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The elastic analogue of the Landau-Levich dip-coating problem, in which a plate is
withdrawn from a bath of fluid on whose surface lies a thin elastic sheet, is analysed for
angle of withdrawal θ to the horizontal. The flow is controlled by the elasticity number,
El, which is a measure of the relative importance of viscous and bending stresses, and θ.
The leading order solution for small El is a steady profile in which the thickness of the
film on the plate is found to vary as El3/4/(1 − cos θ)5/8. This prediction is confirmed
in the limit θ � 1 by comparison with numerical simulation. Finally, the circumstances
under which the assumption of a steady solution is no longer valid are discussed, and the
time-dependent solution is described.

1. Introduction

The classical Landau-Levich problem addresses the process of dip coating, in which a
plate withdrawn vertically from a bath of fluid retains a thin film of fluid. This process
is used in a wide variety of industrial settings, from pharmaceuticals to textiles, and is
an archetypal example of the process by which film coatings are deposited. The process
is governed by a balance between viscous stresses ∼ µU and surface tension σ of the
fluid interface through the capillary number, Ca = µU/σ, where µ and U are the fluid
viscosity and plate speed, respectively. Landau & Levich (1942) and Deraguin (1943)
determined an expression for the thickness of the film in the limit of small Ca. This work
was formalised as the first term in an asymptotic expansion in Ca by Wilson (1982), who
also extended the work to the case where the plate is withdrawn at an arbitrary angle
to the horizontal.

If the surface tension is modified, for example by surfactants, the structure and
thickness of the film may differ from the classical picture. Fluid interfaces with high
surfactant concentrations have been shown to behave elastically (Vella et al. 2004), and
it was following this motivation that Dixit & Homsy (2013) first analysed the elastic
equivalent of the Landau-Levich problem. Their approach, with a vertical plate, includes
an elastic sheet at the surface of the fluid in which the in-plane tension and bending
stresses are calculated. Whilst this has a qualitative similarity to the capillary case, the
introduction of bending stresses significantly modifies the problem. At a much larger
scale, ice sheets floating off from their grounding lines behave like elastic sheets meeting
a sloped surface (Sayag & Worster 2011). The response of ice sheets to changing sea
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Figure 1. A schematic diagram of the plate withdrawal problem

level on a tidal cycle was the background motivation from which we first approached this
problem.

In this paper we aim to solve this elastic Landau-Levich problem for a plate withdrawn
at an angle between 0 and π/2 to the horizontal. In doing so, we correct an error in the
matching conditions presented in Dixit & Homsy (2013), and derive a revised scaling for
the film thickness. The analysis presented in this paper is more generally applicable to
other problems involving elasticity and viscous flows. Snoeijer (2016) discussed analogies
between elastic and capillary interfaces, including the link between the Landau-Levich
problem and a horizontal elastic scraper as analysed by Seiwert et al. (2013). The elastic
scraper produces a similar scaling for the film thickness, although governed by the length
of the scraper, where here the scaling is intrinsically set by gravity. The inclusion of
gravity here also introduces a breakdown of the asymptotic analysis similar to the
transition observed in the capillary Landau-Levich problem (de Ryck & Quere 1998).

Another classical surface-tension governed flow is a bubble moving through a tube
(Bretherton 1961). In a biological context, an elastic equivalent of the problem could be
formulated by including the elasticity of capillary walls (Heap & Juel 2009), or vesicle
membranes (Barakat & Shaqfeh 2018). This latter work on vesicles follows a similar
method of asymptotic analysis to the work we present here, but differs fundamentally
by having a closed elastic boundary which can support a constant material tension. This
makes their matching analysis much more similar to the capillary Landau-Levich case.

A related problem in elastohydrodynamics is the study of peeling fronts (Lister et al.
2013, Hewitt et al. 2015), in which a contact line propagates over a pre-wetting film. The
governing equations for the inner region are similar to those used in this paper, although
the matching procedure is inverted, because an imposed film thickness is used in these
studies to determine features of the outer solution. This comparison is analogous to the
difference between the front and back ends of the bubble in Bretherton (1961).

In this paper, after presenting the governing equations and scalings, we solve for the
leading-order structure of the surface in the asymptotic limit of slow plate speed. We
conclude the paper with a discussion of the breakdown of these asymptotic results at
small slope, by analogy with the surface-tension driven problem.

2. Governing equations and scaling

Consider an infinite flat plate inclined at angle 0 < θ 6 π/2 to the horizontal, partially
submerged in a bath of fluid of viscosity µ and density ρ, as shown in figure 1. A thin
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inextensible elastic sheet of bending stiffness B lies over the surface of the fluid and up
onto the exposed portion of the plate. The plate is withdrawn from the bath at constant
speed U in its own plane.

By analogy with the classical Landau-Levich problem, we expect the flow to develop
towards a steady state in which a thin film of fluid is maintained between the plate
and the sheet. We therefore look for steady solutions in which the fluid film tends to a
constant, a priori unknown, depth H̃ far upslope of the bath. The fluid is incompressible
and obeys the steady Navier-Stokes equations,

∇ · ũ = 0, (2.1)

ρũ ·∇ũ = −∇p̃+ µ∇2ũ+ ρg, (2.2)

where ũ is the velocity of the fluid, p̃ is the pressure, and g is the gravitational
acceleration.

We take axes aligned with the plate, with ỹ = 0 on the surface of the plate, x̃ → ∞
into the bath, and x̃→ −∞ into the film (see figure 1). The elastic sheet is located at a
depth ỹ = h̃(x̃) which satisfies the far field conditions

h̃x̃ → tan θ as x̃→∞, (2.3)

h̃→ H̃ as x̃→ −∞, (2.4)

where, throughout this work, subscripts denote partial derivatives.

The fluid cannot slip on, or penetrate, the plate or the sheet, so

ũ = −U x̂ at ỹ = 0, (2.5a)

ũ · t̂ = −U, ũ · n̂ = 0 at ỹ = h̃(x̃), (2.5b)

where n̂ = (−h̃x̃, 1)/(1 + h̃2
x̃)1/2 and t̂ = (1, h̃x̃)/(1 + h̃2

x̃)1/2 are the unit normal and
tangent vectors at the sheet respectively.

Here we have assumed there is no slippage between the sheet and the plate, so that far
upslope the elastic sheet also moves at speed U . One could apply other conditions at the
sheet: other possible constraints are a stationary sheet, fixed over the bath, or a no-stress
boundary condition to model an effective “sheet” of surfactant molecules as in Dixit &
Homsy (2013). These possible boundary conditions do not alter the general asymptotic
structure of the solution. The minor changes that result from these different boundary
conditions are given in §3.2.

The dynamic condition at ỹ = h̃ is given by a balance in the normal stress across the
inextensible sheet (see derivations by, eg. Goldstein & Langer 1995, Kaoui et al. 2008)

n̂ · σ̃ · n̂|ỹ=h̃(x̃) = −B
(
∂2κ̃

∂s̃2
+
κ̃3

2

)
, (2.6)

where σ̃ = −p̃I+µ[∇ũ+∇ũT ] is the stress tensor, κ̃ = h̃x̃x̃/(1+ h̃2
x̃)3/2 is the curvature,

and s̃ is the parametrisation of the sheet shape by arc-length, such that

d

ds̃
=

1

(1 + h̃2
x̃)1/2

d

dx̃
. (2.7)

The κ̃3 term arises from imposing inextensibility in the elastic sheet. A force balance
along the sheet gives a material tension proportional to κ̃2, which acts on the curved
interface to produce a force κ̃2κ̃.
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2.1. Non-dimensionalisation

We define an elasto-gravity lengthscale, le, over which hydrostatic and elastic pressures
balance in the absence of flow, and a visco-gravity lengthscale, lv, over which viscous and
gravitational forces balance in the presence of flow, as

le =

(
B

ρg

)1/4

, lv =

(
µU

ρg

)1/2

. (2.8)

The ratio of these lengthscales defines a non-dimensional number, similar to the capillary
number in surface-tension driven flows, which we call the elasticity number

El =
l2v
l2e

=
µU

(ρgB)1/2
, (2.9)

(cf. Dixit & Homsy 2013). Note that the elastic Capillary number of Seiwert et al. (2013),
who study a related situation with a finite sheet of length L, is given similarly as l2vL

2/l4e ,
which reduces to El if L ∼ le.

In this paper we focus on the limit of a relatively stiff sheet or slow withdrawal speed,
El� 1, although we briefly discuss the effect of El > O(1) in §4. We further assume that
the Reynolds number Re = ρUle/µ, defined with respect to the elasto-gravity length le,
is not large (ElRe � 1), allowing us to neglect inertia throughout the following analysis.

2.2. Dimensionless equations

We scale lengths with the elasto-gravity length le, velocities with the plate speed U ,
and pressure with the magnitude of the bending pressure, B/l3e , so that the governing
equations, (2.1)-(2.2), may be written in terms of dimensionless (tilde-free) variables,

ux + vy = 0, (2.10)

−px + El∇2u+ sin θ = O(ElRe), (2.11)

−py + El∇2v − cos θ = O(ElRe), (2.12)

with boundary conditions (2.3-2.6) now written as

hx → tan θ as x→∞, (2.13)

h→ H as x→ −∞, (2.14)

u = −1, v = 0 at y = 0, (2.15a)

u+ hxv

(1 + h2
x)1/2

= −1, v− hxu = 0 at y = h(x), (2.15b)

p− 2El

(1 + h2
x)

[
ux(h2

x − 1)− (uy + vx)hx
]

= κss +
1

2
κ3 at y = h(x), (2.16)

where κ = hxx/(1 + h2
x)3/2 and ds =

√
1 + h2

x dx.
The solution h(x) therefore depends only on the two parameters El and θ. We

determine the dimensionless film thickness H as part of the solution h(x).

3. Solution structure

The fluid bath is large and deep, so that far from the plate we expect the elastic
lid to behave statically. Hydrostatic pressure balances the bending stresses here, and
there is no flow. Near to the plate, however, fluid does flow in a film and we expect
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the force exerted by the elastic sheet to instead balance viscous dissipation in the fluid.
We therefore look for a solution comprising an outer static region, an inner viscous film
region, and a transition region between the two.

3.1. Outer static region

Far from the plate, equations (2.10)-(2.16), to leading order in El, provide a static
balance between pressure gradients and gravity,

0 = −px + sin θ, (3.1)

0 = −py − cos θ, (3.2)

p = κss +
1

2
κ3 at y = h. (3.3)

Integrating (3.2) gives the pressure field

p = cos θ(h− y) + κss +
1

2
κ3, (3.4)

and hence, from (3.1),

cos θhx − sin θ + (1 + h2
x)1/2

(
κss +

1

2
κ3

)
s

= 0, (3.5)

which, given that κ ∼ hxx, is a fifth-order equation for h.
For a static elastic sheet meeting an inclined plate without adhesion, the relevant

boundary conditions are zero depth, slope, and curvature at the point of contact x = 0,

h(0) = hx(0) = hxx(0) = 0, (3.6a, b, c)

and constant far-field slope

hx → tan θ as x→∞. (3.7)

The four conditions (3.6)-(3.7) in fact provide the five constraints needed. The linearisa-
tion of (3.5) in the far field is

hxxxxx + (1 + tan2 θ)5/2 (cos θhx − sin θ) = 0, (3.8)

which has five exponential solutions, of which three decay as x → ∞. Eliminating the
two growing modes as x→∞ therefore imposes two constraints.

We note that the choice of origin, x = 0, is arbitrary as the equations are translationally
invariant. For convenience we choose it to be at the location of the point of contact as
defined by (3.6). Other authors (eg. Dixit & Homsy 2013) make the equivalent choice
of defining the origin elsewhere in the set-up, and solve for the distance to the point of
contact.

We do not have the freedom to impose that any further derivatives vanish at the point
of contact. This apparent imbalance is resolved by the existence of the inner region, onto
which these higher-order derivatives match. In fact, we can solve analytically for the first
non-zero derivative at x = 0, the shear stress in the sheet S0(θ) ≡ hxxx(0). We multiply
(3.5) by κ

(cos θhx − sin θ)
hxx

(1 + h2
x)3/2

+ (1 + h2
x)1/2κ

(
κss +

1

2
κ3

)
s

= 0, (3.9)

and integrate with respect to s to find

− (sin θhx + cos θ)

(1 + h2
x)1/2

+ κκss −
1

2
κ2
s +

3

8
κ4 = −1, (3.10)
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Figure 2. (a) The outer solution h(x) for a range of θ, given by numerical integration of (3.5),
together with the small-angle approximation (3.14) (dashed). (b) The inner solution φ(ξ), from
(3.25).

where the constant follows from the boundary conditions in the far field, κ, κs → 0 and
hx → tan θ as x→∞.

Since hx = κ = 0 at x = 0, the gradient in curvature at the origin is

κs|x=0 = (2− 2 cos θ)1/2, (3.11)

and so, given hx(0) = hxx(0) = 0, we deduce that

S0(θ) = (2− 2 cos θ)1/2. (3.12)

That is, the sheet approaches the plate with a non-zero shear stress hxxx(0), which must
then match with the viscous inner solution. This corrects the analysis of Dixit & Homsy
(2013), who attempted to additionally impose zero shear stress on the outer solution at
the point of contact, which the above calculation shows cannot hold.

Further analytic progress beyond (3.10) is intractable, so we solve (3.5) numerically.
Profiles of h(x) for a range of θ are shown in figure 2.

In the limit of small slope (θ � 1), the resulting deflections are small (hx � 1) and
the linearisation in (3.8) holds all the way in to the plate, and reduces to

hxxxxx + (hx − θ) +O(θ3) = 0, (3.13)

with exact solution

h =
√

2θ

[
exp

(
− x√

2

)
cos

(
x√
2

)
− 1

]
+ θx. (3.14)

This fits closely to the full profile of h for small θ (figure 2). The shear stress at x = 0 is
S0 = θ +O(θ3), in agreement with (3.12).

3.2. Inner region

Near the plate, viscous stresses are no longer negligible, and the dynamics are therefore
fundamentally controlled by a balance between elastic stresses determined by the bending
of the sheet as it approaches the plate and viscous stresses in the thin-film flow. Hence,
in the inner region near the plate, we anticipate that viscous drag balances along-plate
pressure gradients, and so, from (2.11), p/x ∼ El(u/y2). Since the pressure is still
dominated by the bending pressure, p ∼ h/x4. The plate imposes unit speed u ∼ 1, and
the requirement of matching the shear stress of the outer region indicates that h/x3 ∼ 1.
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Scaling h ∼ y, we therefore define rescaled variables as

ū = u, v̄ =
v

El1/2
, x̄ =

x

El1/4
, (ȳ, h̄, H̄) =

(y, h,H)

El3/4
, p̄ = El1/4p. (3.15)

The main difference between this and the capillary Landau-Levich problem is that scaling
of the forcing (here the shear, there the curvature) does not match the pressure scale, so
the pressure is rescaled. This requires the pressure in the inner region to vanish in order
to match across scales. We note that this generic matching behaviour is not unusual for
problems involving elasticity (e.g. Seiwert et al. 2013).

In contrast, if the scaling were chosen so that pressure remained unscaled, as in Dixit &
Homsy (2013), it would be the shear stress of the outer solution, which we have already
calculated to be non-zero, that would have to vanish to match across scales. This is
clearly inconsistent.

In terms of the rescaled variables, (3.15), to leading order in El, equations (2.10)-(2.16)
become

ūx̄ + v̄ȳ = 0, (3.16)

0 = −p̄x̄ + ūȳȳ, (3.17)

0 = −p̄ȳ, (3.18)

ū = −1, v̄ = 0 at ȳ = 0, h̄(x̄), (3.19)

p̄ = h̄x̄x̄x̄x̄ at ȳ = h̄(x̄). (3.20)

with

h̄→ H̄ as x̄→ −∞. (3.21)

We can integrate across the film to find first the pressure gradient and then the flux

q̄ = − h̄
3

12
p̄x̄ − h̄ = − h̄

3

12
h̄x̄x̄x̄x̄x̄ − h̄. (3.22)

In steady state, the flux is constant through the film, so matching to the far-field depth
h̄→ H̄ as x̄→ −∞ gives

h̄x̄x̄x̄x̄x̄ = −12(h̄− H̄)

h̄3
. (3.23)

After rescaling by the unknown far-field depth and corresponding peeling lengthscale via

φ =
h̄

H̄
, ξ =

121/5x̄

H̄3/5
, (3.24)

we arrive at the unitary elastic Landau-Levich equation

φξξξξξ = − (φ− 1)

φ3
. (3.25)

also derived in Seiwert et al. (2013) and Lister et al. (2013).
By linearising about φ→ 1 as ξ → −∞, we can see that the requirement that φ decays

to a constant depth provides three constraints to eliminate each growing mode. A fourth
boundary condition is set by the free choice of origin, leaving just one boundary condition
to impose as ξ →∞.

As φ→∞, φξξξξξ → 0, so in general solutions tend to quartic polynomials in ξ,

φ→ A0ξ
4 +B0ξ

3 +O(ξ2) as ξ →∞, (3.26)

and the final boundary condition determines the value of A0. We wish to match shear
stresses between regions, but the pressure, a higher derivative, is lower order in El. Thus,
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to match the pressure between regions and across scales, we must impose A0 = 0. This
prevents the leading order pressure contribution, p ∼ A0El

−1/4, from diverging.
We obtain φ(ξ) by integrating (3.25) numerically, as shown in figure 2. The scaled

shear stress in the far field is determined from this solution to be

φξξξ → 6B0 = 0.8325. (3.27)

Given this far field constraint, we can solve for H̄ by matching the shear stress between
inner and outer solutions,

lim
x̄→∞

h̄x̄x̄x̄ = lim
x→0

hxxx (3.28)

to deduce that

H̄ = 123/4

(
6B0

S0(θ)

)5/4

, (3.29)

or

H = 123/4 0.83255/4

(2− 2 cos θ)
5/8

El3/4. (3.30)

We note that altering the boundary conditions at the sheet would change only the
numerical prefactor of 123/4 in this expression: instead of (3.22), a stationary sheet would
give q̄ = − 1

12 h̄x̄x̄x̄x̄x̄h̄
3− 1

2 h̄, and a prefactor of 63/4 in (3.29), while a no-stress boundary

as used by Dixit & Homsy (2013) leads to q̄ = − 1
3 h̄x̄x̄x̄x̄x̄h̄

3 − h̄ and a prefactor of 33/4.

The scaling H ∼ El3/4 agrees with the similar result of Seiwert et al. (2013) and corrects
the H ∼ El4/7 arrived at by Dixit & Homsy (2013).

3.3. Numerical simulations for θ � 1

As a verification of our predicted scaling for the film thickness with El, we return to
the case θ � 1. Here there is a natural separation of scales between the horizontal and
vertical, and we can use lubrication theory all the way from the inner viscous film out to
the (shallow) bath.

To leading order in θ ∼ y/x, (2.11)-(2.16) become

−px + Eluyy + sin θ = 0, (3.31)

−py − cos θ = 0, (3.32)

u = −1 at y = 0, h(x), (3.33)

p = hxxxx at y = h(x). (3.34)

As in (3.22) we integrate across the film to find the flux

q = − h3

12El
(hxxxxx + cos θhx − sin θ)− h =

H3

12El
sin θ −H, (3.35)

which differs from (3.22) only in the inclusion of gravity. Here we give this equation in
terms of the outer dimensionless variables to highlight that this continues to hold over
the shallow bath.

We integrate (3.35) numerically using MATLAB’s bvp4c routine, formulated as an
eigenvalue problem for H and subject to boundary conditions (2.13)-(2.14) as x→ ±∞.
In the limit El� 1, we obtain excellent agreement with the predicted scalings, including
of the prefactor (see figure 3).
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Figure 3. Numerical solutions of the θ � 1 problem (3.35) for θ = π/30 (red filled circles) and
θ = π/5 (blue open circles), together with the predicted film thickness (3.30) (solid lines) for
El � 1. The dashed lines show H = Hc (4.4), above which there are no steady solutions, as
discussed in §4.

4. Breakdown of the asymptotics

In this paper we have calculated the steady-state film thickness in the limit El � 1.
When the film thickness becomes comparable to the viscogravity lengthscale, le ∼ lv, or
El ∼ 1, we expect the asymptotics presented here to break down. It is no longer possible
to neglect the effects of gravity in the inner region, as the dragged-out depth becomes
large enough for gravity to play a role.

Further, we have assumed that a steady state is reached. If this experiment were
performed in practice, there would be an initial contact point which is dragged upstream,
below which a flow develops, and for El � 1, reaches steady state. If El is sufficiently
large, we will instead see that the flow remains dependent on initial conditions every-
where.

To show how the inclusion of gravity causes a breakdown of the results presented thus
far, we note that the flux in the inner region, including the effects of gravity, is

q = − h3

12El
(hxxxxx + cos θhx − sin θ)− h =

H3

12El
sin θ −H. (4.1)

Time dependence is introduced through an expression of mass conservation,

∂h

∂t
+
∂q

∂x
= 0, (4.2)

which is a non-linear advection-diffusion equation for h, with a speed of information
propagation given by c = dq/dh, which as h→ H tends to

c =
1

4El
sin θH2 − 1, (4.3)

from (4.1). Equation (4.3) suggests that information travels upslope for

H < Hc(El, θ) ≡
√

4El/ sin θ. (4.4)

Since H ∼ El3/4/θ5/4 (3.30), we can express this condition as El . θ3. Thus for
sufficiently slow withdrawal speeds (small El), or on sufficiently steep slopes (large θ),
the initial conditions are swept upslope. Their influence is confined to a small nose region,
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eventually very far from the bath. This justifies solving for the steady state when El . θ3,
and shows that the manner of exit of the plate from the bath controls upslope film
thickness in this limit.

However, for faster plate speeds or lower slopes, such a scaling analysis suggests that in
the resulting thicker film, information instead propagates down from the top of the film
into the bath (the sign of (4.3) reverses). The flow produced by the withdrawal of the
plate thus remains dependent on the initial conditions everywhere, even at late times.
So a steady-state solution cannot develop, even in the limit of long drag-out times. It
follows that on sufficiently shallow slopes, or at sufficiently fast plate speeds, dip coating
under an elastic lid cannot produce a steady, uniform film. An analogous result holds for
the classical capillary Landau-Levich problem, where steady solutions do not exist if the
capillary number is too large (see the appendix of Jin et al. 2005).

In the time dependent problem, for El� θ3, the steady film makes up the majority of
dragged out region, and the contact point joins onto the film via a viscously dominated
nose region. This nose has a self-similar parabolic shape found by solving (4.2) in the
limit h� 1,

∂h

∂t
− ∂h

∂x
+

sin θ

El

∂h3

∂x
= 0. (4.5)

The profile is given by

h =

√
4El(t− x)

sin θt
, (4.6)

and the length of the nose is found by matching its height onto the steady film depth
found previously (see also de Ryck & Quere 1998). Hence as El increases, the resulting
increase in depth of the steady film gives a longer nose, until the nose engulfs the entire
film and matches directly onto the bath at x = 0, with a depth of

√
4El/ sin θ. We thus

recover the condition H < Hc (4.4) for the existence of steady films. Moreover, we see
that for El & θ3, the solution instead takes the form of a parabolic nose matching onto
the bath at x = 0 and depth H = Hc.

There is another potential resolution to this loss of steady solutions at large El. In this
paper we have considered the case where the withdrawal of the plate determines the depth
of the film. We could instead consider a situation in which the film depth upstream of
the bath is imposed, and seek these alternative steady solutions (cf. Benilov et al. 2010).
This would require information to be propagating from the film down the plate, and so
from (4.3), the non-dimensional film depth would need to be at least H > Hc. In this
case it is worth noting that the far-field depth would be set as a boundary condition,
rather than being part of the solution. However, inspecting (4.1), the change of sign in
wavespeed occurs simultaneously with the appearance of an additional decaying root
of the linearised system as x → −∞. Hence imposing the film depth is required for
consistency, as anticipated, and so steady solutions exist in this case for any H > Hc.

5. Conclusions

In this paper, we have examined the elastic Landau-Levich problem, and found the
leading order solution for the film depth and surface profile as a function of the elasticity
number El � 1 and the plate angle 0 < θ < π

2 . The full dimensional expression for the
thickness of the film deposited on the withdrawn plate is

H̃ =
α(µU)3/4

B1/8 [ρg(1− cos θ)]
5/8

, (5.1)
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where the constant α depends on the choice of boundary condition on the elastic sheet
(for the case of a sheet moving with the plate at speed U , as considered in this paper,
α = 3.324).

The key physical balances behind the scaling H̃ ∼ El3/4le are of the shear stress
between the inner film and the bath, and of viscous dissipation in the film to the
bending-pressure gradients exerted by the sheet. While this elastic Landau-Levich
problem shares many qualitative results with its classical capillary analogue, the process
is governed by the balance in the shear stress rather than pressure between the inner
film and the bath. This method of matching between regions applies more generally to
processes involving elasticity and thin films of fluid.

The authors are very grateful to John Lister and Gunnar Peng for initially directing
us towards this problem, and for many helpful discussions along the way. J.A.N. is partly
supported by a Royal Society University Research Fellowship. K.L.P.W. is supported by
the Natural Environment Research Council (grant number NE/L002507/1).

REFERENCES

Barakat, J. M. & Shaqfeh, E. S. G. 2018 The steady motion of a closely fitting vesicle in a
tube. J. Fluid Mech. 835, 721–761.

Benilov, E. S., Chapman, S. J., McLeod, J. B., Ockendon, J. R. & Zubkov, V. S. 2010
On liquid films on an inclined plate. J. Fluid Mech. 663, 53–69.

Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.
de Ryck, A. & Quere, D. 1998 Gravity and inertia effects in plate coating. J. Colloid Interface

Sci. 203, 278–285.
Deraguin, B. V. 1943 On the thickness of the liquid film adhering to the walls of a vessel after

emptying. Acta Physicochim. USSR 20, 349–352.
Dixit, H. N. & Homsy, G. M. 2013 The elastic Landau–Levich problem. J. Fluid Mech. 732,

5–28.
Goldstein, R. E. & Langer, S. A. 1995 Nonlinear dynamics of stiff polymers. Phys. Rev.

Lett. 75, 1094–1097.
Heap, A. & Juel, A. 2009 Bubble transitions in strongly collapsed elastic tubes. J. Fluid Mech.

633, 485–507.
Hewitt, I. J., Balmforth, N. J. & de Bruyn, J. R. 2015 Elastic-plated gravity currents.

Eur. J. Appl. Math. 26 (1), 1–31.
Jin, B., Acrivos, A. & Münch, A. 2005 The drag-out problem in film coating. Phys. Fluids

17 (10), 103603, arXiv: https://aip.scitation.org/doi/pdf/10.1063/1.2079927.
Kaoui, B., Ristow, G. H., Cantat, I., Misbah, C. & Zimmerman, W. 2008 Lateral migration

of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. Lett. 77, 021903.
Landau, L. & Levich, B. 1942 Dragging of liquid by a moving plate. Acta Physicochim. USSR

7, 42–54.
Lister, J. R., Peng, G. G. & Neufeld, J. A. 2013 Viscous control of peeling an elastic sheet

by bending and pulling. Phys. Rev. Lett. 111, 154501.
Sayag, R. & Worster, M. G. 2011 Elastic response of a grounded ice sheet coupled to a

floating ice shelf. Phys. Rev. Lett. 84, 036111.
Seiwert, J., Quere, D. & Clanet, C. 2013 Flexible scraping of viscous fluids. J. Fluid Mech.

715, 424–435.
Snoeijer, J. H. 2016 Analogies between elastic and capillary interfaces. Phys. Rev. Fluids 1,

060506.
Vella, D., Aussillous, P. & Mahadevan, L. 2004 Elasticity of an interfacial particle raft.

Europhys. Lett. 68 (2), 212–218.
Wilson, S. D. R. 1982 The drag-out problem in film coating theory. J. Eng. Maths. 16, 209–221.


