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Abstract

This thesis is primarily concerned with steady axisymmetric potential flow prob-

lems. The flows are characterised by an interface between two immiscible fluids that

is unknown a priori. This difficulty is overcome by mapping the flow domains to a

potential space, where the interface is fixed onto an isoline of the Stoke’s streamfunc-

tion. A numerical finite difference scheme, attributed to Woods [94] and Jeppson [52],

is then used. The thesis is organised as follows. In chapter 2, we discuss the basic

equations used throughout the thesis. In chapter 3, we revisit the classical problem of

two-dimensional plane bubbles. Novel two-dimensional solutions are also presented.

In chapter 4, we compute axisymmetric Taylor bubbles, and discuss the solution

selection procedure. Comparisons with the solution space of the two-dimensional

Taylor bubble are made. In chapter 5, we compute travelling wave solutions on a

ferrofluid jet. The surrounding fluid is non-magnetisable, and we compute solutions

under both the assumption that this fluid is a passive gas, and that it is of equal

density to that of the ferrofluid. In chapter 6, we discuss ways in which the models

of this thesis could be extended in future work. Chapter 7 is a conclusion.

This thesis was completed under the supervision of Professor Jean-Marc Vanden-

Broeck.
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Impact statement

The work in this thesis concerns potential flow models, a field of mathematics that

dates back two hundred years. The models considered are primarily axisymmetric:

buoyancy driven Taylor bubbles rising in a tube, and modifications to the classical

Rayleigh-Plateau instability, using magnetic fields.

Over the course of the PhD the results found have been published in a variety

of journals. The articles published are Doak and Vanden-Broeck [31], Doak and

Vanden-Broeck [32], Doak and Vanden-Broeck [33], and Gao et al. [40]. As well

as being published in peer-reviewed journals, the results have been presented at

a variety of different conferences. These conferences were both based in the UK

(BAMC Surrey 2017, BAMC St Andrews 2018), and abroad, including workshops

in China (Sanya 2019) and Austria (Vienna, 2018). International workshops of this

kind strengthen the connectivity of the global research communities. The numerical

method used in this thesis can be applied to a variety of new problems, such as

flow exiting a cylindrical pipe onto a flat plate, which we hope to investigate in the

future. Furthermore, the results from the ferrofluid model in chapter 5 motivate new

experiments, where it would be interesting to see additional parameter ranges tested.

The models in this thesis enjoy a variety of industrial applications. Taylor bubbles

are naturally occurring phenomena in many two-phase flows. They play an important
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role in Strombolian eruption of volcanoes. Furthermore, they have applications in

the energy industry, where they occur in nuclear cooling systems, and in both refining

and extracting oil and gas (they can cause blockage in extraction and transportation,

with reported losses as high as 50%). The understanding of this phenomena helps

develop practical methods to remove this inefficiency, for example through the use

of slug catchers.

Meanwhile, the stabilisation of liquid jets has important applications in printing

and agricultural sprays, where it is desirable to create a stable column of fluid. On

the other hand, varying the parameters of destabilisation (increasing or decreasing

the wavenumber of the dominant unstable mode) allows one to vary droplet size in

a droplet generator. Furthermore, in experimental fluid dynamics, it can sometimes

be difficult to vary physical parameters such as surface tension. One can instead

electrify a conductor or alternatively magnetise a ferrofluid, in order to consider flow

regimes in different parameter spaces and with different stability properties. Further

understanding of the mathematical approximations of physical processes is key to

both industrial and experimental development.
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Chapter 1

Introduction

Potential flow theory concerns fluid flows in which the vector field u can be

expressed as the gradient of a scalar potential, φ, called the velocity potential. Such

a representation of the velocity field exists under the assumption that the flow is

irrotational. Kelvin’s circulation theorem states that a velocity field of an inviscid and

barotropic fluid which is initially irrotational remains irrotational for all time. Hence,

like the contents of this thesis, much of potential flow theory concerns incompressible

flow of inviscid fluids, although such assumptions are not required for the existence

of φ. For the sake of convenience, we will refer to problems which include the above

three assumptions as ‘potential flow’.

All the models considered in this thesis also fall into the category of ‘interfacial

flows’. These problems consider the flow of two immiscible fluids, between which

there exists an infinitesimally thin boundary. This boundary is unknown a priori,

must be found as part of the solution, and may move for time dependent models.

Because the interface is an additional unknown, as well as a standard kinematic

boundary condition on the interface, we also require a dynamic boundary condi-

tion. For potential flow, this condition is a continuity of pressure, evaluated using

Bernoulli’s equation. When the density of one of the fluids is deemed negligible, it is

the case that the hydrodynamics in the denser fluid decouples from that of the lighter

16



Chapter 1. Introduction 17

fluid. Models in which such assumptions are made are referred to in the literature

as free surface problems.

Early breakthroughs on free surface potential flows concerned two-dimensional

steady models, in which all external forces and surface tension are ignored. Such

flows are referred to as free streamline problems. The constant pressure condition

implies the magnitude of the velocity is constant along the free streamline. The

additional assumption that the flow is two-dimensional allows the velocity field to be

expressed in terms of a streamfunction ψ. The velocity potential and streamfunction

are harmonic conjugates. These harmonic potentials lend themselves to the use of the

powerful toolbox of complex analysis. Furthermore, if the flow is steady, the initially

unknown free streamline is fixed to an equipotential of ψ. Hence, early works by

Kirchhoff [54], Planck [69], Love [58], Zhukovsky [96], and Hopkinson [48], to name

only a few, made use of hodograph transformations, conformal mapping techniques

and reflection principles to solve (analytically) fully nonlinear problems.

When additional forces are included in the model (gravity and surface tension

being common examples), the continuity of pressure condition has additional terms,

denying the ability to use reflection principles. Early works considered perturbative

expansions in small parameters, solving for the velocity potential φ as a function of

displacement and time. Perhaps the most famous example is the theory of gravity

waves, pioneered by Stokes [78]. An exact solution to capillary waves was later

found by Crapper [23]. With the invention and subsequent increased accessibility of

computers, a wealth of numerical treatments of two-dimensional free surface problems

arose. Many of these methods made use of complex analysis. Series truncation

methods, based upon conformal mappings and the power series representation of

analytic functions, and boundary integral methods, which make use of Cauchy’s

integral formula, have been used to compute solutions for free surface and internal

water waves, cavitating flows, rising bubbles, and so on. For a review, see Vanden-
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Broeck [87].

The treatment of axisymmetric potential free surface flows is (in general) more

difficult than that of two-dimensional problems. The assumption of axisymmetry

means that the irrotationality of the velocity vector implies the existence of a Stokes

streamfunction. Like the two-dimensional streamfunction, its isolines are everywhere

tangential to the velocity vector. However, neither ψ nor φ are harmonic, and hence

the mapping from the potential space (φ, ψ) to the physical space is no longer con-

formal. Despite this, the mapping is still useful since, for steady problems the free

surface maps onto a line of constant ψ in the potential space. Woods [94] and then

later Jeppson [52] derived the equations of motion for the radial coordinate r as a

function of φ and ψ, and proposed a finite difference discretisation as a template to

provide numerical solutions to steady axisymmetric potential flows. This formula-

tion has since been used by a variety of authors to compute cavitating flow past a

disk and sphere (Brennen [17]), a free streamline jet impacting a flat plate (Turenne

and Fiset [79]), seepage through a homogeneous porous medium (Jeppson [51]) and

contraction in a wind tunnel (Woods [94]). Furthermore, it has been used to numer-

ically compute models related to this thesis, which are axisymmetric Taylor bubbles

(Doak and Vanden-Broeck [32]), and axisymmetric capillary waves (Vanden-Broeck

et al. [90]) in the presence of electric (Grandison et al. [44]) and magnetic (Blyth and

Părău [13], Doak and Vanden-Broeck [33]) fields.

We begin by considering two-dimensional Taylor bubbles, often called plane bub-

bles. Plane bubbles are large bubbles which rise at a constant velocity through a

denser medium, bounded by two parallel horizontal plates. The width of the bubble

is almost that of the distance between the plates, such that a thin film forms down

the side of the bubble. We consider bubbles whose length is much larger than its

width, where it has been found that both the rise speed and the shape of the profile

near the apex become independent of the length of the bubble (Collins [22]). This
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motivates an infinite model (a model where the bubble is taken to be infinitely long,

avoiding mathematical difficulties of bubble closure and a turbulent wake). We are

interested in a regime where viscosity and surface tension are negligible, such that

the constant pressure condition on the interface becomes a balance between inertia

and buoyancy. Garabedian [41] provided analytical evidence that, given a value of

the channel width and gravity, the solution is not unique. Instead, one must also fix

the velocity of the bubble, which can vary between zero and some critical value. This

is contradictory to the experiments of Collins [22] and Maneri and Zuber [60], who

found that, for sufficiently low viscosity and large bubble length, the non-dimensional

rise velocity (given by the Froude number F , defined in chapter 2) is unique. Im-

proving upon the work of Birkhoff and Carter [11], a numerical series truncation

method performed by Vanden-Broeck [80] confirmed Garabedian’s claim that there

exists a family of solutions for F in a range between (0, FC), where FC is a critical

value. All the solutions considered up until this point are smooth, that is the interior

angle at the apex of the bubble is 1800. Vanden-Broeck also found that, for F > FC ,

there exist a family of cusped bubbles, whose interior angle at the apex is zero. Such

solutions have never been seen experimentally, and are considered nonphysical. It

was also shown by Garabedian [42] and Modi [64] that it is possible there exists

pointed plane bubbles, whose interior angle is given by 1200. Vanden-Broeck [82]

demonstrated that the F = FC bubble has such behaviour.

However, this is not the full story. Despite our interest in regimes with negligi-

ble surface tension, it is found that the inclusion of surface tension allows a unique

smooth bubble in the range F ∈ (0, FC) to be selected. Vanden-Broeck [81] demon-

strated that, for a fixed value of the non-dimensionalised surface tension (the inverse

Weber number α−1, defined in chapter 2), the angle at the apex of the bubble contin-

ually varies on the rise speed F . The infinite and continuous set of smooth bubbles

F ∈ (0, FC) becomes an infinite discrete set F ∈ {F1, F2, F3, · · ·}, where Fi is de-
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pendent upon α−1. Furthermore, it is found that, as α−1 → 0, all the branches of

smooth bubbles Fi → F ∗. Hence, a unique surface tension free smooth bubble has

been selected by including surface tension, and taking the limit as it goes to zero. It

is found that there is good agreement between F ∗ and the experimental value. This

discussion is continued at greater length in chapter 3.

As well as plane bubbles, we also discuss a novel model of two-dimensional flow

exiting a pipe onto a wedge. It is found that plane bubbles are a particular case of

this formulation. This generalisation also extends to flows exiting a pipe onto a flat

plate, a model which received a more recent numerical treatment based (also) upon

series truncation methods by Christodoulides and Dias [21]. An improvement to the

series used by Christodoulides and Dias is proposed, where an additional singularity,

which was previously not considered, is removed.

In chapter 4, we consider axisymmetric Taylor bubbles. Figure 1.1 is a picture of

an axisymmetric Taylor bubble taken from the paper by Davies & Taylor [26]. It is

found that the solution space of axisymmetric Taylor bubbles has many similarities

with the solution space of plane bubbles. We find that again there exists a critical

value FC , such that there exists a smooth surface tension free solution for F ∈ (0, FC).

This is in agreement with the findings of Levine and Yang [57], who numerically

solved a boundary integral formula based upon the Green’s function method. As

well as solutions with zero surface tension, Levine and Yang also computed solutions

with surface tension. However, they only present results for F1, the primary branch of

smooth solutions with surface tension. We use the finite difference scheme of Woods

[94] and Jeppson [51] to compute these solutions, as well as the higher order branches

F2, F3 · · ·. These branches are found to be monotonically increasing functions of α−1.

Although we are unable to compute the branches for α−1 < 0.006, we conjecture that

all these branches approach a unique value F ∗ as α−1 → 0. We also compute the

F = FC solution with zero surface tension. This bubble is a pointed bubble, with an
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Figure 1.1: Figure 8 in Davies and Taylor [26].

interior angle of approximately 1300. The local behaviour at the apex was derived by

Garabedian [42]. It is worth noting that a similar finite difference scheme was used

by Vanden-Broeck [83] to compute solutions with zero surface tension. However, this

method failed to regulate the singularity at the apex of the bubble, and hence fails to

converge upon mesh refinement. A suitable treatment of the singularity is presented

in our numerical scheme. We also modify the finite difference scheme to compute

plane bubbles. Good agreement with the results from chapter 3 provides a check on

our numerical method.

Arguably the first axisymmetric free surface model was that of Rayleigh [73].

Rayleigh provided a mathematical explanation for the Plateau-Rayleigh instability

(first shown experimentally by Plateau [70]), a capillary driven instability which

causes axisymmetric columns of fluid to break into droplets. Experimental and the-

oretical work by Arkhipenko et al. [6] and Bashtovoi and Krakov [8] demonstrated

that the azimuthal magnetic field induced by a current carrying wire could stabilise

a column of ferrofluid coating the wire. Ferrofluids are synthetic fluids which exhibit

superparamagnetic behaviour. This stabilisation allows for the existence of axisym-
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metric ferrohydrodynamic solitary waves, which were discovered in the more recent

experiments of Bourdin et al. [15]. These experiments were motivated in part by the

weakly nonlinear theory of Rannacher and Engel [72], who derived a Korteweg-de

Vries (KdV) equation for the model. Fully nonlinear computations of solitary waves

on a ferrofluid jet were then performed by Blyth and Părău [13], who made use of the

finite difference scheme described above. However, all of the papers referenced above

assume that the density of the surrounding fluid is negligible. In the experiments,

to remove the effects of buoyancy, the ferrofluid is surrounded in a non-magnetisable

fluid of equal density. We modify the numerical method to allow for the inclusion of

the effect of the flow field in the surrounding fluid. A detailed discussion of the solu-

tion space for this model is described in chapter 5. Periodic, solitary and generalised

solitary waves are computed.

The thesis is organised as follows. In chapter 2, we discuss the basic equations

used in the models contained in the thesis. In chapter 3, we recompute plane bubble

solutions, as well as flow exiting a pipe and hitting a wedge. In chapter 4, we

compute axisymmetric Taylor bubbles. In chapter 5, we compute travelling wave

solutions on a ferrofluid jet. Chapter 6 is a discussion about future work. Chapter 7

is a conclusion.



Chapter 2

Basics of fluid mechanics

2.1 Governing equations

In this project we consider irrotational flow of an incompressible and inviscid

fluid. Incompressibility states that the density of the fluid, ρ, is constant, while

inviscid states that the viscous coefficient, µ, is equal to zero. These assumptions

are often made when considering the flow of water and other fluids of low viscosity.

An inviscid incompressible flow is governed by the Euler equation,

Du

Dt
= −1

ρ
∇p+ F , (2.1)

where u is the velocity vector, ∇p is the pressure gradient, F is the external force

per unit mass, and the operator D
Dt

, commonly known as the material derivative, is

defined as

D

Dt
=
∂

∂t
+ u · ∇. (2.2)

We will consider steady (time independent) models in two-dimensional Cartesian

coordinates (x, y), and steady axisymmetric models in cylindrical polar coordinates

(x, θ, r). Throughout this work, the external forces are conservative: in chapter 3 and

4, we consider gravity, while in chapter 5, we ignore gravity but consider magnetic

23
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forces. In general, we write F = ∇L.

Conservation of mass flux for an incompressible fluid gives rise to the continuity

equation,

∇ · u = 0. (2.3)

As stated earlier, we also assume the flow to be irrotational, which states that

∇× u = 0. (2.4)

Since u is a conservative vector field, we can write

u = ∇φ, (2.5)

for a scalar potential φ which we call the velocity potential of the flow. It follows

from (2.3) that φ satisfies Laplace equation,

∇ · u = 0 =⇒ ∇ · (∇φ) = ∇2φ = 0. (2.6)

On walls and free surfaces, the kinematic boundary condition states that particles on

the boundary remain on the boundary. For fixed walls, this reduces to the condition

that the normal component of velocity on the boundary is equal to zero. Denoting

n̂ as the unit normal to the boundary, we find that

u · n̂ = 0. (2.7)

For an interface given by z = η(x, y, t), where (x, y, z) is some coordinate system,

the condition takes the form

D(η − z)

Dt
= 0.
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2.1.1 Bernoulli equation

This thesis concerns problems referred to in literature as interfacial flows, a sub

category of the larger field of free boundary problems. The models are characterised

by a boundary between two immiscible fluids, which is unknown a priori and must

be found as part of the solution. This requires an additional boundary condition, in

this instance given by the Bernoulli equation. Following Batchelor [9], we substitute

the vector identity

(u · ∇)u =
1

2
∇(u · u) + (∇× u)× u

into (2.1), and using (2.4) we get

1

2
∇
(
|u|2

)
= −1

ρ
∇p+∇L.

Taking the pressure gradient and the gravitational force to one side and integrating

gives

1

2
ρq2 + p− ρL = B, (2.8)

where B is the Bernoulli constant, and q = |u|. Consider two immiscible fluids, and

denote the values of unknowns with a subscript 1 for the first fluid and a subscript

2 for the second fluid (i.e. fluid 2 has density ρ2). Satisfying (2.8) on the interface

in both fluids, one can show

1

2

(
q2

1 − ρq2
2

)
+
p1 − p2

ρ1

− (L1 − ρL2) = B, (2.9)

where ρ = ρ2/ρ1. We allow the velocities u1 and u2 to be different on the inter-

face (resulting in a vortex sheet), but enforce continuity of pressure. Continuity of
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pressure is given by the Young-Laplace equation, which reads

p1 − p2 = Tκ = T

(
1

R1

+
1

R2

)
(2.10)

where T is the surface tension, κ is the mean curvature and R1 and R2 are the

principal radii of curvature, counted positive when the centres of curvature lie inside

fluid 1. Substituting equation (2.10) into (2.9) give us

1

2

(
q2

1 − ρq2
2

)
+
T

ρ1

κ− (L1 − ρL2) = B, (2.11)

When the density of the second fluid is negligible, we set ρ2 = 0, drop the subscripts,

and write

1

2
q2 +

T

ρ
κ− L = B. (2.12)

2.1.2 Nondimensionalised Bernoulli equation

In all the chapters that follow, we will nondimensionalise the problem to reduce

the number of variable free parameters. Consider the case when the second fluid

has negligible density, and the external force F is taken to be gravity, acting in the

x-direction (L = gx). Taking U as the reference velocity and H as the reference

length, equation (2.12) becomes

1

2
q2 − 1

F 2
x+

1

α
κ = B̃. (2.13)

where we have defined the two non-dimensional constants F (the Froude number)

and α (the Weber number) as

F =
U√
gH

, (2.14)

α =
ρU2H

T
. (2.15)
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2.2 Two-dimensional flow

Taking standard Cartesian coordinates (x, y, z), in two-dimensional flow we as-

sume that the problem is invariant in the z direction. Hence, there are only two free

spacial parameters, (x, y). We take u = (u, v) to be the velocity vector in (x, y).

Equation (2.3) gives

ux + vy = 0, (2.16)

where subscripts denote differentiation with respect to that variable. We see that

this is automatically satisfied by a function ψ defined by

ψx = −v, ψy = u. (2.17)

Here, ψ is the streamfunction. If we consider two points in the flow domain, A and

B, we find that

ψ(B) = ψ(A) +

ˆ
~AB

u dy − v dx. (2.18)

Hence, ψ is a path independent measure of flux in between two points. We see from

equation (2.4) that ψ satisfies the Laplace equation. Furthermore, we have that

ψx = −φy, ψy = φx, (2.19)

where φ, the velocity potential, is defined by ∇φ = u. These are the Cauchy-

Riemann equations. Therefore, the function

f = φ+ iψ, (2.20)

commonly referred to as the complex potential, is an analytic function of z = x+ iy.

This allows us to use a number of techniques from the theory of analytic functions.

In particular, any analytic function f(z) has its real and imaginary parts satisfy the
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Laplace equation. Hence, it suffices to find an analytic function f(z) that satisfies

the given boundary conditions to solve these types of fluid problems.

Differentiating (2.20) with respect to z gives us the complex velocity, an analytic

function of z given by

df

dz
= ξ(z) = u(z)− iv(z). (2.21)

2.2.1 Series truncation methods

Here we will briefly explain a process used to solve many two-dimensional free

surface problems. The idea is to conformally map the flow from the f -plane to some

auxiliary t-plane via an analytic function f(t). By the f -plane, we mean the flow

domain in the (φ, ψ) space. In the f -plane, the free surface is fixed onto a line ψ =

constant, in effect reducing the complexity of the problem by fixing the free surface

to a known boundary. Generally, circles, semi-circles and quarter-circles are desirable

geometries for the t plane. We then seek to find ξ as an analytic function of t, such

that the relevant boundary conditions are satisfied. One would be tempted to write

ξ as a power series in t, that is

ξ =
∞∑
n=0

ant
n. (2.22)

However, such a series will only converge if all leading order singularities have been

removed for the desired radius of convergence (say we have mapped the flow domain

onto the interior of the unit circle, then all the singularities for t ≤ 1 must be

removed). Hence, we instead write

ξ = G(t)
∞∑
n=0

ant
n, (2.23)

where G(t) contains all the singularities of ξ. We then truncate the series after

a finite number of terms, say N , and satisfy the relevant boundary conditions at

various mesh-points on the boundary such that the number of unknowns matches
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the number of equations. This produces a system of M unknowns with M equations,

which can be solved via Newton’s method.

This procedure has been widely used for a large number of free surface flows. For

an in depth review, see Vanden-Broeck [87].

2.3 Axisymmetric flow

An axisymmetric flow in cylindrical coordinates (x, θ, r) is a flow that is indepen-

dent of θ (i.e. ∂θ = 0). We shall define the velocity vector u as

u = (u, 0, v), in (x, θ, r). (2.24)

Therefore, the flow defined in three dimensions can again be reduced to a problem

with two free spatial variables.

Analogous to the two-dimensional stream function, we wish to find a scalar func-

tion ψ whose gradient is normal to the direction of the velocity field. The Stokes

stream function for axisymmetric flow is defined such that lines of constant ψ form

streamtubes, that is ∇ψ · u = 0. Taking u = ∇× (ψ/r)êθ gives us the relations

ψx
r

= −v ψr
r

= u, (2.25)

where êθ is the unit vector in the azimuthal direction. From this definition, we see

that

∇ψ · u = ψxu+ ψrv = −ruv + ruv = 0, (2.26)

which is the desired property of ψ. Notice that ψ automatically satisfies (2.3):

∇ · (u, 0, v) = ∂xu+
1

r
∂r (rv) ,
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= ∂x

(
ψr
r

)
+

1

r
∂r (−ψx) = 0. (2.27)

Furthermore, assuming the flow is steady, the kinematic boundary condition on fixed

walls and free surfaces again reduces to ψ = constant. If we consider two arbitrary

points A and B in the flow domain, it follows from (2.25) that

ψ(B) = ψ(A) +

ˆ
~AB

ru dr − rv dx. (2.28)

Therefore, the difference in the values of the stream function between two points is the

flux of fluid crossing a line connecting the two points divided by 2π. As with the two-

dimensional stream function, this integral is path independent as u is a conservative

field. Unlike the two-dimensional stream function (2.17), the axisymmetric stream

function does not satisfy the Laplace equation. The θ component of (2.4) gives

ur − vx = 0 =⇒ ∂r

(
1

r

∂ψ

∂r

)
+ ∂z

(
1

r

∂ψ

∂x

)
= 0 =⇒ ψrr −

1

r
ψr + ψxx = 0. (2.29)

We need to find the curvature κ in the dynamic boundary condition (2.13). Param-

eterising the free surface as r = η(x), we find

κ =
1

r(1 + η2
x)

1/2
− ηxx

(1 + η2
x)

3/2
. (2.30)

In the chapter to follow, we will discuss two-dimensional bubbles, called plane

bubbles.



Chapter 3

Two-dimensional Taylor Bubbles

In the following two chapters, we will consider the classical problem of a long bub-

ble rising in a tube. In this chapter, we will consider the problem in two-dimensional

geometry, while in the following chapter we will consider the axisymmetric model.

A three-dimensional visualization of both of these models is shown in figure 3.1.

3.1 Introduction

Since the experiments of Dumitrescu [34], it has been known that large volumes of

air can rise steadily through a denser medium in the form of a finger-shaped bubble.

This unchanging headform has a radius close to that of the tube, such that there is a

thin jet of fluid around the outer edges of the finger. Such bubbles are often referred

to as Taylor bubbles or slugs. Many authors have performed experiments on this

type of flow, in both channel (i.e. two-dimensional) geometry (Collins [22]; Maneri

and Zuber [60]), frequently referred to as plane bubbles, and axisymmetric geometry

(most famously Davies and Taylor [26]; Zukoski [97], and for a review, Viana et al.

[91]).

It has been found that the rise velocity U is independent of both the length of the

bubble and viscous effects, under the condition that the Reynolds number Re, given

31
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Figure 3.1: A three-dimensional visualization of a plane bubble (figure (a)) and an
axisymmetric Taylor bubble (figure (b)) .

by Re = ρHU/µ̂, is sufficiently large (Re > 200). Here, ρ and µ̂ are the density and

dynamic viscosity of the fluid through which the bubble is travelling and H the tube

radius. This justifies an inviscid and infinite model, in which we take the bubble

to extend indefinitely down the tube. We take the density of air to be negligible

compared to that of the heavier fluid, which we assume to be incompressible. Due

to the inviscid nature of the problem, we consider the flow to be irrotational.

The problem is characterised by two dimensionless constants, the Froude number,

F =
U√
gH

, (3.1)

and the Weber number

α =
U2Hρ

T
, (3.2)

where g is the acceleration of gravity, and T the surface tension.

In the following two chapters, we consider a regime characterised by negligible

surface tension. It has been found in experiments that, for a given Weber number,

the Froude number is uniquely determined. Therefore, one would hope that the

mathematical model described in this chapter admits a unique solution F when

surface tension is neglected. However, this is known not be the case. A unique zero

surface tension solution cannot be obtained without the inclusion of surface tension
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F < FC F = FC F > FC

µ π/2 2π/3 π

Table 3.1: A table for the value of µ when T = 0.

in the equations. Below, we describe the solution space of the plane bubbles, and

the solution selection procedure.

Plane bubbles have been the subject of many investigations, where most authors

make use of conformal mapping techniques. Denoting µ as the angle between the

central streamline and the free surface (see figure 3.2), we define smooth bubbles as

those with µ = π/2. Bubbles with µ = π are called cusped bubbles, while solutions

with any other value of µ we refer to as pointed bubbles. In experiments, cusped

and pointed bubbles are never seen, so such solutions are considered nonphysical.

Garabedian [41] demonstrated analytically that, for T = 0, smooth plane bubble

solutions are not uniquely defined in F , but instead there exists a continuum F ∈

(0, FC) for which such solutions exist. Using a heuristic energy argument, he claimed

the only physically significant solution is the one given by F = FC , and found that

FC > 0.334. Vanden-Broeck [80] later showed numerically that FC ≈ 0.51. He

confirmed that all solutions with F < FC are smooth bubbles, and furthermore

showed that solutions with F > FC are cusped bubbles. Modi [64] and Garabedian

[42] both stated there could also exist zero surface tension pointed bubbles with

µ = 2π/3. Such a solution does exist, and was found by Vanden-Broeck [82], who

showed that F = FC is the only value for which this is the case. Table 3.1 summarises

the zero surface tension solution space.

Taking non-zero values of surface tension, Vanden-Broeck [81] found that, for any

given value of α, there exists an infinite discrete set of smooth bubbles F1(α), F2(α), · · ·.

These solutions are bounded above by F ∗ ≈ 0.318, and it was found that as α−1 → 0,

these solution branches collapsed to the value F ∗. This mechanism by which a unique

solution F ∗ to the T = 0 problem is found by including surface tension in the sys-
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Figure 3.2: Configuration of a plane bubble.

tem, and then taking the limit as surface tension goes to zero, is called solution

selection. A similar mechanism was used to select a unique solution for viscous

Saffman-Taylor fingering (McLean and Saffman [61]). It is known to be associ-

ated with exponentially small terms in the surface tension (Vanden-Broeck [85]).

This challenged Garabedian’s claim that the physically significant solution was the

F = FC solution. Collins [22] found that the experimental value for negligible surface

tension is given by Fe ≈ 0.35.

In this chapter, we will repeat the numerical method used by Vanden-Broeck

[81], and recompute the known results above. This will be helpful in describing the

solution space in the following chapter, where many qualitative similarities between

the two-dimensional and axisymmetric problem are found. We also present a novel

generalisation of the method to allow us to compute flows exiting a pipe onto a wedge

with an interior angle 2(π − β). The flow configuration is shown in figure 3.3. This

problem was considered in the case when the wedge is a flat plate (β = π/2) by

Christodoulides and Dias [21]. When β = π, this problem is equivalent to that of

the plane bubble, as shown in the following section.
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3.2 Formulation

We will first consider the more general problem of flow from a pipe onto a wedge.

We choose Cartesian coordinates, with x pointing in the direction of gravity, and

the origin placed at the tip of the wedge. Flow comes in via a two-dimensional pipe

of width 2H at x → −∞, where the fluid travels with constant velocity U in the

positive x direction. We take H as the reference length and U the reference velocity.

The flow separates where the pipe ends with separation angle µ. Below the pipe

lies a wedge, placed such that the tip lies beneath the middle of the pipe. There

exists a central streamline which meets the wedge at a stagnation point. The angle

between the central streamline and the wedge is given by β, and the wedge is at a

nondimensional distance W in the x-direction below the end of the pipe. The flow

configuration is shown in figure 3.3.

We will assume the flow is incompressible and irrotational, and hence, following

the discussions in section 2.2, we can write the velocity field in terms of two har-

monic potentials, the velocity potential φ and the streamfunction ψ. Without loss

of generality, we choose φ = 0 at the tip of the wedge and ψ = 0 on the central

streamline. We denote the velocity potential of φ at the separation point as φC . In

our scaling, the wall at y = 1 and free surface are given by ψ = 1. We also define

the complex potential f = φ + iψ. When solving this problem, we will conformally

map the flow domain to some auxiliary t-plane with preferable geometry. Following

the discussions in chapter 2, it will then suffice to find ξ = u − iv as an analytic

function of t, satisfying the relevant boundary conditions, where u and v are the x

and y component of the velocity respectively.

The nondimensionalised Bernoulli equation (2.13) on the free surface (denoted

x = η(y)) is given by

q2 − 2

F 2
x+

2

α
κ = B, for x = η(y), (3.3)
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Figure 3.3: Flow configuration in the z-plane

where F is the Froude number, given by (3.1), and α the Weber number, given by

(3.2).

Due to the symmetry of the problem about the line y = 0, we can restrict our

attention to the problem in 0 ≤ ψ ≤ 1 (y ≥ 0). Recalling that x points in the

direction of gravity, the boundary conditions in the z-plane are

arg(ξ) = 0, for arg(z) = −π, (3.4)

arg(ξ) = 0, for x ∈ (−∞,−W ], y = 1, (3.5)

arg(ξ) = β − π, for arg(z) = π − β, (3.6)

q2 − 2

F 2
η(y) +

2

α
κ = B, for x = η(y). (3.7)

For the case of β = π, this problem becomes that of flow exiting a pipe. The central

streamline ψ = 0 no longer hits a wedge, but becomes a line of symmetry. Since we

are dealing with inviscid potential flow, we can take this line of symmetry to be a

wall. Furthermore, we can use the symmetry about the streamline ψ = −1, as shown

in figure 3.4. Viewed this way, we see that this problem is then equivalent to that of

a plane bubble, shown in figure 3.2. The separation angle µ is now the angle between
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Figure 3.4: The boundaries of figure 3.3 with β = π are shown in bold. Taking the
central streamline as a boundary, and reflecting across the streamline ψ = −1, we

see this configuration is equivalent to that of a plane bubble.

the central streamline and the bubble surface. This problem was solved numerically

both when α−1 = 0 (i.e. no surface tension) and with finite α in a sequence of papers

by Vanden-Broeck ([80], [81], [82]). The main results of these papers are repeated

at the end of this chapter, since they offer insight into the solution space for the

axisymmetric analogue of this problem (see chapter 4).

When β = π/2, this problem becomes that of flow exiting a pipe onto a flat

plate. This was solved numerically when α−1 = 0 by Christodoulides and Dias [21].

We will provide a modification to their numerical scheme to solve the more general

problem with arbitrary β. However, first, we will present an exact solution to this

problem, under the assumption that both gravity and surface tension are negligible

(F →∞, α→∞).

3.3 Free streamline solution

Problems in which all external forces are ignored are often referred to as free

streamline problems. In such cases, the continuity of pressure condition (3.7) on a
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free surface becomes

q = constant, on x = η(y), (3.8)

where q is the magnitude of the velocity vector. Free streamline flows were very

popular in the late 19th and early 20th century, since they could often be solved

analytically using conformal mapping techniques. A review can be found in the

books by Birkhoff and Zarantonello [12] and Gurevich [46]. We will present an exact

solution to the flow configuration shown in figure 3.5, using a method devised by Love

[58]. The method was modified by Hopkinson [48] to allow for internal singularities,

and revisited recently by Eggers and Smith [36]. We restrict our attention to 0 ≤

ψ ≤ 1, using symmetry to take ψ = 0 as a solid boundary. Throughout this section,

points A, B, C and D will refer to the points as shown in figure 3.5 (A is the flow

upstream, B where the two walls meet, C the separation point and D is downstream).

We note that the configuration shown in figure 3.5 is the same as that shown in figure

3.3, but with µ = π. No other value of µ is possible, since if µ < π, then the value

of q at the separation point C is zero, while if µ > π, then it is infinite. This can

be shown by noting that the local behaviour at the separation point is flow inside a

corner with interior angle µ, which is given by

f ∼ zπ/µ, ξ ∼ zπ/µ−1. (3.9)

From this, one can see that as z → 0, |ξ| → ∞ if µ > π, while if µ < π, ξ → 0. In

either case, equation (3.8) cannot be satisfied.

The method involves conformally mapping the problem on to an auxilliary t-

plane, which we take to be the upper half-plane, such that all boundaries map onto

the real axis. The t-plane is shown in figure 3.6. This mapping is found by guessing

a complex potential f(t) which will give us the desired properties of the flow. Full

details can be found in Hopkinson [48], but for this problem, we take f(t) to be a
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Figure 3.5: Flow configuration in the z-plane. Dashed curves are streamlines.

Figure 3.6: Flow configuration in the
t-plane.

Figure 3.7: Flow configuration in the
Ω-plane.

point source at the point t = 0, given by

f(t) =
1

π
log t. (3.10)

Equation (3.10) has the property that ψ = 0 for t ∈ <+, while ψ = 1 for t ∈

<−. Hence, the streamline ABD is mapped onto the positive real axis, while the

streamline ACD is mapped onto the negative real axis in the t-plane. Since we have

a free constant in the mapping (the mapping t′(z) = at(z) for a ∈ <\{0} is conformal

if the mapping t(z) is conformal), without loss of generality, we choose t = 1 at the

point B, and t = −d for the point C, where d ∈ <+. The constant d is a free

parameter of the problem. It is found that decreasing d increases the height of the

pipe relative to the point B (the value W in figure 3.3).
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To find the mapping z(t), we integrate the following identity

dz

dt
=
dz

df

df

dt
= eΩdf

dt
(3.11)

Hence, to find z(t), it is left to find the function dz/df , which can be done by

considering the function Ω, given by

Ω = log
dz

df
= log

1

q
+ iθ, (3.12)

where ξ = qe−iθ. It can be seen from equation (3.8) that the real contribution to

Ω is constant along the free streamline, and likewise from equations (3.4)-(3.6) that

the imaginary contribution is constant along a straight wall. Hence, we have that

dΩ/dt ∈ < along walls, and dΩ/dt ∈ = on the free surface. Recalling that x points

in the direction of the flow in the pipe, the vertical walls AB and AC are mapped

onto the horizontal line θ = 0 in the Ω-space, while the wall BD is a horizontal line

given by θ = π−β. The free streamline maps onto the vertical line connecting C and

D. Finally, we note that at B there is a stagnation point (for all values of β 6= π).

We see from equation (3.12) that <(Ω) → ∞ when q → 0, and hence B is mapped

to the point at infinity in the Ω-space. The whole Ω-space is a semi-infinite strip,

where the points A,B,C and D map to

A : Ω(0) = 0, (3.13)

B : lim
t→1

Ω(t) = +∞, (3.14)

C : Ω(−d) = − log qC , (3.15)

D : lim
|t|→∞

Ω(t) = − log qC + (π − β)i, (3.16)

where qC is the value of q at the point C, and is hence the value of the constant

in equation (3.8). It is later found as a function of the free parameter d. The
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Ω-space is shown in figure 3.7. The function Ω(t) can be derived by finding the

Schwarz-Christoffel mapping from the Ω-space to the t-space. Since there are no

internal singularities or zeros of df/dz, equation (3.12) implies the same can be said

of dΩ/dt, and hence the mapping is conformal. The Schwarz-Christoffel mapping of

a triangle with nodes C,D and B, and interior angles π/2, π/2 and 0 onto the upper

half-plane is given by

Ω(t) =

ˆ t L1√
s+ d (s− 1)

ds, (3.17)

where L1 is an unknown constant. Integration of equation (3.17) gives

Ω(t) = −L3 tanh−1

(√
t+ d

1 + d

)
+ L2. (3.18)

where L3 = L1/
√
d+ 1. The constants L2, L3 and qC can be found by noting that

the points A, C, and D are given in both spaces by equations (3.13), (3.15), and

(3.16) respectively. Evaluating (3.18) at C gives

L2 = − log(qC). (3.19)

Furthermore, evaluating (3.18) at D gives

L3 = 2

(
1− β

π

)
. (3.20)

Finally, evaluating equation (3.18) at A gives

log qC = −2

(
1− β

π

)
tanh−1

(√
d

d+ 1

)
. (3.21)

Combining all of the above, we find

Ω(t) = 2

(
β

π
− 1

)[
tanh−1

(√
t+ d

d+ 1

)
− tanh−1

(√
d

d+ 1

)]
. (3.22)
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Figure 3.8: Some free streamline solutions for d = 0.01 and β = π/2, 3π/4 for the
figure on the left and right respectively.

Hence, we have found Ω(t). Substituting this into equation (3.11), we have an

identity we can integrate to find z(t). The integration can be done analytically when

β ∈ {π/2, π}. For all other values of β, the integration must be done numerically, as

described below.

To plot a streamline ψ = ψ̄, we truncate φ below by a < 0 and above by b > 0.

We then discretise φ with N equally spaced points, given by

φI = a+ (b− a)
(I − 1)

N − 1
, I = 1, 2, · · · , N. (3.23)

We can then use equation (3.10) to find the corresponding points tI , given by

tI = exp
(
π(φI + ψ̄)

)
. (3.24)

We must choose |a| to be sufficiently large such that the flow at φ1 is far away from

the separation point C, and is given by a uniform stream z = f . We can then write

z(t1) = ψ̄i. It is left to integrate equation (3.11) via the trapezoidal rule. Denoting

g(t) = eΩ/πt, we find

z(tI+1) = z(tI) + (tI+1 − tI) [g(tI) + g(tI+1)] . (3.25)

The method above allows us to plot streamlines of the flow in the z-space. Some



Chapter 3. Two-dimensional Taylor Bubbles 43

typical solutions are shown in figure 3.8. The boundaries are given by the bold lines,

internal streamlines by dashed curves, and the free surface is the solid curve.

In the following section, we will describe a numerical method to find solutions to

the problem shown in figure 3.3, with the inclusion of gravity and surface tension.

3.4 Inclusion of gravity and surface ten-

sion

In this section, we will present a numerical series truncation method used to

compute fully nonlinear solutions to the system of equations (3.4)-(3.7), for finite

values of F and α. For a review of series truncation methods applied to steady

potential flow, see §3 of Vanden-Broeck [87]. This chapter will follow closely the work

of Vanden-Broeck ([80], [81]), who solved this problem for β = π with surface tension

and gravity, and Christodoulides and Dias [21], who likewise devised a method to

find solutions with gravity for β = π/2.

The method once again involves conformally mapping the flow domain to an

auxiliary t-plane. This time we choose the t-plane to be a unit semi-circle (in the

upper half-plane). Given that the flow domain in the f -space is given by an infinite

strip 0 ≤ ψ ≤ 1, the mapping from f to t is found to be

f(t) =
1

π
log

(
4t

(1− t)2

)
− φC . (3.26)

The constant φC is the value of φ at the separation point. All the walls map onto the

real axis: the wall AB maps to t ∈ [0, tB], the wall BD to t ∈ [tB, 1] and the wall AC

maps to t ∈ [−1, 0]. The constant tB is a free parameter of the problem, similar to

the constant d in the previous section. The free surface maps onto the curve t = eiσ

for σ ∈ [0, π]. The flow domain in the f -space and t-space are shown in figures (3.9)
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Figure 3.9: Flow configuration in the
f -plane. Dashed curves are stream-

lines.

Figure 3.10: Flow configuration in the
t-plane. Dashed curves are stream-

lines.

and (3.10) respectively.

Following the discussions of section 2.2.1, we wish to express ξ as a power series

t. To ensure this series converges, we must remove all the singularities of ξ(t) in {t :

|t| ≤ 1,=(t) ≥ 0}. The first singularity we will consider comes from the separation

point C (t = −1). The flow here behaves like the flow in a corner of angle µ (see

figure 3.3). Using equations (3.9) and (3.26), one finds the singular behaviour

ξ ∼ (t+ 1)2−2µ/π, as t→ −1. (3.27)

It is known that when ignoring surface tension, only three values of µ can satisfy

(3.7): µ = π/2, 2π/3 and π (see Vanden-Broeck [87] §3). When surface tension is

also included, any value of µ is permissible.

Next, we consider the singularity at the tip of the wedge B (t = tB). Similar to

equation (3.27), the leading order singular behaviour is that of flow in a corner of

interior angle β. Again, using equations (3.9) and (3.26) , one finds

ξ ∼ (t− tB)1−β/π, as t→ tB. (3.28)

The final singularity is associated with the flow in the far-field D (t = 1). The

singularity has two possible behaviours, depending on the value of β, as shown in

the following section.
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Figure 3.11: Flow in the far-field, as described in section 3.4.1.

3.4.1 Asymptotic behaviour in the far-field ( β 6=

π/2 )

Consider the dynamic boundary condition on the free surface (3.7)

1

2
(u2 + v2)− 1

F 2
x+

1

α
κ = B, for x = η(y). (3.29)

If β 6= π/2, then x→∞ as we move further along the wall, and thus we must balance

the x term in (3.29) with the inertial term (it makes little physical sense to balance

it with infinite curvature). It will be beneficial to consider a new set of Cartesian

coordinates, (X, Y ), where X is parallel to the wall BD, and Y is perpendicular to

X. Denote the velocity in the coordinates (X, Y ) as ~U = (U, V ). Gravity acts

at an angle −γ to the direction X, where γ = π − β. We denote the free surface

X = η′(Y ). Figure 3.11 shows the far-field in the transformed coordinates. As with

the original coordinates, we can describe the velocity vector ~U in terms of a velocity

potential Φ and a streamfunction Ψ. The complex potential F̂ = Φ + iΨ in these

new coordinates is related to f = φ+ iψ via the rotation

F̂ (z) = ei(π−β)f(z). (3.30)
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Equation (3.29) in these coordinates gives

1

2
(U2 + V 2)− 1

F 2
X cos(π − β) +

1

α
κ = B, for X = η′(Y ). (3.31)

Due to conservation of flux, we require that the width of the fluid between the wall

and the free surface must become infinitesimally small. Therefore, we expect that

the U >> V in this region, and hence leading order balance gives that

U =

(
2 cos (π − β)

F 2
X

)1/2

, as X →∞. (3.32)

Noting that ΦX = ΨY = U , we can integrate the above to give

Φ =

(
2 cos (π − β)

F 2

)1/2
2

3
X3/2, (3.33)

Ψ =

(
2 cos (π − β)

F 2

)1/2

X1/2Y, (3.34)

and hence F̂ is given by

F̂ =

(
8 cos (π − β)

9F 2

)1/2(
X3/2 +

3i

2
X1/2Y

)
. (3.35)

Denoting Z = X + iY , we have that for large values of X,

Z3/2 = X3/2

(
1 + i

Y

X

)3/2

∼ X3/2 +
3i

2
X1/2Y. (3.36)

We can see from equations (3.35) and (3.36) that F̂ has the asymptotic behaviour

F̂ ∼ Z3/2, as X →∞. (3.37)

Recall that f is related to F by a multiplicative constant (see equation (3.30)). The

same is clearly true for z and Z. Noting that the far-field is mapped to t = 1 in the
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t-plane, we can conclude that

f ∼ z3/2, as t→ 1. (3.38)

Hence, the complex velocity ξ has the asymptotic behaviour

ξ ∼ z1/2 ∼ f 1/3. (3.39)

To the author’s knowledge, this singular behaviour was first discussed by Birkhoff

and Carter [11]. Using equation (3.26), we find that

ξ ∼ (− log(1− t))1/3 . (3.40)

Therefore, we have found the leading order singular behaviour of ξ(t) in the far-field

downstream when β 6= π/2. Next, we will consider the behaviour when β = π/2.

3.4.2 Asymptotic behaviour in the far-field ( β =

π/2 )

When β = π/2, the flow downstream (y → ∞) approaches either a uniform

stream of depth Hf and velocity Uf travelling in the positive y direction, or a periodic

train of waves. Our method only allows us to compute solutions for which ξ is single

valued at t = 1, and hence we cannot compute solutions for which the far-field has

a train of waves. Since we have taken the channel width and velocity upstream (i.e.

flow from the pipe) as the reference length and velocity respectively, conservation of

flux gives us that Hf = 1/Uf . We can calculate the Froude number downstream Ff

and Weber number downstream αf in relation to F and α (see equations (3.1) and
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(3.2)) via the identities

Ff = U
3/2
f F, αf = Ufα. (3.41)

We linearise the flow about a uniform stream in the far-field to find the asymp-

totic behavior of ξ(t). The complex potential of a uniform stream with velocity Uf

travelling in the positive y direction is given by f = −iUfz. We consider a small

perturbation to this uniform stream by writing

φ(x, y) = Ufy + φ̂(x, y), (3.42)

ξ(x, y) = Uf + ξ̂(x, y), (3.43)

η(y) = −Hf + η̂(y), (3.44)

where |φ̂|, |ξ̂|, |η̂| and their derivatives are assumed to be small. Substituted into the

governing equation and boundary conditions, the linearised system is

φ̂xx + φ̂yy = 0, for −Hf < x < 0, (3.45)

φ̂x = 0, on x = 0, (3.46)

φ̂x − Uf η̂y = 0, on x = −Hf , (3.47)

Uf φ̂y +
1

F 2
η̂ − 1

α
η̂yy = 0, on x = −Hf . (3.48)

We differentiate (3.48) with respect to y and combine it with (3.47) to eliminate η̂

from the free surface boundary conditions,

φ̂yy +
1

U2
fF

2
φ̂x −

1

αU2
f

φ̂xyy = 0 on y = 0. (3.49)
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We solve this linear system of equations by separation of variables. We write

φ̂ = X(x)Y (y), (3.50)

and substitute this into (3.45), which when re-arranged gives

− X
′′

X
=
Y
′′

Y
= π2λ2U2

f . (3.51)

Here π2λ2U2
f is the separation constant and X

′′
denotes d2X/dx2. The boundary

condition (3.46) becomes

X ′(0) = 0. (3.52)

Solving (3.51), we obtain the general solution

φ̂ = C exp (−πλUfy) cos (πλUfx) , (3.53)

where C is an arbitrary constant. We ignore the exp(πλUf ) term since we want φ̂ to

remain bounded as y → −∞. This solution satisfies (3.49) if

πλ− tan(πλ)

(
1

F 2
f

− 1

αf
π2λ2

)
= 0. (3.54)

Equations (3.43) and (3.53) give that, up to first order,

ξ = Uf + (φ̂x − iφ̂y) = Uf + Cπλi exp (Ufπλi(x+ iy)) . (3.55)

Since f ≈ −iUfz, we have that φ→∞ as y →∞. Therefore, (3.55) implies that

ξ ≈ UF + A exp (−Ufπλφ) , as φ→∞, (3.56)

where A = Cπλi.
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Figure 3.12: The four potential root configurations of equation (3.54). Top left is
case I, top right case II, bottom left case III, and bottom right case IV.

The roots λ of equation (3.54) tells us about the behaviour of the flow in the

far-field. This equation is the dispersion relation of periodic gravity-capillary waves.

The roots are symmetric about the imaginary axis: the roots which satisfy < (λ) > 0

correspond to solutions which approach a uniform stream, while roots with negative

real part blow up, and are hence ignored. Purely imaginary roots correspond to a

far-field with a periodic wavetrain with wavenumber |λ|π. Given a value of Ff and

αf , there are four potential configurations of the roots λ, as shown in figure 3.12.

There always exist infinitely many real roots. Complex and imaginary roots come in

conjugate pairs. There is either no imaginary or complex roots (case I), one purely

imaginary conjugate pair (case II), two purely imaginary conjugate pairs (case III),

or two complex conjugate pairs (case IV). The magnitude of the real part of the

complex roots is always less than that of the first positive real root.

When surface tension is taken to be zero, then we have case I when Ff > 1.

The far-field approaches a flat surface, and the leading order singularity is given by

the first positive real root λ ∈ (0, 1/2). It is sufficient to remove the singularity

associated with just the aforementioned λ ∈ (0, 1/2) to obtain convergence of the

numerical method. When Ff < 1, we have case II. The leading order behaviour is
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given by the imaginary roots, and corresponds to a far-field with a periodic wave-

train. Hence, when the flow in the far-field is subcritical, for zero surface tension one

would expect to see linear surface water waves.

Now let us assume that surface tension is nonzero. We find it useful to define the

nondimensional Bond number τ as

τ =
T

ρgH2
=
F 2

α
. (3.57)

The Bond number downstream is given by τf = U2
f τ . When Ff > 1, we have case

II. When considering Ff < 1, there are a variety of possible configurations. First, if

τf > 1/3, then we have case I. If τf < 1/3, then for a given αf , there exists a critical

value F̃f such that when F̃f < Ff < 1 we have case III. The far-field is given by

a periodic wave-train of two different modes. This is higher mode resonance, often

referred to as Wilton ripples. When F < F̃f , we have case IV. In this circumstance,

the flow approaches a uniform stream. The leading order singularities are the two

complex roots with positive real parts, and the far-field has infinitesimal oscillations.

In the following section, we will describe the series representations of ξ(t) used

for the different flow configurations discussed in this section.

3.4.3 Power series representation of ξ(t)

In the previous section, we found all the leading order singularities of ξ(t) in the

flow domain. We have two representations of ξ, depending on the value of β. When

β 6= π/2, consider a representation of ξ(t) as follows:

ξ =
(− logC(1− t))1/3

(− logC)1/3

(
tB − t
tB

)1−β/π

(t+ 1)2−2µ/π exp

(
∞∑
n=1

ant
n

)
, (3.58)
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F = 0.3 F = 1.5

Coefficient S1 S2 S1 S2

a200 10−6 10−5 10−7 10−5

a1000 10−9 10−6 10−9 10−6

a2000 10−15 10−7 10−16 10−7

Table 3.2: Table comparing the order of the coefficients an for the series (3.59)
(denoted S1), and the series (3.60) (denoted S2) for two values of F . Both solutions

have tB = 0.97.

where C is a fixed constant satisfying 0 < C < 0.5, such that ξ is purely real on

the line t ∈ [−1, tB]. It can be seen that (3.58) satisfies the singular behaviour

(3.27), (3.28), and (3.40), and that ξ(0) = 1. This series, with β = π, was used by

Vanden-Broeck ([80], [81], [82]) and Daripa [25]. If β = π/2, then we instead take

ξ =

(
tB − t
tB

)1−β/π

(t+ 1)2−2µ/π exp

(
−A+ A(1− t)2λ +

∞∑
n=1

ant
n

)
, (3.59)

where A and λ are unknown, and have to be found as part of the solution. The

constant λ is taken to be the root of (3.54) with the smallest positive real part. This

series was used by Christodoulides and Dias [21]. However, they did not include the

term exp(A(1− t)2λ) in their expansion, and instead used the series representation

ξ =

(
tB − t
tB

)1−β/π

(t+ 1)2−2µ/π exp

(
∞∑
n=1

ant
n

)
. (3.60)

We found that, truncating the series after a sufficient number of coefficients, their

results agree within graphical accuracy with those computed using the series (3.59).

However, the coefficients an decay at a much slower rate without this new exponential

term, as shown in table 3.2. This demonstrates that the singularity is important to

remove for the convergence of the series.

We truncate both series after N terms. When β 6= π/2, this results in N + 1

unknowns (a1, · · · , aN ,µ). The free surface in the t-plane is given by t = eiσ. We
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differentiate Bernoulli’s equation (3.29) with respect to σ, resulting in

uuσ + vvσ +
1

πF 2

u

u2 + v2
cot

σ

2
− π

α

∂

∂σ

[
uvσ − vuσ

(u2 + v2)1/2
tan

σ

2

]
= 0. (3.61)

We discretise σ into N + 1 equally space points, given by

σI = π
(I − 1/2)π

N + 1
, I = 1, · · · , N + 1. (3.62)

We then satisfy equation (3.61) at each meshpoint σI . This gives us N + 1 equations

for N + 1 unknowns, which are solved via Newton’s method. When β = π/2, we

have two additional unknowns, A and λ. Therefore, we satisfy equation (3.61) at

N + 2 equally spaced points in σ, given by

σI =
(I − 1/2)π

N + 2
, I = 1, · · · , N + 2. (3.63)

We also satisfy equation (3.54), where Ff is calculated using equation (3.41), and

Uf can be found by evaluating (3.59) at t = 1. Hence, we have obtained N + 3

equations for N + 3 unknowns, a system which can be solved numerically using

Newton’s method.

Thus concludes the formulation and the numerical method. In the following

section, we will show the results.

3.5 Results

The following three subsections discuss the results for when β = π/2 (flow onto

a plate), β ∈ (π/2, π) (flow onto a wedge), and when β = π (plane bubbles).
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Figure 3.13: A plot of µ as a function of F for α = 5. The dashed line is at µ = π/2.
Values of F1, F2 and F3 are demonstrated graphically.

3.5.1 Plane bubbles: β = π

We begin by discussing the results when β = π, where we use the series repre-

sentation (3.58) for ξ. The following results are found in Vanden-Broeck ([80], [81],

[82]), and are repeated here since they will be required in the following chapter. First,

consider the case when T = 0. For each value of F , there is a unique solution. As

previously explained, there exists a critical value of the Froude number, FC ≈ 0.51,

such that for F < FC , the bubbles are smooth, while if F > FC , we have cusped

bubbles (see table 3.1). The F = FC solution is the unique pointed bubble, with

µ = 2π/3. In the experiments of Collins [22], plane bubbles in a regime with a large

Re and α were found to have a unique Froude number, given by Fe ≈ 0.35. The

model without surface tension emits an infinite continuous set of possible smooth

bubbles. Surface tension can be included to select a unique solution, as described

below.

When surface tension is included, the angle µ now has a continuous dependence

on the Froude number F . The dependency is shown for α = 5 in figure 3.13. As α

is increased, the amplitude and frequency of the oscillations about the line µ = π/2

decrease and increase respectively. The figure demonstrates the sequence of values

F1, F2, · · · for which the α = 5 branch intersects the curve µ = π/2. As we vary
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Figure 3.14: A plot of µ as a function of F for (a) α = 10, (b) α = 5 and (c)
α = 1. The dashed line is at µ = π/2. Each solution branch has been truncated
at the second intersection F2(α). As α increases, the value of F2(α) monotonically

increases (i.e. F2(10) > F2(5) > F2(1)).

α, the values of F where the intersections occur increase (see figure 3.14, where

this is demonstrated for F2). Let us denote F1(α) as the largest value of F where

the curves intersect for a given α, F2(α) as the second largest such value, and so

on. These branches Fi(α) are branches of smooth bubbles, and are monotonically

increasing with α. As α → ∞, all of these branches converge onto a single value,

F = F ∗. It is found that F ∗ ≈ 0.318. The mechanism by which a unique solution is

chosen from a possible set of solutions, by including surface tension (or other forces),

and taking said forces to zero, is known as solution selection. We conjecture that

the same solution selection mechanism occurs for axisymmetric Taylor bubbles, as

discussed in the chapter 4. We will compare the results of this section to the results

for plane bubbles found using the numerical scheme derived in the following chapter

as a check on the numerical method.

3.5.2 Flow onto a wedge: β ∈ (π/2, π)

Now we will vary the angle β, such that the model becomes the flow from a

pipe onto a wedge. The flow in the far-field has the same singular behaviour as the

bubbles (see section 3.4.1), and hence we again express ξ as (3.58). For a fixed β,

we now have two free parameters, F and tB. Increasing tB results in raising the
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Figure 3.15: Value of FC for varying W . The solid curve is for β = π/2, dashed
curve β = 2π/3 and dotted curve β = 5π/6.

pipe further away from the wedge (i.e. the value of W increases). When surface

tension is ignored, we again see a critical value FC , where the solutions have the

properties given in table 3.1. It is now the case that FC has dependence on tB (and

hence W ). As W becomes larger, FC has a finite limiting value. The dotted and

dashed curves in figure 3.15 show the dependence of FC on W for β = 2π/3 and

β = 5π/6 respectively. Streamlines to typical solutions are shown in figure 3.16 for

β = 2π/3 and tB = 0.96. The bold lines in the figure correspond to solid boundaries,

the dashed curves interior streamline, and the solid curve the free surface. Figure

(a) has F > FC , figure (b) F = FC , and figure (c) F < FC . The crosses in figure

3.16(a) is the free streamline solution derived in section 3.3. Since the solution in

figure 3.16(a) is for F = 20, one would expect reasonable agreement with the free

streamline solution (F → ∞). It can be seen the agreement is very good near the

separation point. However, as one moves further along the profile, the solutions start

to deviate, due to the different singular behaviour downstream (the free streamline

solution approaches a uniform stream, as opposed to the behaviour (3.40)). This

is shown in figure (d), where we have plotted the flow further downstream for the

F = 20 solution.

When surface tension is included, similar results to the plane bubble are found.

One finds the separation angle µ has a continuous dependence on F . For a given α,

the value of µ oscillates about π/2 for values of F < FC . Meanwhile, when F →∞,
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Figure 3.16: Solutions for tB = 0.96, α−1 = 0, and (a) F = 20, (b) F = FC(tB) =
0.4970 and (c) F = 0.3. The crosses in figure (a) is the corresponding F → ∞
solution. Figure (d) shows the far-field of figure (a). Only half a solution (0 ≤ ψ ≤ 1)

is shown: the central streamline is taken to be a wall.

µ→ π. This is shown in figure 3.17, where the relation between F and µ is shown for

α = 5 and α = 20 (here, tB = 0.96 and β = 2π/3). One could again use the solution

selection procedure to find a unique solution to the zero surface tension problem with

a separation angle of µ = π/2. However, there is no clear physical significance to the

selected solution.

3.5.3 Flow onto a plate: β = π/2

Finally, we consider the case when the wedge is replaced by a flat plate. First,

consider the case when T = 0. The following results are found in Christodoulides

and Dias [21]. We used the series representation (3.59) for ξ, while Christodoulides

and Dias used (3.60). The improved convergence of the coefficients of the series
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Figure 3.17: Relationship between µ and F for α = 5 (solid curve) and α = 20
(dashed curve). The dotted lines are µ = π/2 and µ = π.

when including this additional term has already been discussed. For a fixed value

of F and tB, a unique solution is found. Following the discussion of section 3.4.2,

all these solutions are characterised by Ff > 1. As with the flows from a pipe onto

a wedge, there exists critical Froude number FC , dependent on tB, such that table

3.1 describes the gravity free solution space. The dependency between FC and W

is shown by the solid curve in figure 3.15. They also differentiated between regimes

where the free surface is ’squeezed’ (where the interface x = η(y) is not single valued),

and those where it is immediately deflected along the plate . For example, from the

solutions for flow onto a wedge, in figures 3.16b and 3.16c, the profiles are squeezed,

while the profile from figure 3.16a is not. They found the boundary between these

two regimes occurs for F < FC .

When surface tension is included, as it stands, we are yet to obtain satisfactory

convergent results. We wish to investigate this in the near future, and the possibility

of finding such results is discussed in chapter 6.

3.6 Conclusion

In this chapter, we have repeated the calculations of Vanden-Broeck [80], and

described the solution space of plane bubbles. We modified the series used by

Christodoulides and Dias [21] to improve the convergence of the coefficients for flow
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impacting a flat plate. We found novel solutions for flow impacting a wedge, and

good agreement was found between the free streamline solution and solutions with

large values of the Froude number. In the following chapter, we will investigate

axisymmetric Taylor bubbles.



Chapter 4

Axisymmetric Taylor Bubbles

In the previous chapter, we discussed the solution space of plane bubbles bounded

by two horizontal plates. In this chapter, we will present a numerical scheme used

to compute axisymmetric Taylor bubbles rising in a tube. A three-dimensional visu-

alization of the flow is found in figure 3.1b. The results of this chapter can be found

in Doak and Vanden-Broeck [32].

4.1 Introduction

It has long been believed that the solution space of axisymmetric Taylor bubbles

exhibits similar behaviour to that of plane bubbles. Levine and Yang [57] computed

axisymmetric Taylor bubbles using a boundary integral method. They showed that

for T = 0, there again exists a continuum of solutions F ∈ (0, FC) for which the

bubble is smooth. It was found that FC ≈ 0.7. In this chapter, we show the

solution for F = FC is a pointed bubble with an interior angle of approximately

1300 (i.e µ ≈ 1150). Similar to the two-dimensional problem, F = FC is the only

value for which we find pointed bubbles with zero surface tension. A local behaviour

at the apex of this solution is given by Garabedian [42]. The inclusion of surface

tension again reduces the continuous set of smooth bubbles to an infinite discrete set

60
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x
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H

Figure 4.1: Formulation of the problem in the (x, r) space.

F1, F2, · · ·, where Fi > Fi+1. As with plane bubbles (see section 3.5.1), the branches

Fi have dependence on α. Levine & Yang computed the primary branch F1(α),

and showed that F1(α) → F ∗ ≈ 0.49 as α−1 → 0. This is in excellent agreement

with experiments: Viana et al. [91], making use of data collected from a wide range

of previously performed experiments, obtain the experimental value Fe ≈ 0.48 in

a regime characterised by large Reynolds number Re and large Weber number α.

Levine & Yang also computed a small number of solutions on the branches F2 and

F3, but did not compute solutions on these branches for small surface tension. In this

chapter, we present a numerical scheme capable of computing solutions on the higher

order branches F2(α), F3(α), · · ·. We were unable to compute solutions for α > 160.

Despite this, similarities between the two-dimensional and axisymmetric solution

spaces lead us to conjecture that these higher order solution branches approach F ∗

as α−1 → 0.

The formulation of the problem follows a numerical approach to solving axisym-

metric flows first proposed by Woods [94], and later independently by Jeppson [52].

We map the flow domain to an infinite strip by taking the velocity potential φ and

Stokes streamfunction ψ as independent variables. We then discretise the space and

solve the equations via finite differences. Due to the stagnation point singularity at
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the apex of the bubble, a solution with the same local behaviour as the bubble at the

singular point is derived, and a function splitting procedure, previously adopted by

a variety of authors (Brennen [16], Southwell [77], Woods [95]), is used to allow for

accurate approximation of derivatives. A discussion on the relative errors associated

with approximating derivatives with the function splitting method is presented in

appendix A.

The chapter is organised as follows. In section 4.2, we formulate the problem.

In section 4.3, we present a finite difference scheme used to solve the problem for

smooth bubbles, along with an explanation of the function splitting procedure used

to regulate the singularity at the apex of the bubble. In section 4.4, we present results

for the smooth bubbles. In section 4.5, we describe a method used to compute the

F = FC axisymmetric bubble. Section 4.6 is a conclusion to the chapter.

4.2 Formulation

Consider an axisymmetric bubble rising vertically with constant velocity U through

a fluid at rest in a tube of radiusH. We take standard cylindrical coordinates (x, θ, r),

where we choose x to point in the direction of gravity, and r ∈ [0, H] to be the radial

distance from the central streamline r = 0. We take the origin to be at the apex

of the bubble and to travel with the bubble such that the problem is steady. In

this frame of reference, the background flow at x→ −∞ is a uniform stream in the

positive x direction with velocity U . We take H as the reference length and U as

the reference velocity. The formulation in the (x, r) space is shown in figure 4.1.

We again consider irrotational flow of an inviscid and incompressible fluid. There-

fore, there exists a velocity potential φ and Stokes streamfunction ψ given by

u = φx =
ψr
r
, v = φr = −ψx

r
, (4.1)



Chapter 4. Axisymmetric Taylor Bubbles 63

where u and v are the velocities in the x and r directions respectively, and subscripts

denote partial differentiation. Without loss of generality, we take φ = 0 at the apex

and ψ = 0 on the free surface. Integration of (4.1) at x→ −∞ gives

ψ → r2

2
, as x→ −∞. (4.2)

Therefore, the wall is given by ψ = 1/2.

On the free surface, as well as ψ = 0, we must satisfy the Bernouilli equation

(2.12). This is given by

q2 − 2

F 2
x+

2

α
κ = constant, (4.3)

where q is the magnitude of the velocity, F and α are given by (3.1) and (3.2), and

κ = R−1
1 +R−1

2 is the mean curvature of the free surface, where the principle radii of

curvature, R1 and R2, are counted positive when the centers of curvature lie inside

the fluid.

Even though the mapping from the (r, x) to the (φ, ψ) space is not conformal, we

still find the mapping beneficial. The domain in the (φ, ψ) space is the infinite strip

Ωφ = {ψ ∈ [0, 1/2] ,−∞ < φ <∞}. The approach to the problem follows the work

of Woods [94]. We seek r as a function of the independent variables (φ, ψ). The key

benefit to working in the potential space as opposed to the physical space is that the

free surface is fixed to the positive φ-axis (ψ = 0, φ > 0).

The mapping from the (x, r) to the (φ, ψ) space produces the relations

xφ =
1

2
fψ, xψ = − fφ

2f
, (4.4)

where f = r2. Woods derived a governing equation for f(φ, ψ), given by

fφφ
f
−
(
fφ
f

)2

+ fψψ = 0. (4.5)
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Furthermore, it can be shown that

q = 2

(
f 2
φ

f
+ f 2

ψ

)−1/2

, (4.6)

κ = − fψq

2
√
f

+
q3

4
√
f

[
fψfφφ − fφfφψ −

1

2

fψf
2
φ

f

]
. (4.7)

Making use of (4.4), we find it beneficial to differentiate Bernouilli’s equation (4.3)

with respect to φ in order to remove the x term. This gives us

qqφ −
1

2F 2
fψ +

1

α
κφ = 0. (4.8)

The boundary conditions on the central streamline and the wall f = 1 can be written

as

f(φ, 0) = 0, φ < 0, (4.9)

f(φ, 1/2) = 1, ∀φ, (4.10)

respectively. Finally, (4.2) gives us the upstream condition

f → 2ψ, as φ→ −∞. (4.11)

This completes the formulation of the problem. It is left to find f as a function of

the independent variables (φ, ψ) such that it satisfies (4.5), (4.8), (4.9), (4.10) and

(4.11).

In the following section, we will present a finite difference scheme used to solve

this system.
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4.3 Finite difference scheme

We truncate the infinite strip Ωφ to a finite domain ΩT = {ψ ∈ [0, 1/2] , φ ∈ [−φ1, φ2]},

where φ1 and φ2 are positive real numbers. We must ensure when computing solu-

tions that we truncate far enough both up and downstream such that the solution

becomes invariant to truncating the domain further. This is explained in greater

detail in section 4.4.

We found it beneficial to perform two coordinate transforms,

φ =


−s2, if φ < 0,

s2, if φ ≥ 0,

(4.12a)

ψ = t2, (4.12b)

to condense meshpoints near the crest and free surface. Using the chain rule, we see

that

fψ =
1

2t
ft, (4.13a)

fψψ =
1

4t2

(
ftt −

ft
t

)
, (4.13b)

with similar formula for derivatives with respect to φ. We discretise ΩT with M

points in s and N points in t as follows

si = −Ah+ (i− 1)h, i = 1, · · · ,M,

tj =
1√
2

j − 1

N − 1
, j = 1, · · · , N,

(4.14)

where A < M is a positive integer, chosen such that there are sufficient points

upstream and downstream. From equation (4.14), we can see that
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φ1 = − (Ah)2 , φ2 = ((M − A− 1)h)2 . (4.15)

This choice of discretisation produces MN unknowns: f evaluated at each meshpoint

f(si, tj) = fi,j. Therefore, we require MN equations. We note that the meshpoints

are uniformly spaced in s and t with differences

∆s = si+1 − si = h,

∆t = tj+1 − tj =
1√
2

1

N − 1
= k.

(4.16)

We will impose an equation at each meshpoint. In all interior nodes, we apply the

governing equation (4.5). We apply the boundary condition (4.11) at φ = −φ1. This

is an approximation, since the boundary condition should be applied in the limit

φ → −∞, but it is found the error is negligible given φ1 is sufficiently large, as

discussed in section 4.4. We apply the wall and free surface boundary conditions at

their respective places on the mesh. The full discrete system of equations is given

by

∂2fi,j
∂ψ2

+
∂2fi,j
∂φ2

/fi,j −
[
∂fi,j
∂φ

/fi,j

]2

= 0, for


i = 2, · · · ,M,

j = 2, · · · , N − 1,

(4.17a)

fi,N − 1 = 0, for i = 1 · · ·M, (4.17b)

f1,j − 2ψj = 0, for j = 1 · · ·N, (4.17c)

fi,1 = 0, for i = 1 · · ·A+ 1, (4.17d)

qi,1
∂qi,1
∂φ
− 1

2F 2

∂fi,1
∂ψ

+
1

α

∂κi,1
∂φ

= 0, for i = A+ 2 · · ·M, (4.17e)

where terms like κi,1 refer to values of the curvature (4.7) computed at the meshpoint

(φi, ψ1). All the derivatives (fs, ft etc.) are approximated using second-order central

difference formula or, when necessity dictates, second order one-sided formula. We
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then use formula such as (4.13a)-(4.13b) to obtain values of fψ, fψψ (etc.) at each

meshpoint. We note that these formula cannot be used for derivatives where s = 0 or

t = 0. In such cases, we approximate the derivatives directly in φ and ψ. This system

of MN equations can be solved for the MN unknowns using Newton’s method. We

terminate the iterations in Newton’s method once the L∞-norm of the residuals

(values on the right-hand side of equations (4.17a-e)) is of order 10−11. Once we

have obtained values of fi,j for all (i, j), we can obtain values of xi,j by integrating

(4.4) along lines of constant ψ. This is given by

xi+1,j = xi,j +
1

2

ˆ φi+1

φi

∂f

∂ψ
(φ, ψj) dφ. (4.18)

The above integral is approximated via the trapezoidal rule.

4.3.1 Singularity removal: smooth bubbles

It is found that singularities, when not properly accounted for, cause inaccuracies

to the approximation of derivatives in finite difference schemes (see Woods [95] and

appendix A). In particular, as mesh spacing is decreased, the inaccuracies grow and

the method fails to converge in the limit as mesh spacing goes to zero. In our

case, we must remove the singularity associated with the stagnation point at the

apex of the bubble φ = ψ = 0. Woods [95] derived a function splitting procedure

to regulate singularities in finite difference methods, paying particular attention to

Poisson’s equation. We follow a similar strategy, but with some modifications. In

particular, while Woods performs the function splitting to the differential operator of

the governing equation as a whole, we instead use the method on individual partial

derivatives, due to the nonlinearity of equation (4.5).

The basic procedure to regulate the singularity is to first consider some function

f = χ(φ, ψ) which has the same singular behaviour as our flow at the singularity
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Figure 4.2: Axisymmetric flow onto a plate parallel with the r-axis. Some streamlines
are shown.

and satisfies the governing equation. A natural choice is the flow onto an infinite

flat plate (see Figure 4.2). The velocity potential and streamfunction of this flow are

found to be

φ = B

(
1

2
f − x2

)
, ψ = −Bfx, (4.19)

where B is an arbitrary positive constant. This can be re-arranged to remove x,

producing a cubic for f . The unique real positive root of this cubic, χ = f , is given

by

χ =
2

3B
φ+

1

B2/3

(
Aφ3 + ψ2 + ψ

√
2Aφ3 + ψ2

)1/3

+
1

B2/3

(
Aφ3 + ψ2 − ψ

√
2Aφ3 + ψ2

)1/3

, (4.20)

where A = 8/(27B). This function can be differentiated to analytically compute

values of χφ (etc.) everywhere in the flow domain. The unknown constant B can be

used to match the flow configuration in figure 4.2 to our problem by satisfying

χ(φi, ψj)− f(φi, ψj) = 0, (4.21)
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for some meshpoint (φi, ψj) in the flow close to the singularity. A natural choice is

to use the meshpoint on the free surface immediately after the apex, (φA+2, ψ1) =

(h2, 0). This gives rise to

B = 2
φA+2

fA+2,1

. (4.22)

Approximating the value of the constant B in this manner results in numerical errors,

as explained in appendix A. We then re-write our solution f as

f(φ, ψ) = (f − χ) + χ. (4.23)

The motivation for subtracting and adding χ is now we can numerically compute

derivatives on the function (f − χ) and analytically compute the derivatives of χ.

Hence, in our code, the values of ∂fi,j/∂φ are computed as

∂fi,j
∂φ

= δφ(fi,j − χi,j) +
∂χi,j
∂φ

, (4.24)

where δφ is some finite difference approximation of the derivative. Since χ has been

defined such that it has the same behaviour of f at the stagnation point, subtracting χ

from f removes the leading order singularity, allowing us to approximate derivatives

of (f − χ) via finite differences. Furthermore, since we have an explicit formula

(4.20) for χ, computing derivatives (for example, ∂χi,j/∂φ) is possible analytically.

Therefore, (4.24) can be used to approximate derivatives at all meshpoints. We note

that this would not work on a nonlinear differential operator, say (∂fi,j/∂φ)2, since

in this case [
∂(fi,j − χi,j + χi,j)

∂φ

]2

6=
[
∂(fi,j − χi,j)

∂φ

]2

+
∂χi,j
∂φ

2

. (4.25)

However, one can simply apply (4.24), and then square the result to obtain the re-

quired value. Brennen [16] followed a similar method to remove a stagnation point

singularity in a successive relaxation scheme used to compute axisymmetric cavitat-
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ing flow past an obstruction in a tunnel. He solved the same governing equation (4.5)

but with different boundary conditions. He approximated the front stagnation point

using non-cavitating flow past a disc or sphere. However, he treated the governing

equation as though it were linear as an approximation. Although this dramatically

reduces computational time and requirements on storage (you can avoid comput-

ing terms like ∂χi,j/∂φ at all interior meshpoints, since χ is chosen to satisfy the

governing equation), in our computations, such an approximation is unnecessary.

Special care must be taken when computing the integral (4.18) through the stag-

nation point. For example, consider the case where i = A and j = 1, such that the

integral is on the streamline ψ = 0, from the point φA = −h2 to φA+1 = 0. If we

attempt to approximate the integral using the trapezoidal rule, taking into account

(4.24), we obtain

ˆ 0

−h2

∂f

∂ψ
dφ ≈ h2

2

[
δψ(fA+1,1 − χA+1,1) + δψ(fA,1 − χA,1) +

∂χA+1,1

∂ψ
+
∂χA,1
∂ψ

]
.

However, the value of ∂χA+1,1/∂ψ is singular. Instead of directly applying the trape-

zoidal rule, we must integrate the ∂χ/∂ψ term explicitly, that is

ˆ 0

−h2

∂f

∂ψ
dφ ≈ h2

2
[δψ(fA+1,1 − χA+1,1) + δψ(fA,1 − χA,1)] +

ˆ 0

−h2

∂χ

∂ψ
dφ, (4.26)

where the second term is an integral calculated analytically. For the above equation,

one finds that ˆ 0

−h2

∂χ

∂ψ
dφ =

4√
3B

sin(π/3)h. (4.27)

The same consideration must be made when integrating from φA+1 = 0 to φA+2 = h2

for ψ = 0.

It is of interest to note that Vanden-Broeck [83] constructed a similar finite dif-

ference scheme for this problem, taking r as a function of the independent variables
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(x, ψ). However, the method took no measure to regulate the singularity at the stag-

nation point. Repeating the numerical scheme, we found the results were satisfactory

for crude meshes, but ultimately the method diverges with mesh refinement. On the

other hand, we found the new numerical scheme described above convergent upon

mesh refinement, at least as far as computationally practical, as shown in section

4.4.

As another check on our numerical scheme, we also constructed a finite difference

scheme to compute plane bubbles. The details are omitted here, but it closely follows

the method for the axisymmetric bubble, where we instead seek y as a function of the

unknowns (φ, ψ) (see figure 3.2). We also removed the stagnation point singularity

by using the function splitting method. In this case, the local behaviour is given by

equation (3.9) with µ = π/2, which can be written as

y = χ(φ, ψ) = =
{ i

B

√
φ+ iψ

}
. (4.28)

The results were found to be in good agreement with the results of chapter 3, as

shown in the following section.

4.4 Results for smooth Taylor bubbles

The above method was used to compute solutions to both plane and axisymmetric

bubbles with and without surface tension. Some profiles of axisymmetric α−1 = 0

solutions are shown in figure 4.3 . As shown in figure 4.4, as we approach F = FC , the

radius of curvature of the streamline becomes very small at the apex of the bubble

(resulting in large values of the curvature). Since the F = FC solution is a pointed

bubble with infinite curvature at the apex (computed in section 4.5), the constant B

associated with the corner singularity (4.20) is singular in the limit F → FC . This

made smooth bubbles with values of F close to F = FC difficult to compute. We
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Figure 4.3: Various profiles of axisymmetric bubbles for α−1 = 0, with Froude num-
bers (a) F = 0.65, (b) F = 0.5, (c) F = 0.35 and (d) F = 0.2.

found that we required higher than double precision when computing these solutions

in order for iterations in Newton’s method to convergence. This was done using

MATLAB and the mp toolkit [2].

For the case of non-zero surface tension, we computed the first three solution

branches F1(α), F2(α) and F3(α). When computing along solution branches, it is

of significant importance that we are able to fix either F or α, and allow the other

parameter to vary. In general, we found it more convenient to fix α. Since there

is now one additional unknown, we must introduce a new equation such that our

discrete system is not ill-posed. We impose a four-point interpolation formula on the

curvature of the free surface, given by

κL,1 − 3κL+1,1 + 3κL+2,1 − κL+3,1 = 0, (4.29)

where L > A+ 1 is an integer such that φL > 0. The motivation for using equation

(4.29) is that, for a small range of values of F around the solution branches Fi(α),
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Figure 4.4: Figure (a) is a plot of the value of the constant B given in (4.28) for the
plane bubble and the constant B in (4.20) for the axisymmetric bubble as a function
of the Froude number F , where α−1 = 0. As the solution branch approaches F = FC ,
the curvature at the apex becomes large and the value of B →∞. This is shown in
figure (b), where the radius of curvature of the streamline at the apex of the bubble,
R1, goes to zero as F → FC . The crosses show values obtained by Levine and Yang

[57].

the method converges on unrealistic solutions with erratic curvature values. The

range of values of F decreases as the mesh spacing is reduced. Alternatively, we

occasionally fixed both α and F and manually moved through the solution space.

This method was particularly useful when trying to obtain the first solution on a

solution branch Fi. Once on the solution branch, the code with varying F was

used to compute solutions close to the one already obtained on the branch, using

the previous solution as an initial guess. The first three solutions branches for the

plane and axisymmetric bubbles are shown in figure 4.5. The branch F1 approaches

F ∗. For higher order branches, the numerical scheme fails to produce unique results

for values of α larger than shown in figure 4.5. Fixing both α and F , it is found

the numerical scheme converges for all F in this region. This is true for both the

two-dimensional and axisymmetric problem. In figure 4.6, we show an enlarged plot

of the limiting behaviour of the higher order branches for plane bubbles, computed

using the series truncation method described in chapter 3. Solutions computed using

the series truncation method are very accurate, since, through the use of conformal

mapping techniques, the numerical scheme is reduced to a one-dimensional problem.
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Figure 4.5: The first three branches F1, F2 and F3 for the 2D (figure (a)) and
axisymmetric (figure (b)) bubbles. The dotted lines in figure 4.5(a) were computed

using a series truncation method (see chapter 3).

This allows computations with thousands of meshpoints on the free surface. We

conjecture that the higher order branches of the axisymmetric bubbles have the same

limiting behaviour, but a computationally less expensive numerical procedure would

be required to compute solutions in this region. A plot of the selected axisymmetric

solution F ∗ is shown in figure 4.7. This solution is compared with the experimental

results of Davies and Taylor [26] in figure 4.8. It can be seen that the selected

solution agrees with the experimental bubble near the stagnation point (the nose of

the bubble). However, the curves deviate as we move further downstream. This is due

to the fact that in our model we ignore viscosity, and instead balance the increasing

gravitational potential with inertia. Approximating the far-field downstream as an

infinitesimal jet is a mathematical simplification, justified by the fact that it has

been seen in experiments that the bubble length has minimal effect on the nose of

the bubble (for example, see Viana et al. [91]). This explains the weaker agreement

between the numerical solution and the experimental bubble downstream.

An interesting property of solutions on the higher mode solution branches is that

they develop oscillations on the free surface. Figures 4.9 and 4.10 show solutions from

the first four modes for a given α for plane and axisymmetric bubbles respectively.

Each odd mode F2n−1 has a peak at the apex followed by n− 1 peaks and troughs,
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Figure 4.6: A blow up of figure 4.5(a), showing the limiting behaviour of the solution
branches Fi(α) for plane bubbles.
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Figure 4.7: The selected axisymmetric solution F ∗ = 0.49, plotted to scale. Some
streamlines are shown to demonstrate the flow field.

Figure 4.8: The selected axisymmetric solution (crosses) compared with the bubble
in figure 9 of Davies and Taylor [26] (solid curve).
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Figure 4.9: Profiles of smooth plane bubbles from the first four solution branches.
The vertical scale has been exaggerated to show the oscillations clearly, and is the
same for each figure. Every solution is given by α = 5, and the values of F are (a)
F1(5) = 0.316, (b) F2(5) = 0.202, (c) F3(5) = 0.151 and (d) F4(5) = 0.122. The
crosses are computed using the series truncation method from chapter 3. There is

good agreement with the results obtained using the finite difference scheme.
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Figure 4.10: Profiles of axisymmetric Taylor bubbles from the first four solution
branches. The vertical scale has been exaggerated to show the oscillations clearly, and
is the same for each figure. Every solution is given by α = 10, and the values of F are
(a) F1(10) = 0.488, (b) F2(10) = 0.305, (c) F3(10) = 0.228 and (d) F4(10) = 0.183.
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Figure 4.11: Plot of the relative errors in the value of B for the F = 0.3 plane bubble
with zero surface tension for various mesh sizes. Denoting Bn the value obtained by
the numerical scheme, the relative error is defined as ERR= |Be − Bn|/Be, where
Be is the value obtained using the series truncation method. The curves are lines of
constant k, where the values of k are k1 = 0.04, k2 = 0.02, k3 = 0.01, and k4 = 0.005.

while each even mode F2n has a trough at the apex, followed by n peaks and n− 1

troughs. Such behaviour was commented on by Levine and Yang [57], who computed

some higher mode solutions for larger values of the surface tension.

There are two main sources of error in the method: the approximation of deriva-

tives via finite differences, and the truncation of the previously infinite flow domain

Ωφ. The error from domain truncation can be made negligible by taking φ1 and

φ2 from (4.15) suitably large. For example, consider the axisymmetric bubble with

zero surface tension and F = 0.34, computed with mesh spacing h = 0.02 and

k = 1/(60
√

2), where h and k are defined in equation (4.16). Comparing the so-

lution obtained with φ1 ≈ 4, φ2 ≈ 20 (denote f = f1(φ, ψ)) and φ1 ≈ 5, φ2 ≈ 25

(denote f2(φ, ψ)), we find that L∞|f1 − f2| < 10−13.

All finite differences are computed using second order difference equations in both

h and k. However, one may expect additional sources of error when approximating

derivatives due to the function splitting procedure discussed in section 4.3.1. As an

example, the computation of B in equation (4.22) is an approximation of the ’true’

value of B. Appendix A explores the order of errors seen when approximating sin-

gular derivatives with difference equations, and how the function splitting method



Chapter 4. Axisymmetric Taylor Bubbles 79

0.01 0.015 0.02 0.025

0.339

0.3392

0.3394

0.3396

0.3398

h1

h2

h3

F̂2

k

Figure 4.12: Values obtained for F2(20) = F̂2 for the axisymmetric bubble . The
curves are lines of constant h, where the values of h are h1 = 0.02, h2 = 0.01732,

and h3 = 0.015.

regulates such errors, for the simplified case of a function of one variable. At the

end of the appendix, we discuss the difficulties with extending the theory to multiple

variables. Despite this, we are optimistic with the success of the method as applied

here. In figure 4.11, we compare values of B (see equation (4.28)) for the α−1 = 0,

F = 0.3 plane bubble obtained using the series truncation with the value computed

using the finite difference scheme for various h and k. We see that, for fixed k, the

method appears to be close to first order accurate in h (the lines are approximately

linear). Meanwhile, for fixed h, the method is somewhere between first and second

order convergent in k. In figure 4.12, we compare values of F2(20) obtained for dif-

ferent values of h and k for the axisymmetric bubbles, demonstrating convergence of

the numerical method. As an additional check on the method, we also highlight the

very good agreement between the profiles obtained by the series truncation method

and the finite difference scheme in figure 4.9, and the results obtained by the bound-

ary integral scheme of Levine and Yang [57] for the axisymmetric bubbles, as seen

in figure 4.4b.
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4.5 Pointed F = FC bubble

We stated in chapter 3 that, for plane bubbles with zero surface tension, there are

only three possible values of µ such that equation (4.3) is locally satisfied near the

crest of the bubble. Milewski et al. [63] performed a local analysis near the crest of

an axisymmetric solution, and found that the same is true for axisymmetric bubbles.

The three possible values are µ ∈ {0,Θ, π}, where Θ satisfies P ′3/2(cos Θ) = 0. Here,

P3/2 is the Legendre function of degree 3/2 and order 0, and hence we find that

Θ ≈ 1150.

As described in the previous section, in the case of zero surface tension, as F →

FC , the curvature of the smooth bubbles at the apex becomes singular (see figure

4.4b). From previous works, we know that for plane bubbles, the F = FC solution

is a pointed bubble with interior angle µ = 2π/3. It was believed that the F =

FC axisymmetric bubble has the local behaviour as described in Milewski et al.

[63]. We confirm this is true, and now present a numerical method to compute the

axisymmetric F = FC solution.

Garabedian [42] derived a velocity potential describing the behaviour at the crest

of the F = FC solution. The streamfunction can be found using relations (4.1), and

is given by

ψ = Br2(x2 + r2)1/4 ×
{

2F1

[
−1

2
,
7

2
, 2,

1

2

(
1 +

x

(x2 + y2)1/2

)]}
, (4.30)

where 2F1 is the Gaussian hypergeometric function, and B is an arbitrary positive

constant. A plot of some streamlines for B = 1 is shown in figure 4.13.

Vanden-Broeck [83] constructed a finite difference scheme with r as an unknown

function of the independent variables (x, ψ). The flow domain in the (x, ψ) space

is an infinite strip Ωx = {ψ ∈ [0, 1/2] ,−∞ < x <∞}, and can be discritised in a

similar manner to Ωφ in section 4.3. We again perform coordinate transforms (4.12a-
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Figure 4.13: Plots of streamlines given by (4.30)

b), replacing φ with x in (4.12a). We then discretise Ωx with M points in α and

N points in t using equations (4.14). The governing equation, when formulated this

way, is given by

rψψ
(
1 + r2

x

)
+ r2

ψ

(
rxx +

1

r

)
− 2rxrψrxψ = 0, (4.31)

while Bernoilli’s equation yields

(
1 + r2

x

)
(rrψ)−2 − 2

F 2
x = 0. (4.32)

Using these equations, we construct a discrete system of MN equations similar to

the system (4.17a-e). Vanden-Broeck failed to account for the singularity in the flow

field, resulting in divergence of the numerical method as the mesh is refined. We

rectify this problem by making use of Garabedian’s solution (4.30). Like in 4.3.1, we

desire to find a solution r(x, ψ) = χ(x, ψ) which matches the singular behaviour of

the bubble at the apex. Equation (4.30) is a transcendental equation for the unknown

r given a fixed point in the (x, ψ) space. This can be solved at each meshpoint using

Newton’s method to find χ. Equations for χψ, χx, χψψ, χxx, and χxψ can be obtained

by differentiating (4.30) and making use of

rψ = ψ−1
r , (4.33a)
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Figure 4.14: Axisymmetric zero surface tension solution for F = FC ≈ 0.70. Some
streamlines are shown to demonstrate the flow field.

rψψ = ψ−3
r ψrr, (4.33b)

rx = −ψxψ−1
r , (4.33c)

rxψ =
(
rxrψψ − ψrxr3

ψ

)
r−1
ψ , (4.33d)

rxx =
(
2rxrψrxψ − r2

xrψψ − ψxxr3
ψ

)
r−2
ψ . (4.33e)

Therefore, we have all the required components to remove the singularity via the

same method described in section 4.3.1. This allows us to compute the pointed

bubble solution. A profile of the solution is given in figure 4.14. It is found that

FC ≈ 0.7, as in agreement with figure 4.5. No solutions for other values of F were

found with this method, suggesting that F = FC is the only value of the Froude

number for which zero surface tension axisymmetric bubbles are pointed with the

singular behaviour (4.30) at the apex. As we saw in chapter 3, two-dimensional

Taylor bubbles with F > FC have cusps at the apex. We were unable to obtain

cusped axisymmetric bubbles since no suitable treatment of the cusp singularity was

found. This is briefly discussed in chapter 6.
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4.6 Conclusion

In conclusion, we have presented a numerical scheme capable of computing both

plane and axisymmetric Taylor bubbles. The method used produces results in good

agreement with previous authors. Two of the higher order smooth solution branches,

F2(α) and F3(α), have been computed for small values of surface tension. Although

we are unable to capture the limiting behaviour of the higher order branches as

α−1 → 0 , similarities in the solution spaces of the two-dimensional and axisym-

metric problems, combined with the knowledge of the limiting behaviour of the

two-dimensional solution branches, provides numerical evidence to suggest the ax-

isymmetric branches approach F ∗ in the limit as α−1 → 0. We used the velocity po-

tential derived by Garabedian [42], combined with the singularity removal procedure,

to compute the zero-surface tension F = FC axisymmetric bubble, characterised by

an interior angle of approximately 1300. This was the only value of F for which a

pointed T = 0 solution was found, further strengthening the similarities between the

two-dimensional and axisymmetric solution spaces.

In the following chapter, we investigate waves propagating on a ferrofluid jet.



Chapter 5

Steady waves on an axisymmetric

ferrofluid jet

In this chapter, we will consider a modification of the classical Plateau-Rayleigh

instability. The instability is suppressed with the use of ferrofluids, as described

below. The results of this chapter can be found in Doak and Vanden-Broeck [33].

5.1 Introduction

Since the work of Rayleigh [73], it has been known that capillary jets (axisymmet-

ric columns of fluid in which gravity is ignored) are unstable to linear perturbations of

wavelength longer than that of the circumference of the jet. This instability, referred

to as the Plateau-Rayleigh instability, causes a capillary jet to break into droplets,

and removes the possibility of the existence of steady solitary wave solutions. The

steady solutions that do exist, that is periodic waves with wavelength shorter than

the circumference of the jet, were computed numerically by Vanden-Broeck et al.

[90]. These waves, similar to the two-dimensional capillary waves found analytically

by Crapper [23] for the case of infinite depth and Kinnersley [53] for finite depth,

form overhanging structures as the amplitude increases, until finally a limiting con-

84
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figuration with a trapped bubble is formed. Alternatively, the solution branches can

terminate on a non-trivial static configuration, where there is no motion in the fluid.

Ferrofluids are fluids containing nanoparticles of ferromagnetic material coated

in molecular surfactant, resulting in the fluid having superparamagnetic behaviour.

Ferrofluids are used in a variety of industrial applications, such as measuring the

acceleration and inclination of oil drills, and sealing pump shafts (Raj et al. [71]).

Since the analytic work and experiments of Bashtovoi and Krakov [8] and Arkhipenko

et al. [6], it has been known that magnetic fields can stabilize the Plateau-Rayleigh

instability when considering a column of ferrofluid. This is done by coating a copper

wire with ferrofluid and passing a current through the wire, inducing an azimuthal

magnetic field. The buoyancy effects are suppressed by surrounding the ferrofluid in a

non-magnetizable fluid of equal density. The problem is characterised by a magnetic

Bond number B, defined in section 5.2, which comes from a ratio of magnetic to

capillary forces. Arkhipenko et al. [6] show that when B > 1, the Rayleigh-Plateau

instability is stabilized for all wavelengths. This formulation is of particular interest

since it allows for axisymmetric solitary wave solutions.

We consider two models. In the first model, which we shall call the one-layer

model, we assume the surrounding non-magnetizable fluid has negligible density. In

the second model, named the two-layer model, we consider a surrounding fluid of

density equal to that of the ferrofluid. It is helpful to draw comparisons between the

models discussed here and the classical problem of two-dimensional gravity-capillary

free surface and interfacial waves. It is found there are many similarities, and some

interesting differences, between these dispersive water wave systems. Reviews of

two-dimensional gravity-capillary waves can be found in Dias and Kharif [27] and

Vanden-Broeck [87]. We note that our model allows for variable density ratios of the

two fluids. However, a ratio of unity is of particular interest since, as stated above,

gravity free regimes can be experimentally realised this way. This was done recently
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by Bourdin et al. [15], where the surrounding fluid was taken to be freeon of almost

equal density to that of the ferrofluid. Axisymmetric periodic and solitary waves

were observed.

So far most analytic and numerical work on the problem has considered only the

one-layer model. Under the assumption that the radius of the copper wire (denoted d)

is negligible, Rannacher and Engel [72] derived a Kortewegde Vries (KdV) equation to

describe weakly nonlinear solitary waves. Like the KdV equation for gravity-capillary

waves, it is found that for some critical values of the parameters, the coefficient of the

dispersive term changes sign (Korteweg and de Vries [55]; Benjamin [10]; Hunter and

Vanden-Broeck [50]). For the ferromagnetic problem, we shall denote this critical

value as B = B2. However, unlike gravity-capillary waves, there is also a change in

sign of the coefficient of the nonlinear term at B = B1 < B2. The implication is that

the KdV equation predicts depression solitary waves in the region B ∈ (B1, B2), and

elevation waves for B ∈ (1, B1) and B > B2.

Blyth and Părău [13] (referred to as BP thoughout) performed a numerical in-

vestigation of solitary wave solutions to the one-layer model in the fully nonlinear

regime for arbitrary values of d. They found that, for 1 < B < B1(d), solitary waves

bifurcating from zero amplitude are elevation waves, while for B1(d) < B < B2(d)

these solutions are depression waves. This is in good agreement with Rannacher

& Engel’s KdV equation, who found B1 = 3/2 and B2 = 9 when d = 0. Time

dependent computations on solutions of this type, based upon Taylor series expan-

sions of Dirichlet to Neumann operators, are considered by Guyenne and Părău [47].

Furthermore, BP also found branches of depression solitary waves bifurcating from

non-zero amplitude for 1 < B < B1, and likewise elevation solitary waves bifurcat-

ing from non-zero amplitude for B1 < B ≤ 2. This is rather surprising, since such

bifurcations have not been found for two-dimensional gravity-capillary waves.

For B < B2, the linear dispersion relation c(k) is monotonic increasing, where c is



Chapter 5. Steady waves on an axisymmetric ferrofluid jet 87

the wavespeed and k the wavenumber. WhenB > B2, a minimum appears. BP found

no pure solitary waves (waves with monotonic decay in the far-field) in this regime.

They instead found solitary wave packets, which bifurcate from the minimum of the

dispersion relation. These waves are described at small amplitude by a Nonlinear

Schrödinger Equation, recently derived by Groves and Nilsson [45] for the one-layer

model under the assumption that d = 0. Groves and Nilsson also proved the existence

of a variety of solitary wave solutions for this model. When there is a minimum, as

well as solitary wave packets, one also expects to find generalised solitary waves.

These are solitary waves characterised by a wave-train of ripples in the far-field.

Such solutions have been found for gravity-capillary waves (for example, Hunter and

Vanden-Broeck [50]). In this chapter, we compute numerically solutions of this type

for the ferrofluid jet. It is found that, for all parameter values tested, the far-field

of the solution is never flat along the branches of generalised solitary waves. This is

checked by showing that the values of the curvature of the streamlines are non-zero

in the far-field. This was found to be the case for two-dimensional gravity-capillary

waves in the numerical investigation of Champneys et al. [20], and for hydroelastic

waves by Gao and Vanden-Broeck [37]. Since no pure solitary waves are found when

B > B2, the KdV equation does not accurately predict the behaviour of nonlinear

solutions in this regime.

In this chapter, we extend the numerical investigation of BP by computing gen-

eralised solitary waves and periodic waves for the one-layer model. Furthermore,

we adapt the numerical method to allow for two flow domains, and compute solu-

tions for the two-layer model. Steady periodic, solitary and generalised solitary wave

solutions are found.

The chapter is organised as follows. In section 5.2, we formulate the problem. In

section 5.3, we derive the linear dispersion relation for the problem. In section 5.4,

we describe the numerical method used to compute solutions. In section 5.5, the
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range of possible static solutions (c = 0) is discussed. In section 5.6, the results of

the numerical investigation are presented. Section 5.7 is a conclusion.

5.2 Formulation

We consider an axisymmetric column of ferrofluid with constant density ρ1 and

magnetic susceptibility χ1, coating a copper rod of radius d. We choose the cylin-

drical coordinate system (x, θ, r) such that x points along the rod, r is the radial

coordinate, and θ is the azimuthal coordinate. The ferrofluid is surrounded by a

non-magnetisable fluid (χ2 = 0) of density ρ2. The interface is given by r = η(x, t),

the mean radius of which is denoted R. Denote the velocity fields in the ferrofluid

and surrounding fluid as u1 = (u1, v1) and u2 = (u2, v2) in (x, r) respectively. The

system is contained inside a fixed cylindrical container of radius D (see figures 5.1

and 5.2). We note that in the experiments of Arkhipenko et al. [6] and Bourdin et al.

[15], the fluids were contained in a rectangular box. However, since axisymmetric

interfaces were witnessed, the box must have been of a sufficient size to not destroy

the axisymmetry of the problem. Therefore, comparisons between the experiment

and the model presented here can be made by considering large values of D. This is

discussed further in section 5.7.

A current I is passed through the copper wire. This induces a purely azimuthal

external magnetic field, given by

Hext = I/(2πr)eθ, (5.1)

where eθ is the unit vector in the clockwise azimuthal direction. We define the

magnetic fields in the ferrofluid and the freon as H1 and H2 respectively. We

assume the linear magnetization law, such that the magnetisation in each domain

Mi satisfiesMi = χiHi. Since the freon is non-magnetisable, we have thatM2 = 0.
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Figure 5.1: Formulation in cylindrical coordinates.

Figure 5.2: Three-dimensional visualization of the problem

The magnetic flux density Bi is given by

Bi = µ0

(
Hi +Mi

)
= µ0(1 + χi)Hi, (5.2)

where µ0 is the magnetic permeability of free space. Inside the ferrofluid, the fer-

romagnetic nanoparticles are too far apart to support electrical currents ([74] §3.1).

Hence, we have that the magnetic field satisfies the magnetostatic equations with no

current charge density (Rosensweig [74] §3.1). Therefore, Maxwell’s equations state

that

∇×Hi = 0, ∇ ·Bi = 0. (5.3)

Equations (5.2) and (5.3) imply that Hi is an irrotational and incompressible vector

field. Hence, we can write Hi = −∇li, where li is a scalar potential that satisfies

Laplace’s equation, given in this instance by
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∇2li =
∂2li
∂r2

+
1

r

∂li
∂r

+
∂2li
∂z2

+
1

r2

∂2li
∂θ2

= 0. (5.4)

Consider a boundary between two mediums. Denote the values of H on either side

of the boundary as Ha and Hb (and likewise for B). Then the boundary conditions

on H and B are given by (Rosensweig [74] §3.2)

(Ha −Hb)× n̂ = 0, (Ba −Bb) · n̂ = 0, (5.5)

where n̂ is the normal vector of the boundary. When the boundary is axisymmetric,

we have that n̂ = êr, where êr is the unit vector in the radial direction. Hence,

under the assumption that the interface r = η(x, t) is axisymmetric, the system of

equations governing the magnetic fields becomes

∇2l1 = 0, for d < r < η(x, t), (5.6)

∇2l2 = 0, for η(x, t) < r < D, (5.7)

l1 = − Iθ
2π
, on r = d, (5.8)

l1 = l2, on r = η(x, t), (5.9)

l2 = − Iθ
2π
, on r = D. (5.10)

This system has a solution, given by l1 = l2 = −Iθ/2π. The assumption of an ax-

isymmetric interface has resulted in a decoupling of the magnetostatic problem from

the hydrodynamical problem. The decoupling of Maxwell’s equations is a dramatic

simplification of the mathematics of the model.

The normal stress balance on an interface where one medium is magnetisable and

the other is not (Rosensweig [74] §5.2) is given by

P1 = P2 + Tκ− µ0

2
(M1 · n̂)2 . (5.11)
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Here, P1 and P2 are the pressures in the ferrofluid and outer fluid respectively, T the

surface tension, and κ the mean curvature, given by

κ =
1

η

(
1 +

(
∂η

∂x

)2
)−1/2

− ∂2η

∂x2

(
1 +

(
∂η

∂x

)2
)−3/2

. (5.12)

Note that since M1 is azimuthal, the pressure jump associated with the magnetic

field is zero.

We consider a wave of unchanging form with wavelength λ and celerity c. Under

the assumption that the flows in either region are irrotational and incompressible,

both velocity fields can be written in terms of a velocity potential u1, 2 = ∇φ1,2,

where φ1 and φ2 satisfy the Laplace equation:

∇2φi = 0, i = 1, 2, (5.13)

in their respective flow domains. We assume the wave is symmetric about the point

φ1 = φ2 = 0. We require no normal flow through the rod and outer cylinder, that is

∂φ1

∂r
= 0 for r = d, (5.14)

∂φ2

∂r
= 0 for r = D. (5.15)

The Bernoulli principle (Rosensweig [74] §5.2) satisfied on the interface gives

∂φ1

∂t
− ρ∂φ2

∂t
+

1

2

(
q2

1 − ρq2
2

)
+

1

ρ1

(P1 − P2)− µ0χ1I
2

4π2ρ1

1

2r2
= Ĉ, (5.16)

where qi = |∇φi|, ρ = ρ2/ρ1, and Ĉ is the Bernoulli constant. We take R as the

reference length and
√
T/(Rρ1) as the reference velocity. Making use of equation
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(5.11), we find that the non-dimensionalised Bernoulli equation is

∂φ1

∂t
− ρ∂φ2

∂t
+

1

2

(
q2

1 − ρq2
2

)
+ κ− B

2r2
= C, (5.17)

where the magnetic Bond number B is defined as

B =
µ0χ1I

2

4π2RT
. (5.18)

The magnetic Bond number is a ratio of magnetic to surface tension forces. It is

shown in section 5.3 that the stability of linear perturbations is determined by B.

Finally, the kinematic boundary condition on the interface is given by

∂η

∂t
+
∂η

∂x

∂φi
∂x

=
∂φi
∂r

, i = 1, 2. (5.19)

Note that for solitary waves with a flat far-field, instead of fixing the mean of η to

unity, we fix η in the far-field to be unity. This choice of scaling gives rise to the

far-field condition

η → 1, as x→ ±∞. (5.20)

It is left to solve the governing equation (5.13) for φ1 and φ2 in their respective

flow domains, subject to boundary conditions, (5.14), (5.15), (5.17) and (5.19). We

consider two values of ρ, that is ρ = 0 (one-layer model) and ρ = 1 (two-layer model).

For the one-layer model, we ignore the outer boundary r = D. This is equivalent to

taking D → ∞. This removes the requirement to solve for φ2, since the equations

concerning just φ1 form a closed system (no φ2 terms are present in equation (5.17)

when ρ = 0).

In the following section, we derive the linear dispersion relation for the system.
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5.3 Linear theory

Consider a small perturbation to the undisturbed jet of the form

φ1 = ε
∞∑
m=1

Fm(r)eimk(x−ct), φ2 = ε
∞∑
m=1

Gm(r)eimk(x−ct). (5.21)

where |ε|<< 1, and Fm and Gm are unknown functions of r. Note that if c2 > 0, the

solution is stable, while if c2 < 0, the amplitude grows exponentially in time and the

solution is unstable. Ignoring terms of O(ε2), and solving the linearised system, one

finds the equation for the free surface,

η = 1 + C1ε

(
I1(k)− I1(kd)

K1(kd)
K1(k)

)
eik(x−ct) + c.c. (5.22)

Here, In and Kn are the modified Bessel functions of the first and second kind of

order n, and C1 is an arbitrary constant. Equation (5.22) is a linear perturbation of

wavenumber k, travelling at speed c. Furthermore, we recover the linear dispersion

relation

c2 =
1

k
(
md

2

md
1
− ρm

D
2

mD
1

) (k2 − 1 +B
)
, (5.23)

where

md
1 = I1(k)K1(kd)−K1(k)I1(kd), md

2 = I0(k)K1(kd) + I1(kd)K0(k). (5.24)

Replacing all instances of d with D in the above equations gives mD
1 and mD

2 . If it

is the case that c(k) = c(nk) for some positive integer n ≥ 2, then the leading order

solution is given by

η = 1 + εC1

(
I1(k)− I1(kd)

K1(kd)
K1(k)

)
eik(x−ct)

+ εCn

(
I1(nk)− I1(nkd)

K1(nkd)
K1(nk)

)
eink(x−ct). (5.25)
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This phenomenon is called Wilton ripples, and is only possible when a minimum

occurs in the dispersion relation (corresponding to B > B2). Higher mode resonance

was originally derived for gravity-capillary waves by Wilton [93]. One would expect

to find at higher order a solvability condition for Cn. However, the algebra quickly

becomes complicated, and instead these solutions are recovered via fully nonlinear

computations, as seen in section 5.6.

Consider the denominator in equation (5.23). Modified Bessel functions of the

first kind In(z) of all orders are monotonically increasing and positive for z ≥ 0 (see

Abramowitz and Stegun [1]). Meanwhile, modified Bessel functions of the second

kind Kn(z) of all orders are monotonically decreasing, but remain positive, for z ≥ 0.

These properties ensure that md
2 > 0 and mD

2 > 0. Furthermore, we find the relation

mp
1 = I1(k)K1(kp)−K1(k)I1(kp)


> 0 for 0 < p < 1,

< 0 for p > 1.

(5.26)

Hence, since d < 1 < D, we have that md
2/m

d
1 > 0, while mD

2 /m
D
1 < 0. Therefore,

given ρ ≥ 0, the denominator in equation (5.23) is always positive, meaning that the

stability of the solution depends on k and B. We find that solutions with wavenumber

k are stable if

k2 > 1−B. (5.27)

This is true for all k if B > 1. Note that we recover the stability condition found by

Rayleigh [73] by taking B = 0 (that all solutions with k < 1 are unstable).

The right hand side of equation (5.23) tends to infinity as k →∞. Hence, whether

the dispersion curve has a minimum or not can be determined by considering the

gradient of c2 for small k. A negative gradient for small k corresponds to the existence
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of a minimum. Denoting the dispersion relation when ρ = 0 as cρ, we find that

c2
ρ =

1

k

(
md

1

md
2

)(
k2 − 1 +B

)
. (5.28)

Taking a small k expansion of the above equation, and differentiating with respect

to k, one gets

2cρ
dcρ
dk
≈ 1

8

[(
−1 + 4d2 − 3d2 + 4d4 log d

)
(B − 1) + 8

(
1− d2

)]
k +O(k3). (5.29)

Hence, there exists a minimum in cρ(k) given that the coefficient of k in the above

equation is negative. This is the case if B > B2, where B2 has the following depen-

dence on d:

B2(d) = 1 +
8 (1− d2)

1− 4d2 + 3d4 − 4d4 log d
. (5.30)

This expression is in agreement with equation (3.5) in the paper of BP. We see in

section 5.6 that the characteristics of the solution space changes upon the existence

of a minimum.

When ρ = 1, we now expect B2 to have dependence on both d and D. In the

case when D →∞, BP demonstrated that B2 = 1. For a finite value of D, one can

follow the same argument given above for cρ to find that

B2(d,D) = 1− E

F
, (5.31)

where

E =
1
2
(1− d2)(D2 − 1)

D2 − d2
, (5.32)

F =
1

8 (D2 − d2)2 [(D2 − 1)(1− d2)(D − d)(D + d) + 2d4
(
D2 − 1

)2
log d

− 2D4
(
d2 − 1

)2
logD]. (5.33)
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Figure 5.3: The two flow domains in potential space. The interface between the two
fluids is in bold, and corresponds to the same streamline in physical space.

This agrees with the observation of BP , since E/F ∼ (logD)−1 as D →∞. We will

find it useful to denote the value of c at k = 0 as c0, and the minimum value of c

occurring at k = km to be denoted cm. When B < B2, c0 = cm. In the following

section, we describe the numerical method used to solve the fully nonlinear problem.

5.4 Numerical scheme

We consider a wave of wavelength λ travelling with unchanging form at a con-

stant speed c. We remove time dependence by taking a frame of reference travelling

with the wave. We will use a finite difference scheme, similar to the one proposed in

chapter 4. We will first describe the method used to find solutions to the two-layer

model. This involves adapting the finite difference scheme to allow for two computa-

tional domains, as described below. Following this, we state the simplifications made

to the method to solve the one-layer problem.

As before, the idea is to solve the problem by finding the physical variable r

in the two potential spaces (φ1, ψ1) and (φ2, ψ2), where ψ1 and ψ2 are the Stokes

streamfunctions, defined by

ui =
1

r

∂ψi
∂r

, vi = −1

r

∂ψi
∂x

, i = 1, 2. (5.34)
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Lines given by ψi = constant are everywhere parallel to the velocity vector ui, and

are orthogonal to lines of constant φi. Without loss of generality, we choose to define

ψ1 = d2c/2 = Qd on r = d, ψ1 = ψ2 = Q on the interface, and ψ2 = QD on r = D.

We note that, in the case of a flat free surface (uniform stream solution), Q = c/2

and QD = cD2/2. Integrating (5.34) with ui = c and vi = 0, the uniform stream

solution is found to be

r =


√

2ψ1

c
, if Qd ≤ ψ1 ≤ Q,√

2ψ2

c
, if Q < ψ2 ≤ QD.

(5.35)

This encourages the coordinate transformations ψ1 = t2 and ψ2 = s2 to better

distribute streamlines between the interface and the boundaries. This choice of

transformation means that taking equally spaced points in the discretisation of t and

s results in equally spaced streamlines in the computation of the uniform stream

solution. Seeking a periodic wave of wavelength λ, symmetric about φ1 = φ2 = 0,

the ferrofluid and surrounding fluid flow domains are mapped onto the rectangular

domains Ω1 and Ω2 respectively, where

Ω1 =
{
φ1 ∈ [−cλ/2, 0], t ∈

[
Q

1/2
d , Q1/2

]}
, (5.36)

Ω2 =
{
φ2 ∈ [−cλ/2, 0], s ∈

[
Q1/2, Q

1/2
D

]}
. (5.37)

Here, we only consider the flow domains over half a wavelength, making use of the

assumed symmetry. The flow domain in the potential space is shown in figure 5.3.

Seeking r as a function of the independent variables (φ1, ψ1) in Ω1 and (φ2, ψ2) in

Ω2, we find that equation (5.13) under the mapping becomes

r3 ∂
2r

∂ψ2
i

+ r
∂2r

∂φi2
+ r2

(
∂r

∂ψi

)2

−
(
∂r

∂φi

)2

= 0. (5.38)
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Furthermore, one can express qi = |∇φi| and the mean curvature κ evaluated on the

interface as functions of φi, using the identities

qi(φi) =
(
u2
i + v2

i

)1/2
=

((
∂r

∂φi

)2

+ r2

(
∂r

∂ψi

)2
)1/2

, (5.39)

κi(φi) = −q3
i

(
r
∂r

∂ψi

∂2r

∂φ2
i

−
(
∂r

∂φi

)2
∂r

∂ψi
− r ∂r

∂φi

∂2r

∂φiψi

)
+

∂r

∂ψi
qi. (5.40)

Note that κ1 here denotes the mean curvature as a function of φ1, and likewise for

κ2. These functions correspond to the same curve in physical space (the interface),

and hence have the same value at given points along the interface, but are different

functions due to the discontinuity in tangential velocities across the interface. We

discretise Ω1 and Ω2 into equidistant points with M points in φ1 and φ2, N points

in t, and P points in s as follows

φ1i = φ2i = − cλ

2(M − 1)
(M − i), i = 1, · · · ,M, (5.41)

tj = Q
1/2
d +

(
Q1/2 −Q1/2

d

) j − 1

N − 1
, j = 1, · · · , N, (5.42)

sj = Q1/2 +
(
Q

1/2
D −Q

1/2
) j − 1

P − 1
, j = 1, · · · , P. (5.43)

We satisfy the governing equation (5.38) at the interior nodes of Ω1 and Ω2, find-

ing the values of derivatives with finite difference approximations. We use second

order central differences, making use of the symmetry by imposing ∂r/∂φi = 0 at

φi = 0 and φi = −cλ/2 (for i = 1, 2). On the interface, we use second order back-

wards differences to compute derivatives with respect to t, and forward differences

for derivatives with respect to s. Derivatives with respect to ψ1 are given in terms

of derivates with respect to t via the identities

∂

∂ψ1

=
1

2t

∂

∂t
, (5.44)
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∂2

∂ψ2
1

=
1

4t2

(
∂2

∂t2
− 1

t

∂

∂t

)
. (5.45)

The same is done for ψ2 and s. Equations (5.14) and (5.15) can be written as

r(φ1, Qd) = d, r(φ2, QD) = D, (5.46a,b)

respectively. Finally, we satisfy the dynamic boundary condition (5.17) on the inter-

face in both Ω1 and Ω2. For example, consider (5.17) satisfied in Ω1. Making use of

(5.39), this gives

1

2

([(
∂r

∂φ1

)2

+ r2

(
∂r

∂ψ1

)2
]
− ρ

[(
∂r

∂φ2

)2

+ r2

(
∂r

∂ψ2

)2
])

+κ1−
B

2r2
= C, (5.47)

where κ1 is computed using (5.40). Note that the time dependent term is removed

due to the moving frame of reference. We see that we require ∂r/∂φ2 and ∂r/∂ψ2

as functions of φ1 on the interface to solve this equation in Ω1. Similarly, we require

∂r/∂φ1 and ∂r/∂ψ1 as functions of φ2 to solve it in Ω2. This is done by integrating

the identities

∂x

∂φi
= r

∂r

∂ψi
, i = 1, 2, (5.48)

on the interface to find x as a function of φ1 in Ω1, and x as a function of φ2 in Ω2.

We then interpolate in x to find φ2 as a function of φ1, since the interface is the same

in either domain. An unfortunate consequence of the interpolation procedure is that

it requires the interface η to be a single valued function of x, meaning the method

will not work for overhanging waves.

Fixing a value of B, the system above provides M(P +N) equations for M(P +

N)+4 unknowns (r at each meshpoint, C, c,Q and QD). We obtain three additional
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equations by fixing the amplitude A of the wave,

A = r(0, Q)− r (−cλ/2, Q) , (5.49)

and the wavelength λ,

λ =

[ˆ 0

−cλ
r
∂r

∂ψ1

dφ1

]
ψ1=Q

, λ =

[ˆ 0

−cλ
r
∂r

∂ψ2

dφ2

]
ψ2=Q

. (5.50a,b)

Finally, we fix the mean displacement of the interface (R = 1) by writing

[ˆ 0

−λc/2
(r − 1)r

∂r

∂ψ1

dφ1

]
ψ1=Q

= 0. (5.51)

In some instances, it is convenient to fix instead the speed c and allow the amplitude

A to be an unknown. The discrete system of M(P + N) + 4 equations for M(P +

N)+4 unknowns can be solved numerically via Newton’s method. We terminate the

iterations in Newton’s method once the L∞-norm of the residuals is of order 10−11.

When considering pure solitary waves, the far-field condition (5.20) is equivalent

to demanding r tends to the uniform stream solution (5.35) as φi → ±∞. Further-

more, the far-field condition fixes the Bernoulli constant C = (1−ρ)c2/2+1−B/2 (see

equation (5.17)) and the fluxes Q = c/2 and QD = cD2/2. In such circumstances,

we replace the governing equation (5.38) with equation (5.35) at the meshpoints

φ11 = φ21 = −cλ/2. Again, we obtain M(N + P ) equations from the field equation

and boundary conditions. We obtain an additional equation by fixing the amplitude

of the wave, which for solitary waves we choose to be the value of r on the interface at

the point of symmetry. This results in M(P +N)+1 equations for the M(P +N)+1

unknowns (r at each meshpoint, and c). We must take λ large enough such that the

solution becomes identical within graphical accuracy to further increase in λ. This

is common practice when computing solitary waves (for example, see Byatt-Smith
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and Longuet-Higgins [19]), since computationally we cannot solve for infinitely large

domains. As with the Taylor bubbles in chapter 4, it is found the errors associated

with domain truncation are negligible given a suitably large value of λ. The value

required depends on the amplitude of the solution. We found it difficult to compute

solitary waves of very small amplitude (around A < 0.01), since the waves become

broader as the amplitude decreases further.

The numerical scheme described above is used to find solutions for the two-layer

model. When finding solutions for the one-layer problem, we do not need to solve for

values of r in the domain Ω2, or the value QD. For example, for one-layer periodic

waves, there are MN + 3 unknowns (r at each meshpoint in Ω1, C, c, and Q). We

solve the field equation (5.38) at interior nodes of Ω1. Furthermore, we satisfy (5.47)

with ρ = 0 on ψ1 = Q, as well as equations (5.46a), (5.49), (5.50a) and (5.51). This

results in a closed discrete system of MN + 3 equations for MN + 3 unknowns.

Furthermore, since we do not require values from Ω2 to solve equation (5.47) in Ω1,

we no longer need to interpolate values in x, as is done in the two-layer problem.

This allows us to compute overhanging solutions for the one-layer model.

Typical mesh sizes for periodic waves are M = 200, and N and P are chosen

such that differences in t are approximately equal to differences in s. For example,

with d = 0.5 and D = 2, we took N = 30 and P = 60. For solitary waves, larger

values of M are considered. Meshes of this size are possible due to the sparsity of the

Jacobian matrix. Furthermore, for more extreme profiles, it can be useful to perform

the coordinate transforms

φ = −cλ(1− α2)/2, or φ = −cλα2/2, (5.52)

on either φ1 or φ2 (or both), and then take equally spaced points in α ∈ [0, 1]. The

first transformation condenses points close to φ = −cλ/2, while the second condenses

points near φ = 0. The transformation is chosen such that the distribution of points
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is more uniform. There are less points in areas of small velocities if equally spaced

points in φ are used.

In the following section, we discuss the possible static configurations of the prob-

lem.

5.5 Static Profiles

It is helpful to discuss static configurations of this problem (c = 0), since many of

the dynamic solution branches terminate on static profiles. Setting all time deriva-

tives and velocities to zero in equation (5.17), it is left to find η that satisfies

κ− B

2η2
= C, (5.53)

where κ is the mean curvature. BP solved equation (5.53) by parameterising the

problem in terms of arclength s, and expressing it as a two-dimensional conservative

system for the unknowns η and α, where α = tan ηx. This is given by

d

ds

η
α

 =

 sinα

cosα/η −B/(2η2)− C

 . (5.54)

They found that the energy, E, given by

E = η cosα− C

2
η2 − B

2
log η, (5.55)

is a conserved quantity. Curves of constant E correspond to trajectories in the (α, η)

plane. Full details can be found in section 4 of BP. There are four possible fixed

points of the system, given by

(2nπ, β+) , (2nπ, β−) , ((2n+ 1)π, γ+) , ((2n+ 1)π, γ−) . (5.56)
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Figure 5.4: Curves of constant E in the (α, η) plane. All figures are for B = 1.25.
The values of C are (a) C = −1, (b) C = 0.2, (c) C = 0 and (d) C = 2. The critical

points are labeled with crosses.

where

β± =
1±
√

1− 2CB

2C
, γ± =

−1±
√

1− 2CB

2C
. (5.57)

Since we only consider solutions with η ≥ 0, assuming B > 0, the existence of these

fixed points can be broken down into four cases.

In the first case, when C < 0, we find that the fixed point (2nπ, β−) is a saddle

point, and the fixed point ((2n + 1)π, γ−) is a centre. The other two fixed points

are unphysical, and are ignored. Figure 5.4a shows trajectories in the (α, η) space.

The two heteroclinic orbits (solid lines) connecting the saddle points at (2nπ, β−)

and (2(n+ 1)π, β−) correspond to two solitary waves (one elevation, one depression)

with radial displacement β− in the far-field. These solutions self-intersect, and are

hence unphysical. The circular orbits (dotted lines) contained inside the heteroclinic

orbits correspond to smooth (here meaning not self-intersecting) periodic profiles,

while the 2π periodic curves (dashed lines) correspond to self-intersecting periodic
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Figure 5.5: The dashed curves are profiles of static configurations. In figure 5(a),
this static solution corresponds to a 2π periodic curve in the (α, η) space, while
in figure 5(b), it corresponds to a homoclinic orbit. The dotted curves we take as
boundaries below (figure (a)) or above (figure (b)) the profile. The black curves show
the modified solution, taken by reflecting the relevant part of the dashed profile.

profiles.

Next, when 0 < C < 1
2B

, we find that the fixed point (2nπ, β−) is again a saddle

point, and the fixed point (2nπ, β+) is a centre. Figure 5.4b is an example of the (α, η)

space. The homoclinic orbit connecting the saddle point to itself corresponds to a

smooth elevation solitary wave profile. The heteroclinic orbits connecting the saddle

points are again self-intersecting solitary waves. Circular orbits correspond to smooth

periodic profiles, and 2π periodic curves are self-intersecting periodic solutions.

When C = 0, we find that the only fixed point is the saddle point (2nπ, β−),

where β− = B/2. Figure 5.4c is a typical phase space. There exist heteroclinic

orbits connecting the saddle points with η < β−, as is seen in both the above cases.

However, the curves exiting the saddle point with η > β− form neither a homoclinic

orbit back to the same critical point, nor does it form a heteroclinic orbit to the

saddle points at α = 2nπ ± 2π. Instead, they tend to η → ∞ at α = 2nπ ± π/2.

The dotted lines also approach α = π/2 as η →∞. The dashed curves beneath the

saddle point are 2π periodic curves.

Finally, when C > 1/(2B), there are no physical fixed points, and all trajectories

are 2π periodic curves in the (α, η) space, corresponding to self intersecting periodic

profiles. These are shown by the dashed curves in figure 5.4d.
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When seeking solitary waves which satisfy equation (5.20), equation (5.53) (when

satisfied in the far-field) implies that C = 1−B/2. When this is the case, the saddle

point (2nπ, β−) satisfies β− = 1, which corresponds to the far-field of the solitary

wave. When B > 2, the phase space is qualitatively similar to that of figure 5.4a

(i.e. the C < 0 phase space). The elevation and depression solitary waves are both

self intersecting. When 1 < B < 2, the phase space is qualitatively similar to that

of figure 5.4b. Within this parameter regime, there exists elevation solitary waves

which do not self intersect, which as mentioned above is given by the homoclinic

orbit. An interesting question is what happens in the limit as B → 2. The value of

β+ is

β+ =
B

2−B
. (5.58)

Hence, as B → 2, the value of β+ becomes infinitely large. It follows that the

amplitude of the homoclinic orbit surrounding the center, which we shall denote

ηmax, also becomes infinitely large in the limit B → 2. Meanwhile, as B → 1, we

have that β+ → 1. Hence, there exists a family of smooth static elevation solitary

waves for B ∈ (1, 2), whose amplitude ηmax ∈ (1,∞) is a monotonically increasing

function of B. This will be useful to note later when discussing in what parameter

regimes we expect to see static solitary waves.

All of the solutions described above are one-dimensional profiles that satisfy (5.53)

and η ≥ 0 with c = 0. We integrate for values of x along the curve of constant E via

the integral

x =

ˆ

E=const

cotα dη, (5.59)

to obtain the profile in the (x, η) space. This integral is evaluated numerically using

the trapezoidal rule.

The solutions do not take into consideration any boundaries at r = d and r = D.

As mentioned by BP, it is of interest to note that we can interpret the profiles
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even if they intersect a boundary: the solutions can be seen as profiles which touch a

boundary. We then consider the profile up to the point of contact, where the solution

is reflected. This is demonstrated in figure 5.5, where two examples of a static profile

(dashed curves) crossing a boundary (dotted curve) from above and below (figure

(a) and (b) respectively) is interpreted this way. We only consider the portion of the

profile satisfying d ≤ η ≤ D. In figure (a), the dashed profile self-intersects, and is

hence not physical without the inclusion of a boundary. The dashed profile of figure

(b) is a static elevation solitary wave, and is a valid solution without the boundary.

We note that these modified solutions disregard the complicated physical properties

of contact angles (for example, see Batchelor [9] §1.9). Despite this, the solutions

are still of importance to consider, since many dynamic solution branches approach

such static limiting configurations, as shown in section 5.6.

In the next section, we discuss the results found using the numerical procedure

introduced in section 5.4 for non-static solutions, and how they relate to the static

solutions discussed above.

5.6 Results

A thorough numerical investigation was performed by BP on the one-layer model

for solitary waves. In this section, we find new results for periodic and generalised

solitary waves. We will repeat a discussion of the results of BP, since it will help to

explain the solution space of the two-layer model, where there are many similarities.

We differentiate between two distinct cases, when there does not exist a minimum

in the dispersion curve (B < B2) and when there does exist a minimum (B > B2),

describing the solution space in each instance. Below, we first consider B < B2.
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Figure 5.6: Periodic solution branches with λ = π and d = 1.5/3.8. Figure (a) shows
one-layer solution branches, while figure (b) is for two-layer solution branches with
D = 2. In both cases, the B = 1 branch terminates on a static profile which touches
the bottom boundary r = d. The B = 3 branch for ρ = 0 overturns and ultimately
forms a trapped bubble. The limiting configuration of the B = 3 branch for ρ = 1 is

unknown.

5.6.1 B < B2

5.6.1.1 One-layer

We begin by considering the solution space for the one-layer model. Using a linear

solution (5.22) as an initial guess in the Newton’s iterations, we are able to use the

numerical method described in section 5.4 to compute periodic solutions. Once on a

solution branch, we can use the method of continuation to compute larger amplitude

solutions. In figure 5.6a, we show some solution branches for periodic waves for the

one-layer model. These branches have the value d = 1.5/3.8, which is the value of

d used in the experiments of Bourdin et al. [15] for periodic waves. We computed

branches for a variety of parameter values to determine the effect the parameters

have on the solutions. Our findings are presented below.

The solution branches terminate in a variety of ways. It can be the case that,

given B and d are sufficiently small, the solution branch terminates on a smooth static

profile. These static solutions were computed for B = 0 by Vanden-Broeck et al.

[90]. We cannot use the numerical scheme described in section 5.4 to compute the

static profiles, since the method assumes the existence of a velocity field. However,
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Figure 5.7: Figure (a) shows a comparison between a one-layer solution found for
c = 0.02 (solid curve) and a smooth static profile (crosses). Only half a wavelength
is shown. The solution has parameter values d = 0, B = 0.05 and λ = 4. Figure
(b) shows the trajectories in the (α, η) space. The dashed curve is the solution given
by the crosses in figure (a). In figure (b), the cross is a saddle point and the circle a

centre.

one can continue along the solution branches up to small values of c. We can then

extrapolate to find an approximate value of the Bernoulli constant C for c = 0. This

allows us to find the set of static configurations in the (α, η) space associated with

the given Bernoulli constant, as described in section 5.5. Comparisons can then be

made with the small c profile and the static profile obtained by integrating along the

curve of constant energy E, where E can be obtained by evaluating equation (5.55)

at some meshpoint on the interface of the small c solution. Periodic smooth static

profiles are orbits in the (α, η) space. Figure 5.7a is a comparison between a one-

layer solution with parameter values B = 0.05, λ = 4, d = 0 and c = 0.02, and the

static profile obtained by integrating along the corresponding trajectory in the (α, η)

space (the (α, η) space is shown in figure 5.7b). The agreement between the two

profiles obtained via different methods provides a check on our numerical method,

and demonstrates that the solution branches can terminate on static profiles. These

smooth static configurations only occur for small values of B. For example, with

the parameter values of the solution shown in figure 5.7, but with B = 0.1, it is

found that the solution branch instead terminates on a static profile which touches

the bottom boundary. This is described below.

As mentioned in section 5.5, static profiles can be interpreted as solutions which
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Figure 5.8: Figure (a) is a comparison between the solution corresponding to the
square in figure 5.6a (given by the solid curve) and its corresponding c = 0 solution
(dashed curve). Figure (b) shows a blow up of the behaviour close to the point of

contact for solutions with phase speeds c = c1 = 0.08 and c = c2 = 0.05.

touch a boundary. It is found that this configuration is a limiting case for many

solution branches. Consider one-layer periodic solutions for varying values of d. For

a fixed B, if d is large enough, as we continue along a solution branch, the value of c

decreases as the solution forms a profile which gets very close to the boundary r = d.

A branch which terminates in such a manner is the B = 1 branch from figure 5.6a.

The final solution computed along the branch (shown by the square in the figure) is

a solution for c = 0.05. Figure 5.8a shows the profile of this solution. Computing

a static profile with the same value of C and E results in a self-intersecting profile,

shown by the dashed curve in the figure. The static profile agrees well with the

c = 0.05 solutions up to where the static solution intersects the boundary. Figure

5.8b shows a blow up of this region. The two solid curves are solutions with the

phase speeds c = c1 = 0.08 and c = c2 = 0.05. The image shows that as the

speed is decreased further, the agreement between the curves and the static profile

improves, and the thickness of the layer of fluid at the point of intersection continues

to decrease. This provides numerical evidence that as c → 0, the dynamic profile

approaches a static solution which touches the bottom boundary.

The final possible limiting configuration of one-layer periodic solution branches
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Figure 5.9: Periodic solution corresponding to the cross in figure 5.6 a. Figure (a)
shows one wavelength of the solution. Figure (b) is a blow up of the trapped bubble.

are profiles with a trapped bubble. Such branches occur for larger values of B than

the branches which terminate in static solutions. The B = 3 branch of figure 5.6a is

one such example, and the profile of the limiting configuration solution (correspond-

ing to the cross in figure 5.6a) is shown in figure 5.9. This limiting configuration

has been found to occur for two-dimensional capillary and gravity-capillary waves,

as found by Crapper [23], Kinnersley [53] and Hunter and Vanden-Broeck [50]. Such

solutions were also found for axisymmetric capillary waves (B = 0) by Vanden-Broeck

et al. [90]. Continuing along the branch past the trapped bubble solutions, we find

solutions with self intersecting interfaces. Such solutions are not physically valid. It

may be possible to extend the solution branch by allowing the pressure inside the

bubble to vary, as was done by Vanden-Broeck and Keller [89] for two-dimensional

capillary waves. However, difficulties are experienced, since this introduces a discon-

tinuity in equation (5.47), and hence in the derivatives of r, which in turn would

require a more sophisticated treatment in a finite difference scheme. These intricate

overturning solutions require a larger number of meshpoints to retain accuracy. A

discussion of the numerical errors can be found in section 5.6.3.

In section 5.3, we saw that when B > 1, all wavelengths are stabilized. This

allows for the existence of pure solitary waves. Starting from small amplitude, as we

increase λ, the waves form longer troughs and shorter crests. In the limit λ→∞, the
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solutions approach a solitary wave with a flat far-field. These solitary wave branches

bifurcate from the uniform stream at c0. Assuming d = 0, Rannacher and Engel [72]

obtained a KdV equation which approximates such solutions for small amplitude.

Fully non-linear computations of the solutions with arbitrary d were done by BP.

They found that, in agreement with the KdV equation, there exists critical values

B1(d) and B2(d) such that when B < B1, the solitary waves are of elevation, while

if B1 < B < B2, the solutions are depression waves. These waves get broader as

the amplitude goes to zero, making it computationally impossible to compute the

branches all the way to the bifurcation point.

As well as the solitary waves bifurcating from the uniform stream, BP found

solitary waves solutions which bifurcate from finite amplitude. For 1 < B < B1,

these branches are waves of depression. The amplitude from which these solution

branches bifurcate decreases asB increases up toB1. Meanwhile, forB1 < B < 2, the

finite amplitude bifurcating branches are elevation solitary waves. The amplitude at

which these branches bifurcates decreases as B approaches B1 from above. It would

appear that the bifurcating amplitude of these two branches approaches zero as B

tends to B1. This is further supported by the analysis of Groves and Nilsson [45],

who for d = 0 derived a cubic KdV equation (see equations (1.4)-(1.5) in their paper)

for the model when B is close to B1. The equation predicts that both elevation and

depression waves exist in this region, both of which bifurcate from zero amplitude.

The numerical results of BP suggest that this is also true for non-zero values of d,

although difficulties in computing solution branches up to the point of bifurcation

due to wave broadening deny conclusive numerical evidence.

The existence of the finite amplitude bifurcating pure solitary waves is in stark

contrast with the gravity-capillary problem, where such solutions have not been ob-

served. Continuing the branches beyond the bifurcation point into large amplitudes,

BP found that depression waves terminate in either static profiles which touch the
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Figure 5.10: Periodic solution corresponding to the cross in figure 5.6b. Two wave-
lengths are shown. Streamlines in the ferrofluid are the black curves, while stream-
lines in the second fluid are the dashed curves. Not all streamlines have been plotted.
This is the largest amplitude solution computed on this solution branch. The branch

could not be computed further due to difficulties with overturning.

bottom boundary, or overturning waves with a trapped bubble, while elevation soli-

tary wave branches terminate in smooth static configurations. They also found that

the amplitude of the B = 2 elevation branch increases indefinitely. These results

make sense in light of the discussion in section 5.5. Reverse engineering the elevation

branches, by starting from a static solution and increasing c, we expect solutions in

the range 1 < B < 2 (the values for which static elevation solitary waves exist). The

B = 2 branch is a limiting case, where the end point of the branch is an elevation

wave of infinite amplitude. Meanwhile, no smooth static depression solutions were

found, and hence static depression waves must touch the bottom boundary.

5.6.1.2 Two-layer

Next, we shall discuss the solution space for the two-layer model when the dis-

persion relation is monotonic increasing. Again, starting from linear solutions, we

can use the method of continuation to compute periodic solution branches. Some

periodic solution branches are shown in figure 5.6b. These branches have the same

parameter values as the one-layer periodic branches of figure 5.6a, except for a den-

sity ratio of unity between the two fluids (since it is the two-layer model), and an
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Figure 5.11: Two-layer pure solitary wave branches with d = 1.5/3.3 and D = 2 for
B = 1.4 and B = 3. The dashed curves show the value of c0 for the two choices of B,
while the dotted curves correspond to the maximum possible value of the amplitude,
where the profile touches a boundary. The points (a) − (b) refer to the solutions

shown in figure 5.12.

additional outer boundary at r = D, where D = 2. The B = 1 branch, as with

the one-layer B = 1 branch, terminates on a static profile which touches the bound-

ary r = d. Decreasing the value of D, one finds the solution branches can also

terminate on static profiles which touch the upper boundary. For example, for the

B = 1 branch discussed above, taking the same parameter values but changing D to

D = 1.3 results in such a limiting configuration.

Next, consider the B = 3 branch. Due to the similarities between the one-layer

and two-layer model for the B = 1 model, one may expect this solution branch to

form overturning solutions, and eventually form a trapped bubble. Unfortunately,

as mentioned earlier, the numerical method described in section 5.4 cannot com-

pute overturning solutions for the two-layer model. This is due to the interpolation

procedure for values on the interface being performed in the x variable, for which

overturning solutions are not single-valued. One may be tempted to instead interpo-

late in the r variable, for which these solutions are single-valued. However, the code

is extremely sensitive to this method and fails to converge. We have computed the

B = 3 branch from figure 5.6b as far as computationally possible with the method.

The profile of this solution is shown in figure 5.10. We believe the solution will

overturn as one continues along the branch. However, a new numerical treatment



Chapter 5. Steady waves on an axisymmetric ferrofluid jet 114

-10 -5 0

1

1.2

1.4

1.6

1.8

2

-10 -5 0

0.6

0.8

1

Figure 5.12: Profiles corresponding to the points (a) and (b) in figure 5.11. They
approach static profiles which touch r = D and r = d respectively. The dashed

curves are static profiles which the solutions approach as c→ 0.

of the problem will be required to investigate these solutions. Overturning two-

dimensional gravity-capillary internal waves have been found in the recent numerical

and analytical investigations of Akers et al. [3].

For B > 1, we again expect to see pure solitary waves. Some solution branches

for d = 1.5/3.3 and D = 2 are shown in figure 5.11. It can be seen that for B = 1.4,

the elevation branch bifurcates from zero amplitude, while the depression branch

bifurcates from non-zero amplitude. The roles are reversed when B = 3, implying

B1 ∈ (1.4, 3) for the given values of d and D. Due to the existence of the upper

boundary r = D, the elevation branches can now terminate on static profiles which

touch the boundary. This is shown in figure 5.12a, where an elevation solitary wave

for c = 0.08 is shown to be in good agreement with a static profile that crosses r = 2.

This new limiting configuration means that, unlike for the one-layer model, there now

exists pure elevation solitary waves (bifurcating from finite amplitude) for values of

B > 2. One does not have to consider the case when there is no upper boundary for

two-layer pure solitary wave solutions, since BP showed that when D → ∞, there

exists a minimum in the dispersion curve for B > 1, removing the possibility of pure

solitary waves (it can be seen from equations (5.31)-(5.33) that B2 → 1 as D →∞).

A description of the solution space when there exists a minimum is presented in

the following section.
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Figure 5.13: One-layer solutions exhibiting higher mode resonance for λ = π and
d = 0. Only half a wavelength is shown. The values of B are B = 16.4, B = 21.7,
B = 27.2 and B = 32.8 while the values of n in equation (5.25) are n = 2, 3, 4, 5 for

figures (a), (b), (c), and (d) respectively.

5.6.2 B > B2

As stated previously, if B > B2, then a minimum occurs in the dispersion relation.

We will discuss the results for the one-layer and two-layer model simultaneously, since

the solution spaces in this regime are qualitatively similar. The only difference occurs

for overhanging solutions, where our inability to compute overhanging solutions for

the two-layer model means the limiting configurations of some two-layer solution

branches remain unknown. This is discussed below.

When there is a minimum in the dispersion curve, we see periodic solutions

exhibiting higher mode resonance, as described by equation (5.25). These solutions

exist for integer values of n > 1 when c(k) = c(nk), where c is given by (5.23). Fixing

a value of k and n, we can find a value of B such that this equality is satisfied. Using

these parameter values, we are able to compute solutions with Wilton ripples, as

shown in figure 5.13 for n = 2, 3, 4, 5. These solutions are for the one-layer model.

One can continue these branches of solutions into highly nonlinear regimes by further

increase of the amplitude. They form interesting profiles, where the depression of
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Figure 5.14: The limiting configuration of the solution branch obtained by continuing
the solutions of figure 5.13a and 5.13b to larger amplitude. Only half a wavelength

is shown. The inset shows the trapped bubble formed by each solution.
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Figure 5.15: Two one-layer long wave solutions with parameter values B = 13, d = 0,
c = 12.5 and η(0) = 1.045, and wavelengths λ = 65.8 (solid curve) and λ = 71.1
(dashed curve). It can be seen that the two profiles almost perfectly overlap, where

the longer solution has an additional periodic wave in the tail.

each ripple begins to overturn (see figure 5.14). They terminate once one of the

overhanging structures forms a trapped bubble. These results can be repeated for

the two-layer problem, although as before we are unable to extend solution branches

beyond the point of overturning.

Increasing the wavelength of periodic solutions when c(k) has a minimum results

in a larger central peak or trough, and a train of smaller amplitude waves in the far-

field. Denote the wavelength of the far-field waves as λ̂. Increasing the wavelength

of the solution by λ̂ results in two almost overlapping solutions, where the longer

wave has one additional linear wave in the far-field. This is demonstrated in figure

5.15. One can easily add more waves to the far-field, limited only by computational

storage. These solutions are finite wavelength approximations of generalised solitary

waves. As one would expect, λ̂ is found to be the finite valued wavelength which gives
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Figure 5.16: Generalised solitary wave branch for η(0) = 1.045 and λ = 63. Some
profiles corresponding to points on the branch are shown in figure 5.17.
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Figure 5.17: Generalised solitary waves corresponding to points (a) − (f) in figure
5.16. Only half a wavelength is shown.
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Figure 5.18: Plot of the curvature of the free surface R−1
1 (equation (5.60)) in the

far-field against B for the generalised solitary waves. R−1
1 remains strictly negative,

meaning none of these solutions are pure solitary waves. The points (a) − (f) refer
to the solutions shown in figure 5.17 .
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Figure 5.19: Two-layer generalised solitary wave branch for d = 1.5/3.3, D = 3,
η(0) = 1.04 and λ = 100. Two profiles corresponding to points (a) and (b) are

shown. Only half the solution is shown in figures (a) and (b).

c(λ̂) = c0. These waves were computed by Vanden-Broeck [84] and Champneys et al.

[20] for gravity-capillary waves. We present a generalised solitary wave solution

branch for the one-layer problem in figure 5.16, and the corresponding profiles in

figure 5.17. We fix η(x = 0) = 1.045, and vary the speed of the wave. Due to the

imposed symmetry, and since these solutions are finite wavelength approximations of

generalised solitary waves, the far-field wavetrain ends in either a peak or a trough.

We can see in figure 5.17 (by looking at the leftmost point of the profile) that in this

case it is a peak. As with gravity-capillary waves, the branches start and end on

solutions with larger amplitude far-field waves. For solutions in between the ends of

the branch, the amplitude of the waves in the far-field is smaller (see figure 5.17). No

solutions with a flat far-field were found. This is shown numerically in figure 5.18,

where the reciprocal of the radius of curvature of the free surface, given by

R−1
1 = − ηxx

(1 + η2
x)

1/2
, (5.60)

is shown to be strictly negative when evaluated at the furthest meshpoint in the

far-field for all solutions on the branch. The KdV equation of Rannacher and Engel

[72] predicts pure elevation solitary waves in this region, and hence fails to accurately
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Figure 5.20: One-layer solitary wave packets for d = 1.5/3.3, B = 20. Figure (a) is
the limiting configuration of the depression branch and figure (b) the furthest point
computed on the elevation branch. The inset of figure (a) shows the trapped bubble.

describe fully nonlinear solutions when B > B2. Generalised solitary wave branches

with the same behaviour were found for the two-layer problem, where one such branch

is presented in figure 5.19.

Although there do not exist pure solitary waves bifurcating from zero amplitude at

c0, there do exist branches of solitary wave packets bifurcating from a linear wavetrain

of wavenumber km at cm. Use of the chain rule shows that at the minimum of the

dispersion relation, the group velocity of linear waves is equal to the phase velocity.

This allows the existence of solitary wave packets (Akylas [4]), in particular one

depression branch and one elevation branch. At small amplitudes, these waves are

described by a Nonlinear Schrödinger Equation, as derived for the one-layer model

(assuming d = 0) by Groves and Nilsson [45]. Fully nonlinear solutions for the one-

layer problem were computed numerically by BP. They found that as one increases

the amplitude along the depression branch, the solutions begin to overturn, forming

a trapped bubble. Repeating the numerical scheme for variable parameter values,

we found the overturned bubble does not have to occur at the point of symmetry,

but can also appear at some other point in the profile, as seen in figure 5.20a. For no

parameter values tested did the solution branches approach a static configuration.

This is in agreement with section 5.5, where the range of static solutions found did

not include solitary waves with decaying oscillating tails.
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Figure 5.21: Two-layer solitary wave packets with amplitude A = −0.1, for d =
1.5/3.3, B = 8.3, and D = 2 (dotted curve), D = 4 (dashed curve) and D = 8 (solid
curve). Only one half of the profile is shown. The dashed and solid curves almost

overlap.

BP conjecture that the elevation branches overturn and form trapped bubbles

as well, although they note care must be taken since this conjecture was mistakenly

made by Vanden-Broeck and Dias [88] for two-dimensional gravity-capillary elevation

solitary wave packets. The more accurate computations of Dias et al. [30] demon-

strated that these solution branches actually turn around and form many loops in

the (c, η) space. Figure 5.20b shows a solution from the elevation branch, computed

as far along the branch as possible. Both the elevation and depression solution from

figure 5.20 were computed with N = 30 and M = 900. These solutions also exist

for the two-layer model. This is expected, since the same phenomena occurs for

two-dimensional internal gravity-capillary waves (Laget and Dias [56]). In figure 21,

we show a two-layer depression solitary wave packet, with varying values of D. As

D gets larger, the variation in the profiles becomes small. It follows that one could

approximate the case of a surrounding fluid of infinite radius (D → ∞) by taking

a suitably large value of D. This is further confirmed by considering the dispersion

relation (5.23) for various values of D, as shown in figure 5.22. It can be seen that

the dispersion relations for D = 8 and D →∞ are very similar, the largest difference

occurring at k → 0 (the long wave speed).

There are difficulties with comparing the two-layer numerical results of this chap-
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Figure 5.22: Two-layer dispersion relation, given by equation (5.23), with d =
1.5/3.3, B = 8.3, and D = 2 (dotted curve), D = 8 (dashed curve) and D → ∞

(solid curve).

ter with the experimental data of Bourdin et al. [15], as was discussed in BP. For

completeness, we highlight the key points here. Bourdin et al. coated a copper wire

of radius 1.5mm with a ferrofluid jet of radius 3.8mm when creating periodic waves,

and 3.3mm when creating solitary waves. The ferrofluid was surrounded in freon

of almost equal density, and the whole system was contained in a cuboid container

with a 40mm × 40mm side and 30mm length. The fact that axisymmetric profiles

were witnessed in a cuboid container implies that the effects of the container were

negligible. Hence, to compare our model with these experimental results, we wish

to consider the case of a surrounding fluid of infinite radius. As shown above, this

can be approximated by considering a large value of D. Bourdin et al. observed

pure solitary waves: a depression wave for magnetic Bond number B = 8.1 and a

wave of elevation for B = 10.5. As noted by BP, and confirmed by the results in this

chapter, one would expect to see solitary wave packets or generalised solitary waves

for such parameter values, due to the occurrence of minimum in the dispersion curve.

This is at odds with the pure elevation and depression solitary waves witnessed by

Bourdin et al. However, we suspect the inclusion of the effects of the second fluid are

not negligible. Evidence for this was given by BP, who showed that the agreement

between the experimental and theoretical dispersion curve improved when taking the

second fluid to have equal as opposed to negligible density. Given the wealth of so-
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M

75 150 300

25 0.6925392 0.6925667 0.6925733

N 50 0.6927149 0.6927432 0.6927502

100 0.6927601 0.6927886 0.6927956

200 0.6927716 0.6928001 -

Table 5.1: Values of the amplitude A up to 7 decimal places for the one-layer solution
with parameter values B = 3, d = 1.5/3.8, and c = 0.7 for different mesh sizes. Issues
with memory (the size of the Jacobian used in Newton’s method becomes very large)

deny the possibility of computing a solution with N = 200 and M = 300.

lutions found for the two-layer model, and the discrepancy between the experiments

and fully nonlinear calculations, it would be of interest to see further experimental

results on the problem, looking at a wider range of parameter values.

In the following section, we discuss the numerical errors that occur in our finite

difference scheme.

5.6.3 Numerical errors

In the results of this chapter, we have computed some intricate profiles, including

overhanging structures, and solutions which come very close to a boundary. To

ensure there were sufficient meshpoints at areas of rapidly changing φ1 or φ2, we

often performed the coordinate transformations (5.52). Below, we discuss the order

of the errors seen for both the one-layer and two-layer model, where we consider

large amplitude solutions.

Consider highly nonlinear solutions close to the end of the B = 3 branch of figure

5.6a. These solutions have overhanging structures, as was seen in the solution at the

end of the branch in figure 5.9. Fixing the phase speed to c = 0.7 and allowing the

amplitude to vary, table 5.1 shows the amplitude obtained for different values of M

and N . The table demonstrates the convergence of the numerical method for these

extreme overhanging profiles. Recalling the mesh spacing (5.41)-(5.43), denote the
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M

75 150 300

10, 20 0.1094310 0.1101299 0.1102692

N, P 20, 40 0.1094107 0.1101119 0.1102511

40, 80 0.1094046 0.1101077 0.1102469

80, 160 0.1094025 0.1101066 -

Table 5.2: Values of the speed c for the two-layer elevation solitary wave solution on
the B = 1.4 branch of figure 5.11 with amplitude A = 0.9.

distance between two mesh points in t as k, in φ1 and φ2 as h, and in s as l. All

derivatives were approximated using second order difference equations in h, k and l.

Fixing k, if we denote the value of the amplitude A as h → 0 as Âk, and the value

of the finite difference scheme for some values of h and k as Ah,k, then denoting the

absolute error as Eh,k = |Ah,k − Âk|, one can seek the order of error in the form

Eh,k = a1h
α +O(hβ), (5.61)

where a1, α and β > α are real constants. One can then show that

α ≈ log2

(
E2h,k − E4h,k

Eh,k − E2h,k

)
. (5.62)

Noting that doubling M is equivalent to halving h, using the values from table 5.1

in equation (5.62) , we find that α ≈ 2. Similarly, fixing h and varying k, one finds

that

Eh,k = a2k
γ +O(kδ), (5.63)

where a2, γ and δ > γ are again real constants. From table 5.1, we find that γ ≈ 2.

Hence, the finite difference scheme appears to be second order accurate in h and

second order accurate in k, which agrees with the use of second order difference

equations.

A similar result is found for the two-layer model. For example, consider a large
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amplitude pure elevation solitary wave solution. Table 5.2 shows the value of c

obtained for the solution with amplitude A = 0.9 on theB = 1.4 branch of figure 5.11,

for various values of M , N and P . We again find that the solution is approximately

second order accurate, as can be seen by substituting the values from table 5.2 into

equations (5.61) and (5.63).

5.7 Conclusion

In conclusion, we have presented a numerical model capable of finding stable

travelling wave solutions on a ferrofluid jet, where the surrounding fluid is assumed

to be of zero density or equal density to that of the ferrofluid. The results from the

classical problem of two-dimensional gravity-capillary waves have helped predict the

behaviour of the solution space for various parameter values. The importance of the

existence of a minimum in the linear dispersion relation has been demonstrated, and

periodic, solitary and generalised solitary waves have been found for both models.

The stability of the solutions is as of yet unknown, and would require a time de-

pendent numerical scheme to find out, as done by Guyenne and Părău [47] for pure

solitary waves on the one-layer model. As well as time dependent models, it would be

interesting to see if symmetry breaking bifurcations can be found with the numerical

scheme described in this chapter (by removing the imposed symmetry condition), as

has been found by Gao et al. [38] for gravity-capillary waves.



Chapter 6

Future work

In this chapter, we will discuss the ways in which the models in this thesis could

be improved, as well as some new projects.

6.1 Flow from a pipe onto a plate

In chapter 3, we computed two-dimensional flows exiting a pipe onto a flat plate.

We repeated the computations of Christodoulides and Dias [21], where we improved

the series representation of the complex velocity ξ by including the singularity at t =

1. This was shown by the order of the coefficients in table 3.2. These computations

were for zero surface tension: it would be of interest to see what effect the inclusion

of surface tension has on the solution space. The singularity structure in the far-field

is richer when surface tension is included, as discussed in section 3.4.2. In particular,

when the roots are complex, we expect the flow to decay with oscillations in the

far-field.

We find it beneficial to rescale the problem such that the depth and speed of the

uniform stream in the far-field are unity. This allows us to fix the Froude number

in the far-field (denoted Ff in chapter 3) to be less than one, a condition required

to avoid linear waves. In the code, we allow the angle µ at the separation point

125
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to vary. We initially attempted some computations including surface tension with

the series (3.60). For zero surface tension, although the singularity at t = 1 (the

far-field) disrupts the convergence of the series, it still produces graphically accurate

solutions (as was done by Christodoulides and Dias). However, when surface tension

is included, it is found that the solution obtained becomes dependent on N , and

hence the method is no longer convergent.

Therefore, we will try to use a series of the form (3.59). Note that, when the

leading order singularity is the conjugate pair (case 4 of figure 3.12), we will require

a series of the form

ξ(t) =

(
tB − t
tB

)1−β/π

(t+ 1)2−2µ/π

× exp

(
A
[
(1− t)2λ + (1− t)2λ̄ − 2

]
+

N∑
n=1

ant
n

)
. (6.1)

This is to ensure that ξ satisfies the boundary conditions for t ∈ [−1, 1]. We are yet

to achieve convergent results. This is a subject of current investigation.

6.2 Other axisymmetric models

There are a variety of other axisymmetric flows one could attempt to solve using

the methodology seen in this thesis. For example, related to the previous model,

one could consider axisymmetric flow exiting a cylindrical pipe onto an infinite flat

plate. The flow configuration is shown in figure 6.1a. One must find a suitable

treatment of the singularity, where the flow exists the pipe and forms a free surface.

The stagnation point singularity can be managed via the function splitting method,

using equation (4.20).

When both surface tension and gravity are ignored, Mackenroth [59] and Turenne

and Fiset [79] used the finite difference scheme of Woods and Jeppson to compute
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(a) (b)

(c)

Figure 6.1: Axisymmetric flow configurations. The unlabeled arrows show the flow
direction. The dotted curve is the axis of rotation, the cylindrical coordinates are

given by (x, r), while ~g is gravity.

a free streamline jet hitting a plate. The flow configuration in axisymmetric coor-

dinates is shown in figure 6.1b. In both the above references, a crude mesh was

used, and Mackenroth stated that the largest numerical errors were seen close to

the stagnation point singularity. It is not clear if their codes would converge upon

mesh refinement, where approximations of derivatives close to the singularity would

become problematic. One could improve on their numerical scheme by making use

of the function splitting procedure to regulate errors near the stagnation point.

One could also consider the flow exiting a pipe aimed upwards, under the effect

of gravity. The fluid exits the pipe, and forms a falling jet, bounded either side by

a free surface. A schematic of the flow is shown in figure 6.1c. The two-dimensional

analogue of this model was solved using boundary integral methods by Dias and

Vanden-Broeck [28]. The limiting case, where the pipe is taken infinitely far away

from the jet, was later solved using a finite difference scheme by Vanden-Broeck [86].

A review of two-dimensional flows of this type is given by Dias and Vanden-Broeck
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Figure 6.2: A cusped bubble obtained for F = 2 using the finite difference scheme
without removing the singularity, with a crude mesh. This profile is not a solution
of a convergent numerical scheme. Some streamlines are shown with dashed curves.

[29].

Finally, when computing the surface tension free solution space of Taylor bubbles

in chapter 4, we were unable to obtain any solutions for F > FC . We suspect

these solution are cusped bubbles. This singularity is weaker than the stagnation

point singularity of the smooth and pointed bubbles. This motivated attempting

the finite difference method without the singularity removal procedure described

in section 4.3.1. Solutions were obtained for crude meshes. However, the method

became divergent as the mesh was refined. The same results were found by Vanden-

Broeck [83], whose method suffers the same fate under mesh refinement. A local

representation of the flow field about the cups would allow for the method to regulate

the singularity. Figure 6.2 shows a solution found for a crude mesh, with no treatment

of the cusp singularity. We stress here that this is not sufficient proof of the behaviour

of the solutions for F > FC , and it would be interesting to see solutions in this

parameter regime computed using a convergent numerical method.

6.3 Electrified axisymmetric jet

Similar to the topic of chapter 5, researchers have explored the stabilisation and

destabilisation of a fluid column under the effect of an electric field. The model in
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question concerns a perfect conducting fluid, surrounded by a dielectric gas with

electric permittivity ε. An electric field is created by applying a potential to an

axial hollow electrode, containing the conducting jet. An electrified jet in this con-

figuration has been considered by a variety of authors. A linear dispersion relation

has been derived by Melcher [62], Schneider et al. [75], and Artana et al. [7]. It is

found that the electric field stabilises the long wave Rayleigh-Plateau instability, but

in turn destabilises short waves. The ability to modify the dominant destabilising

mode allows one to regulate droplet size formation in an droplet generator (Crowley

[24]), as well as having applications in particle sorting (Bonner et al. [14]) and fuel

injection.

Setiawan and Heister [76] derived a fully nonlinear time-dependent numerical

method to investigate the late stages of the instability. The numerical scheme was

a boundary integral method, making use of Green’s functions. They found that the

electric field steepens the interface, and the droplets become squeezed. More recently,

a KdV equation was derived by Wang et al. [92]. They found both elevation and de-

pression solitary wave solutions, the existence of which depended on the parameters.

Increasing the strength of the electric field took one from a regime where the KdV

emits depression solitary waves to one where it emits elevation solitary waves.

Fully nonlinear computations on this model were done by Grandison et al. [44],

who used the finite difference scheme discussed in this thesis by. However, the linear

theory of the paper has errors, and there is a lack of clarity in the description of

the numerical method used. Recently, we have explored this problem, in a sense

providing a correction to the above paper.

6.3.1 Formulation

We consider an axisymmetric column of a perfectly conducting fluid with con-

stant density ρ and undisturbed radius R. The column of fluid is surrounded by a
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Figure 6.3: Formulation of the problem in cylindrical coordinates.

dielectric passive gas, with electric permittivity ε. The whole system is contained

inside an axisymmetric hollow electrode of radius D. We choose a cylindrical co-

ordinate system (x, θ, r), where x is parallel to the electrode, and r is the radial

coordinate. We denote the interface r = η(x, t). The flow configuration is shown in

figure 6.3.

The conducting fluid is held at zero voltage, while the outer electrode is held at

a constant voltage potential V0. The potential difference results in an electric field

in the annular region between the conducting fluid and the electrode. We assume

that the magnetic conductivity of both the fluid and gas are small, such that the

electrostatic approximation of Maxwell’s equations are sufficient (Papageorgiou [65]).

Hence, we have that the electric field in the dielectric E is an incompressible and

irrotational vector field. We write E = −∇V , where V is the electric potential. The

above assumptions imply that V satisfies the Laplace equation. The interface and

electrode are both equipotential surfaces of V .

As well as the electrostatics in the gaseous dielectric, we must also solve the hy-

drodynamical problem associated with the conducting fluid. We write the velocity

vector u = (u, v) in (x, r). We will consider the fluid to be inviscid, and the flow

incompressible and irrotational. Hence, we write u = ∇φ. Consider a periodic dis-

turbance with wavelength λ travelling at constant speed c. Taking λ as the reference

length scale, c as the reference velocity, and V0 as the reference voltage, we find a
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system of equations given by

∇2V = 0, for η(x, t) < r < D, (6.2)

∇2φ = 0, for 0 < r < η(x, t), (6.3)

V = 1, for r = D, (6.4)

V = 0, for r = η(x, t), (6.5)

φr = 0, for r = 0, (6.6)

φr = ηzφz, for r = η(x, t), (6.7)

and

1

2
q2 + γκ− Eb

2
(∇V · n̂)2 = P, for r = η(x, t), , (6.8)

where n̂ is the unit normal vector to the interface, q = |∇φ|, κ is the mean curvature,

and γ and Eb are nondimensional parameters, given by

γ =
T

ρλc2
, Eb =

εV 2
0

ρc2λ2
. (6.9)

Here, equations (6.2) and (6.3) are the governing equations, equations (6.4) and

(6.5) the equipotential conditions on the electrode and interface respectively, and

equations (6.6) and (6.7) are the kinematic boundary conditions of the fluid flow

on the axis of rotation and interface respectively. Equation (6.8) is the dynamic

boundary condition, given by evaluating Bernoulli’s equation on the interface. It

is similar to equation (2.12), where we have ignored gravity. This can be achieved

experimentally by performing microgravity experiments (for example Burcham and

Saville [18] performed experiments concerning electrified bridging on a space station).

This completes the formulation of the problem. It is left to find the functions φ and V

such that equations (6.2) and (6.3) are satisfied in their respective domains, subject
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to boundary conditions (6.4)-(6.8).

6.3.2 Numerical method

We use a finite difference scheme, similar in many ways to the numerical method

used for the two-layer ferrofluid problem. We solve for r as a function of (φ, ψ) in the

inner domain. For the outer domain, we solve for r as a function of (W,V ), where

W is defined by

Wx = rVr, Wr = −rVx. (6.10)

The variable W has the same role as the Stokes streamfunction ψ in relation to the

velocity potential φ: the relations (6.10) follow from the fact that the vector field

E = −∇V is incompressible and irrotational. One can then transform the equations

such that r in the dependent variable and W and V are the independent variables.

Denoting the value of ψ on the axis of rotation and interface as 0 and Q respectively,

the flow domain in the potential spaces becomes

Ω1 =

{
φ ∈

[
−1

2
, 0

]
, ψ ∈ [0, Q]

}
, (6.11)

Ω2 =

{
W ∈

[
−W0

2
, 0

]
, V ∈ [0, 1]

}
. (6.12)

Here, W0 is unknown and must be found as part of the solution. The obvious

advantage to working in the (W,V )-space is that the interface is fixed to V = 0, as

shown in figure 6.4. One can then derive a system of equations, taking r as the

dependent variable of (φ, ψ) in Ω1 and (W,V ) in Ω2. We perform the coordinate

transform ψ = t2, and the two spaces are discretised as follows:

φi = − M − i
2(M − 1)

, Wi = W0φi i = 1, · · · ,M, (6.13)

tj = Q1/2 j − 1

N − 1
, j = 1, · · · , N, (6.14)
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Figure 6.4: Flow domain in the potential space.

Vj =
j − 1

N − 1
, j = 1, · · · , P. (6.15)

Derivatives are computed using second order difference equations. We satisfy the

governing equation at interior nodes, (6.8) on the interface, and r = 0 and r = D

at ψ = 0 and V = 1 respectively. Interpolation in x on the interface is then used to

couple the systems via the dynamic boundary condition (6.8).

6.3.3 Results

We fix a value of Q, Eb, and the amplitude A, given by

A = η(0)− η(λ/2). (6.16)

We then used the above numerical scheme to compute small and medium amplitude

periodic waves. The linear dispersion relation is found to be

γ =
kR2

[
I0(kR)(logD)2 − EbI1(kR)

(
S + 1

kR

)]
(logD)2 (R2k2 − 1) I1(kR)

, (6.17)

where

S =
I1(kR)K0(kD) + I0(kD)K1(kR)

I0(kR)K0(kD)− I0(kD)K0(kR)
. (6.18)
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Figure 6.5: Periodic solution branches for Eb = 10−6 (dotted curve) and Eb = 0.5
(solid curve). The dispersion relation (6.17) for a given Eb is the dashed line. Figure

(b) shows a blown up image of the Eb = 0.5 branch.

Here, In and Kn are the modified Bessel functions of the first and second kind of

order n respectively. This disagrees with equation (34) found in Grandison et al.

[44], who state that

γ =
kR2 [I0(kR)(logD)2 + EbI1(kR)S]

(logD)2 (R2k2 − 1) I1(kR)
. (6.19)

We found that the dispersion relation (6.17) agrees with previous literature (for

example, see Wang et al. [92]). We computed some periodic solution branches for

Q = 1/(2π2) with Eb = 10−6 and Eb = 0.5, as shown in figure 6.5. These are the

parameter values used in figure 6 in the paper by Grandison et al. It was found that

the results of the numerical method agreed with the linear dispersion relation (6.17)

for small amplitudes. We also found that the Eb = 0.5 branch does not monotonically

increase in γ as one increases the amplitude A, where A is defined using equation

(5.49). As we increase the amplitude further, it is the case that the interface in

either domains (Ω1 and Ω2) start to deviate. This problem did not occur for the

two-layer ferrofluid problem. As it stands, this issue denies us the ability to compute

large amplitude solutions for this model. This may lead one to question the validity

of the numerical scheme. In table 6.1, we present some values of γ obtained for the

A = 0.1 solution on the Eb = 0.5 branch of figure 6.5. Using equations similar to
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M

75 150 300

10, 50 0.36546 0.36541 0.36540

N, P 20, 100 0.36688 0.36683 0.36682

40, 200 0.36721 0.36715 -

Table 6.1: Values of γ up to 5 decimal places for the A = 0.1 solution from the
branch shown in figure 6.5.

(5.61), we find the method approximately second order accurate in differences in φ,

W , t and V .

This is a subject of current investigation.

6.4 Two-dimensional electrohydrodynam-

ical capillary-gravity waves

Finally, we will briefly discuss a recent joint project with Dr Tao Gao on electrohy-

drodynamical gravity-capillary waves propagating under vertical electric fields. The

model can be seen as a generalisation of previous works, a recent and comprehensive

review of which was published by Papageorgiou [65]. The general set up consists of

two immiscible dielectric fluids with different electric permittivities, with an inter-

face in between. To reduce the complexity of the problem, some assumptions were

made in previous works. For example, Papageorgiou et al. [67] and Papageorgiou and

Vanden-Broeck [66] made the assumption that the upper layer is much larger than

the lower one. Boussinesq-type long wave models were derived in the former whereas

a boundary integral method was used to compute fully nonlinear solutions in the

latter. Another common assumption is to consider the case when one of the layers

is a perfect conductor. Korteweg de-Vries (KdV), modified KdV, forced KdV and

KdV-Benjamin-Ono equations were derived respectively by Easwaran [35], Hunt and

Vanden-Broeck [49], Perelman et al. [68], and Gleeson et al. [43] in the case of a layer
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+
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Figure 6.6: Configuration of the problem from section 6.4. Gravity acts in the
negative y-direction. We denote the equation of the unknown free surface as y =

η(x, t).

of conducting fluid on bottom and a dielectric on top. On the other hand, assuming

instead the upper region is a conducting gas, fully nonlinear travelling solitary waves

on a dielectric fluid of infinite and finite depth respectively as well as their dynamics

based on a time-dependent hodograph transformation technique are found in Gao

et al. [39] and Gao et al. [40]. To our knowledge, no fully nonlinear computations

have been achieved for the general set up of two dielectrics with two finite depth

layers so far.

6.4.1 Formulation

We consider the two-dimensional irrotational flow of an inviscid incompressible

fluid of finite depth that is bounded below by an electrode and above by a hydrody-

namically passive region, which in turn is bounded above by an electrode (see figure

6.6). The fluid and the passive gas are assumed to be perfect dielectrics with per-

mittivity ε1 and ε2 respectively. The problem can be formulated by using Cartesian

coordinates with the y-axis directed vertically upwards and y = 0 at the mean level.

We take h as the undisturbed depth of the fluid, and h+ as the undisturbed depth

of the passive gas. The gravity g and the surface tension σ are both included in the
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formulation. The deformation of the free surface is denoted by η(x, t). We denote the

voltage potential in the fluid as v, and in the gas as w. Without loss of generality, we

choose v = 0 on the bottom electrode. Continuity of the tangential component of the

electric fields results in the condition that v and w are equivalent on the free-surface,

up to an arbitrary constant, which without loss of generality we take to be zero. The

potential on the upper electrode w is then a fixed parameter of the problem, which

we shall denote w = V0h
+. This choice of w on the upper electrode is chosen such

that, in the case where h+ →∞, we have that the electric field approaches a uniform

vertical electric field with strength V0. Since the fluid motion can be described by a

velocity potential function φ(x, y, t), the governing equations can then be written as

∇2φ = 0, for − h < y < η(x, t), (6.20)

∇2v = 0, for − h < y < η(x, t), (6.21)

∇2w = 0, for η(x, t) < y < h+, (6.22)

ηt = φy − φxηx, on y = η(x, t), (6.23)

φy = 0, on y = −h. (6.24)

w = V0h
+, on y = h+, (6.25)

v = 0, on y = −h, (6.26)

vx + ηxvy = wx + ηxwy, on y = η(x, t), (6.27)

vy − ηxvx = Λ (wy − ηxwx) , on y = η(x, t), (6.28)

and

φt +
1

2
|∇φ|2+gy − T

ρ

ηxx
(1 + η2

x)
3/2

+ σ = B, on y = η(x, t), (6.29)
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Figure 6.7: Some fully nonlinear solutions found with Eb = 1.5, h+ = 1.5, and
varying values of τ .

where the subscripts denote partial derivatives, B is the Bernoulli constant and σ is

the Maxwell stress given by

σ = − ε1
ρ(1 + η2

x)

[1

2
(1− η2

x)(v
2
x − v2

y − Λ(w2
x − w2

y)) + 2ηx(vxvy − Λwxwy)
]
, (6.30)

with Λ = ε2/ε1 being the ratio of the permittivity from two layers. The last three

terms of (6.29) are the forces due to gravity, the Maxwell stresses due to the electric

field, and surface tension. Equations (6.23) and (6.24) are the kinematic boundary

conditions on the interface and bottom electrode respectively. The conditions (6.25)

and (6.26) fix the electric potentials at the electrodes. Finally, continuity of the

tangential components of the electric field and continuity of the normal component

of the displacement field is given by (6.27) and (6.28) respectively.

By choosing h,
√
h/g and V0 as the reference length, time and voltage potential,

the bottom is at the level y = −1, and the system is still governed by the Laplace
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equations but with the dynamic boundary condition (6.29) becoming

φt +
1

2
|∇φ|2+η + σ − τ ηxx

(1 + η2
x)

3/2
= B on y = η(x, t), (6.31)

and

σ =
Eb(Λ− 1)

2Λ(1 + η2
x)

[
(Λ + η2

x)v
2
x + (Λη2

x + 1)v2
y + 2(Λ− 1)vxvyηx

]
, (6.32)

where τ is the Bond number and Eb is the electric Bond number defined by

τ =
T

ρgh2
, Eb =

ε1V
2

0

ρgh3
. (6.33)

The project concerns fully nonlinear numerical computations to the solutions of the

above system. A boundary integral method, similar to the one found in Papageorgiou

and Vanden-Broeck [66], is used. Details are omitted here. A variety of solutions

have been computed: periodic waves, Wilton ripples, solitary wave packets, pure

solitary waves and generalised solitary wave solutions have all been found. Some

example profiles are shown in figure 6.7. In the future, we wish to derive some long

wave models, and provide comparisons between the weakly nonlinear solutions and

the fully nonlinear computations.



Chapter 7

Conclusion

In conclusion, we have presented novel solutions to a variety of steady potential

flows. The main focus has been axisymmetric models, a field which has historically

received less attention that its two-dimensional counterpart. Using the finite differ-

ence scheme derived by Woods [94] and Jeppson [51], we have provided the strongest

evidence to date that the higher order branches (F2(α), F3, (α) · · ·) of smooth ax-

isymmetric Taylor bubbles approach F ∗ as surface tension is taken to zero. Following

from the work of Blyth and Părău [13], with a suitable modification of the numer-

ical scheme, we have found a variety of solutions of travelling waves on a ferrofluid

jet for the one-layer and two-layer models. We also found novel solutions for two-

dimensional flow exiting a pipe onto a wedge, and improved the convergence of the

numerical method deployed by Christodoulides and Dias [21] to compute flow im-

pacting a flat plate. Finally, we have highlighted areas where the methods used in

this thesis could be applied to solve new problems.
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Appendix A

Errors in function splitting

It is necessary to discuss the errors associated with the function splitting pro-

cedure used in chapter 4. In our numerical scheme, we are required to compute

derivatives of a function f(φ, ψ) whose derivatives are singular at the origin. We

compute its derivatives via finite differences. In this section, we will introduce some

toy examples, and discuss the relative errors that occur when attempting to compute

derivatives using the function splitting method.

A.1 Errors of finite differences near a sin-

gular point

We start by considering a function of one variable, f : [0, 1] → <, which is

infinitely differentiable in (0, 1]. We will discretise the independent variable x with

equally spaced points, and denote the distance between two mesh points as h. We

choose h to be rational such that 1/h = N ∈ N. This gives us the mesh

xi = h i, i = 1, · · · , N. (A.1)
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We have not included a mesh point at x = 0, since we will not be computing the

derivative at this point.

Finite difference methods can be derived by considering local expansions of f .

Assuming f is infinitely differentiable at xi, it can be expressed locally as a Taylor

series, given by

f(x) = f(xi) + f ′(xi) (x− xi) + f ′′(xi)
1

2
(x− xi)2 + · · · , (A.2)

where f (n) = dnf/dxn. Let us first assume that f(x) and all of its derivatives are of

O((x − xi)α), α ≥ 0 near x = xi. We may wish to approximate f(x) by truncating

the above series after some finite number of terms. For example, evaluating (A.2) at

xi+1, and using that xi+1 − xi = h, we may write

f(xi+1) = f(xi) + hf ′(xi) +
h2

2
f ′′(xi) +O(h3). (A.3)

This offers us a way to numerically approximate a function with a finite order polyno-

mial in h. The order of accuracy of the approximation (A.3) is third order, meaning

the local truncation error is of O(h3). If we also evaluate equation (A.2) at xi−1, one

can show that

f ′(xi) =
f(xi+1)− f(xi−1)

2h
+

1

6
f ′′′(xi)h

2 + · · · (A.4)

Therefore, one can write

f ′(xi) =
f(xi+1)− f(xi−1)

2h
+O(h2) (A.5)

= δxf(xi) +O(h2) (A.6)

The discrete operator δx is a second order accurate approximation to the derivative of

f at xi. As we decrease h, the difference between the true value of the derivative and

the approximation will decrease, up until a point where rounding errors become the
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main source of error (using double precision, these errors are of O(|f(xi)| 2−53/h)).

In general, a discrete operator that is an O(hn) accurate approximation of f ′ can be

written in the form

f ′(xi) = δxf(xi) + Ahnf (n+1)(xi) +Bhn+1f (n+2)(xi) + · · · , (A.7)

where A and B are constants. We define the piecewise absolute error Eabs
i as

Eabs
i = |f ′(xi)− δxf(xi)|. (A.8)

We can see that for an n order accurate finite difference scheme, Eabs
i = O(hn). When

considering the errors of a derivative that is singular, it will be more meaningful to

consider the piecewise relative error Ei, given by

Ei =
|f ′(xi)− δxf(xi)|

f ′(xi)
. (A.9)

If f ′(xi) = O(1), an n order accurate finite difference scheme gives Ei = O(hn).

However, if f ′(xi) = O(hα), α > 0, then we find that Ei = O(hn−α). When consid-

ering approximations of a derivative which is small near x = xi, it is best to instead

consider the absolute error (A.8). As an example, using the forward Euler scheme

(n = 1) on the function f(x) = sin(x), for x = O(h), we find Eabs
i = O(h) and

Ei = O(1). This can be read as the absolute error is of the order of the derivative,

which is itself small.

We note here that if f ∼ xp for x = O(h), where p ∈ N ≡ {0, 1, · · ·}, if we

approximate the derivative of f using an n order difference scheme, we find that if

n < p, then near x = 0

f ′(xi) = δxf(xi) +O(hp−1). (A.10)

This comes from the fact that the coefficients of the first p − 1 terms in the local
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representation (A.2) of f at x = 0 are zero.

In the above derivation, we assumed that f and all of its derivatives are finite

near xi. Let us now consider the situation where some or all of the derivatives of

f are singular at a given value of x. Without loss of generality, let us assume this

occurs at x = 0. Using the mesh (A.1), we want to see the orders of errors that occur

in approximating f ′ with polynomials at the first few mesh point, when x = O(h).

Consider a function f where m ∈ N is the smallest value of m such that f (m) is

singular at x = 0. Near x = 0, let f (m) have the leading order behaviour f (m) ∼ xp−m,

where p ∈ <\N. This term will appear as xp in the local expansion of f . This

motivates the choice of p, since if p ∈ N, the term will not be a singularity of f (m).

We will assume that the leading order behaviour of f is f ∼ xp. This does not have

to be the case, but when it is not true, the function splitting method experiences

problems when approximating the constant in the term χ, as shown in the following

section. It follows that f (n+1) ∼ xp−n−1. We will also ignore more complicated

singularities like log(x) for simplicity. Consider a finite difference approximation

(A.7) with order of accuracy n. If n+ 1 ≥ m, we have

f ′(xi) = δxf(xi) + Ahnf (n+1)(xi)︸ ︷︷ ︸
O(hp−1)

+Bhn+1f (n+2)(xi)︸ ︷︷ ︸
O(hp−1)

+ · · · (A.11)

= δxf(xi) +O(hp−1) (A.12)

where we have made use of the fact that f (n+1) ∼ xp−n−1. If n+1 < m, we have that

f ′(xi) = δxf(xi) + Ahnf (n+1)(xi)︸ ︷︷ ︸
O(hp−1)

+ · · ·+ Chmf (m+1)(xi)︸ ︷︷ ︸
O(hp−1)

+ · · · (A.13)

= δxf(xi) +O(hp−1) (A.14)

From equations (A.12) and (A.14), since f ′(xi) = O(hp−1), we can see that, given
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f ∼ xp, where p ∈ <\N, the order of the local truncation error is equivalent to that of

the derivative itself, and is independent of the finite difference scheme used! This is

true even if the term f (m)(xi) is not included in the coefficients used to approximate

the polynomials within the derivation of the finite difference scheme (i.e. n+1 < m).

Applying equation (A.12) to (A.8) and (A.9), we find that Eabs
1 = O(hp−1) and

E1 = O(1). This is particularly problematic if p < 1: we have a large absolute error,

of the same order as the derivative itself. We will illustrate the above with a couple

of examples.

Let us define two functions, f1 and f2, as

f1(x) = x−2 (1 + sin(x)) ∼ x−2 f ′1(x) ∼ x−3, (A.15)

f2(x) = x5/2 cos(x2) ∼ x5/2 f ′2(x) ∼ x3/2. (A.16)

We will compute the derivatives of these functions at the point x1 using first, second,

and third order forward finite difference schemes. The first function, f1, is singular

at x = 0. Therefore, in the above notation, we have that m = 0 and p = −2. The

first (n = 1), second (n = 2) and third (n = 3) order finite differences all have errors

of O(h−3). This is shown in figure A.1(a), where a log-log plot Eabs
1 (the absolute

error at x = x1 = h) against h is shown. The curves for the n = 1 (black), n = 2

(dashed) and n = 3 (dotted) schemes all have gradients of −3. Meanwhile, the

function f2 is not singular at x = 0, but its third derivative is (m = 3). Therefore,

the n = 1 difference scheme satisfies n + 1 < 3, while the n = 2 and n = 3 schemes

satisfy n + 1 ≥ 3. Despite this, all of the difference schemes have an order of error

of O(h3/2), as shown in log-log plot of figure A.1(b). These results are in agreement

with equations (A.12) and (A.14).

In the following section, we will describe the function splitting procedure, and

how it can improve the accuracy a finite difference scheme near a singularity.
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Figure A.1: Log-log plot of the mesh spacing h against the Eabs
1 for a n = 1 (solid

curve), n = 2 (dashed) and n = 3 (dotted) forward difference scheme. Figure (a) is
for f1 , and figure (b) is f2 (see equations (A.15) and (A.16)).

A.2 Function splitting method

So far we have discussed the errors associated with approximating a derivative

near a singular point with finite differences. Throughout this section, let m again

refer to the lowest order derivative of f which is singular at x = 0, and p ∈ <\N

be such that f (m) ∼ xp−m near x = 0. In chapter 4, we propose regulating the

singularity by adding and subtracting a function χ(x) , given by

χ(x) = Bxp. (A.17)

We will repeat the method for clarity. The function f can be written as

f(x) = f(x)− χ(x) + χ(x). (A.18)

We approximate the derivative of f at a point xi as

f ′(xi) ≈ δx (f(xi)− χ(xi)) + χ′(xi)︸ ︷︷ ︸
δ̄x(f(xi))

. (A.19)

We denote the operation on the right hand side as δ̄x. The motivation is that the mth

derivative of the function (f(x)− χ(x)) no longer has the leading order singularity
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at x = 0, and hence inaccuracies of the numerical approximations of this function

could potentially be avoided. When applied to the full numerical scheme of chapter

4, the function χ(x) will have a free constant B (see equation (4.20)). In the analytic

examples that follow, one could find B exactly, by considering the local expansions

of f about x = 0. However, we will approximate this constant the same way as done

in chapter 4, by matching χ(x) to f(x) at the first meshpoint past the singularity:

χ(x1) = f(x1). (A.20)

The question we shall answer is what is the order of E1 when using the approx-

imation (A.19). Noting equation (A.12), when computing finite difference approx-

imations directly (replacing δ̄x with δx in equation (A.9)), we have that E = O(1)

when x = O(h).

We believe it best to summarise the conclusion of this section, before preceding

to demonstrate some examples. For simplicity, we shall assume that f has the form

f(x) = B̂xp + Cxq +O(xr), (A.21)

near x = 0, where p < q < r, p ∈ <\N, and B̂ and C are real constants. It could

be that there exist more complicated terms (for example, xq log x), and the results

for this section can be modified to include such behaviours. Following the function

splitting method, we write

χ(x) = Bxp. (A.22)

We found that E1 = O(hp−q). The sources of the error are from the approximation

of the constant B in equation (A.22), and the application of δx to the term Cxq in

equation (A.21), both of which produce errors like E1 = O(hp−q). We can see from

equation (A.21) that the ’true’ value of B should be B̂ (the coefficient of the leading
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order term). However, in chapter 4, we must approximate B, since the solution is

not known analytically a priori. We match the function χ to our numerical solution

using equation (A.20). Substituting (A.22) and (A.21) into (A.20) gives

B = B̂ +O(hq−p). (A.23)

We see that there is an O(hq−p) error in evaluating the constant B. Equation (A.17)

implies we must consider functions f that have the leading order behaviour f ∼ xp,

or else the errors in the approximation of B become too large. This can be seen by

considering equation (A.23) with q < p.

We shall demonstrate how this applies to some example functions, but first we

provide some justification as to why this is the case. Differentiating (A.21), we find

that

f ′(x) = pB̂xp−1 + qCxq−1 +O(xr−1). (A.24)

Following the function splitting method, we write

χ(x) = Bxp, B = B̂ +O(hδ). (A.25)

Substituting the above into equation (A.19), we find that

δ̄xf(xi) = δx

(
B̂xp + Cxq +O(xr)−

(
B̂ +O(hδ)

)
xp
)

+ χ′(xi). (A.26)

Re-arranging, and making use of (A.25), one finds

δ̄xf(xi) = δx
(
Cxq +O(xr)−O(hδ)xp

)
+ pB̂xp−1 + pxp−1O(hδ). (A.27)

We must find the error that occurs when applying δx to the first term in the brackets.
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In general, we shall write

δx (Cxq) = Cqxq−1 +O(hα). (A.28)

First, consider the case when q ∈ <\N. Equation (A.12) tells us that α = q − 1.

Meanwhile, if q ∈ N, we have that the error in the finite difference approximation

is the order of the difference scheme if n > q (i.e. α = n), or alternatively we get

α = q − 1 if n < q (see equation (A.10)). Substituting (A.28) into equation (A.27),

and using x = O(h), we find

δ̄x(xi) = pB̂xp−1 + qCxq−1 +O(hα) +O(hδ+p−1)

=
df

dx
(xi) +O(hα) +O(hδ+p−1), (A.29)

where we made use of equation (A.24). Substituting equation (A.29) into equation

(A.9), and using that f ′(x) = O(hp−1) gives

E1 =
O(hα) +O(hδ+p−1)

f ′(xi)
= O(hα+1−p) +O(hδ). (A.30)

This provides a bound on E1. Hence, we find that

E1 =


O(hmin(q−p,δ)), q ∈ <\N, (A.31)

O(hmin(n+1−p,δ)), q ∈ N, n > q , (A.32)

O(hmin(q−p,δ)), q ∈ N, n < q . (A.33)

When approximating B via equation (A.20), we have shown in equation (A.23)

that δ = q − p. Hence, equations (A.31-A.33) reduce to

E1 = O(hq−p). (A.34)
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It is worth noting that when we are not near x = 0, the approximation δ̄x is as

accurate as δx. This can be shown by considering

δ̄x = δxf +

[
dχ

dx
(xi)− δxχ

]
(A.35)

=
df

dx
(xi) +O(hn) +

[
dχ

dx
(xi)−

dχ

dx
(xi)−O(hn)

]
(A.36)

=
df

dx
(xi) +O(hn). (A.37)

In this sense, the ’correction’ to the operator δx has errors of O(hn) when not near

the singularity. The correction terms is only important near the singularity.

Let us demonstrate with some examples. Consider again the function from equa-

tion (A.15), and its corresponding χ,

f(x) =
1 + sin x

x2
∼ 1

x2
+

1

x
+ · · · , χ(x) =

B

x2
. (A.38)

Comparing equations (A.38) and (A.21), we find that p = −2 and q = −1. Hence,

from equation (A.34), we expect E1 to be no better than O(h). Figure A.2 shows

a log-log plot of E1 against h for a first order (n = 1) and second order (n = 2)

approximation, given by the solid and dashed curves respectively. Both have a

gradient of one, as expected. As a further test on our analysis, we place an artificial

error on the value B of O(h1/2), which is equivalent to changing δ in equation (A.31)

to 1/2. We find that the order of E1 is reduced to O(h1/2), and this is shown by the

dotted curve in figure A.2.

As a second example, consider

f = x1/4 + x3I0(x) ∼ x1/4 + x3 + · · · , χ(x) = Bx1/4, (A.39)

where I0 is the modified Bessel function of the first kind of order zero. In our

notation, this is equivalent to p = 1/4 and q = 3. Figure A.3 shows a log-log plot
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Figure A.2: Log-log plot of E1 against h for the function (A.38). The solid and
dashed curve are for n = 1 and n = 2 respectively. The dotted curve is for n = 1 and
has an artificial error of O(h1/2) applied to the approximation of B. The gradient
between the penultimate two points of each curve, h = 2−9/10 and h = 2−8/10, is

shown in the table.
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Figure A.3: Log-log plot of E1 against h for the function (A.39). The solid, dashed
and dotted curves are for n = 1, n = 2 and n = 3 respectively.

of E1 against h for first (solid curve), second (dashed) and third (dotted) difference

equations. Equation (A.32) predicts the gradient of these curves should be 11/4,

which agrees with the curves seen in the figure. We note here that the results of the

appendix can be trivially extended to higher order derivatives. The same bounds

on the relative error are seen. In the following paragraphs, we will explain how this

relates to the numerical method of chapter 4.

Finite difference methods can be extended to multivariable functions by consid-

ering multivariable Taylor series. The extension of the theory in this appendix to

multivariable functions is less clear. Consider the function χ(φ, ψ) used in chapter
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4, given by equation (4.20). After some algebra, one finds that the local behaviour

of χ near φ = 0 is given by

χ(φ, ψ) =
1

B2/3
21/3ψ2/3 +

2

3B
φ+

25/3

9ψ2/3
φ2 +O(φ3). (A.40)

However, to obtain such an expansion, one must assume that ψ is not a small param-

eter. This can be seen by the fact that the local expansion is not valid in the limit

as ψ → 0. Hence, the nature of the singularity at the origin is more complicated:

we can consider different limits due to the existence of two variables. For example,

taking ε << 1, we could take ψ = φ = ε, or alternatively ψ = φ2 = ε. This denies

the ability to discuss local behaviour of the form (A.21), upon which the results of

this section depend upon.

This may paint a very pessimistic picture. However, the order of the relative

errors near the singularity are not crucial to know, as long as they are given by

O(hα) and O(kβ) for some α > 0 and β > 0. As discussed in section 4.4, it appears

that the numerical method is slightly worse than first order accurate in h. This can

be seen in figure 4.11, where the relative error of the value of B is shown for a two-

dimensional bubble. The numerical scheme appears to be between first and second

order accurate in k, as shown in 4.12.

The author acknowledges that the analysis contained within the appendix may

seem out of place, given that it cannot be neatly applied to the numerical scheme of

chapter 4. However, although some authors have used similar techniques for finite

difference methods (Ames [5], Brennen [16], Brennen [17], Woods [95]), the author

has not seen analysis of the type presented in this appendix. The analysis itself is

relatively heuristic, lacking the proper rigor of numerical analysis, but the agreement

of the theory with tested functions provides evidence that the results are correct. It

would be of interest to see if the theory can be extended to higher dimensions. At

the very least, the theory demonstrates that the function splitting method, and the
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approximation of the constant B, has an effect on the accuracy of finite difference

approximations.
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