
Predicting the effects of periodicity on the intelligibility of masked speech: An
evaluation of different modelling approaches and their limitations
Kurt Steinmetzger, Johannes Zaar, Helia Relaño-Iborra, Stuart Rosen, and Torsten Dau

Citation: The Journal of the Acoustical Society of America 146, 2562 (2019); doi: 10.1121/1.5129050
View online: https://doi.org/10.1121/1.5129050
View Table of Contents: https://asa.scitation.org/toc/jas/146/4
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-
modulation selectivity
The Journal of the Acoustical Society of America 146, 2415 (2019); https://doi.org/10.1121/1.5128324

The effect of room acoustical parameters on speech reception thresholds and spatial release from masking
The Journal of the Acoustical Society of America 146, 2188 (2019); https://doi.org/10.1121/1.5126694

On the externalization of sound sources with headphones without reference to a real source
The Journal of the Acoustical Society of America 146, 2309 (2019); https://doi.org/10.1121/1.5128325

Effects of temporal distortions on consonant perception with and without undistorted visual speech cues
The Journal of the Acoustical Society of America 146, EL381 (2019); https://doi.org/10.1121/1.5129562

Quantifying vocal effort from the shape of the one-third octave long-term-average spectrum of speech
The Journal of the Acoustical Society of America 146, EL369 (2019); https://doi.org/10.1121/1.5129677

Consonance perception beyond the traditional existence region of pitch
The Journal of the Acoustical Society of America 146, 2279 (2019); https://doi.org/10.1121/1.5127845

https://images.scitation.org/redirect.spark?MID=176720&plid=1005993&setID=379055&channelID=0&CID=325884&banID=519774060&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=7bf8ff883631182bcd438ca6c793c476eccf82a5&location=
https://asa.scitation.org/author/Steinmetzger%2C+Kurt
https://asa.scitation.org/author/Zaar%2C+Johannes
https://asa.scitation.org/author/Rela%C3%B1o-Iborra%2C+Helia
https://asa.scitation.org/author/Rosen%2C+Stuart
https://asa.scitation.org/author/Dau%2C+Torsten
/loi/jas
https://doi.org/10.1121/1.5129050
https://asa.scitation.org/toc/jas/146/4
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/1.5128324
https://asa.scitation.org/doi/10.1121/1.5128324
https://doi.org/10.1121/1.5128324
https://asa.scitation.org/doi/10.1121/1.5126694
https://doi.org/10.1121/1.5126694
https://asa.scitation.org/doi/10.1121/1.5128325
https://doi.org/10.1121/1.5128325
https://asa.scitation.org/doi/10.1121/1.5129562
https://doi.org/10.1121/1.5129562
https://asa.scitation.org/doi/10.1121/1.5129677
https://doi.org/10.1121/1.5129677
https://asa.scitation.org/doi/10.1121/1.5127845
https://doi.org/10.1121/1.5127845


Predicting the effects of periodicity on the intelligibility
of masked speech: An evaluation of different modelling
approaches and their limitations

Kurt Steinmetzger,1,a) Johannes Zaar,2 Helia Rela~no-Iborra,2 Stuart Rosen,1

and Torsten Dau2

1Speech, Hearing and Phonetic Sciences, University College London, Chandler House, 2 Wakefield Street,
London WC1N 1PF, United Kingdom
2Hearing Systems Section, Department of Health Technology, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark

(Received 27 February 2019; revised 27 August 2019; accepted 20 September 2019; published
online 21 October 2019)

Four existing speech intelligibility models with different theoretical assumptions were used to predict

previously published behavioural data. Those data showed that complex tones with pitch-related peri-

odicity are far less effective maskers of speech than aperiodic noise. This so-called masker-periodicity
benefit (MPB) far exceeded the fluctuating-masker benefit (FMB) obtained from slow masker enve-

lope fluctuations. In contrast, the normal-hearing listeners hardly benefitted from periodicity in the

target speech. All tested models consistently underestimated MPB and FMB, while most of them also

overestimated the intelligibility of vocoded speech. To understand these shortcomings, the internal

signal representations of the models were analysed in detail. The best-performing model, the

correlation-based version of the speech-based envelope power spectrum model (sEPSMcorr), com-

bined an auditory processing front end with a modulation filterbank and a correlation-based back end.

This model was then modified to further improve the predictions. The resulting second version of the

sEPSMcorr outperformed the original model with all tested maskers and accounted for about half the

MPB, which can be attributed to reduced modulation masking caused by the periodic maskers.

However, as the sEPSMcorr2 failed to account for the other half of the MPB, the results also indicate

that future models should consider the contribution of pitch-related effects, such as enhanced stream

segregation, to further improve their predictive power. VC 2019 Acoustical Society of America.
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I. INTRODUCTION

Computational models that attempt to objectively predict

the intelligibility of noise-corrupted or acoustically degraded

speech signals have a long history (French and Steinberg,

1947; Kryter, 1962) and also received much attention in the

recent past (e.g., Jørgensen et al., 2013; Taal et al., 2011).

Although the common feature of such models is that they do

not possess any linguistic knowledge but rely solely on analy-

ses and transformations of the acoustic input, the processing

steps vary widely across different models. For example, while

the auditory processing stage (front end) of several models

focusses on the envelope modulations of the stimulus materi-

als, many others do not consider them explicitly. Part of the

latter category are early speech intelligibility models, such as

articulation index (AI; French and Steinberg, 1947) and

speech intelligibility index (SII; ANSI S3.5, 1997), as well as

their successors (e.g., extended SII; Rhebergen et al., 2006).

Modulation-based models, on the other hand, date back to the

speech transmission index (STI; Steeneken and Houtgast,

1980) and also include the more recent modulation filterbank

models, for example, the multi-resolution speech-based enve-
lope power spectrum model (mr-sEPSM; Jørgensen et al.,
2013). In addition, it is useful to distinguish between models

whose decision stage (back end) evaluates energetic differ-

ences between the input signals (e.g., ESII and mr-sEPSM)

and those that are based on signal correlations, such as the

short-time objective intelligibility measure (STOI; Taal et al.,
2011) and the correlation-based version of the mr-sEPSM

(sEPSMcorr; Rela~no-Iborra et al., 2016).

One general difficulty in assessing speech intelligibility

models is that they are usually devised to perform well in a spe-

cific set of conditions and, hence, the range of stimulus materials

with which they are evaluated tends to be limited. Moreover, the

materials often vary considerably, both across models, as well as

regarding their acoustic properties across testing conditions,

which makes it difficult to compare different models and under-

stand their shortcomings. Consequently, testing a set of existing

speech intelligibility models with a common data set obtained

with materials that systematically vary with respect to certain

relevant acoustic features appears to be a fruitful approach to

compare, challenge, and further improve them (for a similar

approach, see Schubotz et al., 2016, and Van Kuyk et al., 2018).

At the same time, modelling experimental data also serves to
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gain a better understanding of them, particularly by examining

the internal signal representations generated by models with dif-

ferent theoretical assumptions.

Following this line of thought, the current study is based

on the stimuli and data described in Steinmetzger and Rosen

(2015), where speech materials and maskers were introduced

that vary regarding the amount of acoustic periodicity.

Periodicity here denotes that a speech sound is voiced, as

opposed to unvoiced (i.e., aperiodic). Vocoders that allowed

the choice between a voiced or unvoiced source excitation

were used to synthesise speech that is either (i) completely

aperiodic (noise-vocoded), (ii) preserves the fundamental-

frequency (F0) contours of the original recordings (Dudley-

vocoding; Dudley, 1939), or (iii) is rendered completely peri-

odic using interpolated versions of the original F0 contours

(F0-vocoding).1 Likewise, the maskers were either aperiodic

(speech-shaped noise) or periodic (harmonic complexes with

dynamically varying F0 contours derived from natural

speech). These materials were constructed to test the hypothe-

sis that periodicity helps to segregate a speech signal from a

masker. The results showed that performance, as measured by

tracking speech reception thresholds (SRTs; Plomp and

Mimpen, 1979) at the 50%-correct level, was substantially

better when the masker was periodic, while the normal-

hearing listeners hardly benefitted from periodicity in the

target speech. The former finding was termed the masker-
periodicity benefit (MPB). Furthermore, both the periodic and

the aperiodic maskers were presented in a steady-state version

or were sinusoidally amplitude-modulated at a rate of 10 Hz

to enable a fluctuating-masker benefit (FMB; Festen and

Plomp, 1990). However, a substantial FMB required the tar-

get speech to have a very high intelligibility in quiet, and the

effect was generally much smaller than the MPB.

Four existing speech intelligibility models with different

theoretical assumptions were used to predict these behaviou-

ral data: ESII (Rhebergen et al., 2006), STOI (Taal et al.,
2011), mr-sEPSM (Jørgensen et al., 2013), and sEPSMcorr

(Rela~no-Iborra et al., 2016). Briefly summarised, the ESII

compares the energy of the envelopes of speech and the

forward-masking corrected noise envelopes in each auditory

filter using temporal windows whose durations decrease with

increasing filter centre frequencies. These power estimates,

which can be interpreted as indices of short-term envelope

audibility, are then averaged over time and auditory filters,

where the contribution of each filter is determined by a pre-

defined band-importance function. STOI, in contrast, com-

pares envelopes of unprocessed speech and the mixture of

speech and noise in each auditory filter by computing the

cross-correlation of segments of the two signals with a fixed

length of 384 ms. Here, the speech signal in the mixture may

be unprocessed or processed, depending on the experimental

condition. Instead of considering power differences, it effec-

tively measures how much the original speech envelope is

distorted by adding background noise or processing the tar-

get speech, for example, by vocoding. The unweighted aver-

age of the individual correlation coefficients across time

segments and auditory filters is assumed to vary along with

the intelligibility of the mixture. The mr-sEPSM uses the

speech-noise mixture and the noise alone as input signals

and, additionally, differs from the former two models in that

it employs a modulation filterbank after the initial auditory

filtering and envelope extraction. For each combination of

auditory and modulation filters, the envelope signal-to-noise

ratio (SNRenv) is calculated by subtracting the modulation

power of the noise from that of the mixture, and dividing it

by the modulation power of the noise

SNRenv ¼
Penv; SþN � Penv;N

Penv;N
: (1)

These SNRenv values are computed using temporal windows

that are inversely proportional to the respective modulation

rate, and their unweighted mean across time, auditory, and

modulation filters is hypothesised to be positively related to

speech intelligibility. Finally, the sEPSMcorr was included, a

hybrid model combining the modulation-based front end of

the mr-sEPSM with a correlation-based back end inspired by

STOI. Here, unprocessed speech and the speech-noise mix-

ture are used as inputs, as in STOI, and the outputs from

each individual combination of the auditory and modulation

filters are correlated using the same multi-resolution time

windowing approach as in the mr-sEPSM.

As shown in Fig. 1, each of these models is characterised

by a specific combination of front end and back end. The rea-

soning behind this selection is that, first, a substantial portion

of the MPB is thought to arise from the absence of random

envelope modulations and the sparser modulation spectrum of

the periodic maskers, leading to a reduced amount of modula-

tion masking (Stone et al., 2011; Stone et al., 2012). By

including models with and without a modulation filterbank in

the auditory processing front end, the contribution of modula-

tion masking can thus be tested and quantified. Second, it is

thought that a correlation-based decision back end is required

to account for the reduced intelligibility of vocoded speech.

The latter differs from unprocessed speech less in terms of

the envelope power, but primarily regarding the contours of

the subband envelopes, which should be reflected in a

correlation-based comparison.

As will be shown below, the sEPSMcorr, which combines

a front end with a modulation filterbank and a correlation-

based back end, indeed produced the most accurate predic-

tions. However, a detailed examination of this model also

revealed a crucial limitation in that the low resolution of the

extracted subband envelopes diminishes the differences

between the set of maskers included in the current study. A

solution to overcome this limitation is therefore also pre-

sented. Furthermore, it will be shown that modulation filters

FIG. 1. (Color online) Modelling scheme. The four speech intelligibility

models included in the current study were selected to enable a systematic

evaluation of different auditory processing front ends and decision back ends.
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in which unprocessed speech carries little relevant informa-

tion, particularly those falling in between the slow envelope

and voice pitch modulation ranges (i.e., �16–64 Hz), are not

required to predict speech intelligibility. The resulting

sEPSMcorr2 contains both of these modifications and further

improved the predictions of the same set of data. It is

described in more detail below.

II. sEPSMcorr2 MODEL DESCRIPTION

A. sEPSMcorr summary

First, we briefly summarise the processing steps of the

original sEPSMcorr. A more detailed description, including

all equations and the theoretical motivation for each step, is

provided in Sec. II in Rela~no-Iborra et al. (2016).

The model uses unprocessed speech as well as noisy or

processed speech as input. In the first step of the preprocess-

ing front end, both signals are filtered using 22 fourth-order

gammatone filters with centre frequencies ranging from

63 Hz to 8 kHz and 1/3 octave spacing. Only filters for which

the stimulus level of the unprocessed signal is above the

hearing threshold are processed further. Next, a first-order

low-pass filter with a cutoff at 150 Hz is applied to the

Hilbert envelopes of the remaining filter outputs. The enve-

lopes are then passed through a modulation filterbank com-

prising a third-order low-pass filter with a cutoff of 1 Hz and

eight second-order band-pass filters with octave spacing, a

constant quality factor of 1, and centre frequencies ranging

from 2 to 256 Hz. For the outputs of modulation filters with

centre frequencies above 10 Hz, another (“second-order”)

Hilbert envelope is then extracted and used for further proc-

essing, whereas the outputs of modulation filters with centre

frequencies below 10 Hz are left unchanged. This processing

step is meant to account for the diminished modulation-

phase sensitivity of the human auditory system at higher

modulation frequencies (Dau et al., 1997a,b). Last, the

resulting signals are logarithmically compressed.

In the decision back end of the model, the signals are

processed in frequency-dependent time segments. The

lengths of the non-overlapping rectangular windows are

determined by the inverse of the respective modulation-filter

centre frequency, ranging from 1 s at 1 Hz to 3.9 ms at

256 Hz. Modulation filter outputs with centre frequencies

below one-fourth of a given auditory filter centre frequency

are discarded. Next, the individual time segments of the two

input signals are correlated, yielding a single correlation

coefficient for each one. By replacing negative coefficients

with 0, only positive correlations are considered for further

processing. The time-integrated correlation for each combi-

nation of modulation filter and auditory filter is then obtained

by taking the square root of the sum of the squared coeffi-

cients of the individual time segments. The final correlation

metric v is then derived by averaging the time-integrated

correlations of all processed combinations of modulation fil-

ters and auditory filters. To relate the v-values to speech

intelligibility, a logistic function is used,

UðvÞ ¼ 100

1þ eða�vþbÞ ; (2)

where a and b are the free parameters, which have to be opti-

mised during the calibration procedure.

B. Preserving the difference between aperiodic and
periodic sounds

An analysis of the individual signal processing steps of

the sEPSMcorr showed that the additional (second-order)

Hilbert envelope extraction, which occurs immediately after

the signals have been passed through the modulation filter-

bank, obliterates the difference between aperiodic and peri-

odic sounds considerably. This processing step was, hence,

omitted and replaced with full-wave rectification of the out-

puts of each modulation filter.

The differing effects of Hilbert envelope extraction and

full-wave rectification of envelope-filtered signals are dem-

onstrated in Fig. 2. The illustration is based on a portion of

unprocessed speech, which is voiced during the first half but

unvoiced during the second half [Fig. 2(A)], and the same

portion of unprocessed speech mixed with a random segment

of the steady periodic masker at an SNR of �5 dB. In the top

panel of Fig. 2(B),2 the outputs of the 2-kHz auditory filter

FIG. 2. (Color online) mr-sEPSMcorr2: Comparison of Hilbert envelope

extraction and full-wave rectification of envelope-filtered signals. (A) shows

the portion of unprocessed speech on which the example envelopes in (B)

are based. These envelopes are the outputs of the 2-kHz auditory filter and

the 128-Hz modulation filter for unprocessed speech (blue), and the same

signal mixed with a random portion of the steady periodic masker (red,

SNR¼�5 dB). The grey bar indicates the length of the signal portions that

are correlated, here, 7.8 ms (i.e., 1/128 Hz). In contrast to the Hilbert enve-

lopes, full-wave rectification preserves the fine signal details present in the

original envelopes.
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and 128-Hz modulation filter are shown, the combination

for which unprocessed speech has the strongest F0-related

modulations [cf. Fig. 8(A)]. Crucially, the Hilbert enve-

lopes of these two signals [Fig. 2(B), middle panel] are con-

siderably smoother than the original signals shown above.

Full-wave rectification [Fig. 2(B), bottom panel], on the

other hand, preserves the fine signal details, particularly the

difference between the periodic and aperiodic portions of

the speech signal.

Furthermore, Fig. 2(B) shows that extracting the Hilbert

envelope does not serve to discard phase information alto-

gether, as intended. The first half of the example signals still

shows some periodic fluctuations, albeit to a lesser degree.

Full-wave rectification, in contrast, reduces the influence of

phase differences not by attempting to flatten the signals, but

by omitting the signal polarity.

C. Modulation filter selection algorithm

In a second step, it was examined whether modulation

filters tuned to intermediate modulation rates (�16–64 Hz)

are necessary to predict speech intelligibility, or if their

exclusion even serves to improve predictions. This alteration

is based on the theoretical consideration that speech carries

no relevant linguistic information at these modulation fre-

quencies (Arnal et al., 2015; Joris et al., 2004), neurophysio-

logical evidence that there is little activity in response to

these modulation rates in human auditory cortex (Giraud

et al., 2000), and the empirical observation that the speech

modulation spectrum indeed shows a dip in this region (e.g.,

Fig. 7 in Steinmetzger and Rosen, 2017). Rather than dis-

carding them a priori, an algorithm was developed that iden-

tifies and excludes any modulation filters from further

processing for which the broadband modulation power of the

unprocessed speech signal falls below a specified relative

threshold.

Specifically, for each individual sentence, the Hilbert

envelope of the unfiltered waveform was extracted and

passed through the same modulation filterbank deployed in

the mr-sEPSM and sEPSMcorr models. The power in each

modulation filter was then calculated by taking the mean of

the squared filter output and dividing it by the mean of the

squared broadband Hilbert envelope divided by two, as in

the mr-sEPSM. The latter operation only affected the scal-

ing, not the actual results. After dB-conversion, these power

estimates were compared to a relative exclusion criterion,

defined as the median of the power across all nine modula-

tion filters minus half its standard deviation. This criterion

proved to be effective in selectively excluding modulation

filters tuned to intermediate modulation rates. If the power at

the output of a modulation filter fell below this exclusion

criterion, the contribution of the corresponding modulation

filter band to speech intelligibility was assumed to be negli-

gible. As can be seen in Fig. 3, which shows the results of

the algorithm for the first 100 IEEE sentences, the power in

filters tuned to intermediate modulation frequencies (16, 32,

and 64 Hz) mostly fell below the relative threshold.

III. METHODS

A. Stimuli

Out of the 48 combinations of target speech and masker

included in Steinmetzger and Rosen (2015), 8 were used in

the current study. First, unprocessed speech combined with

each of the four maskers (periodic and aperiodic, both steady

and 10-Hz modulated) was included, as these conditions

resulted in the largest MPBs and FMBs. Second, four types

of vocoded speech mixed with steady noise were selected

(noise-vocoded speech with 7 and 12 channels, Dudley-

vocoded speech with 7 and 10 channels) to test whether a

given model can account for the lowered intelligibility of

vocoded speech and whether the predictions vary along with

the number of vocoder channels. Examples of each individ-

ual target speech condition and masker are shown in Fig. 4.

All target speech conditions are based on recordings of

the IEEE sentence corpus (Rothauser et al., 1969) spoken by

an adult male talker with a Southern British English accent

and a mean F0 of 121.5 Hz. Using a channel vocoder imple-

mented in MATLAB (MathWorks, Natick, MA), the original

recordings were noise-vocoded by filtering them into the

desired number of frequency bands (zero-phase shift, sixth-

order Butterworth), based on equal basilar membrane dis-

tance (Greenwood, 1990) across a range of 0.1–11 kHz.

Filter outputs were full-wave rectified and low-pass filtered

at 30 Hz to extract the amplitude envelope (zero-phase shift,

fourth-order Butterworth). The subband envelopes were then

multiplied with a white noise and again band-pass filtered, as

specified above. Before summing the signal together, the

root-mean-square (RMS) level of each band was adjusted to

that of the original band. The final waveforms were then

low-pass filtered at 10 kHz (sixth-order elliptic). Dudley-

vocoding was performed using the same routine, except that

a pulse train following the original F0 contour was used as

carrier signal instead of white noise when the original

recording was voiced. F0 contours were extracted using the

FIG. 3. (Color online) mr-sEPSMcorr2 modulation filter selection algorithm.

The thin colored lines show the broadband modulation spectra of the first

100 IEEE sentences, and the overlaid black line shows the average and stan-

dard deviations. The percentages indicate how often a modulation filter was

excluded because its power fell below the threshold value, defined as the

median power across all nine modulation filters minus half its standard devi-

ation. The black dotted line shows the average threshold value across all

100 sentences.
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PRAAT (Boersma and Weenink, 2013) script ProsodyPro

4.3 (Xu, 2013) and hand-corrected where needed.

Aperiodic noise maskers were based on a 23.8-s passage

of white noise, filtered to have the long-term average speech

spectrum (LTASS; Byrne et al., 1994). Periodic harmonic

complex maskers were derived from recordings of the

EUROM database (Chan et al., 1995). Sixteen different

male talkers reading five- to six-sentence passages with simi-

lar accent, speaking rate, and voice quality as the target

talker were chosen. The F0 contours of these passages were

interpolated through unvoiced and silent periods to synthe-

sise the waveforms of the harmonic complexes on a period-

by-period basis using the Liljencrants–Fant model (Fant

et al., 1985). The resulting complexes were then also filtered

to have the LTASS and concatenated into a single file with a

duration of 362.2 s. The aperiodic, as well as the periodic,

maskers were either presented as steady-state versions or

sinusoidally amplitude modulated at a rate of 10 Hz and with

a modulation depth of 100%.

B. Procedure

In addition to the SRTs taken from Steinmetzger and

Rosen (2015), psychometric functions (PFs) were fitted to

the adaptive tracks that formed the basis of these results to

enable a detailed comparison with the model predictions.

Based on the logistic-regression procedure introduced by

Wichmann and Hill (2001), PFs were fitted to the results of

each individual listener before the function parameters were

averaged together to form the group-level PF. For conditions

including unprocessed speech, threshold and slope were free

parameters, while the lapse and guess rates were set to 0. For

conditions including vocoded speech, the lapse rate was also

a free parameter, as human performance did not reach 100%

in quiet. Subjects with threshold or slope estimates identified

as outliers in boxplots with a whisker length of three times

the interquartile range were excluded. This criterion applied

to no more than 2 out of 12 subjects per stimulus condition.

For each model, percentage correct scores at seven

SNRs, ranging from �20 to þ10 dB in 5-dB steps, were

obtained to yield estimated PFs that could be compared to

the human PFs. This SNR range was chosen as it covers

most of the human performance range across conditions,

while the 5-dB step size was considered sufficiently accurate

to test whether the models can reproduce the shape of the

human PFs. For the models, SRTs were determined by find-

ing the 50%-point on the graphs through the predicted values

at the seven SNRs. The behavioural SRTs, on the other

hand, were the original SRTs measured in the adaptive pro-

cedure, which is why there are some conditions in which

SRTs and PFs differ somewhat.

Model predictions were based on the mean results of the

first 100 IEEE sentences with a total duration of 224.8 s.

Human data and model predictions in each stimulus condi-

tion were compared, first, by subtracting the estimated from

the human SRTs such that positive SRT prediction errors

indicate an overestimation of human performance. Second,

to analyse the steepness of the modelled and human PFs in

addition to their horizonal shifts, the slopes values of the

human PFs were subtracted from the modelled ones, such

that positive slope errors indicate that the model estimates

were too steep. Slopes were calculated as the average change

in percentage correct per dB SNR for the middle portion

(i.e., 40%–60% correct) of the modelled and human PFs. To

summarise these two types of condition-specific predictions

errors, root-mean-square errors (RMSEs) across all condi-

tions were also calculated, a measure that gives more weight

to large individual prediction errors than the mean.

Each model was calibrated by minimising the RMSEs

of the model predictions across the seven SNRs for the com-

bination of unprocessed speech and steady noise, henceforth

referred to as the reference condition. Consequently, this

condition was omitted from all model evaluations. The fit-

ting parameters were obtained by non-linear least squares

optimisation and kept constant throughout. To transform the

model coefficients into percentage correct scores, the logistic

function employed in the sEPSMcorr [see Eq. (2)] was also

used for ESII, STOI, and sEPSMcorr2. For the mr-sEPSM,

the original ideal observer transformation was used [see Eqs.

(7) and (8) in Jørgensen and Dau, 2011]. Here, the best fit

was achieved by keeping the values for open-set materials

used in Jørgensen and Dau (2011) and Jørgensen et al.
(2013) for parameters q and m, increasing rs from 0.6 to 1,

and manually optimising k. All fitting parameters are sum-

marised in Table I.

IV. RESULTS AND DISCUSSION

For unprocessed speech mixed with the four different

maskers, human data and the predictions of all five models

are shown in Fig. 5. The corresponding results for the four

types of vocoded speech mixed with steady noise are shown

in Fig. 6. The prediction errors for all stimulus conditions

FIG. 4. Stimuli. Narrow-band spectrograms of examples of the five target speech conditions (A)–(E) and four maskers (F)–(I) used in the current study. The

example sentence shown is IEEE 0204 (“Kick the ball straight and follow through.”).
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and models are shown in Fig. 7, separately for SRTs [Fig.

7(A)] and PF slopes [Fig. 7(B)].

Irrespective of the masker, all five models consistently

underestimated the SRTs of the human listeners with unpro-

cessed target speech [Fig. 7(A)], albeit to varying degrees.

Thus, the maskers were always predicted to be more effective

than they actually were. For vocoded target speech, the oppo-

site pattern was observed, apart from sEPSMcorr and

sEPSMcorr2. Hence, human performance with vocoded speech

was mostly overestimated. Overall, out of the four previously

published models, SRT prediction errors were smallest for the

sEPSMcorr, while there was little difference between the other

three models (ESII, STOI, and mr-sEPSM). Compared to the

original version of the model, SRT predictions for the

sEPSMcorr2 were about 2–3 dB more accurate for all conditions

including unprocessed speech, but substantial prediction errors

persisted for the periodic maskers. With vocoded target speech,

on the other hand, the estimated SRTs were reasonably accu-

rate and hardly differed between the two model versions.

The slope errors shown in Fig. 7(B), in contrast, were gen-

erally smaller for models with SNR-based (ESII and mr-

sEPSM) rather than correlation-based back ends (STOI,

sEPSMcorr, and sEPSMcorr2), as reflected by the RMSEs across

conditions. Moreover, the error patterns for the individual con-

ditions resembled each other for models with the same back

end type. While all models mostly predicted PFs that were

steeper than the human equivalents for conditions including

unprocessed speech, the slopes of the correlation-based models

were much too shallow with vocoded target speech.

Below, the results of each model will be analysed and dis-

cussed in detail with a focus on the modulation-based models.

A. ESII

The ESII failed entirely to predict the MPB [Figs. 5(C)

and 5(D)]. The predicted SRTs in the two conditions includ-

ing periodic maskers were even about 1.5 dB higher than for

TABLE I. Model calibrations: Transformation procedures, fitting parame-

ters, and RMSEs across all seven SNRs in the reference condition.

Model Transformation a b q m rs k RMSE

ESII Logistic function �16.19 5.88 — — — — 0.17%

STOI Logistic function �23.96 16.50 — — — — 0.50%

mr-sEPSM Ideal observer — — 0.5 8000 0.9 0.32 0.58%

sEPSMcorr Logistic function �7.06 23.18 — — — — 0.90%

sEPSMcorr2 Logistic function �6.63 17.11 — — — — 0.74%

FIG. 5. (Color online) Human data and model predictions: unprocessed

speech. SRTs and PFs for unprocessed speech mixed with four different

maskers. SRTs are indicated by the symbols on top of the PFs. Unprocessed

speech and steady noise served as reference condition for calibrating the

models.

FIG. 6. (Color online) Human data and model predictions: vocoded speech.

SRTs and PFs for four types of vocoded speech mixed with steady noise. As

in Fig. 5, unprocessed speech and steady noise served as reference condition

for calibrating the models.

FIG. 7. (Color online) Model prediction errors. Deviations of the predicted

SRTs (A) and the slopes of the predicted PFs (B) from the human data. For

the SRTs, positive values indicate an overestimation of human performance. For

the slopes, positive values indicate that predicted PFs were steeper than those of

the human listeners. At the top of each panel, the RMSEs, averaged across all

seven stimulus conditions, give an estimate of each model’s overall performance.
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the conditions including aperiodic maskers, making it the

worst of the four tested models in this regard. The reason for

this was found to be the envelope power estimation routine

that precedes the forward-masking function, where the val-

ues of the intensity envelopes of each critical band are

squared and averaged in 1-ms steps, resulting in slightly

higher power estimates for the periodic maskers. In contrast,

for the combination of unprocessed speech and modulated

noise [Fig. 5(B)], the ESII correctly predicted a FMB and

outperformed all models except the sEPSMcorr2 with a SRT

estimate that was only 1.3 dB too high.

The ESII also failed to predict the decrease of intelligi-

bility when the target speech was vocoded (Fig. 6). In all

four conditions including vocoded speech, the predicted

SRTs differed by no more than about 0.5 dB from the pre-

dicted SRT in the reference condition. As expected, enve-

lope power differences alone, hence, do not account for the

lower intelligibility of vocoded speech, irrespective of

source periodicity and number of channels.

In contrast to the original studies (Rhebergen and

Versfeld, 2005; Rhebergen et al., 2006), the actual speech

signals in each condition were used as input signals for the

ESII, not speech-shaped noise. For conditions with unpro-

cessed target speech, both model configurations were com-

pared, and the differences were found to be marginal. The

predicted SRTs never differed by more than 0.05 dB.

In summary, due to their similar power spectra, the ESII

failed to differentiate between unprocessed speech, vocoded

speech, and speech-shaped noise, although the measured

speech intelligibility varied widely across these conditions.

B. STOI

STOI strongly underestimated the MPB with the effect

amounting to only about 1.6 dB SRT for steady maskers and

about 0.4 dB for modulated maskers [Figs. 5(C) and 5(D)].

This small correct trend can be explained by the absence of

random modulations in the periodic maskers, which distort

the mixture envelopes. The underestimation of this effect, in

turn, appears to originate from the normalisation and clip-

ping procedure that is applied to the envelopes of the mix-

ture before calculating the correlation. Specifically, the

clipping algorithm, which is intended to limit the influence

of periods during which the speech envelope is completely

masked, discards a substantial portion of the subtle envelope

differences between the aperiodic and periodic maskers.

Consequently, some of the acoustic properties of the masker

are not represented in STOI.

Instead of a FMB, STOI predicted a decreased speech

intelligibility in conditions including 10-Hz modulated

maskers with SRTs that were on average about 2.8 dB higher

relative to the corresponding conditions including steady-

state maskers [Figs. 5(B) and 5(D)]. This result was

expected, as the duration of the envelope segments that are

analysed is relatively long (384 ms). Compared to a steady

masker, the correlation of speech and mixture envelopes will

generally be higher during the troughs of a modulated

masker. However, if the analysis windows are longer than

the masker troughs, this gain is outweighed by the fact that

the envelopes of the speech and the speech plus the modu-

lated masker barely resemble each other overall.

When the target speech was vocoded (Fig. 6), the model

predictions also showed a correct trend, but the diminished

intelligibility was on average underestimated by about

4.3 dB SRT. Moreover, the predicted SRTs increased by less

than 1 dB when the number of bands in the vocoder was low-

ered, compared to about 3.5 dB for the listeners. However,

STOI was the only model which correctly predicted that

SRTs were on average about 2.5 dB better for Dudley- com-

pared to noise-vocoded speech. This finding can again be

explained by the random modulations, which are more pro-

nounced in noise-vocoded speech and thus distort the

envelopes.

Finally, it should be mentioned that an updated version

of the STOI, the extended STOI (ESTOI; Jensen and Taal,

2016), has been published recently with the explicit aim to

also predict speech intelligibility with modulated maskers.

Rather than comparing short envelope segments, the ESTOI

considers the spectral correlation of the unprocessed speech

signal and the mixture of target speech and noise, which

appears to be an effective approach, too.

C. mr-sEPSM

The mr-sEPSM outperformed the other models by

accounting for a large portion of the MPB when the maskers

were steady [�5.2 dB SRT; Figs. 5(A) and 5(C)]. On the

other hand, it failed to account for the FMB by predicting

almost no such effect for aperiodic maskers [�0.5 dB SRT;

Figs. 5(A) and 5(B)] as well as a substantial effect in the

opposite direction for periodic maskers [�–9.2 dB SRT;

Figs. 5(C) and 5(D)].

For noise-vocoded target speech [Figs. 6(A) and 6(B)],

the estimated SRTs differed by no more than about 0.3 dB

from the reference condition, but for Dudley-vocoded speech

[Figs. 6(C) and 6(D)] the model showed a correct trend

toward lower speech intelligibility by predicting SRTs that

were about 3.1 dB higher with seven channels and about

2.1 dB with ten channels.

As a starting point for discussing the results of the

modulation-based models, modulation spectrograms of all

target speech conditions and maskers used in the current

study are shown in Fig. 8. These representations were gener-

ated by computing the envelope power, as implemented in

the front end of the mr-sEPSM, for each combination of

auditory and modulation filters, time-averaged over the

entire set of stimulus materials in each condition (see also

Steinmetzger and Rosen, 2018). Figure 9, in contrast, shows

modulation spectra of the eight different combinations of tar-

get speech and masker at each of the seven SNRs used for

model prediction. These were obtained by averaging the dB-

scaled modulation power estimates in the modulation spec-

trograms across all auditory filters.

For the stimulus materials used in this study, the follow-

ing types of modulations can be distinguished (cf. Joris

et al., 2004; Rosen, 1992): Unprocessed and Dudley-

vocoded speech [Figs. 8(A), 8(D), and 8(E)] contain modula-

tions (a) that result from the low frequency harmonics during
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voiced speech sweeping through low-frequency, sharply

tuned auditory filters due to their dynamic F0 contours

(mainly in modulation filters with centre frequencies from 1

to 4 Hz), (b) at the word, syllable, and phoneme rate

(�2–8 Hz), and (c) at F0 frequencies (�64–256 Hz). Noise-

vocoded speech [Figs. 8(B) and 8(C)] only contains modula-

tions of type (b). The periodic maskers [Figs. 8(H) and 8(I)]

have modulations of types (a) and (c), whereas the aperiodic

maskers [Figs. 8(F) and 8(G)] modulate randomly with the

dominant modulation rates related to auditory filter band-

widths. Last, if they are amplitude-modulated [Figs. 8(G)

and 8(I)], both maskers also show prominent 10-Hz modula-

tions in addition to their original modulation profiles.

In the back end of the mr-sEPSM it is assumed that the

smaller the modulation power of the noise, relative to the tar-

get speech (and the interaction component of speech and

noise), the higher the predicted speech intelligibility [cf. Eq.

(1)]. As can be seen in Figs. 8 and 9, while the steady ver-

sions of the maskers indeed have markedly less modulation

energy than unprocessed speech, this is not the case for the

modulated maskers. The superimposed 10-Hz modulations

result in a modulation pattern that, to some extent, resembles

that of speech, particularly in the case of the modulated peri-

odic masker. These observations match the model predic-

tions shown in Fig. 5, which show a correct trend toward

better speech intelligibility with the steady periodic masker

but are poor for both modulated maskers.

For vocoded target speech, it was found that lowering

the number of channels slightly altered the distribution of

modulation power across auditory filters [Figs. 8(B)–8(E)],

but the overall modulation power across auditory filters

remained unchanged [Fig. 9(A)]. Furthermore, Fig. 9(A)

shows that all four types of vocoded speech had the same

average amount of modulation power as unprocessed speech

FIG. 9. (Color online) mr-sEPSM modulation spectra. The modulation spectra were generated by averaging modulation spectrograms of the kind shown in

Fig. 8 over auditory filters, ignoring values smaller than �30 dB. For each of the eight combinations of target speech and masker (B)–(I), modulation spectra

at the seven different SNRs are plotted. For comparison, (A) shows the modulation spectra of the five target speech conditions in quiet.

FIG. 8. (Color online) mr-sEPSM modulation spectrograms. Envelope modulation power of the five target speech conditions (A)–(E) and four maskers (F)–(I)

used in the current study. For each combination of auditory (y-axis) and modulation filter (x-axis), the average modulation power across the entire set of stimu-

lus materials was computed using the front end of the mr-sEPSM speech intelligibility model.
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at modulation rates up to 8 Hz. In the presence of steady

noise, however, there was a trend for a greater reduction of

the modulation power at these low frequencies for Dudley-

vocoded speech [Figs. 9(B)–9(F)]. The low-frequency modu-

lations of unprocessed and noise-vocoded speech thus appear

to be somewhat more robust in the presence of background

noise.

In line with this observation, the predictions of the mr-

sEPSM indeed did not change when noise-vocoded speech

was used instead of unprocessed speech, irrespective of the

number of channels [Figs. 5(A), 6(A), and 6(B)]. For

Dudley-vocoded speech, in turn, speech intelligibility was

correctly predicted to decrease, the more so with fewer chan-

nels [Figs. 6(C) and 6(D)]. In the latter case, the advantages

of a modulation-based front end become apparent, as the

ESII wrongly predicted that speech intelligibility with all

four types of vocoded speech would be the same as with

unprocessed speech.

D. sEPSMcorr

Of the four existing models, the sEPSMcorr was the only

one for which the SRT predictions showed correct trends in

all conditions. While both MPB [�1.7 dB; Figs. 5(C) and

5(D)] and FMB [�1.1 dB; Figs. 5(B) and 5(D)] were, on

average, substantially underestimated, the model performed

well when the target speech was vocoded (Fig. 6). For condi-

tions including vocoded speech, SRTs were on average

about 6.3 dB higher than for unprocessed speech and the

SRT prediction errors in these conditions amounted to only

about 1.4 dB on average [Fig. 7(A)].

As for the mr-sEPSM, the predictions were further ana-

lysed by visualising the internal signal representations of the

model. In the case of the sEPSMcorr, this is complicated by

the fact that the coefficients obtained by correlating the indi-

vidual signal segments are time-integrated by taking the root

of their sum of squares. Hence, the resulting v-values [see

Eq. (3) in Rela~no-Iborra et al., 2016] are exponentially larger

at higher modulation frequencies, where the shorter window

lengths of the individual segments lead to a much higher

number of segments as compared to low modulation fre-

quencies. Thus, it is more informative to study the differ-

ences of the correlations across conditions rather than their

absolute values, so that the dominating pattern induced from

the window-size difference is already considered. In the

resulting “correlation difference spectrograms” (Fig. 10,

upper row), the correlations in the reference condition were

subtracted from those of each condition considered. Thus,

positive values indicate higher correlations compared to the

reference condition, and vice versa. As for the mr-sEPSM

(cf. Fig. 9), the corresponding “correlation difference

spectra” (Fig. 10, lower row) were computed by averaging

the spectrograms over auditory filters, which allows the plot-

ting together of results at different SNRs.

For the three comparisons including unprocessed target

speech [Figs. 10(A)–10(C) and 10(F)–10(H)], it is apparent

that higher correlations, relative to the reference condition,

were offset by lower correlations elsewhere, particularly at

lower SNRs. This is one reason why, despite the correct

trends, the sEPSMcorr underestimated human performance in

these conditions. Due to the strong 10-Hz modulations of the

masker, the pattern observed for unprocessed speech and

modulated noise [Figs. 10(A) and 10(F)] shows smaller cor-

relations at lower modulation rates and higher correlations at

higher modulation rates, caused by an unmasking of the

speech modulations in the masker troughs. For the two peri-

odic maskers [Figs. 10(B), 10(C), 10(G), and 10(H)], in con-

trast, the difference spectra show an unexpected (relative)

decrease of the correlation coefficients at intermediate mod-

ulation frequencies and low SNRs, which counteracts the

higher correlations at higher modulation rates. As speech

carries no relevant information at these intermediate rates

(cf. Sec. II), the question arises whether an inclusion of the

respective modulation filters is useful at all.

For conditions including vocoded target speech, SRT

prediction errors were markedly smaller than for the other

FIG. 10. (Color online) sEPSMcorr correlation difference spectrograms and spectra. Spectrograms (A)–(E): For each combination of auditory (y-axis) and mod-

ulation filters (x-axis), the time-integrated correlation-based decision metric (v-value) in the reference condition (unprocessed speech and steady noise) was

subtracted from that of the respective condition. In both conditions the SNR was 0 dB. Positive values correspond to a relative increase in the predicted speech

intelligibility and vice versa. Each subplot is based on the entire set of materials in the respective condition. Spectra (F)–(J): correlation difference spectra of

the same stimulus conditions at the seven different SNRs, obtained by averaging the spectrogram representations in the upper row over auditory filters.
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models [cf. Fig. 7(A)]. Predictions were consistently more

accurate than those of STOI and, particularly for noise-

vocoded speech, also the mr-sEPSM, which demonstrates

the benefit of combining a modulation-based front end and a

correlation-based back end. However, a closer examination

of Fig. 6 shows that the model predictions were very similar

across the four conditions including vocoded speech, with the

estimated SRTs differing by only about 1 dB. Changing the

number of channels in the vocoder hence affected human per-

formance to a larger degree than the model estimates.

Furthermore, the sEPSMcorr could not reproduce the trend for

slightly better behavioural performance with Dudley-vocoded

speech. The latter finding can be explained with the correla-

tion differences shown in Figs. 10(D)–10(J), which indeed are

not consistently lower for Dudley-vocoded speech. While the

differences were somewhat smaller for Dudley- than noise-

vocoded speech at higher modulation rates, due to the pre-

served periodicity information, the opposite was true at lower

modulation frequencies. As for the mr-sEPSM, the results

thus suggest that the slower envelope modulations of noise-

vocoded speech are more robust in the presence of back-

ground noise than those of Dudley-vocoded speech.

E. sEPSMcorr2

The sEPSMcorr2 improved the SRT predictions of the

original sEPSMcorr in conditions including unprocessed

speech by an average of about 2.7 dB [Figs. 5 and 7(A)],

while the SRTs for conditions including vocoded speech

hardly differed between the two model versions [�0.05 dB

on average; Figs. 6 and 7(A)].

As for the sEPSMcorr, correlation difference spectro-

grams and spectra were computed to facilitate a detailed

examination of the model’s predictions (Fig. 11). Conditions

including vocoded speech have been omitted from Fig. 11,

as the corresponding predictions did not substantially differ

from the original model. Since the modulation filter selection

algorithm, except for one single sentence (cf. Fig. 3), only

excluded filters with centre frequencies above 8 Hz and full-

wave rectification was by definition only applied to the out-

puts of modulation filters above 10 Hz, the correlation

differences are the same for both models at low modulation

frequencies.

First, for all three conditions shown in Fig. 11, the corre-

lations relative to the reference condition were markedly

higher at faster modulation rates, compared to the original

model. Hence, full-wave rectifying the modulation filter out-

puts instead of extracting the Hilbert envelope served to

emphasise the differences between steady noise and the other

three maskers, as intended. The fact that the updated model

also performed better with the modulated noise masker, indi-

cates that the main reason for the improved predictions of the

sEPSMcorr2 are the preserved random envelope modulations

of the steady noise masker in the reference condition. Second,

compared to the original sEPSMcorr, the negative correlation

differences observed for the two periodic maskers at interme-

diate modulation frequencies and low SNRs were diminished.

For the original model, this was one important reason for the

poor predictions with these two maskers.

Even though the sEPSMcorr2 mostly discarded the inter-

mediate modulation filters due to the modulation filter selec-

tion algorithm, the reduced negative correlation differences

at these modulation frequencies indicate that the predictions

might also improve when omitting the modulation filter

selection stage. In fact, predictions of a version of the

sEPSMcorr2 without the modulation filter selection algorithm

were only slightly worse [RMSE of SRT prediction

errors¼ 4; cf. Fig. 7(A)] than those of the full model. Last, a

version of the sEPSMcorr2 that only included the modulation

filter selection algorithm was tested (i.e., it still used the

original second-order Hilbert transformation to extract the

subband envelopes). Here, results did also improve com-

pared to the sEPSMcorr, but by a much smaller margin

(RMSE of SRT prediction errors¼ 4.9).

V. GENERAL DISCUSSION

A. Predicting the MPB

For steady maskers, the MPB of the human listeners

amounted to about 10 dB in SRTs. The current section

focusses on how well the models could account for this par-

ticular finding, as it is unaffected by the ability of the models

FIG. 11. (Color online) sEPSMcorr2

correlation difference spectrograms

and spectra. As for the original

sEPSMcorr, the time-integrated correla-

tion-based decision metric (v-value) in

the reference condition (unprocessed

speech and steady aperiodic masker)

was subtracted from that in the respec-

tive condition to compute correlation

difference spectrograms (A)–(C) and

spectra ((D)–F). Modulation filters

with intermediate frequencies, which

were mostly discarded by the modified

model, are marked in grey. All compu-

tational details, including the scaling,

are as in Fig. 10.
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to also predict the FMB. The two models that best predicted

the MPB were mr-sEPSM and sEPSMcorr2, for which the

SRT prediction errors were about 5 dB. Although far from

accurate, these results are nevertheless informative as they

suggest that about half the MPB is due to increased modula-

tion masking caused by the aperiodic masker (Stone et al.,
2011; Stone et al., 2012).

The other half of the MPB is hypothesised to be due to

enhanced stream segregation associated with the pitch of

periodic maskers (Deroche and Culling, 2011). Thus, the

models of the sEPSM family could potentially be further

improved by incorporating this mechanism, and the same

also applies to the other models included in this study. As

natural speech is mostly voiced, the benefits of these addi-

tions can also be expected to extend to other stimulus condi-

tions such as interfering talkers.

Due to the use of two separate input signals, all models

included in the current study have an unrealistically good

ability to segregate target speech and masker, as they have

access to either the unprocessed reference speech signal or

the masker in isolation. Hence, they can reliably distinguish

the two signals, irrespective of the processing condition. In a

strict sense, for models including an unprocessed reference

speech signal (i.e., STOI, sEPSMcorr, and sEPSMcorr2), this

argument only applies if the target speech signal is unpro-

cessed too, but this case is far more common than processed

(e.g., vocoded) target signals. Thus, to account for the effect

of streaming, the predictions of future models could be mod-

ified up or down depending on an additional processing step

that quantifies the ease of stream segregation. In line with

this idea, all models in the current study had PF slopes that

were too steep for conditions including periodic maskers.

Especially at very low SNRs, where pitch cues should be

particularly helpful, the model predictions strongly underes-

timated human performance.

Rather than determining the actual pitch contours, this

could be achieved by taking the strength of the F0-related

envelope modulations in the mixture of speech and noise as a

measure for the presence of pitch information. A related

approach has recently been used by Josupeit and Hohmann

(2017), who have modelled speech recognition in a multi-

talker setting by finding the segments of the signal mixture

with the highest amount of F0-related periodicity to identify

the target talker. As can be seen in the modulation spectra

shown in Figs. 9(F)–9(I), mixtures including periodic maskers

generally had more energy in the highest two modulation fil-

ters. Moreover, the F0-related modulations were strongest at

the most negative SNRs, where the masker pitch is assumed

to be crucial for segregating speech and noise.

B. Predicting the FMB

For aperiodic maskers, the human listeners showed a

FMB of about 5 dB in SRTs. Akin to the approach in Sec.

V A, this part of the discussion focusses on this effect only,

as it is unaffected by the ability of the models to also account

for the MPB. The two models that could predict the FMB

with reasonable accuracy (SRT prediction errors <2 dB)

were ESII and sEPSMcorr2. These two models neither have

the front nor back end in common (cf. Fig. 1). Consequently,

from a theoretical point of view, different conceptual

approaches can be used to successfully predict the FMB.

However, the common feature of both models is that the

length of the signal segments that are compared is frequency

dependent and becomes very short (<10 ms) at the highest

audio or modulation frequencies, respectively. The window

length of STOI, in contrast, is fixed and comparably long

(384 ms), resulting in the poorest FMB predictions of all

tested models. As has been pointed out by, for example,

Jørgensen et al. (2013), in the mr-sEPSM framework the

successful prediction of the FMB can be attributed to the

contribution of segments with window lengths shorter than

the masker troughs, which enable the models to “listen in the

dips.” This pattern is also apparent in the correlation differ-

ence plots of the two sEPSMcorr models (Figs. 10 and 11),

where the gains with fluctuating maskers are increasing at

higher modulation frequencies. However, neither the mr-

sEPSM nor the sEPSMcorr could fully account for the FMB

in the present study as their ability to listen in the dips was

counterbalanced by other effects (cf. Secs. IV C and IV D).

As the mr-EPSM has been reported to account very well for

the FMB when open-set sentence materials were used

(Jørgensen et al., 2013), one explanation for this discrepancy

may be that the steady noise used in their study had different

acoustical properties than the one used in the current study.

C. Predicting the intelligibility of vocoded speech

Overall, the SRT prediction errors of sEPSMcorr and

sEPSMcorr2 were the smallest in conditions including

vocoded target speech and there was virtually no difference

between the two models (Fig. 6). It can thus be concluded

that the combination of a modulation-based front end and a

correlation back end is best suited to predict the lowered intel-

ligibility of vocoded speech. However, the results of the two

sEPSMcorr models were neither substantially affected by the

number of channels in the vocoder nor by the periodicity of

the target speech, in contrast to the human data, which

showed moderate differences between these vocoding strate-

gies. Instead, both models excelled at accounting for the gen-

erally lower intelligibility of vocoded speech. Moreover, the

estimated PFs with vocoded speech were consistently steeper

than the human PFs, a finding that also applies to STOI,

pointing to a general limitation of correlation-based back

ends. For STOI, in contrast, the reverse pattern was observed.

While the intelligibility was overestimated throughout, the

model predicted a slightly lower intelligibility with fewer

vocoder channels, and the two conditions including Dudley-

vocoded speech were correctly predicted to have a higher

intelligibility then those with noise-vocoded speech.

As the front ends of all the models included in this study

are technically able to represent the reduced spectral resolu-

tion of vocoded speech, the main reason for this seems to be

that spectral information is not explicitly incorporated in the

decision metrics of any of the tested models. One option to

account for the diminished intelligibility of vocoded speech

appears to be the inclusion of an across-frequency process,

which quantifies the similarity across audio filters (Kates and
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Arehart, 2014; Van Kuyk et al., 2017). The HASPI model

(Hearing-Aid Speech Perception Index), for example, was

shown to perform well when the higher frequencies of

speech were noise-vocoded (Kates and Arehart, 2014).

D. Modulation filter exclusion

The algorithm-based exclusion of modulation filters

with intermediate centre frequencies (�16–64 Hz) was found

to slightly improve the predictions of the sEPSMcorr2.

Besides making the model slightly more parsimonious and

computationally less intensive, this has several theoretical

implications: First, these results suggest, as hypothesised,

that amplitude modulations at intermediate rates do not carry

information that is relevant for speech intelligibility. Second,

under the assumption that a modulation filterbank of the

kind implemented in mr-sEPSM and sEPSMcorr exists, this

raises the question how the human auditory system integra-

tes information across modulation filters. This is a crucial

issue, as the contributions of the individual auditory and

modulation filters are not determined by a priori weights in

the sEPSM models, in contrast to other models such as ESII

and the speech-based speech transmission index (Payton and

Braida, 1999). One possibility is that the contribution of

irrelevant filters is minimised. Alternatively, the concept of a

modulation filterbank with a fixed set of filter centre frequen-

cies may be challenged and substituted with a more flexible

approach, where the filter tuning is dependent on the input

signal, akin to the proposed exclusion algorithm.

E. Comparison with ASR-based modelling approaches

All models included in this study are so-called intrusive

models that require either the unprocessed speech or the

noise as a reference signal. Although it may be argued that

these template signals mimic the speech-specific knowledge

of the listeners, practical problems arise when the reference

is unavailable. In contrast, models with automatic speech

recognition (ASR) back ends usually do not require a refer-

ence signal. However, for example, in the case of the

Framework for Auditory Discrimination Experiments
(FADE; Sch€adler et al., 2016; Sch€adler et al., 2015), the

same noisy speech materials are used in the training and test

phases. In addition to making this model not strictly refer-

ence free, this procedure could potentially make the back

end rely on acoustic features that do not generalise across

different materials or are even irrelevant for human auditory

perception. Although based on a very different conceptual

approach, in which time-frequency units above a certain

SNR are used as input for a missing-data ASR back end, the

glimpsing model (Cooke, 2006) similarly relies on an

implicit reference signal. However, the set of materials used

for training is considerably larger than the test set in this

case, which should preclude overtraining effects. A

reference-free model that can also predict the intelligibility

of speech materials recorded from unknown talkers has

recently been proposed by Spille et al. (2018). Consisting of

a front end including a deep neural network (DNN) in con-

junction with an ASR-based back end, their model outper-

formed ESII, STOI, and mr-sEPSM in a range of conditions.

Although the complexity of the DNN makes it difficult to

know which acoustic cues were used, the model was shown

to exploit the dips of a modulated masker. Same as the

FADE (Sch€adler et al., 2016), it could thus successfully

account for the FMB.

However, since the prediction errors for the FMB were

also small for ESII and sEPSMcorr2, the more relevant ques-

tion is whether FADE and the model of Spille et al. (2018)

could potentially account for the MPB too. As mentioned in

Sec. V A, for models that require a reference signal, the seg-

regation of speech and masker is unrealistically good, which

may be one reason for the underestimated MPB. As this lim-

itation applies to both sEPSMcorr2 and FADE, it appears

unlikely that their prediction errors for the MPB would differ

substantially. The model of Spille et al. (2018), on the other

hand, would have to perform the stream segregation itself.

Potentially, this could result in more accurate predictions of

the MPB or, on the contrary, the model could confuse the

periodic maskers with the target speech. However, since this

model only includes envelope modulation filters with centre

frequencies up to 27 Hz, the F0-related modulations are

missing as potential cue, which makes a successful predic-

tion of the MPB less likely.

F. sEPSMcorr2 backward compatibility

Finally, it was tested whether the introduced modifica-

tions are backward compatible with the original model, i.e.,

if the predictions of the sEPSMcorr reported in Rela~no-Iborra

et al. (2016) can be re-produced with the sEPSMcorr2. The

predictive power of the sEPSMcorr was tested for a broad

range of data sets, including speech mixed with fluctuating

interferers, reverberant noisy speech, speech distorted with

phase jitter and two noise-reduction algorithms, spectral sub-

traction, and ideal time frequency segregation (ITFS). As

described in more detail in the Appendix, the sEPSMcorr2

was found to perform as well as or even better than the

sEPSMcorr. Predictions improved markedly for speech mixed

with additive noise and ITFS.

VI. SUMMARY AND CONCLUSIONS

To gain a better understanding of the behavioural data

and evaluate different approaches to modelling the intelligi-

bility of speech, the results reported in Steinmetzger and

Rosen (2015) were predicted using four existing models

(ESII, STOI, mr-sEPSM, and sEPSMcorr) as well as a modi-

fied version of one of them (sEPSMcorr2). The original data

were obtained from normal-hearing listeners presented with

various combinations of speech and background noise. The

main finding was that subjects performed substantially better

when the masker was periodic, while they only benefitted

slightly from periodicity in the vocoded target speech. The

listeners also showed a FMB when the maskers were ampli-

tude modulated at a rate of 10 Hz, but this effect was mark-

edly smaller than the MPB and was only observed for target

speech that was very intelligible in quiet listening conditions.

In summary, the four previously published models con-

sistently underestimated MPB, as well as FMB, albeit to vary-

ing degrees. For vocoded target speech, the opposite pattern
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was observed, and all models overestimated the intelligibility

of the materials, apart from the sEPSMcorr. To understand

these shortcomings, the internal signal representation of each

model was analysed in detail. Overall, the sEPSMcorr, charac-

terised by a combination of modulation-based front end and

correlation back end, produced the best predictions, whereas

there was little difference among the other three models.

As the sEPSMcorr also underestimated MPB and FMB, a

modified version of this model was developed to further

improve the predictions. For the resulting sEPSMcorr2, the

simulation of the diminished phase sensitivity of the auditory

system at higher modulation frequencies was altered to better

preserve the fine signal details, which led to reduced predic-

tions errors, by 2–3 dB in SRT for both FMB and MPB.

Additionally, an algorithm that excluded modulation filters in

which speech has little energy, resulted in a small further

improvement of the predictions. Discarded modulation filters

were almost exclusively tuned to intermediate modulation

rates (�16–64 Hz), suggesting that these do not contribute to

speech intelligibility in the conditions considered here. In

summary, the SRTs predicted by the sEPSMcorr2 showed that

the model could account for the FMB, as well as the reduced

intelligibility of vocoded speech, but still failed to explain

about half of the MPB. While this finding helps to quantify

the contribution of modulation masking to the MPB, it also

shows that pitch-related effects, such as enhanced stream seg-

regation, should be incorporated into future models.
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APPENDIX: sEPSMcorr2 BACKWARD COMPATIBILITY

To assess the validity of the modifications made to the

sEPSMcorr, an analysis under the same conditions as in

Rela~no-Iborra et al. (2016) was carried out. Table II summa-

rises the accuracy of the sEPSMcorr and sEPSMcorr2 by

means of the Pearson’s correlation and the mean average

error (MAE) between the model predictions and the data.

The sEPSMcorr2 led to substantially improved predictions

in the conditions of speech with additive noise (with increased

q and reduced MAE values) and for ITFS, where the

Pearson’s correlation increased (from q¼ 0.79 to q¼ 0.93)

and the MAE decreased (from 12.1% to 7.3%). The results of

the additive noise condition were to be expected, since it is a

similar condition to that investigated in the present study

(unprocessed noise with stationary and fluctuating interferers),

and the improvements discussed in Sec. IV E still hold.

The results in conditions with ITFS (Fig. 12), on the

other hand, were obtained for conditions not previously

tested. The modelled dataset was obtained from Kjems et al.
(2009). In their study, the effects of the configuration of the

ideal binary mask (IBM; Brungart et al., 2006) on speech

intelligibility were investigated using the Dantale II sentence

corpus. Four different interferers were considered: speech-

shaped noise, car-cabin noise, noise produced by bottles on a

conveyor belt, and two people speaking in a cafeteria.

Furthermore, two different SNRs were used to generate the

noisy mixture, corresponding to the 20%- and 50%-correct

TABLE II. Accuracy metrics for the sEPSMcorr and sEPSMcorr2 models.

sEPSMcorr sEPSMcorr2

q
Mean average error

(MAE) q MAE

Additive noise 0.97 1.85 dB 0.99 0.66 dB

Reverberation — — — —

Spectral subtraction 0.82 0.59 dB 0.84 0.51 dB

Phase jitter 0.97 19.0% 0.97 19.0%

ITFS 0.79 12.1% 0.93 7.3%

FIG. 12. sEPSMcorr2 backward compatibility. Intelligibility scores for ideal time frequency segregation (ITFS) processed speech for four different interferers

(columns) and two SNRs (rows). The human data are taken from Kjems et al. (2009) and the figure is an adaptation of Fig. 6 in Rela~no-Iborra et al. (2016).
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points on the respective PF. Finally, eight different relative

criteria (RC) for the IBM were considered for each noisy

mixture.

The original sEPSMcorr was shown to accurately predict

the effects of the different interferers, SNRs, and RCs.

However, the sEPSMcorr to some extent overestimated

human performance in conditions with strict (i.e., high) RC,

i.e., IBMs with a low density (less than 1% of non-zero ele-

ments in the mask). In these conditions, the sEPSMcorr2

clearly outperformed the sEPSMcorr, yielding better correla-

tions with the data.

To further investigate the source of the model improve-

ments in this condition, the relative contributions of the mod-

ulation channel exclusion algorithm and the envelope

extraction scheme were tested in isolation. It was found that

both model modifications improved the performance of the

original sEPSMcorr substantially when applied independently.

However, the addition of the channel selection algorithm to

the full-wave rectification did not yield any additional

improvements of the model’s performance. When considering

the channel selection only (q¼ 0.87, MAE¼ 10.3%), the

improvements resulting from the removal of the intermediate

modulation bands from further processing are likely due to

spurious correlations dominating those channels. Thus, when

removed, the overall predicted scores are lower, in line

with the human data. On the other hand, the full-wave rectifi-

cation alone provides similar accuracy to that obtained in

combination with the channel selection algorithm (q¼ 0.92,

MAE¼ 7.21%). This means that the increase in resolution of

the envelope signals, provided by full-wave rectification

might suffice to predict the breakdown of intelligibility for

those sparse masks with high RC. Despite maintaining the

intermediate modulation bands, the increased acuity is likely

to reduce the spurious correlations in them, thus reducing the

averaged correlation values.

Like the sEPSMcorr, the sEPSMcorr2 cannot account for

effects of reverberation on the intelligibility of noisy speech.

Rela~no-Iborra et al. (2016) showed that a long-term version

of the model (without multi-resolution processing) could

account for these effects, while compromising the model’s

predictive power in other conditions. This was not tested

with the sEPSMcorr2, but it is hypothesised that a similar per-

formance improvement for this condition could be obtained

by applying long-term analysis.

1F0-vocoded speech was omitted in the current study, since its particularly

low intelligibility requires a linguistic explanation (see Sec. II C in

Steinmetzger and Rosen, 2015), which is beyond the scope of the compu-

tational speech intelligibility models considered here.
2All signals in Fig. 2(B) are shown after the subsequent logarithmic com-

pression, just before they are segmented into time frames and correlated

with each other. As the previously non-negative envelope signals were

passed through a modulation filter, they can contain both positive and neg-

ative values.
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