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Abstract

This study is motivated by a research gap in tlstesyic implications that wider adoption of multiple
micro-generation technologies may bring to inteseent infrastructures. It explores how the
adoption of battery electric vehicles, solar phottaics, solar thermal water heating, rain water
harvesting, grey water recycling, and waste headvery affect system-level consumption of water,
gas, gasoline, electricity, G@missions, and electricity generation cost. Theukitions based on a
new agent-based model show that grey water regyelird rain water harvesting reduce water and
solar thermal water heating and rain water hamgsteduce gas demand respectively. A wider
adoption of battery electric vehicle and solar pkottaics have no effect while a reduction in the
number of gasoline cars and gas users leads terhabctricity consumption, GGemissions, and
electricity generation cost. The following poliayplications are identified: grey water recyclinglan
rain water harvesting should be actively promoteghirovements in the design and use of gas boilers
may be better options than solar thermal wateritngatnd rain water harvesting; battery electric
vehicle should be adopted together with solar pladtaics; solar photovoltaics should not be
supported with feed-in-tariffs. If the last two ihgations are not addressed, then a more
complementary electricity generation mix is necasséherwise policies that promote replacement of
gasoline cars by battery electric vehicles maylt@sunegative systemic impacts.

Keywords: Micro-generation; technologies; resource consumptgent-based model; simulation

1. Introduction

The problems of deteriorating and aging infrastriteet are only exacerbated by their ever increasing
interdependencies (Rinaldi et al., 2001). An argaeeted to bring relief to the UK’s challenged
national infrastructures would be a large-scaleptido of household water and energy generation
technologies since the domestic sector is resplenfsiba significant part of the country’s energyda
water consumption. Annually, the UK domestic secomnsumes 29% of total energy consumption
(DECC, 2014) and accounts for more than a quaft@@ emissions (Bergman and Eyre, 2011). In
relation to water, 154 litres of water per persam gay are consumed (DEFRA, 2011) and water
sector (treatment and distribution) is fourth mesergy intensive industry (Gallagher et al., 2015).
Adoption of micro-generation (Sauter and Watson)720Balcombe et al., 2014) or distributed
generation (Allan et al, 2015; Theo et al., 201 &higan et al. 2018) technologies, such as solar
photovoltaics, solar thermal water heating or hpaimps, promises to alleviate some of that
consumption. Having in mind that they cover a widgiety of generation technologies with no
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consensus existing on their precise definition dAlket al, 2015; Mehigan et al. 2018), the authors
define micro-generation technologies (MGTs) as g@imen technologies installed in individual
households (Sauter and Watson, 2007) which caerdith stand-alone or grid-connected (Allan et al,
2015). According to (Sauter and Watson, 2007) gachnologies could have a substantial share in
the UK'’s future energy generation mix. Reductiorgimeenhouse gas emissions is the predominant
driver for the deployment of MGTs (Mehigan et a018). UK government sees distributed energy
generation as potentially bringing a positive citmition to reducing UK’s C@emissions (Woodman
and Baker, 2008). Watson et al. (2008) state thatoageneration of electricity and heat could
contribute as much as 40% of UK electricity demand reduce COemissions by 15% by 2050.
Further benefits of wider adoption of MGTs inclu¢igauter and Watson, 2007; Balcombe et al.,
2014; Woodman and Baker, 2008): diversificationsofirces of energy, fuel autonomy, improve
energy security, and reduction of fuel poverty.

The impact of the wider adoption of MGTs upon aelidependent infrastructures as measured by the
ensuing resource consumption, £émnissions, and cost, is a little-known phenomerora recent
review of literature on distributed generation Mg et al. (2018) found that there is a gap in the
literature in considering the role of distributeengration within the long-tem context of the entire
electricity system and the wider energy sector. dx@mple, diffusion of electric vehicles is likety
have a strong impact on power system (Schill antb&sget, 2015), however this has mainly been
studied in the context of short-term planning legvithe long-term impact of electric vehicles
inadequately investigated (Koltsaklis and Dagoun2@4,8). Furthermore, the most prevalently used
energy systems models, such as MARKAL and its wtsigHall and Buckley, 2016), cannot
represent the intricacies of electricity sectonsfarmation (BoBmann and Staffell, 2015). There is
also a lack of understanding about toenbined effects which adoption of a variety of MGTs may
bring to a wider range of infrastructures. In aergaeview of literature Allan et al. (2015) fouadly

a handful of examples that look into system-wideawcts of the wider adoption of MGTs. They also
identified that the general trend in MGT literatisdo focus on microeconomic analysis rdividual
technologies. In another review of literature on ™G Juntunen and Hyysalo (2015) found that
majority of research is done in relation to techhiand economic aspects and little attention have
been devoted to how these technologies impactreiegtproduction. At the same time, MGTs are
widely understood to include the generation of hmatlectricity or both (Balcombe et al., 2014;
Mehigan et al., 2018; Juntunen and Hyysalo, 201&)s talmost completelygnoring water
technologies from the analysis. On the other heagkarch into infrastructures has generally focused
on a single sector looking into specific systermants rather than the whole, and has predominately
been concerned with optimisation rather than tteoms (Loorbach et al., 2010).

This study investigates the effects of wider adoptf multiple MGTs by UK households upon their
consumption of infrastructure resources,,@missions, and electricity costs that derive fitbm. It

is important to state clearly what is meant by r#frastructure resource. By that it means water, gas
gasoline (petrol and diesel), and electricity, assumed by the households, and not resources, such
as money, materials, electricity, water, etc., eeeb e.g. build, operate, and maintain the netsork
and physical infrastructure to deliver these. Tigly aims to explore whether more MGTSs result in
lower consumption of resources, and consequentigwer costs and COemissions. To realise this,
an agent-based model (ABM) has been developedemtedt The rest of the paper is structured as
follows. The Section 2 introduces the researchgieand specific methods. In Section 3 simulation
results are presented and in Section 4 their imafins for policy are discussed. In the conclusiba,
key points are summarised.



2. Research design

The ABM method was selected in this study as itviokes distinct benefits for modelling
interdependent infrastructures as argued by (Rimldl., 2001; Heller, 2001; Rigole and Deconinck,
2006; Chappin and Dijkema, 2010; Varga et al., 20Edrthermore, ABM is increasingly being used
to model and simulate energy systems (Hall and Byclk016; Ringkjgb et al., 2018) and uptake
processes of MGTs (Schwarz and Ernst, 2008; Yoesefi., 2011; Shafiei et al., 2012; Sopha et al.,
2013). In order to ensure sound model developngefamework by Chappin and Dijkema (2010)
was adopted. This framework was specifically preposo support development of ABMs in the
context of infrastructure transitions. The framekvoonsists of five main components (Figure 1): (1)
system representation, (2) exogenous scenariogle@yn variables for transition assemblages, (4)
system evolution, and (5) impact assessment.
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Figure 1. Framework for assessing system transitidgth agent-based models (Chappin and
Dijkema, 2010)
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2.1 System representation
Developing a system representation is a processhwtientifies and represents key knowledge about
the system. The key decisions to be made herehase tthat involve the system boundaries. This
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constitutes the most fundamental assumption, tieretis a ‘system’ and an ‘environment’ (Allen,
2000). According to Midgley (2008) boundary judgenseare linked with value judgements, i.e. the
values adopted by a research team direct the dgawfirboundaries around the phenomenon of
interest, which in turn define what is perceivedbthe pertinent knowledge. Given that complex
systems are open, that is, they interact with aglgetems including their environment, it is notiedtt
boundaries are not hard and even in defining baiesi&ey features may be missed which contribute
to systemic outcomes. Richardson et al. (2001)eathat boundaries inferred are more a feature of
the need in this study for a bounded descriptiam tine feature of the system itself; while Ulricida
Reynolds (2010) claim that the system concept tsmeeded at all if system boundaries are not
handled critically. Guided by these ideas braimstog of the expert opinions of stakeholders and
other collaborators working on this research (sekendwledgements) were used. Boundary definition
was achieved through a number of events and disnissghat involved experts from various
infrastructures (energy, water and waste, telecomnration, transport) resolving the following
boundary scoping questions:

1. What parts of the UK national infrastructuresaoasider?
2. What household characteristics and MGTSs to cen3i

In defining the pertinent infrastructures the lifies concept (O’Rourke, 2007), which groups
infrastructure into six principal systems: electpower, gas and liquid fuels, telecommunications,
transportation, waste disposal, and water supphs fellowed. The following infrastructures were
selected (Table 1) as having the most relevancBl€@®rs: electric power generation, water treatment,
distribution, and sewerage, and public transpamati

Table 1: Infrastructures related characteristics

Infrastructure Characteristics

Electricity generation: Coal Gas Nuclear Wind
Technology mik 40% 30% 20% 10%
Cost, £/kWh (Tidball etal.,  0.03-0.047 0.032-0.039 0.034-0.067 0.051-0.091
2010)

CGO, emission, g/kWh (Tidball 900-1100 400-600 5-10 20-25
et al., 2010)

Water®: Treatment Distribution Sewerage

Energy consumption, kWh/m 0.135 0.44 0.07

CO, emission, kgCQm3 0.327 0.126 0.583

Public transportation (House Diesel Bus Diesel Train Electric train

2005; Baseline, 2007):

Energy consumption 41.86 km/litre  77.28 km/litre .2%D km/pax.kWh

CO, emission, kgCglitre 2.2-3 2.2-3 No direct emissidn

? According to Ofgem data (2019) electricity genieraimix for Q1 2013: Coal 40%, Gas 27%, Nuclear 1¥¢ind
(onshore and offshore) 7%, Bioenergy 4%, Net imp&¥ts Hydro 1%, Oil 1%, Other fuels 1%. Technologyx m
considered here is based on adjusted figures dmapensates for the exclusion of all the other $oelrces.

® These figures are results of an analysis from &@mtreatment plants of Yorkshire Water condubigthe authors’
project team members working in Pennine Water Grblniversity of Sheffield.

¢ Refer to the C@emission of electricity generation.



Since this study focuses on technology adoptiamntbdel developed does not cover the distribution
of electricity and it does not include distributitbeses. However, the driver towards prosumerism
means distribution losses are indirectly and vempBstically taken into account through MGT
adoption rates. Total energy consumption for wagsatment, distribution, and sewerage is corrected
for the amount of electricity generated from sluggecessing and other renewable sources (between
14% and 30%). These figures are based on a reddrwase study of Yorkshire Water. Due to space
limitations the end results are only presentedamy those aspects of these which are relevarthéor
study.

The most pertinent MGTs include: battery electeticles (BEVS), solar photovoltaics (PVs), solar
thermal water heating (STWH), rain water harvestiRyVH), grey water recycling (GWR), and
waste heat recovery (WHR). While some of theseneldgies have been explored in isolation (Caird
et al., 2008; Yousefi et al., 2011; Robinson et2013; Steinhilber et al., 2013), their combinatias
rarely been explored. Interest in RWH and GWR heenldimited (Hyde and Maradza, 2013). Even
less interest has been raised by a claim made bydfoet al. (2011), which is about the possib#itie
of saving heat lost via sewage which is around 40%e total heat loss of a modern house. It furthe
concluded that if consumers would save only 6% afvwater or recover 10% of the heat in sewage
water, then the total energy demand of treatment lma offset. An example of technology that
recovers heat from wastewater is shower heat egehaiherefore, together the six technologies
have a potential to reduce domestic dependencefi@siructures for energy, water, and transport.

2.2 Exogenous scenarios

Once a system representation is defined, then #amegythat falls outside the system boundaries is
categorised as exogenous. And everything that @enous but relevant is seen as potentially
forming a scenario space. Three levels of compleoould be used to determine the scenario space,
which areexogenous scenario levels (ESLs). TheES 1 involves static parameter values where values
of some exogenous parameters are varied only bettheesimulation runs, e.g. the price of natural
gas. TheES 2 concerns modelling exogenous scenario paramesec®rainuous or varying trends
during the simulation runs. For example, a priemdr for a natural gas rather than static value. The
ES 3 involves the use of mathematical or other simatathodels, e.g. systems dynamics models, for
providing scenario parameters. This last approsichare complicated than varying trends and is used
only if scenario parameters are strongly correlé@@uhppin and Dijkema, 2010). Exogenous scenario
parameters are those related to the householdatbdastics and MGTs. They were identified during
the brainstorming discussions of the project wookslisee Acknowledgements) and are listed in
Table 2.

Table 2: Exogenous scenario parameters

Parameters Trend
ESP1: Steady decrease iBy 2050 almost half of households would be ablaftord MGTS,
cost of MGTs whereas today this is possible only for less tha¥h In case of BEVs

or PVs. The reduction of cost may initially comenfr government
subsidies, and later from innovation and efficiemoprovements, and
improvements in the standard of living.

ESP2: Steady increase inBy 2050 number of households with environmentalitatte would
the number of more than double, from around 30% today to 70%,mnggathere will
households with be more people who are prepared to actively ppdiei in reducing
environmental attribute their environmental effects, e.g. by adopting anTMGhis is to reflect




the increasing awareness of climate change anddssmay bring.

ESP3: Steady increase inBy 2050 the battery range would double relativetéocontemporary
the BEV battery range  value. This may result from further innovation ardficiency

improvements.
ESP4: Steady From almost negligible number of charging statitwtay, by 2050 it is
proliferation of BEV expected on average 1 charging station for everpEUs. This may
charging stations initially result from government subsidies to stiate adoption of

BEVs by offering improvements in BEV usability aagailability of
supporting infrastructure.

ESP5: Steady increase inBy 2050 there will be at least 20% more journey®legtric trains than
the number of journeys today (around 60%). This also captures UK policgrales in relation
by electric trains to further electrification of its railways.

ESP6: Steady increase inBy 2050 there will be at least 10% more peoplenfivin urban areas
the number of urban than today (around 80%). This reflects the curtegrtds in ever more
dwellers expanding urban living.

2.3 Design variables for transition assemblages

A transition assemblage can be understood as igaésh and design of technical systems, policies,
regulations, and investment strategies and theflementation, which will lead to infrastructure
transitions (see Figure 1). Chappin and Dijkemal(@0have identified four different levels of
transition assemblage designs, thatramsition assemblage levels (TALs). They are also clear that
modellers should aim fofAL3 or 4 in their designs. That is becauseTiAL1 the structure of the
model is designed as a fixed set of policies awgledions, implicitly set in the modeTAL2 uses
fixed system parameters that the model needs tablke to respond to during the simulation. In
addition, afTAL2, the model is still impossible to assess the effétransition assemblage but at least
it is upgradable td’AL3. When the model is upgraded TAL3, a policy can be any of theS_s.
Finally, TAL4 involves endogenous system parameters where pigieglopment is endogenous. This
implies that the policy maker is an agent who degidn the content of the policy during a simulation
run. This is the most effective level however;gtuires understanding of decision-making processes
of the policy maker. Considering the complexitiegalved here, an alternative is to model this as an
exogenous scenario parametes(3).

TAL3 provides the minimum sophistication necessarynt@stigate policy interventions for the six
exogenous scenario parameters (see Table 2) atttefoesearch problem, where the policy is seen as
a set of scenario parameters exogenous to thensysd@sition (Chappin and Dijkema, 2010). The
following five policy intervention parameters adentified: electricity proposals until 2050 fromat,o
nuclear, and wind; reductions in use of gasolims t@ promote adoption of BEVs, and reduction in
gas users by 2050. The last two policy intervengiarameters reflect a shift away from fossil fuads
the primary sources for transport and energy.

Whereas exogenous scenarios (Table 2) ar&ShP (varying trends), the policy intervention
parameters will be modelled BEL1, i.e. varying parameter values only between sitrafauns.



2.4 System evolution

By reacting to the exogenous scenarios and transiissemblages, the agents, the constituent
elements of ABMs, drive the evolution of the systéments are modelled as interdependent and their
aggregate behaviour emerges as the collective tiperaf the whole system from the interaction
among many numbers of subsystems. In general ténssystem evolution occurs as agents adopt an
MGT, which in turn brings changes to infrastructu@nsumption. Therefore, understanding the
system evolution entails answering the followin@sfions:

1. What factors determine household adoption proaasarf MGT?
2. What changes to infrastructure use result from M@dption?

This will allow the design of an ABM that will ruie virtual system.

2.4.1 Factors determining MGT adoption process

The characteristics of early and mass adopters@T $/were identified from the relevant literature as
follows. Regarding the adoption of BEVs, the mailoaters are identified as the people who are
younger in age, of higher education and with higheome levels (Baca and Brausen, 1997; Shi et
al., 2019); but beyond that, ownership and humatofa can also determine the adoption of BEVS,
such as one’s identity (as a symbol of making gedifice), maturity, intelligence and awareness, or
as a way to ‘stand out in the crowd’ (Schuitemalgt2013). Through semi structured interviews with
non-commercial drivers, characteristics such ag@mwental concerns, social status and self-esteem
when they determine the adoption of BEVs were redeéGraham-Rowe et al., 2012). Moreover,
Williams and Kurani (2006) further considered be#togenous and endogenous scenario parameters
of adoption such as: longer commutes, married es)mdditional vehicles, higher incomes, age,
higher educational attainment, and higher experalituterms of utilities and mortgages.

Household generation focusing on PV and STWH irika mmanner reaffirm the characteristics
identified for BEVs. Claudy et al. (2011) reportedh various socio-demographic factors that
positively influence adoption, such as age, inctewels and knowledge when discussing solar panels
and water heaters. Comparable results are alsa fiousther studies, such as energy-using appliances
and energy saving features (O’'Doherty et al., 2088pption of PVs and micro-wind technologies
(Zarnikau, 2003; Arkesteijn and Oerlemans, 200ut&aand Watson, 2007), and utilisation of bio-
energy (Nyrud et al., 2008).

In contrast, research into the characteristics dufpters with regard to water based technologies
provided little additional insights, other than ffeening the characteristics that are apparent with
BEV adoption. That is, a higher level of educatiattainment can be observed in those who choose
to purchase such water based technologies (Begk.,efi993; Gilg and Barr, 2006; Millock and
Nauges, 2010). While the vast majority of the &itere that was reviewed above assumed a
guantitative approach to defining the charactegstif adopters, Schwarz and Ernst (2008) have taken
a different approach when discussing water savaahriologies. In their approach, people are
clustered into lifestyle groups, such as post-nlists, social leaders, traditionalists, maingtiea
and hedonistic, while the first two groups are seethe main adopters of water saving technologies.

The papers reviewed above identify the diverse emuplex decision-making processes that are
utilised by adopters and that inform the charasties of adopters in the realm of a single techgylo
These characteristics are often substantially camged when diverse technologies are being
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assessed simultaneously. This claim is supporteddiyonald et al. (2003) who endeavour to score
adopters by the numbers of studies that reveabwsircharacteristics, and this is also identified by
Rogers (2003). The score is: higher education $sey®lipported by 74% of studies), higher social
status (63%), higher income levels (68%), and nsw&ally active (73%). Clearly, the identified
characteristics of adopters are not uniformly atesgpand vary in terms of the context and
application. Hauser et al. (2006) reiterates thdgnt that while some studies have indicated that
innovators are wealthier, better educated, and geyrother studies (Gatignon and Robertson, 1991;
Rogers, 2003) have failed to validate such findingsact, there is also a clear and discernibi& li
between the established characteristics (Rogef3)20hat is, higher education attainment is not
mutually exclusive from both higher social statusl digher income levels. This interrelationship
further masks the value that could be attributedrty of these characteristics in isolation, and thi
makes modelling of these attributes problematluest.

2.4.2 Changes to infrastructure use from MGT adopti

In conceptualising the changes to infrastructuriessng from adoption of various MGTSs, the typology
of interdependencies proposed by Rinaldi et al0{20vas applied in this study. They identified four
principal classes of infrastructure interdependesiciphysical, cyber, geographic, and logical.
Physical interdependency between two infrastrustareses if the state of each is dependent on the
material outputs of the other. Cyber interdepengénenanifested in those cases when the state of an
infrastructure depends on the information trangditvia information infrastructure. Geographic
interdependencies occur when multiple infrastrueguare in close spatial proximity. If each of
infrastructures depends on the state of the otiiawdys other than physical, cyber or geographic;
then they are interdependent logically, e.g. by maeaf a government policy. This typology of
interdependencies was applied in this study totiffeand map potential changes to infrastructure
demand arising from the adoption of MGTs. A brainsting session was held with other project
members and stakeholders and the results are peddarTable 3.

Table 3: Potential changes to infrastructure denfmodght by the adoption of MGTs

Technology Infrastructure(s)  Example Infrastructure

affected interdependencies
Battery Electric Increase in demand for Physical (e.g. wider adoption of
Electric infrastructure; electricity, reduces gasoline BEV will increase demand for
Vehicle gasoline consumption, may lead to  electricity and reduce gasoline
(BEV) infrastructure adoption of PV. consumption) and Logical (e.g.

by means of government
subsidies or other incentives, e.g.
free charging stations,
households are steered towards
BEV and away from gasoline

cars.)
Solar Electric Reduction of demand for ~ No foreseen infrastructure
Photovoltaic infrastructure electricity, may lead to interdependencies — result is
(PV) adoption of BEV, may lead taeduction of electricity demand.
adoption of STWH and otherThis technology can generate and
MGTs. export electricity to the electric

infrastructure. However, it is
assumed that no electricity
generated in this way will be




exported to the grid. Rationale:
in this case distribution losses
inherent in the electricity
network need to be considered,
which is outside the scope of the
study.

Rain Water Water treatment; Reduction of demand for  No foreseen interdependencies -
Harvesting water distribution treated water, some reductioresult is reduction of demand for
(RWH) of pluvial volume and load water treatment and distribution.

into urban drainage systems,

no change in domestic

volume or load into sewerage

systems (hence no change in

sludge production), no change

in domestic energy

consumption (RWH is

predominantly

passive/gravity-fed).

Grey Water Water treatment;  Reduction of domestic Physical - increase in domestic
Recycling water distribution; volume into sewerage electricity consumption (assumed
(GWR) sewerage systems, minor reduction of to be negligible), unforeseen
infrastructure; domestic load (defined as  effect on electricity demand for
electric density of other liquids, water treatment.
infrastructure dissolved solids or bacteria in

the unit of volume) into
sewerage systems, reduced
demand for treated water,
increase in domestic energy
consumption.

Solar Electric Reduction of demand for ~ Physical
Thermal infrastructure; electricity and gas
Water gas infrastructure
Heating
(STWH)
Waste Heat Gas infrastructure; Reduction of demand for  Physical — reduction of energy
Recovery electric electricity and gas, minor  demand, and Logical — reduction
(WHR) infrastructure; reduction of domestic load of domestic load.

sewerage whose overall effect on

infrastructure; sewerage operations is hard to

assess.

From Table 3, it can be seen that the adoptiomnoM&T has some (mainly physical) impacts on
more than one infrastructure, which is usually &rease in demand from infrastructure. The
exception is BEV, which increases demand if impletae without PV. It should be noted that this is
highly simplified and abstract representation @éal world as it lacks all the interdependencied th
exist between various stakeholders, such as betwksstricity generation and water distribution,
treatment, and sewerage (e.g. electricity generatimuires water and produces waste water and
heat). Therefore, producing more detailed and gs®ali representations of infrastructure



interdependencies calls for wider study and mockugive approaches (Varga et al., 2014), but #his i
beyond the scope of this paper. Here the focusnig on those infrastructure interdependencies
affected by the adoption of six MGTs.

2.4.3 Translating considerations into an ABM design

The ABM model in this study was built using AnyLogiin which agents are represented by
households. The behaviour of households is modelegheans of statecharts, as shown in Figure 2.
The statechart consists of two elements: transtemd states. Transitions are represented as arrows
and states these lead to and from are presentgalla® boxes. Transition to a new state is triggere
when certain criteria are met. Triggers includessage arrival, elapse of time, or meeting a logical
condition. In addition, each household is initiatlsand changes according to Table 4.

Initialisation (Table 4)

C
/ \ -
| Generate demand for | Electricity, gas, water,
Py T » kilometres, water, and [« I and transportation
| energy (Table 4) | infrastructures (Table 1)
NCONSUMING _ _ _ _ _ _ _ _ _ _ -
Mar keting or word of
mouth (message arrival)
r~ R
I Approach :
I
| No adoption, l |
| backto |
< fCNIMING - pecision analysis |
I I
| No adoption, l
| backto \2 I
< :CONSUMING Sdect an MGT :
\ DECISION MAKING /
N e e e e e e e e e e e 7
IMGT
/ Backto ———8 ——— \
P |consumiNg  Update household | R Changes to
| technology (ies) | infrastructures (Table 3)
\ )
JADOPTING TECHNOLOGY -
\__ Household )

Figure 2. The logic behind household dynamics

Once initialised, the dynamics of each househdldvis the logic from the statechart diagram. There
are three distinct states: consuming, decision mgakind adopting technology (Figure 2).

When in the consuming state the household’'s denfiendasoline, electricity, water, and gas is
generated according to Table 4. These utilities wsed to meet the household’'s demand for
transportation, water, and energy required for kilngn and cooking, toilet flushing, hygiene, and
washing (dishes and clothes). The process of @ecimiaking coded into the model is a quasi-rational
approach, informed by literature review, charastatias follows:
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C1. Interactions or links of adopters (both humal @ommercial marketing): this attribute
enables us to reflect social activities such asmkedge and awareness, such as perceptions,
socio-demographics, and housing attributes (Claatdgl., 2011), and higher education, social
status and income (Rogers, 2003).

C2. The financial means to purchase: this attrilmuntables us to capture higher education and
income levels (Rogers, 2003; Sauter and Watsor¥)200

C3. The desire to adopt renewable technology (Gesn“making the difference”): this attribute
enables us to model social or greenness attribofteadopters (Sauter and Watson, 2007;
Graham-Rowe et al., 2012; Schuitema et al., 2013).

Table 4: Household characteristics

Characteristic

Definition

Household size

Electricity (100% at the
moment), gas user (85%
at the moment)

The following figures are
based on 2013 adoption
levels: RWH (negligible
or 0%, Rain water
harvesting, 2019), WHR
(0%), GWR (0%,
Environment Agency,
2011), STWH (0.4%,
Energy saving trust,
2019), PV (2%, Energy
saving trust, 2019), BEV
(negligible or 0%).

Environmental priority,
economic attribute,
location of living,
charging at work, roof
area, PV area

Between 1 and 6 persons unifornslyiduted. This assumption was
made to reflect the lack of knowledge about coti@tathat may exist
between the household size, house size (see imgertd this in the
roof area characteristic below), location (urbanuoal), and
kilometres demand per car in the household.

Energy sources used to meet energy demand forrapdkygiene, and
washing. Assumption, 11.2 kWhiraf gas is obtained which
generates 0.203 kgG®Wh (Carbon footprint calculator, 2019).

Generation technologies used by the household. Vdateenergy

harvested through these technologies is used itimgebe

household’s demand for transportation, energy veater.

Assumptions behind are as follows:

RWH - annual rainfall in centimetres in Englan®@2100 (Rain

water harvesting, 2019).

WHR - around 40% of heat from hygiene and washiag be

recovered (Hofman et al., 2011).

* GWR - collected from water used for hygiene antétdiushing.

STWH - annual useful energy delivered is 800-178Mhk

« PV - standard solar panel of 1hms an input rate of 1 kW/hr with
15-20% efficiency at best (Theecoexperts, 2019)héu
assumption: 2-6 hours of sun per day.

* BEV - a modern BEV consumes 0.2-0.3 kWh/km.

Other household characteristics:

» Environmental priority (Yes or No)

» Economic attribute (0-1) — unit-less but relativeasure of a
wealth of a household which models the househdiigscial
ability to buy a technology. When making a decigimadopt an
MGT this attribute is considered (together with ieowmental
priority and influence of noise used to model omiss and
uncertainties (segection 2.4.3) in relation to a current cost of a
technology. The latter is modelled as a dynamiaipater to
reflect the changing cost of MGTs (see ESP1 indahl Its value
can be affected either by government subsidiesduaed price
due to innovation, efficiency improvements, ecoresvof scale,
etc.
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» Location of living (Urban or Rural)

» Charging at work (Yes or No)

« Roof area - average roof area of a house in Eng&a50-85 m
« PV area - area of installed PV panels is 4-f0 m

Kilometres demand The baseline demand is 80-322 km/week/car.
This demand is corrected for the household’s locadf living (if
urban then 30-60% below the baseline demand, al tben 30-60%
above the baseline demand). This demand is metrdfilough
private means, gasoline cars (equally split betwetrol and diesel)
and/or BEVs, or public transportation means, dibssks, and trains
(diesel and electric). If by public transport,stthen assumed that 50%
will be met by diesel buses and 50% by trains @liand electric).
Demand for these utilities is then recorded.

Water demand Includes demand for drinking and capk250-300
litre/person/month), toilet flushing (1000-1500@éiperson/month),
hygiene (800-1200L per person/month), and wasHiag@-1500
litre/person/month). This data is based on pubtist@sumption
figures by Waterwise (2019).

Energy demand Includes demand for cooking (10-2B/Afson/month), hygiene
(10-20 kWh/person/month), and washing (40-90 kWits@e/month)
(Palmer and Cooper, 2012; DECC, 2014).

Number of cars Based on data about household adabiity for period 1985/86-
2010 (Department for Transport statistics, 2019):
0 cars/household - 25% of population;
1 car/household - 17% of population;
2 car/household - 49% of population;
>3 car/household - 9% of population.
The UK's average new car fuel consumption in 20&8 %+7
litre/100km (5.4 for diesel vehicles and 6.4 fotrpB with 1 litre of
petrol or diesel generating 2.2-3.0 kg of CO

The quasi-rational approach is a three-step prastessng with a household being approached either
through the means of commercial marketing or wdrdhouth via one of its connections who have
already adopted a household technology (C1). Naet,household needs to decide whether it has
sufficient means and motivation to adopt a techgwlC2 and C3). Even if the outcome of this
analysis is positive, the final decision in thelrearld may be to not adopt. Adding noise allows
accounting for the effects of omissions in the nicaled uncertainties arising from the model's
decision-making simplifications. The notion of rmigsdopted in this study follows Edmunds’
approach (Edmunds, 2000).

If the decision is to adopt, the last step involthesselection of an MGT. In the model, the hou&gho
would randomly select one of the six technologie$oag as the selected technology has not already
been adopted by the household. This random apptisaapplied for two reasons. First, literature is
rich in identifying factors that make a decisionking process which informs the characteristics of
adopters in the realm of a single technology bugeserally silent when diverse technologies are
being assessed simultaneously. Second, selectiarpafticular MGT in the real world is influenced
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by specific household characteristics whose detaisnot readily available and are also constantly
changing.

Once a random MGT is selected, further, technokgcific, criteria will be considered before the
household’s final decision is made to adopt the M@iTthe case that BEV is randomly selected,
access to charging at work facilities and battenyge attributes would also be considered. If these
final criteria are unmet, then the MGT will not &dopted. The algorithms of the ABM are provided
in Technical Appendix.

Once selected and adopted by a household, the M@Ulds alleviate some of the transportation,
water, and energy demands of the household and bhianges to infrastructures according to Table
3. The remainder of supply will come from respeetinacro infrastructures as shown in Table 1.

2.5 Impact assessment

The scenario space, formed of various parameteesatould be vast and for that reason a systematic
approach is required for impact assessment. Suapproach is found in literature that deals with
statistical design of experiments, that is, Faatomethod (Montgomery, 2013). The use of this
method involves devising a strategy to: determimécikv combinations of factors and their values to
investigate; determine the most relevant factord teir values which may have impact on the
system performance; and verify the findings andchimions. After the development of the model and
its testing, an experimental strategy was formdlalbat follows the Seven-step approach proposed by
(Coleman and Montgomery, 1993). The steps areSidlement of the problem, (2) Choice of factors
and levels, (3) Selection of the response varigaple(4) Choice of experimental design, (5)
Conducting the experiment, (6) Data analysis, a)dRecommendations. In some situations, steps 2
and 3 can be reversed (ibid) and in fact they laosva reversed here.

The main objective of the impact assessment isaio gnsights on the potential impact of wider
adoption of six MGTs on the consumption of resosirgeater, gas, gasoline, and electricity) by the
households, COemissions, and electricity generation costs, endbntext of identified policies and
scenarios. Step 1, the problem statement, is &sattoption of one or more MGTs beneficial for the
whole system?” The following six response varialzdes considered for Step 3: water consumption
(m®, gas consumption @) gasoline consumption fjn electricity consumption (MWh), GO
emissions (tonnes), and electricity generation ¢ostlions £ measured by levelised electricity
generation cost). For Step 2, the selection obfacind their levels, should be those which prottise
have the most significant effects on the (six) oese variables. The five control factors (A-E) &gl
levels introduced in Table 5 are the natural clogiace they are the policy intervention parameters
discussed in the design of transition assembldgeexperimenting with these factors, the impact of
potential future scenarios can be assessed rega@fi®GTs (see the description of blocks below).

Table 5: Control factors of impact assessment

Low High Centre Axial points

Factor .
level level point

A. Reduction of number of gasoline cars by 2050 5000% 75% 63% 69% 88% 97%
B. Reduction of gas users by 2050 30960% 45% 38% 44% 53% 57%
C. Reduction in coal generated electricity by 205030% 60% 45% 38% 44% 53% 57%
D. Increase in wind generated electricity by 2050 % 5 10% 7.5% 6% 8% 9%

E. Increase in nuclear generated electricity by0205 3% 6% 4.5% 4% 5%
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Changes in the amount of electricity generatedday}, avind, and nuclear (control factors C, D, and E
in Table 5), would also affect the amount of eleitr generated by gas. For example, reduction in
coal generated electricity (C) is offset by ther@ase in wind (D), nuclear (E) and gas generated
electricity. In practice other sources (e.g. hydrolar, biomass) are also used to replace fossil-fu
generated electricity, however, the four considdrece (gas, coal, wind and nuclear) are by far the
most significant (see Table 1).

In addition to the five control factors, two blockse also used to simulate the effects of those
controllable noise factors that exert influenceresponse variables. Using blocks helps identify the
most robust values for the control factors. The bhorks used are low and high adoption levelsxf si
MGTs established prior to experimentation.

The experimental design based on the control facstep 4, chosen is a sequential one consisting of
three steps:

» Full factorial design resulting in 96 runs (3 replions per 32 control factor combinations -
low/high 2).

* Additional 10 runs for centre points.

* Additional 15 axial runs.

The latter two additional runs explore possiblevature effects, which manifest as discontinuities
and may result from multiple-factor interactionsilém through their nonlinear main effects. Factor
values for centre and axial runs are shown in Tabl&he alternative to this would be to conduct
three-level either full or fractional factorial dgs but these designs are widely perceived to astle

efficient and less effective in obtaining an indica of curvature effects to the experimental desig
adopted here (Montgomery, 2013).

Step 5 was to run the model with 1,000 househalder(ts) and the actual simulation time was from
2013 to 2050. Step 6, analysis, is presented ifiolf@ving section and Step 7, recommendations, in
Section 4.

3. Results and analysis

3.1 Satistical analysis

The results of 121 completely randomized experisievere analysed using Design-ExPe(2019)
software. The analysis involved finding a matheoatmodel to explain the experimental results,
evaluating that model for adequacy, and finalleniifying the factors (A-E in Table 5) and their
levels which produce the most significant effeatstloe six system response variables. In evaluating
the mathematical model for adequacy, techniquemohal probability plots were used that compare
the distribution of the residuals to a normal dlsttion of residuals, residuals vs. predicted plots
residuals vs. simulation run, and predicted vaiaaesponse values. To analyse the effects ofalont
factors the techniques of Analysis of Variance (ANK) and F-tests were applied. The analysis
revealed no curvature effects. The lack of nonliieés probably due to limited understanding about
the effects of concurrent adoption of multiple MGarsinfrastructures as captured in Table 3, rather
than non-existence of such effects. Thereforefdlh@wing linear model (Eqg. 1) was adopted:
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y=u+axXxA+LXB+yXC+5§XD+exXE+0

(Eq. 1)

The individual expression terms read as followss the overall experimental averagejo ¢ are
main effects of factors A to E, arfdis error.y represents the adjusted average of the resules. Th
results of ANOVA for the linear model for all siegponse variables are presented in Table 6pThe
value addresses whether the observed effect frenmtbdel term stands out above the errop i$
less than 0.05, then the model term is statisticatinificant. The interpretation of simulation ués

is structured around factors found to have the magiificant effects, both in statistical and real
terms, on water, gas, gasoline, and electricitysamption, CQ emissions, and electricity generation

cost.
Table 6: ANOVA tables for six system response \@des

Source Sum of df Mean F p value

squares square value (Prob>F)
ANOVA for water consumption,
Block 1.524E+1 1 1.524E+1
Model 8.352E+1! 5 1.670E+1 1.81 0.116(
A 1.797E+1 1 1.797E+1 1.9t 0.165¢
B 4.515E+0! 1 4.515E+0! 0.4¢ 0.485¢
C 3.788E+0! 1 3.788E+0! 0.41 0.522¢
D 4.013E+0: 1 4.013E+0: 0.04¢ 0.835!
E 5.562E+1! 1 5.562E+1! 6.0 0.0155
Residue 1.051E+1. 114  9.218E+0
Lack of fit 3.899E+1. 36 1.083E+1! 1.2¢ 0.183(
Pure errc 6.610E+1 78 8.474E+0! 1.81 0.116(
Total 1.287E+1. 12C  1.524E+1 1.9t
R-square 0.073¢
Adjusted F-square 0.033(
Predicted I-square -0.040:
Linear model in terms of actual factc N/A
ANOVA for gas consumption, i
Block 5.166E+0: 1 5.166E+0:
Model 8.356E+1. 5 1.671E+1, 214.4° < 0.0001:
A 2.092E+1! 1 2.092E+1! 2.6¢ 0.104:
B 8.303E+1 1 8.303E+1 1065.4¢ < 0.0001:
C 4.007E+0! 1 4.007E+0! 0.51 0.474¢
D 2.656E+0! 1 2.656E+0! 0.3¢ 0.560¢
E 1.637E+1 1 1.637E+1 2.1C 0.150(
Residue 8.884E+1 114  7.793E+0
Lack of fit 2.994E+1 36 8.316E+0! 1.1C 0.354:
Pure errc 5.890E+1 78 7.551E+0!
Total 9.245E+1, 12C
R-square 0.903¢
Adjusted F-square 0.899"
Predicted I-square 0.893:
Linear model in terms of actual factcy = 372000-18640.52xI
ANOVA for gasoline consumption, fn
Block 3.804E+0! 1 3.804E+0!
Model 3.304E+0: 5 6.609E+0’ 326.0: < 0.0001:
A 3.289E+0: 1 3.289E+0: 1622.6¢ < 0.0001:



moOw

Residue
Lack of fit
Pure errc
Total
R-square

Adjusted F-square
Predicted I-square

3.464E+(1
2.587E+0¢
6.829E+0!
2.792E+0!
2.311E+0
7.466E+0!
1.564E+0
3.539E+0!

(IR

[EE

114

78
12C

3.464E+C1
2.587E+0<
6.829E+0!
2.792E+0!
2.027E+0!
2.074E+0!
2.006E+0!

Linear modein terms of actual factory = 19047.3-69.98x/A

ANOVA for electricity consumption, MWh

Block
Model

A

B

C

D

E
Residue
Lack of fit
Pure errc
Total
R-square

Adjusted F-square
Predicted I-square

1.121E+0!
1.212E+0!
1.797E+0:
9.786E+0:
4.095E+0!
2.340E+0!
3.850E+0
4.722E+0:i
1.677E+0:
3.045E+0:
1.685E+0!

N N N

114

78
12C

1.121E+0!
2.425E+0i
1.797E+0:
9.786E+0:
4.095E+0!
2.340E+0!
3.850E+0
4.142E+0
4.658E+0!
3.904E+0!

0.00(170¢
0.1z
3.3
1.3¢

1.0¢

58.5¢
43.3¢
236.2¢
0.9¢
0.5¢
9.2¢

1.1¢

Linear model in terms of actual factcy = 114000+51.72xA+202.37xB+396.95

ANOVA for CO, emissions, tonne

Block
Model

A

B

C

D

E
Residue
Lack of fit
Pure errc
Total
R-square

Adjusted F-square
Predicted I-square

5.58(CE+0:
6.158E+0:
4.549E+0
5.899E+0
4.198E+0:
7.650E+0
1.772E+0
1.535E+0:
5.261E+0
1.009E+0:
7.693E+0:

5.58(CE+0z
1.232E+0:
4.549E+0
5.899E+0
4.198E+0:
7.650E+0
1.772E+0
1.346E+0
1.461E+0
1.293E+0

91.4¢
33.8(
43.8:
311.8¢
56.8:¢
1.32

1.1:

0.989¢
0.721¢
0.069(
0.243(

0.439¢

0.934¢
0.931¢
0.926¢

< 0.0001
< 0.0001
< 0.0001
0.322:
0.453¢
0.0029°

0.255!

0.719°
0.707:
0.685¢

< 0.0001
< 0.0001
< 0.0001
< 0.0001
< 0.0001
0.253:

0.320¢

0.800¢

0.791¢
0.776:

Linear model in terms of actual factcy = 79200.37+26.02xA+49.69>-132.67x(-339.32xL

ANOVA for electricity generation cost, millions £

Block
Model

mooOw>

2.904E-08
2.780E-00
3.300E-01
2.0(0E-00
3.90CE-02
2.200E-01
1.600E-01
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2.904E-08
5.600E-01
3.300E-01
2.0(0E-0C
3.90CE-02
2.200E-01
1.600E-01

61.5¢
36.5¢
221.5¢
4.3
24.8¢
17.8-

< 0.0001
< 0.0001
<0.00071
0.0388’

< 0.0001
< 0.0001



Residue 1.0%0E-00 114  9.033E-03

Lack of fit 3.80CE-01 36 1.10CE-02 1.2¢ 0.177¢
Pure errc 6.50CE-01 78 8.287E-03

Total 3.810E-00 12

R-square 0.729¢
Adjusted F-square 0.717¢
Predicted I-square 0.696(

Linear model in terms of actual factcy = 4.93+0.00222xA+0.009153-0.00129%C+0.02xD+0.03>

*The model term is statistically significant.

3.1.1 Effects on water, gas, and gasoline consompti

The linear model for water consumption is not stetally significant. Its goodness-of-fit measures
(R-squared, adjusted R-squared, and predicted Badushow that the model explains little of the
variability in water consumption. This means thah& of the five control factors has any effect on
water consumption. This is understandable becaasmbility in water consumption is mainly
affected by the adoption of water-related MGTs (Seetion 3.2). The only factor found to have a
significant effect on gas consumption, both inistigial and real terms, is a reduction of gas users
The greatest reduction (1#mer household) in gas consumption is achieved wihisrfactor is set at

a high level (60%). Similarly, the findings shovatta reduction of number of gasoline cars has the
most significant effect on overall gasoline constiolp The greatest reduction in gasoline
consumption is achieved when this factor is set dtigh level (100%). The reason for such
straightforward findings on gas and gasoline comdion may be found in the modelling
assumptions, which take into account demand of dtoalds for the only two infrastructures and
assume an unchanging population. With improved mgp(lable 3) of the effects of MGTs on all
infrastructures the results may well be different.

3.1.2 Effects on electricity consumption

Factors found to have statistically significanteets on electricity consumption are: reduction of
number of gasoline cars, reduction of gas userd, iaorease in nuclear generated electricity.
However, their real effect on electricity consuroptivaries. A reduction of number of gasoline cars
and an increase in nuclear generated electricitg tesser effects on electricity consumption. By fa
the greatest effect comes from the reduction of igs's. A reduction of number of gasoline cars
creates more demand for electricity arising fromrenpeople adopting BEVs and/or taking more
journeys by electric trains. With every percentagduction of gasoline-cars electricity consumption
is increased by 0.51kWh per household. On the dtfaeid, a percentage reduction of gas users
increases electricity consumption by 2.02kWh persetold. Hence, reduction of number of gasoline
cars and of gas users should be set to 50% andr88pectively. Increase in nuclear generated
electricity should be set to 3%.

3.1.3 Effects on COemissions

Apart from an increase in the nuclear generatectradity, all the remaining four factors are foutad
significantly affect CQ emissions. Arranged in order of ever decreasifecebn CQ emissions, the
remaining factors are: reduction in coal generaedtricity, increase in wind generated electricity
reduction of gas users, and reduction of numbegasbline cars. The greatest impact on the reduction
of CO, emissions (0.08 tonnes per household) occurgeifithount of electricity generated by coal is
reduced by 60%. This finding is reasonable givankhown emissions from coal generating plants.
Further reduction (0.034 tonnes per household)dcdad achieved if the amount of electricity
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generated by wind is increased by 10%. This agaikes sense as the electricity generation capacity
lost from coal would be better replaced by windheatthan gas.

Third largest impact on Cmissions (increase of 0.015 tonnes per housebotdes from the 30%
reduction of gas users since a 60% reduction isevbecause of grid mix. This means that gas Is stil
better option than electricity. Surprisingly, lessdfect on CQ emissions is achieved from 50%
(increase of 0.013 tonnes per household) rather 108% reduction in gasoline cars. These findings
suggest that reduction in G@&missions achieved from increasing wind generatedricity by 10%
would be more than cancelled by the increase in €@fissions that result from reducing gas users by
60% (increase of 0.03 tonnes per household) angligasars by 100% (increase of 0.026 tonnes per
household). Similar applies to reduction in £&missions achieved by reducing coal generated
electricity by 60%. Seventy percent of this reduetf0.056 tonnes per household) would be cancelled
if number of gas users and gasoline cars are rdducé0% and 100% respectively.

3.1.4 Effects on electricity generation cost

The costs considered here are those of electgeiberation as described in Table 1. All five fagtor
are found to have statistically significant effeots electricity generation cost although in reaing
the reduction of gas users has the greatest effgetater cost savings (£2.75 per household) result
when the reduction of gas users is on low leve¥Beather than when on high level (60%). This may
be explained by higher generation costs of altemaechnologies; due to coal generation being
replaced by more expensive wind and nuclear. Furddictions in overall electricity generation cost
follow if values for reduction of number of gasdircars, reduction in coal, increase in wind and
nuclear generated electricity are set to 50%, 68%, and 3% respectively. The cost of reducing
gasoline cars is higher when set on 100% (£2.2Zhpasehold) than when set on 50% (£1.11 per
household). This may be explained by the higheeddency on electricity for transport this scenario
would bring, either for charging BEVs and/or trgmurneys. The cost saved by replacing coal
generated electricity by 60% (£0.774 per househddhegligible compared to the increase in
electricity generation cost that results with therease of wind and nuclear generated electrioity t
offset some of the capacity lost from coal. Thewations show that any percentage increase ofreithe
wind or nuclear generated electricity would inceedle electricity generation cost by £0.2 per
household and £0.3 per household respectively. ¢jéhe values for the increase in wind (5%) and
nuclear (3%) generated electricity.

3.2 Evaluation experiments

Sections 3.1.1 — 3.1.4 demonstrate that the fiverobfactors have different effects on six system
response variables. This is summarised in TabRy7eflecting on these results a picture emerges
about factor combinations and their values thamise to result in lower water, gas, gasoline, and
electricity consumption, and lower G@&missions and electricity generation cost.

Table 7: Summary of main effects of five contraittas on six system response variables

System response variable A B C D E

Water consumption No effect No effect No effect &ffect No effect
Gas consumption No effect  60% No effect No effect o dffect
Gasoline consumption 100% No effect No effect Neaf No effect
Electricity consumption 50% 30% No effect No effect3%

CGO, emissions 50% 30% 60% 10% No effect
Electricity generation cost 50% 30% 60% 5% 3%
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Two factors have consistent settings: a 60% reduat coal generated electricity (C) and a 3%
increase in nuclear generated electricity (E). $heation is not so clear with the remaining three
factors. From the perspective of overall gasolinastmption, a reduction in gasoline cars (A) is
better when set on 100%, however, when set to a &action it leads to lower electricity
consumption, C@emissions, and electricity generation cost. Fes¢hreasons the latter value is
chosen. Following the same logic for a reductiomaé users (B), 30% is selected. Finally, both 5%
and 10% values are selected for increase in winérg¢ed electricity factor (D). This results in two
factor combinations, 1: A(50%), B(30%), C(60%), B{p E(3%) and 2: A(50%), B(30%), C(60%),
D(10%), E(3%).

Next stage involved the evaluation of the two psmgmb factor combinations. These have been
subjected to 6 exogenous scenario parameters (Palaled run with both high (15%) and low (5%)
adoption level of the six MGTs. Table 8 presents #imulation results for the four proposed
configurations PC1-4) each with 10 runs per configuration. It shows #werage, highest, lowest
values, and their differences, for all six systesponse variables and the six MGTs considered here.

Table 8: Proposed configurations — evaluation tesul

System response variable PC1 PC2 PC3 PC4 Highest - PC2 - PC4 -
(per 1000 households) Lowest PC1 PC3
Water consu mptionslo3 m° 6060 5978 6079 5965 114 -82 -114
Gas consumptions10°m® 3324 3255 3319 3264 69 -69 -55
Gasoline consumptior:s,lo3 m° 16.17 15.92 15.88 16.01 0.29 -0.25 0.13
Electricity consumptionx10°MWh  122.8 123.6 123.6 1235 0.8 0.8 -0.1
CGO, emissions, tonnes 7.227 7.246 7.125 7.103 1430 190 -220
Electricity generation cost, millions £5.411 5.435 5.537 5.556 0.145 0.024 0.019
Average number of BEVs 27 182 30 178 155 155 148
Average number of STWHs 23 108 23 107 85 85 84
Average number of PVs 35 133 38 137 102 98 99
Average number of GWRs 47 241 50 254 207 194 204
Average number of WHRs 14 74 16 78 64 60 62
Average number of RWHs 44 223 49 230 186 179 181

PC1, proposed with low adoption rate and wind increzisg%.
PC2, proposed with high adoption rate and wind inceeais%.
PC3, proposed with low adoption rate and wind increas£0%.
PC4, proposed with high adoption rate and wind inceeafs10%.

Arranged in order from the highest to the lowekg tvaluation results reveal that water-related
technologies (GWR and RWH) are the most widely &bp1GTs, which are followed by BEV and
then by PV and STWH. The least frequently adopteiVHR. Next stage of analysis involved a
comparison between configurations with hi§it@ andPC4) to those with lowRC1 andPC3) levels

of MGTs. This is presented in the last two colurohg able 8. It appears that more MGTs reduce
water and gas consumption. This is expected beaaose water-related MGTs (GWR and RWH)
should reduce water demand (see Table 3). Similamergy-related MGTs (STWH and WHR)
should reduce gas demand (see Table 3). When isdmestablishing the effects of MGTs on the
other four system response variables, no apparattérp exists. That is because they have no
apparent links, whilst water consumption is dingcttlated to MGTs (GWR and RWH) and gas
consumption is directly related to MGTs (STWH andi®j. What further obscures the analysis is
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potential effect that the increase of wind generattectricity may have on the system response
variables, because the increase in wind generdéestrieity factor cannot set to a unique value.
Namely, in addition to MGTs, the differences obsérmay also be due to this factor. Therefore, two-
tailed t-tests were conducted to shed more lighthenreal reasons behind the differences observed.
The differences can be found based on the p vauetests. The smaller the p value, the more
significant the result. The results are preseniethble 9.

The t-tests show that the increase of wind geneéreletricity from 5% to 10% reduces average, CO
emissions and increases average electricity geéoerest, because they have snmallalues. This is
expected and in agreement with Table 7. The fduhsr no effect on any of the other four system
response variables. On the other hand, high levM@Ts seems only to reduce average water and
gas consumption. This confirms that water-relagsthiologies (GWR and RWH) and energy-related
technologies (STWH and WHR) reduce water and gaswption respectively, because they save
more. The remaining MGTs, BEV and PV, have no&tiatilly significant effect on average values of
any of the other four system response variables.

Table 9: Proposed configurations — results of taited t-tests

System response variable Increase in wind Adoption level

(per 1,000 households) generated electricity  of MGTs
5% 10% Low High

Water consumption, ™ Mearx10° 6019 6022 6069 5971

df 38 31

t-statistic -0.08 3.30

p value (Prob T<=t)  0.9332 0.0024*
Gas consumption, fn Mearx10°® 3290 3292 3322 3260

df 37 38

t-statistic -0.08 2.56

p value (Prob T<=t)  0.9374 0.0144*
Gasoline consumption, Mearx10® 16.04 15.94 16.02 15.96

df 37 35

t-statistic 0.51 0.31

p value (Prob T<=t)  0.6132 0.7606
Electricity consumption, MWh  Meas10?® 123.2 123.6 123.2 1236

df 38 34

t-statistic -0.56 -0.56

p value (Prob T<=t)  0.5760 0.5768
CGO, emissions, tonnes Meah0? 72.367 71.14 71.76 71.75

df 38 32

t-statistic 3.42 0.03

p value (Prob T<=t)  0.0015* 0.9762
Electricity generation cost, Mean 5.423 5.547 5474 5.495
millions £ df 38 35

t-statistic -4.14 -0.59

p value (Prob T<=t)  0.0002* 0.5559

*The model term is statistically significant.
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4. Discussion of findings and of their significance fiopolicy

In this section possible implications of the fingfor the UK policy is discussed.

GWR and RWH reduce water demand and have a pdtémtiseeducing electricity demand and €O
emissions, they should be more actively promoteds found that GWR and RWH significantly
reduce demand for water. In scenarios with highpado levels in which around 15% of population
adopt either GWR or RWH, these technologies rediater consumption between 82 and 1er
household (see Table 8). Considering that averagegpita consumption in UK is around 154 litres
of water per person per day (DEFRA, 2011) thisdiates to 4.5 to 6 months of water demand for a
family of four. Given that the water sector (treatrhand distribution) is fourth most energy intgasi
industry (Gallagher et al., 2015) this level ofuetion should correspond to a significant reduction
electricity consumption and G@missions. Also, of all MGTs considered here, G&/R RWH are
the most affordable. Therefore, GWR and RWH shbelanore actively promoted.

STWH and WHR have a limited potential for reducamergy demand, improvements in the design
and use of gas boilers may be better options: oflgh STWH and WHR are the least widely adopted
MGTs (see Table 8) it is found that they reduce aleirfor gas. It appears that the adoption levels of
STWH and WHR observed here are sufficient to demnatestheir positive benefits for reducing gas
demand. However, the reductions achieved are rifatisat enough to completely dispense of gas for
energy. On average, these technologies save be&eand 69 riof gas per household (see Table 8).
Given that 1 m of gas delivers around 11 kWh of energy (see Tdblend that average UK
household consumes 12,000 kWh worth of gas eneegyyear (Typical Domestic Consumption
Values, 2019), this translates to 23 days of gasumption at best. This figure is almost identiozdh
result from a study of STWH in the UK by Bergmardéfyre (2011) who found that majority of
installations achieved no more than 6% of energinga. Therefore, unless significant improvements
in efficiency of STWH and WHR are achieved, thesghhologies do not seem to have a potential to
replace gas for energy and attempts to reduce gass will have adverse effects. From this
perspective, the model developed suggests gas diepento be reasonable for the UK. Of all the
factors considered, reduction of gas users cortggbuhe most to the increase of electricity
consumption, electricity generation cost, and, @@issions. So policies that aim to reduce or even
ban use of gas will have negative effects. Howewecgssary reductions in energy consumption and
CO, emissions may come from elsewhere, such as imprents in the design and use of gas boilers.
This resonates with Cullen and Allwood (Cullen afiwood, 2010) who explored theoretical
efficiency limits for energy conversion devices.efrhanalysis revealed that greater energy savings
are available from focusing on e.g. gas burners thra efficiency improvements of e.g. gas-fired
power stations. They estimated that prioritisinficefncy measures for end-use conversion devices
over fuel transformation and electricity generatmaight deliver more than five times the potential
gain. Improvements need not necessarily come fewhnical solutions only; further improvements
may also come from behavioural changes. It shoelddknowledged that reducing energy demand is
much more difficult than is commonly assumed. Thisr@ misconception that energy efficiency
improvements lead to proportional reductions inrgpelemand (Sorrell, 2015). The misconception
ignores a so called ‘rebound effect’ (Herring, 199ereby it is recognised that improvements in
energy efficiency often lead to greater energy aonsion.

BEV should be adopted together with PV and thedathould not be supported with feed-in-tariffs: It
is hypothesised that adoption of a BEV would leadrn increase in electricity demand and decrease
in gasoline demand (see Table 3). Similarly, ieixpected that adoption of a PV would lead to
reduction in electricity demand. Surprisingly, tlesults in this study show that BEV and PV do not
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affect average gasoline and electricity consumpti®@, emissions, and electricity generation cost
(see Table 9). This is not because BEV and PV haweffect but because themmbined net effect is
close to zero. For example, no change in gasolimswmption occurs because gasoline cars are not
always replaced by BEVs. Due to their high costitkd battery range and access to charging (see
Table 2), much cheaper public transport (oftenaliésises and trains) is probably the reason why
gasoline cars are not replaced by BEVs. As a reswudtrall effect on gasoline consumption and,CO
emissions is close to zero. Similar occurs in cdBEV and PV and their combined zero effect on
electricity consumption and ensuing £€missions. The zero-effect observed here is becafusvo
reasons. First, the electricity generated by P¥sid mainly to meet the household’s demand; ibis n
exported to the grid (see Table 3) as typicallyhies case. The second reason is due to a significant
number of households adopting both BEV and PV, wiriccase of the model developed is more than
30% of households. This means that the negatieetsfbf BEV are, to some extent, counterbalanced
by positive effects of PV. The two reasons ensha the increase in electricity demand by BEV is
cancelled by reduction in electricity demand by Rw¥hich results in zero effect on electricity
consumption and C{emissions.

The above has two implications for policy. Firstpption of BEV should be supported with adoption
of PV. The importance of collocation of PV and BEValso recognised by other studies (Donateo et
al., 2015; Eser et al., 2018). The second imphbeais related to the policies that promote adoptibn
PV. If such policies are promoted with feed-inffariBalcombe et al., 2014), which encourage the
export of electricity thus generated to the eleajrid, then this will have negative effects. Whath
policies seem to promote are higher inefficieneied CQ emissions, which are only exacerbated by
BEVs. This reminds us of Frondel et al. (2014) veharacterised the promotion of PVs by German
government as an unfolding disaster. They arguethieagovernment’s support of PVs, in the form of
feed-in tariffs, is an outstanding example of midgd political intervention that has little to shanv
terms of greenhouse gas reductions.

Investment in higher levels of wind, gas, and naiclgenerated electricity: The alternative to prasio
two policy implications is a different electricitgeneration mix. This mix would be more
complementary with policies that promote replacenaémgasoline cars by BEVSs. If not supported by
such a mix, then reduction of number of gasolims,cand their replacement by BEVs, would lead to
an increase in electricity consumption, ££nissions, and electricity generation costs. Tihding is

in agreement with other studies that investigate ittnpacts of the gasoline cars replacement
programmes with BEVs.

For example, Schill and Gerbaulet (2015) study iptessmpacts of future BEV fleets (up to 2030) on
the German power system. They found that, @@issions of BEVs are substantially higher than
those of the overall power system. Only in situaiocn which the introduction of BEVs is linked to a
deployment of additional renewables, BEVs becomgelst CGQ neutral. A study by Bellochhi et al.

(2018) assesses the impact of progressively inagahares of BEV in Italy in scenarios with

different level of production from renewable sowc&hey found that with a tenfold increase in
renewable electricity generation and a completdacgment of gasoline cars with BEVs, £0

emissions could be reduced by 20% compared to YL However, this comes at the price of high
curtailments (43%) and costs (56% higher comparezDiL5 level). Similar is reported in a study by
Eser et. al. (2018) that investigates impacts oWV8Hkn the context of interconnected electricity
system of 7 European countries (Poland, the CzeghulRlic, Austria, Germany, Switzerland, France,
and Italy). The study found moderate potentialB&Vs to reduce the curtailment of wind and solar.
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Because of this two thirds of electricity produteatharge BEVs is from fossil fuels, which resitts
25% higher C@emissions per km of BEVs compared to gasoline. @gansncrease of COprices to

at least 100 €/tonne would be necessary to achae @) intensity of the BEVs that would be
comparable to gasoline cars. In the case studyhofaCHofmann et al. (2016) found that the gasoline
vehicle replacement with BEVs, when powered by &4, has no effect on overall emissions. This
is because reduction in G@missions in the gasoline sector is offset byithease in C®emissions

in the electricity generation sector. Almost ideatiis found by (Li et al., 2016).

The results are in agreement with other studiesommon is an idea that policies that promote
reductions of gasoline cars and their replacemgmHVs should simultaneously be accompanied by
more significant changes in the technology mix usedenerate electricity. If not accompanied by
such changes, then the proliferation of BEVs wdlil fto realise the potential of GGemission
reductions. Moreover, it is likely to result in ause effects on electricity consumption, £O
emissions, and electricity generation costs. Taaae this, higher levels of wind, gas, and nuclear
generated electricity are necessary. Gas may bessay to compensate for the intermittency of
wind. If a complete shift away from fossil fuelsdsught, then the transition from gasoline cars to
BEVs would have to be supported by even higherldeaEwind and nuclear. This is congruent with
Sithole et al. (2016) who argue that wind and rarctechnologies are going to play an indispensable
role for the UK to meet its legally binding agreermt® reduce CQemissions by 80% by 2050.

5. Conclusion

This paper explored how consumption of resourcestery gas, gasoline, and electricity, by UK
households together with G@missions and electricity generation costs, mightaffected by the
wider adoption of micro-generation technologies (MEin the context of some planned UK policy
changes and transition scenarios. The MGTs inwgstiyinclude: battery electric vehicles (BEVs),
solar photovoltaics (PVs), solar thermal water imnga(STWH), rain water harvesting (RWH), grey
water recycling (GWR), and waste heat recovery (WHR address the research aim, an agent-based
model has been developed and tested. The simudatioow that greater adoption of GWR and RWH
reduces demand for water. Similarly, STWH and WidBuce gas demand. A wider adoption of BEV
and PV has no statistically significant effectsamy of the system response variables. Furthermore,
the simulations found that a reduction of numbergagoline cars and gas users lead to higher
electricity consumption, CQOemissions, and electricity generation costs. Bagethese results five
implications for policy were identified.

The first argues that GWR and RWH not only reduegewdemand but have a potential to reduce
electricity demand and G@missions. Hence, GWR and RWH should be more egtipromoted.
The second implication for policy states that ST\Atl WHR have limited potential to replace gas
for energy. Consequently, attempts to reduce gas wdll have adverse effects. Improvements in the
design and use of gas boilers seem to be bettemgpiThe third implication argues that adoption of
BEV should be supported with a simultaneous adoptibPV. In this way the negative effects of
BEV will, to some extent, be counterbalanced byitp@seffects of PV. This is also related to the
fourth implication, which deals with policies thatomote adoption of PV. It argues that policied tha
promote adoption of PV via feed-in-tariffs may hanegative effects. The alternative to the previous
two policy implications is more complementary efity generation mix. If this is not addressed,
then policies that promote adoption of BEVs by dtameously reducing the number of gasoline cars
may result in higher electricity consumption, £émissions, and electricity generation costs. This
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mix would have higher levels of wind, gas, and eaclgenerated electricity. This constitutes thalfin
implication for policy.
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» An agent-based model was developed, tested, and simul ations conducted.
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