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ABSTRACT
Conventional dictionary matching based MR Fingerprinting

(MRF) reconstruction approaches suffer from time-consuming op-
erations that map temporal MRF signals to quantitative tissue pa-
rameters. In this paper, we design a 1-D residual convolutional
neural network to perform the signature-to-parameter mapping in
order to improve inference speed and accuracy. In particular, a 1-D
convolutional neural network with shortcuts, a.k.a skip connections,
for residual learning is developed using a TensorFlow platform.
To avoid the requirement for a large amount of MRF data, the de-
signed network is trained on synthesized MRF data simulated with
the Bloch equations and fast imaging with steady state precession
(FISP) sequences. The proposed approach was validated on both
synthetic data and phantom data generated from a healthy subject.
The reconstruction performance demonstrates a significantly im-
proved speed – only 1.6s for reconstructing a pair of T1/T2 maps
of size 128 × 128 – 50× faster than the original dictionary match-
ing based method. The better performance was also confirmed by
improved signal to noise ratio (SNR) and reduced root mean square
error (RMSE). Furthermore, it is more compact to store a network
instead of a large dictionary.

Index Terms— Magnetic Resonance Fingerprinting, Quantita-
tive Magnetic Resonance Imaging, deep learning, residual Convolu-
tional Neural Network

1. INTRODUCTION

Magnetic Resonance Fingerprinting (MRF) [1–7] has emerged as a
promising Quantitative Magnetic Resonance Imaging (QMRI) ap-
proach, with the capability of providing multiple tissue’s intrinsic
spin parameters simultaneously, such as the spin-lattice magnetic re-
laxation time (T1) and the spin-spin magnetic relaxation time (T2).
Based on the fact that the response from each tissue with respect
to a given pseudo-random pulse sequence is unique, MRF exploits
pseudo-randomized acquisition parameters to create unique tempo-
ral signal signatures, analogue to the "fingerprint", for different tis-
sues. Then, a dictionary matching operation is performed to map
an inquiry temporal signature to the best matching entry in a pre-
computed dictionary which leads to multiple tissue parameters di-
rectly. In particular, the temporal signatures is generated by varying
the acquisition parameters of a pseudo-random excitation pulse se-
quence, such as repetition time (TR), time of echo (TE), and radio
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frequency flip angle (FA) over time. The dictionary is composed
of a large amount of entries that are usually simulated refer to the
Bloch equations and given pseudo-random pulse sequence. Each en-
try represents a unique temporal signature associated with a specific
tissue and is also linked to its quantitative parameters, such as the
T1 and T2 relaxation times. Thus, once the best matching (i.e. most
correlated) entry is found, it directly leads to multiple quantitative
parameters simultaneously via a simple look-up table operation.

Due to the k-space subsampling, temporal signatures are often
corrupted by blurring, noising or aliasing, thus hamper the accuracy
of estimating the tissue parameters using the dictionary matching. In
order to alleviate the impact of corruption, denoising or de-aliasing
operations are often exploited to restore cleaner signatures before
performing signature-to-parameter mapping. Therefore, MRF re-
construction usually involves two operations: signature restoration
and parameter restoration. In particular, inspired by the successful
application of sparsity in MRI reconstruction [8–10], some work [3–
6] suggest to incorporate prior knowledge such as sparsity and low-
rank to attenuate corruption, improving the signature restoration per-
formance.

However, all of above-mentioned approaches use dictionary
matching to perform mapping from purified temporal signatures to
tissue’s quantitative parameters. Such dictionary matching based
signature-to-parameter mapping exhibits some drawbacks [11–13].
First, it usually requires a huge dictionary composed of a large
number of entries to represent tissues with fine granularity over the
entire range of possible tissue values. Further, the dictionary size
often grows exponentially with the number of tissue parameters,
so that storing the large dictionary becomes prohibitively memory-
consuming. Second, finding the best matching entry needs to com-
pare the inquiry temporal signature with the whole dictionary. Thus,
dictionary matching operation is prohibitively time-consuming for a
large dictionary, considerably limit the inference speed.

In this paper, we consider a different approach to alleviate some
of these issues based on deep neural networks (a.k.a. deep learn-
ing) [14, 15]. The rationale has to do with the fact that a well de-
signed and tuned deep neural networks can approximate very well
complex functions, leading to state-of-the-art results in a number
of tasks such as image classification, image super-resolution, and
many more [16–22]. Recent work [11–13] propose to exploit neu-
ral networks to replace the dictionary and the look-up table used in
conventional MRF reconstruction approaches. Different from the
fully-connected feed-forward neural network [11], and the convo-
lutional neural network (CNN) model [12, 13], we propose a 1-D
deep residual convolutional neural network to perform signature-
to-parameter mapping, replacing the memory-consuming dictionary
and time-consuming dictionary matching. A series of experiments
demonstrate that our designed neural network is capable of severing
as a compact model to represent complicated mappings.
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Fig. 1. Diagram of designed 1-D residual CNN for signature-to-parameter mapping in MRF reconstruction. During the training stage, each
dictionary entry, as a 1-D time sequence, is input into the network for a training signature. During the testing stage, the signature for each
pixel is extracted from a purified image stack to serve as a testing signature which is mapped to corresponding T1/T2 relaxation times by the
network.

Fig. 2. Relationship between X, Y, ΘT12.

2. PROBLEM FORMULATION

Similar to a video structure, MRF data is composed of multiple
frames sampled in the k-space, where each frame is an MR contrast
acquired with different acquisition parameters, such as TR, TE and
FA, at a different time point. A series of frames are stacked together
along the temporal dimension to construct a matrix Y ∈ CQ×L,
where Q is the number of k-space samples in each frame, and L is
the number of frames, equivalent to the number of time points. Ev-
ery column vector Y:,i represents an subsampled Fourier transform
of an image frame X:,i from the contrasts matrix X ∈ CN×L, i.e.
Y:,i = Fu{X:,i}, where Fu{·} denotes an subsampled 2-D Fourier
transform at the time point i ∈ [1, L], N denotes the number of pix-
els in each image frame. The relationship of these variables is shown
in Figure 2 for better illustration.

Each image frame X:,i represents a response MR contrast
acquired at a single time point with different acquisition param-
eters, stacked as a column vector ΘTRE

:,i = [TRi, TEi, FAi]T ,
i ∈ [1, L], where TR and TE denote the repetition time and echo
time, respectively, and FA denotes the flip angle of the RF pulse.
Each row vector Xj,: represents a temporal signature, i.e. temporal
signal evolution of a specific tissue at the j-pixel along the sampling
time points. The signature depends on the tissue’s relaxation times,
such as T1, T2 and proton density (PD), grouped as a row vector
ΘT12

j,: = [T1j , T2j , PDj ], j ∈ [1, N ]. Here, i is the temporal
index, while j is the spatial index. Combining temporal dimension
with spatial dimension together, the temporal signature can be for-
mulated as Xj,: = f(ΘT12

j,: ,Θ
TRE), where f(·) denotes the Bloch

equations.
Let D ∈ CK×N denote a precomputed dictionary composed

of K entries. Each entry Dk,: represents a temporal signature sim-
ulated using Bloch equations for a specific tissue characterized by

certain quantitative parameters, such as T1, T2, PD, given the RF
sequence parameters ΘTRE . Such a dictionary D with a large K
gives fine granularity over the entire range of possible tissue values.
Let LUT ∈ RK×P denote the corresponding look-up table where
each row LUTk,: contains P quantitative parameters, e.g. T1, T2
and PD relaxation times (P = 3), for a specific tissue. In this way,
the temporal signature represented by the k-th entry Dk,: is linked
with the quantitative parameters LUTk,: of the k-th tissue.

Given ΘTRE and k-space samples Y, the goal of MRF re-
construction is to estimate the tissue quantitative parameters ΘT12.
Commonly, the image stack X is first reconstructed from the k-space
samples Y, and then the recovered X is mapped to tissue parameters
via pattern recognition, such as dictionary matching [1–6]. How-
ever, our approach, as described in the next section, exploits low-
rank prior for signature restoration and a trained neural network to
replace the dictionary matching operation in order to improve the
inference speed, as well as alleviating the storage burden.

3. PROPOSED MRF RECONSTRUCTION
The proposed MRF reconstruction approach involves two stages:
signature restoration and parameter restoration. Given ΘTRE and
k-space samples Y, we proposed a low-rank based de-aliasing and
denoising method for restoring signatures X, and a residual convo-
lutional neural network to map each signature Xj,: to correspond-
ing tissue parameters ΘT12

j,: directly. Such signature and parameter
restoration operations are formulated as

ΘT12
j,: = g(h(Y)j,:|ΘTRE),∀j ∈ [1, N ], (1)

where function X = h(Y) represents the signature restoration oper-
ator and function ΘT12

j,: = g(Xj,:|ΘTRE) represents the parameter
restoration operator.

3.1. Low-rank for signature restoration
Since MRF data consists of multiple frames exhibiting temporal sim-
ilarity across time points, the imaging contrasts matrix X is typically
a low-rank matrix. Therefore, h(·) leverages a low-rank prior for de-
noising and de-aliasing, formulated as

h(Y) = argmin
X

1
2

∑
i ‖Y:,i − Fu{X:,i}‖22 + λ ‖X‖∗ (2)

where ‖X‖∗ denotes the nuclear norm, the relaxation form of low-
rank, defined as the sum of the singular values of X [23]. (2) can be
solved using the incremental subgradient proximal method [24].



Fig. 3. Parameter restoration performance using designed network
on synthetic data. Blue and red lines represent the groundtruth and
estimation of corresponding parameter. It can be noticed that the
trained network fits the parameters well in the whole range, yield-
ing high correlation coefficients and low RMSE. Correlation Coeffi-
cients for T1 / T2: R2 = 0.99999986/0.99999963; RMSE = 0.659
/ 0.491.

3.2. Residual CNN for parameter restoration

Once the imaging contrasts matrix X is recovered, each temporal
signature in X is input into the designed residual convolutional neu-
ral network for parameter restoration, formulated as:

ΘT12
j,: = g(Xj,:|ΘTRE), ∀j ∈ [1, N ] (3)

where g(·) denotes the trained network.
By introducing convolution, local receptive field and weight

sharing design, CNN can take advantage of local spatial coherence
and translation invariance characteristics in the input signal, thus be-
come especially well suited to extract relevant information at a low
computational cost [16–21]. On the other hand, residual network ar-
chitecture [17, 18] enables deeper model with more representational
power to be trained effectively, as it alleviates the gradient vanish-
ing or exploding problems by propagating gradients throughout the
model via short-cuts, a.k.a skip connections.

Inspired by these network designs, the proposed network has a
1-D residual CNN architecture with short-cuts for residual learning.
As illustrated in Figure 1, it starts with two 1-D convolutional lay-
ers before connecting with 4 residual blocks, and finally ends with
a global-average-pooling layer followed by a fully-connected layers.
Each residual block contains a max-pooling layer with stride 2, two
convolution layers and a shortcut that enforces the network to learn
the residual content in each block. The filter size in each convolu-
tional layer is set to be equal to 7. The number of channels, a.k.a
feature maps, in the first two convolutional layers is set to be 32 and
then is doubled in each residual block until 512 in the final resid-
ual block. The size of each filter map halves due to max-pooling
in each block. In this way, we gradually reduce temporal resolution
while we extract more features to increase content information. The
global-average-pooling layer is used to average each feature map in
order to integrate information in each channel for improved robust-
ness to corrupted input data. This global-average-pooling layer also
reduces the number of parameters significantly, thus lessening the
computation cost as well as preventing over-fitting. The last fully-
connected layer outputs estimated parameters, such as T1 and T2
relaxation times. It is trivial to adjust the number of output to adapt
to more parameters.

Regarding the training, the network is trained on synthesized
dictionary and look-up table to learn the mapping LUTk,: =
g(Dk,:|ΘTRE). Once the network is trained, given an inquiry tem-
poral signature Xj,:, the network is able to map the inquiry time
sequence directly to the tissue parameters as (3).

4. EXPERIMENTS

In this section, we conducted a series of experiments to evaluate our
approach.

4.1. Training
The training dataset in our numerical experiments is composed of a
dictionary D as input data and a Lookup-Table LUT as labels. D
and LUT were synthesized by solving the Bloch equations using the
extended phase graph formalism and fast imaging with steady state
precession (FISP) sequences [2, 6]. The FISP pulse sequence was
designed with constant TE of 2ms, random TR values in the range
of 11.5-14.5 ms, and a sinusoidal variation of FA (RF pulses) in the
range of 0 - 70 degrees. We generated 80100 sequences with 200
time points as entries, which constitute the dictionary of dimension
80100 × 200. Accordingly, we obtained a Lookup-Table LUT of
dimension 80100×2 for T1 and T2 parameters. The 80100 samples
correspond to T1 and T2 values starting from 1 ms and increasing
with an increment of 10 ms until covering the T1 parameter range
of [1, 5000] ms and T2 parameter range of [1, 2000] ms. Note,
those samples corresponding to T1 < T2 have been excluded during
the construction, as they have no physical meaning. The parameter
ranges cover the relaxation time values that can be commonly found
in a brain scan [25]. The model was trained for 50 training epochs.
In each epoch, 20% of the training samples are separated aside for
validation dataset. We use RMSE as the loss and Adam [26] as the
optimization algorithm with the learning rate decaying from 1e-2 to
1e-6 every 10 epochs. The batch size was set to 256 time series. The
training procedure takes around 30 seconds for one epoch in average,
thus around 25 minutes for completing 50 epochs, on a NVIDIA
GeForce GTX 1080 Ti GPU.

4.2. Testing
We evaluate the performance of a trained network on both synthetic
and phantom testing dataset. The construction of the synthetic test-
ing dataset is similar to the construction of the training dataset, but
with a different starting index of the T1 and T2 parameters. Thus, the
synthetic testing dataset has distinct T1 / T2 values without overlap-
ping with the training dataset. We also construct a phantom testing
dataset from the brain scans that were acquired with GE Signa 3T
HDXT scanner from a healthy subject.1 To generate gold standard
data for the T1 and T2 parameter maps, we acquired Fast Imaging
Employing Steady-state Acquisition (FIESTA) and Spoiled Gradient
Recalled Acquisition in Steady State (SPGR) images, at 4 different
flip angles (3◦,5◦,12◦ and 20◦), and then implemented well known
DESPOT1 and DESPOT2 [27] algorithms, after improvements as
described in [28]. Based on the gold standard T1, T2 maps, we gen-
erated phantom MRF data using the same mechanism as generating
the synthetic testing dataset. The sub-sampling factor is set to be
0.15, that is, only 15% k-space data is used for reconstructing image
stack X. The tuning parameters were experimentally set as µ = 1
and λ = 5.

To evaluate the parameter restoration performance of the pro-
posed network, we input testing synthetic signatures into the net-
work and compare its output with groundtruth T1 and T2 values. As
shown in Figure 3, the estimation from the proposed network ob-
tained outstanding agreement with the reference, yielding high cor-
relation coefficients. In addition, it also gives higher PSNR, SNR
and lower RMSE than the dictionary matching operation used in [1–

1The experiment procedures involving human subjects described in this
paper were approved by the Institutional Review Board of Tel-Aviv Sourasky
Medical Center, Israel.
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Fig. 4. Visual comparison between the dictionary matching method [1] and proposed method without subsampling.

6]. The most impressive advantage of the network is the fast in-
ference speed. It is observed that the network takes only 8.2 s to
complete the mapping operation for eighty thousand temporal signa-
tures, that is, 53× faster than 464.1 s using the dictionary matching
method that is based on computing inner-products of the target sig-
nature with each dictionary entry. Furthermore, since the complex-
ity has been fixed once the network topology is fixed, the inference
speed of the network is not affected by the dictionary density, i.e. the
number of entries in a dictionary.

The parameter restoration performance of the proposed network
is also tested on the phantom dataset without subsampling. The vi-
sual results are shown in Figure 4. It is noticed that our approach
gives competitive performance for T1 mapping and yields much bet-
ter performance for T2 mapping, obtaining 7.9dB SNR gains than
the competing method [1]. The RMSE of T2 mapping is also re-
duced to 2.498 from 6.252, accordingly. This is owing to the ad-
vantage that the trained neural network is a powerful function rep-
resentation that outputs continuous-valued parameters. In contrast,
conventional dictionary-matching method [1] only matches signa-
tures to discrete dictionary entries. If there is no exact parameters for
an inquiry signature, dictionary-matching methods will find adjacent
parameters for approximation, thus introducing mismatch. However,
a well designed and trained network can still estimate the missing
parameters based on captured mapping functions. In addition, the
network takes only 1.6 s to accomplish the mapping for a pair of T1
/ T2 parameter maps of size 128 × 128, that is, 56× faster than the
dictionary matching method [1].

To evaluate both the signature restoration and the parameter
restoration performance of the proposed method, we input subsam-
pled phantom data into our model for low-rank based signature
de-aliasing followed by network based parameter mapping. The
same phantom data is also input into competing methods [1, 6] for
comparison. The visual performance is shown in Figure 5. It is no-
ticed that our method outperforms dictionary matching method [1]
with significant gains, and also yields competitive performance as
the state-of-the-art method FLOR [6]. In addition, our method is
73× faster than FLOR [6] for parameter mapping.

We also note that storing the network requires 20.3 megabytes
while storing the training dictionary of size 80100 × 200 requires
more than 100 megabytes. Even though the dictionary volume will
grow exponentially with the number of parameters, but the space

Ma et al. [1]
SNR = 13.50 / 8.61 dB

time cost = 106.0 s

FLOR [6]
SNR = 30.51 / 21.89 dB

time cost = 121.7 s

Proposed method
SNR = 30.76 / 19.78 dB

time cost = 1.67 s

Fig. 5. Visual comparison between the Ma et al.’s dictionary match-
ing [1], FLOR [6], and proposed method, with subsampling ratio
0.15.

required for storing a network is not strictly limited by the dictionary
density once the topology of the network is fixed, thus significantly
alleviating the storage burden inherent to the exponential growth of
multi-dimensional dictionaries.

5. CONCLUSION
We proposed a deep residual convolutional neural network to learn
the mapping from MRF signatures to tissue parameters, combined
with a low-rank based signature restoration. The proposed network
plays the role of dictionary and Lookup-Table in the dictionary
matching based methods. However, neural networks demonstrate
various additional advantages. Owing to the feedforward charac-
teristics, the signature-to-parameter mapping operation using the
proposed network is much faster than the conventional dictionary-
matching. As a neural network is a compact function representation,
storing a trained network needs less memory than storing a large
dictionary. Serving as a powerful function representation, neural
networks are able to output continuous-valued parameters, thus
perform well on estimating parameters which may not exist in a
simulated dictionary.
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