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� Diaphragm contraction in neonates evoked a sequence of three event-related potentials.
� Hiccups can be encoded by the brain as early as ten weeks prior to average time of birth.
� Hiccups – frequent in neonates – provide afferent input to the developing brain.

a b s t r a c t

Objective: Involuntary isolated body movements are prominent in pre-term and full-term infants.
Proprioceptive and tactile afferent feedback following limb muscle contractions is associated with soma-
totopic EEG responses. Involuntary contractions of respiratory muscles, primarily the diaphragm – hic-
cups – are also frequent throughout the human perinatal period during active behavioural states. Here
we tested whether diaphragm contraction provides afferent input to the developing brain, as following
limb muscle contraction.
Methods: In 13 infants on the neonatal ward (30–42 weeks corrected gestational age), we analysed EEG
activity (18-electrode recordings in six subjects; 17-electrode recordings in five subjects; 16-electrode
recordings in two subjects), time-locked to diaphragm contractions (n = 1316) recorded with a move-
ment transducer affixed to the trunk.
Results: All bouts of hiccups occurred during wakefulness or active sleep. Each diaphragm contraction
evoked two initial event-related potentials with negativity predominantly across the central region,
and a third event-related potential with positivity maximal across the central region.
Conclusions: Involuntary contraction of the diaphragm can be encoded by the brain from as early as ten
weeks prior to the average time of birth.
Significance: Hiccups – frequently observed in neonates – can provide afferent input to developing sen-
sory cortices in pre-term and full-term infants.
� 2019 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Involuntary isolated limb movements are prominent in pre-
term and full-term infants (Fukumoto et al. 1981; Hadders-Algra
et al. 1993; Grigg-Damberger 2016). Unilateral hand movements
evoke somatotopic electroencephalography (EEG) activity overly-
ing the contralateral fronto-central scalp area (Milh et al. 2007;
Whitehead et al. 2018b), while bilateral body movements evoke
symmetrical EEG activity (Losito et al. 2017). This coupling indi-
cates that frequent limb muscle contractions in the perinatal per-
iod may provide afferent input to the developing cortex, which in
neonatal animal models allows the refinement of body surface rep-
resentations (Khazipov et al. 2004; Tiriac et al. 2012).

Alongside the external body map, the mature somatomotor cor-
tex has dedicated areas representing the internal body environ-
ment, including the thoracic cavity (Maskill et al. 1991). These
are crucial for monitoring the status of vital functions such as
breathing, and thereby allow adaptive motor control of respiratory
musculature (McKay et al. 2003; Wheeler-Hegland et al. 2011). As
for external body representations, these internal body maps may
also require early afferent input for their development.
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In parallel with the high frequency of involuntary limb muscle
contractions, involuntary contractions of respiratory muscles – hic-
cups – are also common in the equivalent of the last trimester of
gestation: they are a dominant motor activity pattern in pre-
term infants, occupying an estimated 1% of the day (Lipton et al.
1964; Swann 1978; Brouillette et al. 1980; van Woerden et al.
1989; Pillai and James 1990; de Vries and Fong 2006). Hiccups typ-
ically occur in bouts, which last for approximately 8 minutes, and
happen predominantly during active behavioural states in fetuses,
and during wakefulness in neonates (Wagner 1939; Brouillette
et al. 1980; Pillai and James 1990). These events are a form of reflex
motor activity. The efferent limb is mainly the phrenic and external
intercostal nerves, which trigger contraction of the diaphragm pri-
marily and the intercostal muscles, as well as the vagus nerve
which innervates the striated muscles of larynx and pharynx
(Video 1) (Kahrilas and Shi 1997; Kandel et al. 2000). The afferent
limb of the hiccup reflex arc is poorly defined but appears to be
mediated by multiple tracts including the phrenic and vagus
nerves (Kahrilas and Shi 1997; Ceriani et al. 2010). To investigate
whether these respiratory muscle contractions could provide affer-
ent input to the developing cortex from the internal body environ-
ment, we analysed EEG time-locked to hiccups in pre-term and
full-term neonates.
2. Methods

2.1. Subjects

We identified infants who had hiccups by reviewing 217
research EEG recordings, each from a unique subject with cor-
rected gestational age at study (CGA) 28 + 2–47 + 6 weeks + days,
acquired between September 2015 and March 2019 (the CGA
and other demographic details of the subset of infants who had
hiccups are presented in Table 1). Infants who required mechanical
ventilation were unsuitable due to difficulty in accessing EEG elec-
trode placement sites, but all other infants including those who
required a low to moderate degree of respiratory support (High
flow oxygen or Continuous Positive Airway Pressure) were eligible.
Research complied with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) and ethical approval was
obtained from the NHS Health Research Authority. Parents gave
informed written consent, and separate informed written consent
was obtained to publish video of one infant. EEG was recorded
for approximately 70–90 minutes, in line with recommended best
Table 1
Clinical data of infants who had hiccups.

Subject/Sex CGA GA+PNA Neurology

#1/F 30 + 3 27 + 6 + 18 Normal
#2/M 30 + 4a 27 + 3 + 22 Normal
#3/M 32 + 6 26 + 4 + 44 Normal
#4/M 33 + 6 32 + 6 + 7 Mild ventriculom
#5/M 34 + 5 33 + 6 + 6 Normal
#6/F 34 + 5a 34 + 0 + 5 Normal
#7/F 34 + 6 23 + 5 + 78 GM-IVH (grade
#8/F 35 + 5 35 + 3 + 2 Normal
#9/M 35 + 6 30 + 0 + 41 GM-IVH (IPL R;
#10/F 36 + 5a 35 + 6 + 6 Normal
#11/F 37 + 1 35 + 3 + 12 Normal
#12/M 37 + 5 37 + 2 + 3 Normal
#13/F 42 + 0 41 + 3 + 4 Normal
Median 34 + 6 33 + 6 + 7

CGA = corrected gestational age at study (weeks + days); GA = gestational age at birth (w
plus postnatal age. For example, an infant born at 35 weeks + 2 days, who is 3 days old,
GM-IVH = germinal matrix-intraventricular haemorrhage; IPL = intraparenchymal lesion

a These infants were in active sleep at onset of hiccups. All other infants were awake
b Magnetic resonance imaging (MRI) delimited the intraparenchymal lesion to the rig
practice (Shellhaas et al. 2011). The presence of a bout of hiccups
was recorded at the cot side, alongside annotations of the infant’s
vigilance state which was categorised according to behavioural,
respiratory and EEG criteria: wakefulness and active sleep are both
characterised by movement, irregular breathing, and largely con-
tinuous relatively low voltage EEG (Supplementary Fig. 1); quiet
sleep is characterised by the absence of movement, regular breath-
ing, and an EEG pattern which fluctuates in amplitude (Tsuchida
et al. 2013; Grigg-Damberger 2016; Whitehead et al. 2018a).

2.2. EEG recordings

Eighteen recording electrodes (disposable Ag/AgCl cup elec-
trodes) were positioned individually by a clinical neurophysiolo-
gist (KW) according to the international 10/20 electrode
placement system (F7, F8, F3, F4, Cz, C3, C4, T7, T8, P7, P8, O1,
O2), with additional central-parietal and temporal coverage (CPz,
CP3, CP4, TP9, TP10). In 2/13 infants, 2/18 electrodes were sacri-
ficed because the infant became slightly unsettled during set-up
(F7/F8 or TP9/TP10). The EEG reference electrode was placed at
Fz. Target impedance was < 10 kX (André et al. 2010).

2.3. Polygraphy recordings

A movement transducer was applied to the lower trunk and a
single lead I ECG was recorded from the upper trunk, both time-
locked to the EEG recordings (Video 1). After a bout of hiccups
was annotated at the cotside, one of these recordings was utilised
offline as a hiccups registration trace (lower trunk 10/13 infants,
upper trunk 3/13 infants). Each individual contraction was identi-
fied by thresholding this signal, on which a deflection occurred
with each event (Fig. 1, Supplementary Fig. 1).

2.4. Pre-processing

Data pre-processing was carried out using Curry v.7, EEGLAB
v.14, and custom-written MATLAB code. EEG data were bandpass
filtered at 1.5–40 Hz (2nd order Butterworth filter) with a 50 Hz
notch filter (4th order Butterworth filter) and then epoched from
�400 until +1300 ms around event onset. One epoch containing
movement artefact was discarded from three datasets, and two
datasets were de-noised using independent component analysis
(component representing ECG breakthrough was removed)
(Onton and Makeig 2006). The number of epochs analysed per
Respiratory support No. epochs analysed

High flow oxygen 118
High flow oxygen 49
High flow oxygen 80

egaly (L > R) Nil 94
Nil 82
Nil 138

III R > L) High flow oxygen 234
Nil 7

grade I L)b Nil 42
Nil 83
Nil 22
Nil 132
Nil 235

eeks + days); PNA = postnatal age (days). CGA is defined as gestational age at birth
is CGA 35 weeks + 5 days. Term is defined as � 37 weeks.
secondary to GM-IVH. R = right; L = left.
.
ht basal ganglia, thalami and posterior limb of the internal capsule.



Fig. 1. Representative 10-second long hiccups registration trace (movement
recording from lower trunk) in which two hiccups occur, from subject #3. The
event onset (0 ms) is identified by thresholding (dashed horizontal line) this signal.
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infant was: 235, 234, 138, 132, 118, 94, 83, 82, 80, 49, 42, 22, and 7
(resulting in 1316 epochs analysed) (Table 1). The median time
interval between events was 3.1 seconds (inter-quartile range:
2.1 seconds, minimum interval: 1.2 seconds). The number of
epochs analysed per infant was not associated with the median
interval between their hiccups (Pearson correlation p = .520, IBM
SPSS version 25). Missing and discarded electrode recordings were
estimated with spherical interpolation as implemented in EEGLAB
v.14 (1/18 electrode recordings were discarded due to artefact in
five infants). All EEG epochs were re-referenced to common aver-
age (retrieving the reference channel Fz) and baseline corrected
by subtracting the mean baseline signal (-400 to 0 ms). Individual
responses were estimated by averaging epochs within subject. The
signal to noise ratio of each subject’s response was not associated
with the number of epochs analysed (Supplementary Results;
Fig. 2 visually demonstrates the good signal to noise ratio for each
infant independently of number of epochs analysed).

2.5. Analysis of hiccup event-related potential

The presence of an event-related potential (ERP) was estab-
lished using the Topographic Consistency Test, which examines if
and at what latencies a stimulus consistently elicits the same scalp
field distribution across subjects using Global Field Power (GFP)
measurements (standard deviation of the recordings across elec-
trodes at each time point) analysed with non-parametric permuta-
tion statistics timepoint by timepoint (n = 1000 randomization
runs among channels) (Koenig and Melie-García 2010). Data anal-
ysis was implemented in Ragu (Koenig et al. 2011). Statistical sig-
nificance threshold was set to 0.05 for all tests. An ERP was
considered significant if the time period in which the test resulted
in p < .05 exceeded 30 ms. Unlike methods to control for multiple
comparisons such as false discovery rate, this considers the proba-
bility that consecutive samples pass the significance threshold
(Guthrie and Buchwald 1991). To provide a visual representation
of the topography of each ERP, we generated grand average and
individual subject scalp field maps. To facilitate the comparison
of topographies across individual subjects, the scalp field map of
each ERP for each individual subject was symmetrically scaled to
its own peak value.

3. Results

Six percent of infants (13/217, Table 1) had a bout of hiccups
during their EEG study, with median duration of 7 consecutive
minutes (range 1–16). In line with previous reports (Wagner
1939), a bout of hiccups was more likely to occur in infants who
were awake during EEG monitoring (chi-squared test (n = 217):
p = .005, Phi 0.193; 10 infants were awake at the onset of hiccups,
and 3 infants were in active sleep). On the other hand, the inci-
dence of a bout of hiccups was not associated with CGA (binary
logistic regression using the Enter Method (n = 217): p = .144).

Cot side observation indicated that hiccups were not associated
with changes in respiratory rate (e.g. Fig. 1) or oxygen saturation
level (available in 10/13 infants), and statistical analysis demon-
strated that the heart-rate of the infants was also unaffected (mean
150 beats per minute (standard deviation (SD): 16) immediately
prior to the hiccup bout and 149 beats per minute (SD: 15) imme-
diately after the hiccup bout, LabChart HRV software: paired t-test
p = .925 (n = 11 because of poor ECG quality in two infants)). Taken
together these data indicate that hiccups were well-tolerated by
this cohort, which is in line with previous reports of hiccups in
non-mechanically ventilated infants (Brouillette et al. 1980;
Niemarkt and Andriessen, 2012).

Diaphragm contraction evoked a change in EEG activity com-
pared to baseline for every infant (illustrated in Fig. 2). (This
included the two infants with germinal matrix-intraventricular
haemorrhage (Table 1), in line with reports that sensory responses
can be evoked in infants with this injury (Slater et al. 2010;
Nevalainen et al. 2015)). Even if there was inter-subject variability,
diaphragm contraction-related EEG activity had statistically con-
sistent topography across infants, i.e. ERPs, between �49 to
35 ms (GFP peak latency: 16 ms), 91 to 150 ms (GFP peak latency:
125 ms), and 223 to 913 ms (GFP peak latency: 310 ms) (Figs. 3 and
4). The first ERP comprised fronto-central-temporal negativity,
with positivity most prominent across the posterior region. The
second ERP comprised central and posterior negativity, with posi-
tivity most prominent across the anterior and bi-temporal regions.
The third ERP comprised central and posterior positivity, with neg-
ativity most prominent bi-temporally (except in the very youngest
subject #1 (Fig. 4)). The strength of this event-related EEG activity
was not associated with the CGA of the subjects (mean Global Field
Power across the latencies the stimulus elicited topographically
consistent EEG activity, Pearson correlations: first ERP: p = .561,
second ERP: p = .216, third ERP: p = .774; Supplementary Fig. 2).
4. Discussion

Diaphragm contraction can evoke a clear cortical response in
neonates between 30–42 weeks CGA. This shows that hiccups pro-
vide afferent input to the cortex over the equivalent of the last tri-
mester of gestation.

The first two potentials recorded have comparable topography
to potentials recorded in neonates up to 185 ms following bilateral
myoclonus (Losito et al. 2017) and mechanical somatosensory
stimulation of limbs and face, which are somatotopically dis-
tributed in pre- and early-term infants (Desmedt and Manil
1970; Hrbek et al. 1973; Laget et al. 1976; Karniski et al. 1992;
Taylor et al. 1996; Pike et al. 1997; Pihko et al. 2004; Tombini
et al. 2009; Fabrizi et al. 2011; Nevalainen et al. 2015; Donadio
et al. 2018; Whitehead et al. 2019). In older children and adults,
perception of respiratory muscle contraction, and other signals
from the thoracic cavity, is associated with a sequence of scalp-
recorded ERPs across the fronto-central region lasting until
600 ms post stimulus (Macefield and Gandevia 1992; Davenport
et al. 2000; Frøkjær et al. 2011; Gentsch et al. 2019). In non-
human primates, comparable short-latency potentials are recorded
from the cortical surface of trunk representation of primary
somatosensory cortex, as well as motor and posterior parietal cor-
tex (Amassian 1951). The initial potentials following diaphragm
contraction may therefore reflect encoding of afferent input associ-
ated with respiratory muscle contraction within the developing
somatosensory cortex.

The final potential, positive across the central region, has a sim-
ilar topography to that recorded in neonates between approxi-
mately 200–315 ms following bilateral myoclonus (Losito et al.
2017) and somatosensory stimulation of the body, but is much
longer lasting (Karniski et al. 1992; Nevalainen et al. 2015;
Whitehead et al. 2019). Consequently, the later part of the cortical



Fig. 2. Individual EEG responses following hiccups. Butterfly plots of each recording electrode for each of 13 infants (Table 1). Negative amplitudes are plotted upwards as
per convention.
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response associated with hiccups may differ, at least in part, from
that following simple somatosensory feedback. Hiccups are some-
times associated with auditory input produced by abrupt closure of
the glottis (Video 1; Supplementary Fig. 1) (Wagner 1938; Lewis
1985). Simple auditory stimuli evoke an ERP in neonates with
latency and scalp topography very similar to the final potential
observed here (Fifer et al. 2010; Chipaux et al. 2013; Kaminska
et al. 2018). Therefore, this final potential following diaphragm
contraction could encode a multi-sensory stimulus. Further, the
stimulus here is most often processed while the infant is awake.
To our knowledge this is the first study of neonatal cortical
responses, of any modality, largely acquired during wakefulness,
because newborns spend so little time awake (Curzi-Dascalova
et al. 1993). During wakefulness - i.e. a state of heightened atten-



Fig. 3. Grand average of the EEG responses following hiccups. Upper panel:
Hiccups registration trace (purple solid line) and standard deviation (dashed lines);
EEG recordings at each electrode from individual infants (blue lines) and grand
average (black lines); Global Field Power (GFP) of the grand average EEG recordings.
Negative amplitudes are plotted upwards as per convention. Lower panel: GFP of
the grand average EEG recordings showing timing and duration of consistent EEG
activity across subjects, i.e. event-related potentials (green shading) and their
topographies (averaged across their duration as defined by the Topographic
Consistency Test). The height of the grey area indicates the p-value of the
Topographic Consistency Test. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Individual EEG topographies following hiccups. Topographies of each
event-related potential (averaged across their duration as defined by the Topo-
graphic Consistency Test, and individually symmetrically scaled to their own peak
value) for each of 13 infants (Table 1) and the grand average. (MIN = Minimum
voltage (-mV); MAX = Maximum voltage (+mV)).
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tion - sensory information may be encoded differently. For exam-
ple, in adults long-latency ERPs are only recorded if the stimulus
has entered awareness (Libet et al. 1967; Kitazawa 2002). Although
animal models indicate that, until postnatal day 11, afferent input
following body movements during wakefulness is relatively unli-
kely to evoke cortical activity (Tiriac et al. 2014; Dooley and
Blumberg 2018), here we show in human infants 30–42 weeks
CGA that brief contractions of a discrete set of respiratory muscles
during wakefulness can evoke pronounced cortical responses of
similar strength across the age range.

The cortical response characterised in this study is clearly not
explained by hiccup-related movement artefact (i.e. electrodes dis-
placement) because a) it is topographically organised, especially
across the central region, b) the central electrodes are less likely
to be affected by movement as they are placed at the crown of
the head and therefore do not brush against bedding or the care-
giver (Scher 2006), c) the morphology of the full response recorded
does not resemble the movement recorded by the hiccups registra-
tion trace and lasts for much longer (Fig. 3).

Fetal ultrasound imaging demonstrates that hiccups are present
from just nine weeks gestational age, at which time they are partic-
ularly frequent, and then plateau across the third trimester (Pillai
and James 1990; de Vries and Fong 2006). Therefore repetitive con-
tractions of the diaphragm are one of the earliest established motor
activity patterns within the rudimentary functional systems of the
fetus. We show here that the sensory feedback from these contrac-
tions can be encoded by the brain from as early as 30 weeks CGA,
ten weeks prior to the average time of birth. The establishment of
early sensory circuits is a crucial developmental milestone for new-
born infants (Fabrizi et al. 2011). Our study demonstrates that con-
tractions of respiratory muscles provide sensory input from the
internal body environment to the developing brain and may provide
the necessary information for the formation of interoceptive repre-
sentations. This would explain the marked prevalence of hiccups in
neonates compared to adults (Brouillette et al. 1980).
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