec-
tively monotonic non-decreasing and non-increasing implicit
functions of βk,j+1, which further shows that (B.4) is also a
monotonic non-decreasing function of βk,j+1. Hence, with the
obtained λj+1 and µj+1, and a given βk,j+1 ∈ [0, βk,max),
we can derive the corresponding ηk,j+1 and ρk,j+1 from the
equations constituted by (B.1) in company with (B.2) and
(B.3), respectively, also using the bi-section search method
with the ranges of ηk,j+1 ∈ [ηlowk,j+1, η

up
k,j+1] and ρk,j+1 ∈

[ρlowk,j+1, ρ
up
k,j+1], where

ηlowk,j+1 = λ̂k,N−2,j+1 − 2

Ik/δ−
∑N−2

n=1 Boff
k [n]φk[n]∑N−2

n=1 Boff
k

[n] , (B.5)

ηupk,j+1 = λ̂k,1,j+1 + βk,max, (B.6)

ρlowk,j+1 = µ̃k,N,j+1, (B.7)

ρupk,j+1 = µ̃k,3,j+1 + 2

IkOk/δ−
∑N

n=3 Bdown
U,k [n]φdown

U,k [n]∑N
n=3 Bdown

U,k
[n] , (B.8)

which are obtained from (B.2) and (B.3) in combination with
the definitions of λ̂k,n,j+1 and µ̃k,n,j+1, and the range of
βk,j+1. The optimal βk,j+1 and the corresponding ηk,j+1,
ρk,j+1 should make the equation formed by (B.1) and (B.4)
satisfied, which indicates the termination of the bi-section
search of βk,j+1, k ∈ K.

APPENDIX C: PROOF OF THEOREM 2
The partial Lagrange function of (P1.2) is defined as

L(2)(B,ν) =
K∑

k=1

N∑
n=1

(
wkE

off
k [n] + wU

(
Eoff

U,k[n] + Edown
U,k [n]

))
+

K∑
k=1

N∑
n=1

νk,n
(
B −Boff

k [n]−Boff
U,k[n]−Bdown

U,k [n]
)
, (C.1)

where ν = {νk,n}k∈K,n∈N . The Lagrangian dual function of
problem (P1.2) can be presented as

d(2)(ν) = min
B

L(2)(B,ν) (C.2)

s.t. (17m) − (17o).

Hence, the optimal solution of B with optimal dual variables
ν∗ can be obtained by solving (C.2). This problem can also
be equivalently divided into K subproblems w.r.t. each UE
k ∈ K to facilitate parallel execution. It is easy to note that
the expressions of Eoff

k [n], Eoff
U,k[n] and Edown

U,k [n] have similar
structures w.r.t. Boff

k [n], Boff
U,k[n] and Bdown

U,k [n], and thus the
optimal solution of Boff

k [n], Boff
U,k[n] and Bdown

U,k [n] should
have similar structures according to problem (C.2). Next, we
will take Boff

k [n] as an example to obtain its closed-form
optimal solution versus ν∗k,n for k ∈ K, n ∈ N . Applying
the KKT conditions [27] leads to the following necessary and
sufficient condition of Boff∗

k [n]:

∂L(2)(B,ν)

∂Boff∗
k [n]

= ν∗k,n − lk[n]wkN0 ln 2

(Boff∗
k [n])2hk[n]

2
lk[n]

Boff∗
k

[n]δ = 0, (C.3)

where the optimal dual variable ν∗k,n should make sure that
the equality constraint Boff∗

k [n] + Boff∗
U,k [n] + Bdown∗

U,k [n] = B
is satisfied. It is not easy to obtain the closed-form solution
of Boff∗

k [n] through (C.3) directly. By defining ξ = lk[n]

Boff∗
k [n]δ

,
the equation in (C.3) can be re-expressed as

ξ22ξ =
ν∗k,nhk[n]lk[n]

δ2wkN0 ln 2
, Γ. (C.4)

By applying the natural logarithm at the both sides of (C.4)
leads to

ln ξ +
ln 2

2
ξ = lnΓ

1
2 . (C.5)

Then applying the exponential operation at both sides of (C.5),
we can obtain that

ln 2

2
ξe

ln 2
2 ξ =

ln 2

2
Γ

1
2 , (C.6)

where e is the base of the natural logarithm. According to
the definition and property of Lambert function [29], we have
ln 2
2 ξ = W0(

ln 2
2 Γ

1
2 ), and finally we can express Boff∗

k [n] as

Boff∗
k [n] =

ln 2
2 lk[n]

δW0

[
ln 2
2 (

ϕk,n

wk
hk[n]lk[n])

1
2

] , n ∈ N1. (C.7)

Integrating with the cases Boff∗
k [N − 1] = Boff∗

k [N ] = 0, the
complete solution of Boff∗

k [n] in (32) can be obtained. The
solution of Boff∗

U,k [n] and Bdown∗
U,k [n] in (33) and (34) can be

obtained in a similar way [21].

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computingła key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[2] D. Sabella et al., “Toward fully connected vehicles: Edge computing for
advanced automotive communications”, 5G Automot. Assoc. (5GAA),
Dec. 2017.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, thirdquarter 2017.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourthquarter
2017.

[5] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Signal Inf. Process. Netwo., vol. 1, no. 2, pp. 89–103, Jun. 2015.

[6] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[7] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[8] X. Hu, L. Wang, K.-K. Wong, Y. Zhang, Z. Zheng, and M. Tao, “Edge
and central cloud computing: A perfect pairing for high energy efficiency
and low-latency,” 2018.

[9] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient and
incentive-aware task offloading framework via network-assisted D2D
collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3887–
3901, Dec 2016.

[10] H. Sun, F. Zhou, and R. Q. Hu, “Joint offloading and computation
energy efficiency maximization in a mobile edge computing system,”
IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3052–3056, Mar. 2019.

[11] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1757–1771, May 2016.

[12] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.



[13] X. Hu, K. Wong, and K. Yang, “Wireless powered cooperation-assisted
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 17, no. 4,
pp. 2375–2388, Apr. 2018.

[14] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, Mar.
2018.

[15] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with un-
manned aerial vehicles: Opportunities and challenges,” IEEE Commun.
Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[16] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun, vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[17] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for
UAV-enabled mobile relaying systems,” IEEE Trans. Commun., vol. 64,
no. 12, pp. 4983–4996, Dec 2016.

[18] M. M. Azari, F. Rosas, K. Chen, and S. Pollin, “Ultra reliable UAV
communication using altitude and cooperation diversity,” IEEE Trans.
Commun., vol. 66, no. 1, pp. 330–344, Jan. 2018.

[19] J. Xu, Y. Zeng, and R. Zhang, “UAV-enabled wireless power transfer:
Trajectory design and energy optimization,” IEEE Trans. Wireless Com-
mun., vol. 17, no. 8, pp. 5092–5106, Aug. 2018.

[20] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via a UAV-
mounted cloudlet: Optimization of bit allocation and path planning,”
IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049–2063, Mar. 2018.

[21] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927–1941, Sep. 2018.

[22] X. Cao, J. Xu, and R. Zhang, “Mobile edge computing for cellular-
connected UAV: Computation offloading and trajectory optimization,”
in proc. IEEE SPAWC, Kalamate, Greece, Jun. 2018.

[23] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined
convex programming,” Tech. Rep., 2008.

[24] LTE Unmanned Aircraft Systems-Trial Report, Qualcomm Technol., Inc.,
San Diego, CA, USA, May 2017.

[25] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep.
2013.

[26] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial
on UAV communications for 5g and beyond,” arXiv preprint arX-
iv:1903.05289, 2019.

[27] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[28] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
Numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

[29] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the lambertw function,” Advances in Computational mathematics,
vol. 5, no. 1, pp. 329–359, 1996.

Xiaoyan Hu (S’16) received the MSc degree in
Information and Communication Engineering from
Xi’an Jiaotong University, China, in 2016. She is
currently pursuing the PhD degree with the De-
partment of Electronic and Electrical Engineering
of University College London, UK. Her research
interests are in the areas of mobile edge computing,
UAV communications, wireless energy harvesting,
cooperative communications and physical-layer se-
curity. She was selected as an exemplary reviewer
of IEEE Communications Letters in 2017.

Kai-Kit Wong (M’01-SM’08-F’16) received the
BEng, the MPhil, and the PhD degrees, all in Electri-
cal and Electronic Engineering, from the Hong Kong
University of Science and Technology, Hong Kong,
in 1996, 1998, and 2001, respectively. After gradua-
tion, he took up academic and research positions at
the University of Hong Kong, Lucent Technologies,
Bell-Labs, Holmdel, the Smart Antennas Research
Group of Stanford University, and the University of
Hull, UK. He is Chair in Wireless Communications
at the Department of Electronic and Electrical En-

gineering, University College London, UK.
His current research centers around 5G and beyond mobile communi-

cations, including topics such as massive MIMO, full-duplex communica-
tions, millimetre-wave communications, edge caching and fog networking,
physical layer security, wireless power transfer and mobile computing, V2X
communications, and of course cognitive radios. There are also a few other
unconventional research topics that he has set his heart on, including for
example, fluid antenna communications systems, remote ECG detection and
etc. He is a co-recipient of the 2013 IEEE Signal Processing Letters Best Paper
Award and the 2000 IEEE VTS Japan Chapter Award at the IEEE Vehicular
Technology Conference in Japan in 2000, and a few other international best
paper awards.

He is Fellow of IEEE and IET and is also on the editorial board of several
international journals. He has served as Senior Editor for IEEE Communica-
tions Letters since 2012 and also for IEEE Wireless Communications Letters
since 2016. He had also previously served as Associate Editor for IEEE Signal
Processing Letters from 2009 to 2012 and Editor for IEEE Transactions on
Wireless Communications from 2005 to 2011. He was also Guest Editor for
IEEE JSAC SI on virtual MIMO in 2013 and currently Guest Editor for IEEE
JSAC SI on physical layer security for 5G.

Kun Yang (SM’08) received his PhD from the
Department of Electronic and Electrical Engineering
of University College London (UCL), UK, and MSc
and BSc from the Computer Science Department
of Jilin University, China. He is currently a Chair
Professor in the School of Computer Science &
Electronic Engineering, University of Essex, leading
the Network Convergence Laboratory (NCL), UK.
He is also an affiliated professor at UESTC, China.
Before joining in University of Essex at 2003, he
worked at UCL on several European Union (EU)

research projects for several years. His main research interests include
wireless networks and communications, data and energy integrated networks,
computation-communication cooperation. He manages research projects fund-
ed by various sources such as UK EPSRC, EU FP7/H2020 and industries. He
has published 100+ journal papers. He serves on the editorial boards of both
IEEE and non-IEEE journals. He is a Senior Member of IEEE (since 2008)
and a Fellow of IET (since 2009).

Zhongbin Zheng received his bachelor’s and mas-
ter’s degrees in information and communications
engineering from Beijing University of Posts and
Telecommunications in 2002 and 2005, respectively.
He is presently Vice Director of the China Academy
of Information and Communications Technology,
and East China Institute of Telecommunications. He
was also the former Head of the Technology De-
partment for the East China Institute of the Ministry
of Industry and Information Technology. He is very
active in research, resulting in not only a number of

international paper publications, but also patents and draft standards.


