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Abstract. The placenta plays a key contribution to successful preg-
nancy outcome. New MR imaging techniques are able to reveal intricate
details about placental structure and function and measure placental
blood flow and feto-placental oxygenation. Placental diffusion-weighted
MRI is however challenging due to maternal breathing motion and poor
signal-to-noise ratio making motion correction important for subsequent
quantitative analysis. In this work, we (i) introduce an iterative model-
based registration technique which incorporates a placenta-specific model
into the motion correction process and (ii) describe a new technique mak-
ing use of a Bayesian shrinkage prior to obtain robust estimates of indi-
vidual and population trends in parameters. Our results suggest that the
proposed registration method improves alignment of placental data and
that the Bayesian fitting technique allows the estimation of voxel-level
placenta flow parameters and the population trend in each parameter
with gestational age (GA). We report gestational age dependent dif-
ferences in vascular compartments and fetal oxygen saturation values
observed across 9 normally grown pregnancies between 25-34 weeks ges-
tational age and show qualitatively improved parameter mapping and
more precise longitudinal fitting. Fetal oxygen saturation (FO2) is ob-
served to decrease at FO2 = −3.6(GAweeks) + 190.2(%). This technique
provides a robust framework for analysing longitudinal changes in both
normal and pathological placental function.

1 Introduction

Monitoring placental function using magnetic resonance imaging (MRI) has sig-
nificant value for understanding several key obstetric pathologies including fetal
growth restriction. Poor placental function is a significant cause of morbidity and
mortality [3] leading to complications, such as preterm delivery and intra-uterine
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death. Diffusion weighted (DW) MRI is becoming increasingly widespread in
abdominal and placental imaging [2, 4]. When combined with the intra-voxel
incoherent motion (IVIM) model of blood flow in capillaries, it provides a non-
invasive method of measuring tissue properties related to flow and perfusion.
Complementarily, T2 relaxometry, made possible by the acquisition of images
with variable echo-times, provides additional information on the static tissue
composition and the intrinsic tissue T2 value. A recent study [4] proposed a
joint placental model and acquisition named Diffusion-rElaxation Combined
Imaging for Detailed Placental Evaluation (DECIDE) [4]. DECIDE is a joint
multi-compartment model of placental perfusion that combines T2 relaxometry
and DW-MRI.

Placenta diffusion and relaxation imaging are quite susceptible to low signal-
to-noise ratio (SNR) and motion artefacts due to maternal breathing motion
and fetal movements. Such movements have strong impact on the analysis of
the data and image registration is thus required. Motion correction on advanced
imaging data is made even more challenging due to contrast variation dependent
on the choice of echo-time and diffusion weighting between the images. Least-
squares methods are the most commonly used algorithms for voxel-wise fitting,
however, they give noisy estimates [6] due to low SNR and fitting is ordinarily
independent of spatial position. An alternative is the use of robust Bayesian
approaches. Data-driven Bayesian modelling has been shown to give improved
parametric estimates for the classic two-compartment IVIM model [6], but has
not been used in more advanced models.

Assessing normal placental perfusion with gestational age is key to better
understand differences linked to placental insufficiency. A previous study has
shown changes in IVIM placental parameters, including perfusion and diffusion
with gestational age [7]. However, the variability in the measured parameters
with gestational age has not previously been investigated in the DECIDE model.

The purpose of this work was twofold: 1) develop a model-driven registration
(MDR) strategy which incorporates a multi-modal signal model to account for
changes in image contrast; 2) develop a Bayesian shrinkage prior (BSP) approach
for the advanced three-compartment DECIDE model that can be used to fit
estimates of perfusion and oxygenation parameters to placental imaging data.
This method can be used to improve the accuracy of measurements of placental
blood flow and fetal-placental oxygenation.

2 Methods

2.1 Data and Image Acquisition

Subjects The study involved a cohort of nine normal pregnant subjects with no
known placental complications with gestational age between 25-34 weeks. The
study was approved by the local research ethics committee and all subjects gave
written informed consent.
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MR Imaging MRI was performed under free-breathing on 1.5T Siemens Avanto,
in combinations from seven b-values (b; 0, 50, 100, 150, 200, 400, 600 s.mm −2)
and eight echo times (TE) (TE; 81, 96, 120, 180, 210, 240, 270, 300 ms) gener-
ating 41 images [4]. All TE were acquired at b-value = 0 s.mm−2 to allow T2
fitting and all b-values at TE = 96 ms. Other settings were as follows: TR =
3900 ms, FOV = 402×479×437 mm3, reconstructed matrix 156×192×26 and
temporal resolution 4.1 sec. The scan time was approximately 20 minutes.

Fig. 1. Diagram illustrating the process of the MDR method.

2.2 Model-Driven Registration (MDR)

The idea of the MDR method is to make use of the model images as the target
images in the registration process. Each image in the series is independently
registered to its corresponding model image. The model images are generated
by fitting the data to a physical model [4]. The model-based formulation of the
method eliminates the requirement of choosing a single target image, thus avoid-
ing a registration bias. MDR’s basic principle is illustrated in Fig. 1. DECIDE is
a multi-compartment model of placental perfusion that combines T2 relaxometry
and DW imaging:

S(b,TE) = S0

[
fe−bd∗−TEr

fb
2 + (1− f)e−bd

(
ve−TEr

mb
2 + (1− v)e−TEr

t
2

)]
,

(1)
where S is the measured MRI signal and S0 is the signal with no diffusion
weighting (i.e. b = 0). The five independent model parameters are the fetal

volume fraction f , diffusivity d, pseudo-diffusivity d∗, fetal blood relaxation rfb2 =

1/T fb2 and maternal blood volume fraction v. We used literature based values
for maternal blood relaxation rmb

2 and tissue relaxation rt2 of (240ms)−1 and
(46ms)−1 respectively [4].

Generation of Model Images Non-linear least squares (NLLS) methods are
the most commonly used algorithms to fit the DECIDE model to MR data. The
process is slow and it is therefore computationally inefficient for estimation of
image-wide parameter estimates. An alternative is the use of linear least squares
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(LLS) methods, which produce parameter estimates by solving a linear system
of equations [1]. First, we redefine the parameters in Eq.(1) as follows:

S(b,TE) = λ1e
−bd∗−TEr

fb
2 + λ2e

−bd−TEr
mb
2 + λ3e

−bd−TEr
t
2 , (2)

where λ1 = S0f , λ2 = S0(1 − f)v and λ3 = S0(1 − f)(1 − v). Assuming the

parameters d∗ and rfb2 are known, Eq.(2) is a multiple linear regression model.
If the data S(b,TE) are measured at N different b-values and echo times then
Eq.(2) leads to a system of N linear equations. They can be summarised as
a matrix equation S = Ax where S = [S(b0,TE0

), . . . , (bN ,TEN
)] is an array

holding the measured signals, x = [λ1, λ2, λ3] contains the unknowns and A is
an N ×3 matrix with the exponential terms. The matrix equation can be solved
using standard methods for linear least-squares problems. We then derived the
physiological parameters S0, f and v from the given λ1, λ2 and λ3:

v =
λ2

λ2 + λ3
, f =

λ1
λ1 + λ2 + λ3

, S0 =
1

λ1 + λ2 + λ3
(3)

By fitting Eq.(2) voxelwise to the data, we thus build up a series of synthetic
model images that have no respiratory motion since the model (Eq.(2)) does not
account for motion. These motion-free images preserve the structure and the
expected signal variations due to b−value and TE modulation. The motion-free
model images are used as target images in the registration process. The linear
fitting procedure was implemented in MATLAB (MATLAB, Natick, MA). One
should note that the linear DECIDE fitting has been used to generate the target
images for registration only.

MDR Algorithm The core architecture of the MDR algorithm is as follows:
pairwise coregistration is performed by registering independently each source
image to its corresponding target image using a highly optimised C++ im-
plementation of free-form deformation (FFD) [5]. The model fitting and reg-
istration steps are alternated three times with decreasing FFD control spacing
(10×10×10, 5×5×5, 2.5×2.5×2.5 pixels).

2.3 Data-Driven Bayesian Parameter Estimation

We extend [6] to iteratively adapt our voxel-wise fits based upon a prior dis-
tribution generated from region of interest (ROI)-informed statistics. Using a
Markov Chain Monte Carlo (MCMC) in the BSP technique we are able to fit
voxel-wise maps to the data with knowledge of the uncertainty found from all
values in the ROI.

Intuitively, if the signal from a voxel is dominated by noise, parameter esti-
mation is more heavily weighted by the prior distribution; whilst if SNR is high
then the data has more influence in the parameter estimation. Here, we adapt
this algorithm so that it is suitable for the joint-modality model in Eq. (1).
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Voxelwise least-squares (LSQ) parameter estimates were obtained using a
Levenberg-Marquadt algorithm (MATLAB, Natick, MA) applied to Eq. (1). Pa-
rameters are modified to ensure their values fall in a sensible range. Specifically,
if D is Gaussian distributed then d = eD is subject to d > 0 (similarly for d and

rfb2 ), and for f ; if F is Gaussian distributed then f = eF /(1 + eF ) is subject
to 0 < f < 1 and similarly for ν. A shrinkage prior model on the DECIDE
parameters is given by a multivariate Gaussian distribution defined as:

θi ∼ N (µ, Σµ), (4)

where θi =
[
fi di d

∗
i rfb2 vi

]
for voxel i, µ = [µf µd µ∗

d µ
T

fb
2

]T is the single

subject ROI mean, and Σµ is a 5×5 covariance matrix. MCMC was initialised
with the voxelwise LSQ estimates and µ and Σµ were initialised with the sample
mean and covariance of the same estimates.

2.4 Evaluation

The placenta were manually segmented (ITK-SNAP Version 3.6.0, 2017) from
the source baseline image (lowest TE, no diffusion weighting). After image reg-
istration the DECIDE model was fitted non-linearly to placenta ROIs using an
in-house software developed in MATLAB (MATLAB, Natick, MA). The results
are evaluated by visual comparison of registered and unregistered parameter
maps and by computing the root mean square error (NRMSE) between the data
and the fit. The proposed BSP estimation approach is compared to LSQ method.
Comparison of parametric maps as well as parameter estimates has been carried
out. To examine the longitudinal trends we fitted linear models for each of the
DECIDE parameters as the response variable against the gestational age.

3 Results

3.1 Registration Results

The time taken by the LLS method using the linearised model in Eq.(2) to find
the optimum parameters and create target images is about 250 times less than
that required for a conventional NLLS method. The LLS method reduced the
calculation times for a 156× 192× 26 MR volume from 16 minutes to 4 seconds.

Figure 2(a) illustrates the effect of motion correction on parameter maps
before and after motion correction. Registration significantly reduces the motion-
induced blurring that is visible on the uncorrected maps. This leads to clearer
and sharper organ boundaries. Figure 2(b) shows a graphic comparison of the
NLLS voxelwise DECIDE parameter estimates of placenta ROI before and after
registration. Analysis of the nine ROIs showed a reduction of error in registered
data. The interquartile range was slightly lower with MDR although median
errors were similar for registered and unregistered data.
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Fig. 2. (a) Comparison of fetal blood volume fraction maps in 3 subjects, (b) Each
plot shows: the median (red line), the 25th and 75th percentile (blue box) and the full
data extent (black dashed line) of 9 subjects.

3.2 Data-driven Fitting Results

Figure 3 shows for each subject the ROI mean estimated values of the DECIDE
functional parameters with respect to gestational age using the BSP method
and the LSQ method respectively. The mean estimates are broadly consistent
between the two methods. The BSP approach notably reduced the error in all
parameters. Significant linear trends are observed for the maternal blood volume
fraction (p=0.001) and fetal oxygen saturation measurements (p=0.0004) which
both appear to reduce with increasing gestational age. Measurements of the
fetal blood volume fraction and placental diffusivity are not observed to change
significantly with gestational age.

Figure 4 shows a typical example of the parameter maps obtained from one
subject with the BSP and LSQ approaches. All parameter maps obtained with
LSQ method appeared noisy and artefact-prone, where the BSP method notably
improved all the resulting parameter maps. T fb2 map obtained using LSQ fitting
gives a visibly noisy image, while BSP fitting notably improved the resulting
parameter map. d∗ is the worst affected, to the extent that almost all the features
visible in the BSP map are obscured in the corresponding LSQ map.

4 Discussion and Conclusion

We have described a framework for motion correction and robust parametric
model fitting applied to quantitative placenta imaging data. We proposed an
iterative model-driven registration method for quantitative imaging series. MDR
uses pairwise co-registration of source images to the model fit results, avoiding
the problem of changes in image contrast between images of the series affecting
motion correction. Our results showed that the MDR method allowed improved
motion correction demonstrated by the reduction of the residual bias between
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Fig. 3. Changes in measured DECIDE parameters after individual BSP model fitting
(top row) and LSQ fitting (bottom row). The circles indicate the mean values and the
error bars represent the standard deviation.

Fig. 4. DECIDE parameter maps derived from BSP method and LSQ method.

the data and the fit. We further described a Bayesian estimation approach for
robust joint estimation of the DECIDE parameters and their summary statistics
in the placenta. Results shown here demonstrated that ROI mean estimated
values for normal placentas derived using LSQ approach are comparable to the
BSP estimates but that the precision of the parameters has been improved. Our
method preserves placental parametric heterogeneity but does not implicitly
include this in the estimation of the population trends. This enables a more
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precise estimation of population trends in the data with increasing gestational
age or pathology.

The proposed registration method and Bayesian fitting approach are essen-
tially tissue independent and therefore applicable to other organs. The BSP
method can be applied to other physical models of quantitative imaging data
and help to establish normal changes in quantitative imaging parameters.

Results from the BSP fitting method suggest that the influence of gestational
age on MRI parameters should be taken into account. Our results showed a lin-
ear correlation between the DECIDE estimated parameters and gestational age,
although for a wider range, non-linear models may be more appropriate [7]. It is
a limitation of the study that included women between 25-34 weeks of pregnancy.
A wider range of gestational age would help demonstrate the longitudinal trend
between the MR parameters during pregnancy which might aid in the prediction
of obstetric outcomes.

The BSP fitting algorithm is independent of the size and shape of the ROI.
In general, ROIs between matched placenta of individuals can be considered
comparable and parametric distributions can be estimated from the population
in the same way as described before for an individual. The interpretation of the
multivariate Gaussian in Eq. (4) is one formed form the population distributions
of parameters rather than those from a single subject ROI. This strategy will
produce robust parameter estimates from a matched population and establish a
framework for robust longitudinal fitting.

Here we developed a comprehensive framework for measuring robust longi-
tudinal trends in placenta perfusion and fetal oxygenation which may help us to
refine knowledge of changes in MRI properties with increasing gestational age
in both normal and pathological placenta.
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