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Abstract
Objective: To find the covert patterns of abnormality in patients with unilateral 
temporal lobe epilepsy (TLE) and visually normal brain magnetic resonance images 
(MRI‐negative), comparing them to those with visible abnormalities (MRI‐positive).
Methods: We used multimodal brain MRI from patients with unilateral TLE and 
employed contemporary machine learning methods to predict the known laterality 
of seizure onset in 104 subjects (82 MRI‐positive, 22 MRI‐negative). A visualiza-
tion approach entitled "Importance Maps" was developed to highlight image features 
predictive of seizure laterality in both the MRI‐positive and MRI‐negative cases.
Results: Seizure laterality could be predicted with an area under the receiver oper-
ating characteristic curve of 0.981 (95% confidence interval [CI] =0.974‐0.989) in 
MRI‐positive and 0.842 (95% CI = 0.736‐0.949) in MRI‐negative cases. The known 
image features arising from the hippocampus were the leading predictors of seizure 
laterality in the MRI‐positive cases, whereas widespread temporal lobe abnormalities 
were revealed in the MRI‐negative cases.
Significance: Covert abnormalities not discerned on visual reading were detected in 
MRI‐negative TLE, with a spatial pattern involving the whole temporal lobe, rather 
than just the hippocampus. This suggests that MRI‐negative TLE may be associated 
with subtle but widespread temporal lobe abnormalities. These abnormalities merit 
close inspection and postacquisition processing if there is no overt lesion.
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1  |   INTRODUCTION

Epilepsy is a common and serious neurological disease that 
can have a devastating effect on a person's life if not adequately 
treated. However, one‐third of patients continue to have fre-
quent seizures despite optimal medical therapy.1,2 Focal epi-
lepsy accounts for a significant proportion (around two‐thirds) 
of those cases that do not respond to medication, and the tem-
poral lobe is the most common site of onset of focal seizures. 
If focal epilepsy does not respond to medication, neurosurgical 
procedures can be considered. If the underlying epileptogenic 
abnormality can be located in a patient's brain and surgically 
removed, there is a good chance that a patient can have free-
dom from seizures postoperatively; up to a 82% chance of 
postoperative remission for at least 1 year and 41% sustained 
complete seizure freedom have been demonstrated.3

The identification of an underlying abnormality on mag-
netic resonance imaging (MRI) is a key goal of the surgical 
workup, but such abnormalities are only demonstrated on 
conventional MRI in about two‐thirds of cases (the so‐called 
MRI‐positive cases).2 This leaves one‐third of pharmacoresis-
tant patients with no visually identifiable target for neurosur-
gery (the MRI‐negative cases). This MRI‐negative subgroup 
of patients represents a significant clinical challenge and is 
far less likely to experience seizure freedom after surgery.3,4 
In these patients, further investigations are necessary to local-
ize the epileptogenic focus. This often involves intracranial 
electroencephalographic (EEG) monitoring, which carries a 
significant risk to the patient as well as considerable cost. 
It would be very beneficial to develop means of localizing 
underlying cerebral abnormalities using noninvasive methods 
such as MRI and scalp EEG alone.

Detection of brain abnormalities on magnetic resonance 
(MR) images using contemporary methods such as machine 
learning is an emerging and promising area of research.5‒10 
Focke et al generated maps of gray matter voxel relevance 
across the brain by visualizing the weights assigned to each 
feature by a support vector machine (SVM) classifier trained 
to lateralize temporal lobe epilepsy (TLE) in 38 MRI‐posi-
tive patients.6 These relevance maps provided an interesting 
demonstration of the distribution of morphological gray mat-
ter changes found in MRI‐positive TLE patients.

Keihaninejad et al reported a distribution of brain ab-
normalities using an SVM classifier trained to lateralize 
TLE, and also included MRI‐negative cases.7 However, 
only regional brain volumes were used in the analysis, 
and no other relevant imaging parameters were included 
such as T1 or fluid‐attenuated inversion recovery (FLAIR) 
signal intensity. Keller and Roberts reviewed voxel‐based 
morphometry approaches to reporting the patterns of ab-
normality associated with TLE, limiting the assessment to 
the measurement of brain volume changes.8 Cantor‐Rivera 

et al studied correlation and analysis of variance–based 
feature selection methods and presented a collection of an-
atomical regions of interest that were found to be relevant 
for the purpose of TLE lateralization,9 but did not compare 
MRI‐positive and MRI‐negative cases.

Several different approaches have shown promise in lat-
eralizing seizure origin in TLE, although mostly in MRI‐
positive cases. In the case of MRI‐negative TLE, if a trained 
classifier is demonstrating reasonable predictive capability, 
then these apparently normal images must contain abnormal-
ities, albeit subtle or poorly understood ones. Determining 
these abnormalities would provide valuable insight into why 
visual inspection might fail in the MRI‐negative cases and 
may guide more principled and accurate visual image inter-
pretation in the future.

In this study, we trained a random forest classifier (RFC) 
on image features from multimodal MRI (T1, T2, and FLAIR) 
and carried out feature importance measurements, demon-
strating the patterns of abnormality across the temporal lobe 
in both MRI‐positive and MRI‐negative cases. We created 
visualizations of these results, which we call "Importance 
Maps," that show the spatial pattern of abnormalities across 
the temporal lobes in these two patient groups.

2  |   MATERIALS AND METHODS

The study cohort included patients diagnosed with TLE by 
a consultant epileptologist. The patients underwent routine 
clinical scans including T1, T2, and FLAIR volumes on a 
3T Signa HDx scanner (General Electric Company) at the 
Epilepsy Society MRI Unit, Chalfont St Peter between 2009 
and 2013. Patients were included if they had provided writ-
ten, informed consent and clinical consensus at the multidis-
ciplinary epilepsy surgery meeting or careful review of notes 
and investigations (OFB, GPW) demonstrated findings con-
sistent with unilateral TLE. The study was approved by the 
National Hospital for Neurology and Neurosurgery and the 

Key Points
•	 This study was conducted to determine the covert 

patterns of abnormality in patients with unilateral 
TLE and visually normal brain MR images

•	 Multimodal brain MRI and contemporary machine 
learning methods were used, and a visualization ap-
proach entitled "Importance Maps" was developed

•	 Covert abnormalities in MRI‐negative TLE had a 
spatial pattern involving the whole temporal lobe, 
rather than just the hippocampus, and assisted 
lateralization
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Queen Square Institute of Neurology Joint Research Ethics 
Committee. Starting from a dataset of 135 cases, image vol-
umes were visually inspected and reports from a consultant 
neuroradiologist were reviewed to exclude cases that met any 
of the following criteria:

1.	 Previous neurosurgical excision of brain tissue (13 
excluded)

2.	 Brain images with one or more visually apparent space‐
occupying lesion (tumors, cavernomas, or arteriovenous 
malformations; 18 excluded)

This left 104 cases for use in the analysis: 82 MRI‐positive and 22 
MRI‐negative. In all cases, the seizure laterality was established 
through the combination of all relevant information, including 
clinical semiology, radiological findings on MRI, positron emis-
sion tomography, and/or ictal single photon emission computed 
tomography, scalp video EEG, and where available intracranial 
EEG and/or magnetoencephalography, neuropsychology, and 
postoperative histology of resected tissues. The proportion of 
left‐ and right‐lateralized cases was approximately equal for the 
MRI‐positive and the MRI‐negative patient groups (left/right: 
43/39 MRI‐positive; 10/12 MRI‐negative).

Patient demographics and a clinical summary are shown 
in Table 1, and detailed clinical information for the MRI‐neg-
ative cases is given in Table S1.

For the MRI‐positive group, 68 of 82 patients had imag-
ing findings consistent with hippocampal sclerosis, whereas 
5 of 82 patients had findings consistent with focal cortical 
dysplasia. The remaining 9 of 82 patients had a visually 
recognizable abnormality within the temporal lobe that al-
lowed lateralization of the seizure focus but without a confi-
dent underlying diagnosis of the lesion from the radiologist.

The numbers of patients in the MRI‐positive and MRI‐
negative groups who had surgery and histology were 55 of 
82 and 10 of 22, respectively. International League Against 
Epilepsy outcomes at 12 months after surgery are shown in 
Table 1. In the MRI‐positive group, 34 of the 55 patients who 
had surgery were seizure‐free at 12  months, whereas this 
number was 5 of 10 for the MRI‐negative patients.

2.1  |  Workflow
Our analysis used T1‐weighted, T2‐weighted, and FLAIR 
MR image volumes. The T2‐weighted and FLAIR volumes 
were rigidly registered to the T1, and each T1‐weighted 
image volume was parcellated into its constituent anatomi-
cal regions using the Geodesic Information Flows (GIF) 
method.11 A junction map (JM) was also generated from 
each T1‐weighted volume using SPM1212 and locally de-
veloped MATLAB (MathWorks) scripts. This allowed us 
to incorporate into the analysis regions of gray‐white matter 
boundary blurring, an image feature often seen in focal cor-
tical dysplasia.13,14 Example volumes are shown in Figure 1.

The following measurements were then made for regions 
of the temporal lobe parcellated by GIF:

1.	 Right/left ratios between the volumes of each of the 
regions within the temporal lobes (13 features in total).

2.	 Right/left ratios between the means of the image inten-
sities within each temporal lobe region for the T1, T2, 
FLAIR, and JM image volumes (52 features in total).

3.	 Right/left ratios between the standard deviations of the image 
intensities within each temporal lobe region for the T1, T2, 
FLAIR, and JM image volumes (52 features in total).

This provided a set of 117 features per patient.
These features were used to train an RFC15 comprising 

an ensemble of 5000 decision trees to predict the lateral-
ization of the seizure origin. The importance of each of 
the 117 features described above for determining the sei-
zure laterality was evaluated by calculating the reduction in 
Gini impurity provided by a split in that feature (weighted 
by the chance of reaching that node) averaged across all 
trees in the ensemble. Put simply, this measured the degree 
to which each image feature was able to separate the two 
classes (left TLE and right TLE) in the dataset. Once these 
importance measurements were calculated, visualizations 
of the results were generated.

To ensure the validity of the feature importances de-
termined above, we evaluated the predictive capability of 
these features using SVMs. The type of kernel used for 
the MRI‐positive cases was linear, whereas for the MRI‐
negative cases the radial basis function was chosen due to 
laterality detection in MRI‐negative cases being a signifi-
cantly more difficult problem. We used a different type of 

T A B L E  1   Patient demographics and clinical summary

  MRI‐positive MRI‐negative

Patients, n 82 22

Ageb 39.5 (18‐63) 31.7 (19‐49)

Gender, n, male (female) 30 (52) 9 (13)

Age at disease onsetb 13.9 (0.3‐41) 20.1 (4‐47)

Disease durationb 25.8 (3‐54) 11.6 (2‐32)

Had surgery and histology, n 55/82 10/22

ILAE outcomes at 12 months after surgery, nc

1, seizure‐free 34 5

2 8 1

3 5 0

4‐5 5 3
aAbbreviations: ILAE, International League Against Epilepsy; MRI, magnetic 
resonance imaging. 
bGiven in years as mean (range). 
cThese data were not available for 3 MRI‐positive patients and 1 MRI‐negative 
patient. 
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classifier (SVM) from that used for determining the fea-
ture importances (RFC) to ensure the generalizability of 
the results. Hyperparameters of the SVM classifier were 
optimized using the grid‐search method, and its capability 
to lateralize the seizure origin was assessed using bolster-
ing,16 a technique that provides an unbiased estimation of a 
classifier's performance by carrying out multiple train/test 
runs using multiple random partitions of the dataset into 
training and testing sets. We carried out 100 train/test runs, 
and the dataset was randomly partitioned into four folds 
during each run (three folds used for training, and the re-
maining fold used for testing). A binomial distribution was 
assumed on the collection of performance figures across 
subjects, and then the Agresti‐Coull method of interval es-
timation17 was used to produce confidence intervals (CIs).

3  |   RESULTS

The performance of the SVM classifier at lateralizing the 
seizure origin was as follows: a maximum area under the 
receiver operating characteristic (ROC) curve of 0.981 
(95% CI = 0.974‐0.989) was achieved in the MRI‐positive 

and 0.842 (95% CI  =  0.736‐0.949) in the MRI‐negative 
cases (Figure 2). The corresponding classification accura-
cies (the agreement between the laterality determined using 
our method and the clinical lateralization) were 0.926 (95% 
CI  =  0.900‐0.951) and 0.756 (95% CI  =  0.636‐0.877), re-
spectively. The most important features for predicting sei-
zure laterality in the MRI‐positive and MRI‐negative cases 
are as shown in Tables 2 and 3, and visualization of these 
features is displayed in Figure 3.

F I G U R E  1   Examples of the magnetic 
resonance (MR) or MR‐derived image 
volumes used in the study: a T1‐weighted 
image volume, a junction map (JM),13 a 
T2‐weighted image volume, and a fluid‐
attenuated inversion recovery (FLAIR) 
volume

F I G U R E  2   Area under the receiver operating characteristic (ROC) curve measurements obtained using the top n most important features (for 
n = 1‐70) in the magnetic resonance imaging (MRI)‐positive (left), and MRI‐negative cases (right). The solid blue lines represent the mean area 
under the ROC curve obtained in Bolstering runs and the dashed lines the edges of the 95% confidence intervals. Maximum lateralization areas 
under the ROC curve in the MRI‐positive and MRI‐negative cases (indicated on the plots by the vertical dotted black lines) were obtained using the 
top three and 52, features respectively

T A B L E  2   The most important image features predictive of 
seizure laterality in the MRI‐positive cases

Rank Region Feature Gini importance

1 Hippocampus vol 0.093198

2 Hippocampus mean T2 0.091338

3 Hippocampus std FLAIR 0.086794

Note: Features are vol for left/right volume ratios, mean T2 for the left/right 
mean T2 signal ratios, and std FLAIR for the left/right FLAIR signal standard 
deviation ratios. The best predictions for the MRI‐positive cases were obtained 
using these three features.
Abbreviations: FLAIR, fluid‐attenuated inversion recovery; MRI, magnetic 
resonance imaging.
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T A B L E  3   The most important image features predictive of seizure laterality in the MRI‐negative cases

Rank Region Feature Gini importance

1 Fusiform gyrus mean T2 0.055023

2 Inferior temporal gyrus mean T2 0.043804

3 Temporal white matter mean T2 0.038153

4 Amygdala std T1 0.034179

5 Entorhinal area std JM 0.028027

6 Amygdala std T2 0.026306

7 Temporal white matter std T2 0.024954

8 Hippocampus std T2 0.024148

9 Parahippocampal gyrus mean JM 0.022997

10 Hippocampus mean FLAIR 0.022277

11 Temporal white matter mean FLAIR 0.021808

12 Hippocampus std JM 0.021753

13 Amygdala mean FLAIR 0.021109

14 Middle temporal gyrus mean T2 0.018927

15 Temporal white matter mean JM 0.018077

16 Hippocampus std T1 0.017328

17 Parahippocampal gyrus mean T2 0.017214

18 Temporal white matter std T1 0.016872

19 Hippocampus mean JM 0.01663

20 Planum temporale mean T2 0.01607

21 Temporal white matter std FLAIR 0.014911

22 Planum polare std JM 0.014251

23 Middle temporal gyrus std T2 0.013715

24 Fusiform gyrus std FLAIR 0.012645

25 Planum temporale mean JM 0.012359

26 Hippocampus mean T1 0.012351

27 Transverse temporal gyrus mean T2 0.011353

28 Fusiform gyrus mean FLAIR 0.011241

29 Planum temporale std T2 0.011213

30 Entorhinal area mean FLAIR 0.010305

31 Amygdala std FLAIR 0.010257

32 Amygdala mean T2 0.009462

33 Transverse temporal gyrus mean JM 0.009348

34 Planum temporale mean FLAIR 0.00865

35 Parahippocampal gyrus vol 0.008582

36 Superior temporal gyrus mean T2 0.008059

37 Planum polare std T2 0.007733

38 Planum polare mean T2 0.00762

39 Inferior temporal gyrus mean FLAIR 0.007532

40 Amygdala std JM 0.006893

41 Inferior temporal gyrus std T2 0.006681

42 Parahippocampal gyrus mean T1 0.006672

43 Planum polare std FLAIR 0.006664

44 Transverse temporal gyrus mean T1 0.006535

(Continues)
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Four observations were made. First, hippocampal volume 
changes seen in MRI‐positive cases were essentially absent 
in the MRI‐negative group. Second, the typical hippocam-
pal signal abnormalities seen in the MRI‐positive cases, and 
which are often focused on by radiologists performing this 
task visually,14 were less important for predicting seizure lat-
erality in the MRI‐negative cases. Third, signal abnormalities 
within the amygdala, and signal abnormalities arising from 
within the white matter of the temporal lobe, along with in-
ferior regions of the cortex provided useful information in 
the MRI‐negative group. Last, JMs, although not informative 
for the MRI‐positive cases, were helpful in predicting seizure 
laterality in MRI‐negative patients.

A re‐review of the MRI‐negative images, guided by a neu-
roradiologist, revealed subtle signal abnormalities in 8 of the 
22 cases (Table 3), supporting our findings (Table S2 and 
Figure S1).

4  |   DISCUSSION

The results of our study support the hypothesis that sub-
tle abnormalities exist in MR scans in MRI‐negative TLE, 
which may be detectable using contemporary machine learn-
ing approaches. The areas under the ROC curve of 0.981 
(95% CI = 0.974‐0.989) and 0.842 (95% CI = 0.736‐0.949) 
obtained in determining seizure laterality in MRI‐positive 
and MRI‐negative cases, respectively, are similar to those 
reported in other studies addressing TLE lateralization.7,9 
However, a direct comparison cannot be made due to differ-
ences in the study cohorts.

Maximum areas under the ROC curve for lateralization 
in the MRI‐positive and MRI‐negative cases were obtained 
using the top three and 52 imaging features, respectively 
(Figure 2). The higher number of imaging features required 
for lateralization of the MRI‐negative cases is indicative of 

more diffuse, and perhaps more complex, imaging abnormal-
ities in MRI‐negative epilepsy.

The abnormality patterns demonstrated in the Importance 
Maps are the most significant results in our study. A com-
parison between them suggests that there is a fundamental 
difference in the pattern of imaging abnormalities within 
the MRI‐negative cases compared to the visually recogniz-
able patterns in the MRI‐positive cases. In other words, the 
MRI‐negative abnormalities are not simply a more subtle 
version of those seen in MRI‐positive patients.

This observed difference is in accord with other investi-
gations. For example, MRI‐negative TLE subjects have been 
demonstrated to exhibit significantly different connectivity 
patterns from those of MRI‐positive TLE subjects,18 suggest-
ing a underlying difference in the pathophysiology between 
the two groups.

A prominent difference in our study was the contrasting 
significance of the hippocampus and the other temporal lobe 
regions in the MRI‐positive and MRI‐negative cases, respec-
tively. The hippocampus is conventionally focused on by 
radiologists reporting MRI scans in patients with TLE, as hip-
pocampal sclerosis is a common cause of TLE.2 Hippocampal 
sclerosis is generally visually recognized from a reduced hip-
pocampal volume and a higher T2/FLAIR signal arising from 
within the hippocampus.14 It is of note that these features top 
the list of important features in the MRI‐positive cases (Table 
2). However, these features appear to be less important in 
MRI‐negative cases. Instead, multiple imaging features aris-
ing from widespread temporal lobe areas seem to be much 
more important in predicting seizure laterality in MRI‐neg-
ative TLE. Of note are the signal abnormalities arising from 
the amygdala, the temporal white matter, and the inferior re-
gions of the cortex (Table 3, Figure 3). Our results suggest 
that lateralization of MRI‐negative cases in clinical practice 
may require a comparison of the signal intensities (“mean” 
features), and signal heterogeneities (“standard deviation” 

Rank Region Feature Gini importance

45 Inferior temporal gyrus mean JM 0.006363

46 Entorhinal area vol 0.006335

47 Superior temporal gyrus std T2 0.005849

48 Planum temporale std T1 0.005751

49 Temporal pole mean JM 0.005662

50 Superior temporal gyrus mean FLAIR 0.005349

51 Parahippocampal Gyrus std JM 0.005273

52 Planum polare mean JM 0.005273

Note: Features are vol for left/right volume ratios, mean (T1/T2/FLAIR/JM) for the left/right mean (T1/T2/FLAIR/JM) signal ratios, and std (T1/T2/FLAIR/JM) for the 
left/right (T1/T2/FLAIR/JM) signal standard deviation ratios. The best predictions for the MRI‐negative cases were obtained using these 52 features.
Abbreviations: FLAIR, fluid‐attenuated inversion recovery; JM, junction map; MRI, magnetic resonance imaging.

T A B L E  3   (Continued)
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features) between the two brain hemispheres for widespread 
regions of the temporal lobe, in particular the amygdala, the 
temporal white matter, and the inferior regions of the cortex.

Our results provide a novel insight into why human readers 
may not visually identify the patterns of abnormality in cer-
tain images. The results suggest that, in cases that are difficult 

to lateralize using the conventional approach, it would be use-
ful to carefully examine images for possible abnormalities and 
asymmetry within the amygdala, the temporal white matter, and 
inferior cortical regions of the temporal lobe. Postacquisition 
processing of these regions in such cases may also prove useful 
and help to unveil the subtle changes that elude visual inspection.

F I G U R E  3   Importance Maps for 
regional volume asymmetry (top), mean 
intensity asymmetry (middle), and intensity 
standard deviation asymmetry (bottom) 
features in each image type across the 
temporal lobe for magnetic resonance 
imaging (MRI)‐positive (left) and MRI‐
negative cases (right). The intensity of red 
within the maps signifies the importance 
assigned to each region. FLAIR, fluid‐
attenuated inversion recovery; JM, junction 
map; L, left; MR, magnetic resonance; R, 
right
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There are limitations to our approach. First, it is not pos-
sible to compare the pattern of detected image abnormali-
ties with the histological ground truth in every case, because 
surgery is not always performed. Second, the use of simple 
imaging features such as regional volumes and signal vari-
ations remain fairly basic when compared to the myriad of 
more sophisticated image features that are available in the 
field of medical image computing.19,20 However, this is also 
an advantage, as the use of basic image features results in 
Importance Maps that are more readily interpretable. More 
complicated features could be used, but a balance between 
complexity and interpretability needs to be struck. It is our 
aspiration that our results could be used by radiologists 
(perhaps aided by some simple postacquisition processing) 
to guide the interpretation of MRI‐negative images, and this 
sort of translation would only be possible with fairly simple 
image features like the ones used in this study.

A radiological re‐review of the MRI‐negative cases in 
our study already revealed subtle signal abnormalities aiding 
lateralization in 8 of the 22 cases. We expect further work 
in this area, particularly appropriate postprocessing methods 
enabled by machine learning, could help highlight signal ab-
normalities, and enable higher rates of successful radiologi-
cal assessment.

5  |   CONCLUSION

This study has demonstrated that covert abnormalities exist 
in multimodal MR scans in MRI‐negative TLE, and that 
these abnormalities follow a different pattern from those in 
MRI‐positive TLE. These findings could aid clinical reading 
of MRI‐negative images in the future. The study also intro-
duced the concept of Importance Maps, which may provide 
an elegant and principled way to characterize patterns of 
image abnormality that have previously eluded visual detec-
tion. They could be used by radiologists to help guide image 
evaluation in these more challenging cases.
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