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Abstract

This article surveys recent literature by Parsons, McGee, Shapiro and
others on the significance of categoricity arguments in the philoso-
phy of mathematics. After discussing whether categoricity arguments
are sufficient to secure reference to mathematical structures up to
isomorphism, we assess what exactly is achieved by recent ‘internal’
renditions of the famous categoricity arguments for arithmetic and set
theory.

1 Introduction

In recent decades, the philosophy of mathematics has been awash with ap-
peals to, and reformulations of, the famous categoricity theorems of Dedekind
and Zermelo. This has gone hand-in-hand with the development of various
versions of structuralism. While categoricity arguments and structuralism
can be pursued independently, recent philosophical discussion has tended to
link them, by considering responses to sceptical concerns about both the
determinacy of reference of mathematical language, and the determinacy of
truth-values of mathematical statements.
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We begin by charting considerations which have helped to threaten the
determinacy of reference, and thereby pushed structure and categoricity to
the forefront of philosophy of mathematics (§2). We then survey the use
of Dedekind’s and Zermelo’s categoricity results, focussing particularly on
whether they provide us with a means for grasping particular mathematical
structures (§3). Finally, we turn to internal categoricity results (§4). These
have been the focus of recent literature and, by emphasising how they dif-
fer from the traditional, external, categoricity results, we demonstrate their
rather different philosophical significance.

2 Towards structure and categoricity

We begin with one of the simplest possible observations from model theory:
given a structure, it is very easy to construct an isomorphic structure. In
more detail:

The Push-Through Construction. Let L be any signature, let M be
any L -structure with underlying domain M , and let π : M → N be
any bijection. We can use π to induce another L -structure N with
underlying domain N , just by ‘pushing through’ the assignments inM,
i.e. by stipulating that sN = π(sM) for each L -symbol s. Having done
this, one can then check that π :M→N is an isomorphism.1

This trivial result is at the core of two considerations which push us in the
direction of a focus on structure and categoricity.

2.1 Benacerraf’s use of Push-Through

Since isomorphic copies of structures are so easy to come by, it is no surprise
that, for many mathematical purposes, it seems not to matter which of two
isomorphic models one works with.

The most famous philosophical statement of this point is due to Benac-
erraf. He focussed specifically on the fact that, when doing arithmetic, it

1In more detail, if c is a constant symbol of L , then we set cN = π(cM), and if R
is an n-ary relation symbol of L , then we set RN = {(π(a1), . . . , π(an)) : (a1, . . . , an) ∈
RM}, and if f is an n-ary function symbol of L , then we set fN (π(a1), . . . , π(an)) =
π(fM(a1, . . . , an)). For more discussion of this construction, see [Button 2013, pp. 225–
31].
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makes no difference whether we think of the natural numbers as von Neu-
mann’s finite ordinals or as Zermelo’s finite ordinals.

For arithmetical purposes, the properties of numbers which do
not stem from the relations they bear to one another in virtue of
being arranged in a progression are of no consequence whatsoever
[1965, pp. 69-70]

Otherwise put: for arithmetical purposes, all we require is that the progres-
sion is both long enough and also appropriately structured. Since we can use
the Push-Through Construction to induce the appropriate structure, this
reduces to the requirement that we have enough things.

Such observations suggest that mathematicians—and so, perhaps, philo-
sophers—can (typically) focus only on mathematical ‘structure’. And indeed,
this attitude is reflected in some parts of mathematical practice. Mathemat-
ical discourse is rich with apparent definite descriptions of mathematical
structures, like ‘the natural number structure’ or ‘the Klein four-group’; but,
given the Push-Through-Construction and related issues, it is equally rich
with the idea that we only care about the identity of such entities ‘up to iso-
morphism’. This motivates a compelling idea: mathematical structures, as
discussed informally by mathematicians, are best explicated by isomorphism
types.2 So, when a mathematician claims that the theory of arithmetic picks
out ‘the natural number structure’, we shall treat this as the claim that it
picks out a particular equivalence class of isomorphic models.

This is a very natural claim concerning arithmetic. But it is worth em-
phasising that not every mathematical theory is like the theory of arithmetic
in this respect. Group theory does not aim to pick out any particular math-
ematical structure (informally construed): the whole point of group theory
is that it can be applied to many different mathematical areas, such as mod-
ular arithmetic, certain classes of permutations, etc. Similar points hold for
theories governing rings, fields, etc. Following Shapiro [1997, pp. 40–1], we

2Unfortunately, there is an infelicity here. A model theorist’s structures are always
relative to a specific signature. Consequently, the natural numbers with ‘0’ and ‘s’ as
the sole primitives induces a different equivalence class of isomorphic structures than
the natural numbers with ‘0’, ‘×’ and ‘+’. There are detailed moves one could make in
response to this, such as moving from isomorphism to definitional equivalence (See the
discussion in Resnik [1981, pp. 535–6, 1997, pp. 207–8], Shapiro [1997, p. 91], and Walsh
[2014, p. 95]). However, we shall simply slur over this point in what follows, and treat
mathematical structures (informally construed) as isomorphism types.
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call these kinds of theories algebraic. These are to be contrasted with non-
algebraic theories which, like arithmetic, aim to ‘describ[e] a certain definite
mathematical domain’ [Grzegorczyk 1962, p. 39] or ‘specify one particular
interpretation’ [Kline 1980, p. 273].

2.2 Putnam’s use of Push-Through

We just used the Push-Through Construction to motivate a focus on math-
ematical structure, informally construed, which is to be formally treated in
terms of isomorphism types. However, there is an equally celebrated use of
the Push-Through Construction.

Philosophers sometimes use model theory to explicate the intuitive no-
tions of truth and reference. On this approach, a model’s assignment of
constants to objects is taken to explicate the relation between names and
their referents, and Tarski’s recursive definition of satisfaction is taken to
explicate the way in which statements are made true. And, with this ex-
plication as a backdrop, Putnam used model theory to raise philosophical
questions about reference.3

Given a model which makes true everything which intuitively should be
true, Putnam used the Push-Through Construction to generate a distinct
but isomorphic model. (Putnam focussed specifically on the case where we
generate a new model by permuting the underlying domain of the given
model, rather than by substituting in new objects; hence his argument is
called the permutation argument.) Now, since the two models are isomorphic,
they make true exactly the same sentences; but since they are distinct, they
differ on the (explicated) reference of some symbol. And this raises the
philosophical question: What, if anything, fixes reference?

A natural reaction to Putnam’s permutation argument is to claim that
some models are simply more preferable than others, as candidates for expli-
cating reference. Howsoever ‘preferability’ is spelled out, the crucial thought
is that isomorphic models can differ as regards their preferability (see Merrill
[1980, p. 80] and Lewis [1984, pp. 227–8]). But, in response, Putnam [1977,
pp. 486–7, 1980, p. 477, 1981, pp. 45–8, 1983, p. ix] insisted that his oppo-
nent must explain both her notion of preferability, and also why preferable
structures are better at explicating reference. In doing so, Putnam main-

3Both Putnam’s permutation arguments and his just more theory manoeuvre have a
long history; for details, see Button [2013, p. 14 notes 1–2, p. 18 note 7, p. 27 note 2].
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tained, his opponent would have to provide a theory of preferability. But
the permutation argument establishes that any theory has multiple models;
including this theory of preferability, coupled with anything else we want to
say. So Putnam maintained that the theory of preferability is just more the-
ory—more grist for the permutation-mill—and cannot constrain reference.
For obvious reasons, this general argumentative strategy is called the just
more theory manoeuvre.

This manoeuvre has been widely criticised (e.g. Lewis [1984, p. 225] and
Bays [2001, pp. 342–8, 2008, pp. 197–207]; for further references see But-
ton [2013, p. 29 note 8]). It is easy to see why. To use one of Putnam’s
own examples: suppose there are exactly as many cats as cherries, and that
we are considering a permutation which sends every cat to a cherry. This
permutation is supposed to make us worry that our predicate ‘. . . is a cat’
picks out the cherries, rather than the cats. But that permutation surely
fails to respect the causal relationships that link our use of the word ‘cat’ to
cats, rather than cherries. So, we are here suggesting that a preferable model
must respect certain causal constraints on language–object relations. In this
context, the just more theory manoeuvre amounts to noting that we can
reinterpret the word ‘causation’. But if causation does, in fact, fix reference,
then this reinterpretation is just a mis interpretation, with no philosophical
significance.

In this paper, though, we are less concerned with ordinary objects, like
cats and cherries, and more concerned with mathematical objects. And it is
easy to see why the permutation argument and the just more theory manoeu-
vre might seem more threatening in mathematical contexts (see Hodes [1984,
pp. 127, 133–5] and McGee [1997, pp. 35–8]). In the ordinary case, invoking
causation makes it at least plausible that isomorphic models can differ as
regards their preferability (though for more see Button [2013, ch. 3–7]). In
the mathematical case, it is much less obvious what we might invoke, if we
wanted to explain why ‘27’ refers to 27, and not to some other object.

We are not insisting, here, that these considerations provide a knock-
down argument against the idea that mathematical terms determinately re-
fer. However, together with the observations of §2.1, these kinds of consid-
erations have led some philosophers simply to embrace the idea that mathe-
matical terms refer indeterminately.4

4For example: McGee [1997, p. 36] regards the question of ‘how mathematical terms
come to have determinate referents’ as ‘insoluble’. Balaguer [1998b, p. 84, 1998a, p. 73]
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2.3 Shapiro and Places in structures

Indeed, the considerations of §2.1 might have provided us with a further rea-
son to abandon the determinacy of reference for mathematical terms. Fol-
lowing §2.1, suppose we maintain that our theory of arithmetic picks out
a particular isomorphism type (i.e. a class of isomorphic models). Then we
might say that the theory of arithmetic itself refers determinately. But when
we consider a particular arithmetical term, such as ‘27’, there is no single ob-
ject in the isomorphism type for it to pick out. So, on this view, if ‘27’ refers
at all, then it surely refers to all ‘the 27s’ of all the isomorphic models equally,
as it were. And that amounts to radical referential indeterminacy.

That said, Shapiro has prominently attempted to reconcile the focus on
‘structure’ with the determinacy of reference for mathematical terms. Struc-
tures, according to Shapiro—which we shall call ante-structures—are ab-
stract entities, consisting of places, with certain intra-structural relations
holding between them.5 These abstract entities should be considered along
the lines of universals which can be multiply realised. Shapiro calls such re-
alisations systems, and a place-holder is an object which, on that realisation,
instantiates a particular place in the realised ante-structure [1997, pp. 73–4].
Shapiro’s ante rem structuralism is then the claim that ante-structures exist
independently from the systems realising them [1997, pp. 9, 84–5, 109].

Now: as noted at the very end of §2.2, there is no single object in the
isomorphism type of the natural numbers which could serve as the preferred
referent for the arithmetical term ‘27’. But, according to Shapiro, the ante-
structure for arithmetic contains places which act as potential reference can-
didates for arithmetical terms. Thus, Shapiro maintains that ‘27’ determi-
nately refers to the 27-place in the ante-structure of arithmetic [1997, pp. 14,
55 note 15, 141 note 8].

However, since places in ante-structures are abstract objects, we might
well ask why the expression ‘27’ refers to the 27-position in the natural num-
ber structure, rather than any other abstract entity. To make the question

says that platonists ‘have to claim that while [theories like Peano Arithmetic] truly describe
collections of abstract mathematical objects, they do not pick out unique collections of
such objects’. MacBride [2005, p. 581] similarly writes that ‘indeterminacy appears to
be an ineliminable aspect of reference to mathematical objects’. Indeed, the prospect
of referential indeterminacy is also sometimes used as evidence for the conclusion that
mathematical language does not refer at all (cf. Hodes [1984, p. 139]).

5Shapiro’s ante-structures can be compared with fruitfully with Resnik’s [1981, 1997]
patterns; his places with Resnik’s positions.

6



especially tricky, note that the Push-Through Construction will allow us to
create an arithmetical structure (in the model theorist’s sense, or a system
in Shapiro’s terminology) according to which ‘27’ refers to any entity we
like. (For similar objections, see Balaguer [1998b, pp. 80–4], Hellman [2001,
pp. 193–6, 2005, p. 546], and McGee [2005, p. 151].) In response, Shapiro
might well emphasise that the Push-Through Construction generates only a
model-theoretic structure, and not an ante-structure, and then go on to argue
that ante-structures are the preferred reference candidates of our mathemat-
ical language. However, this would return us to the dialectic of §2.2: given
the abstractness of all the entities concerned, it is not immediately clear why
ante-structures should attract our words towards them.

2.4 Further reflections

We have considered two uses of the Push-Through Construction, both of
which suggest we should focus on structure (informally construed), and (per-
haps) abandon the determinacy of reference for mathematical terms.

These two uses of the Push-Through Construction are linked technically
and philosophically. However, they are also linked historically. Benacerraf’s
famous 1965-paper grew out of his 1960-dissertation,6 in which he writes:

One day in conversation, Putnam made very suggestive remarks
in the course of a discussion of the question ‘Can, or should,
the numbers be identified with sets of sets?’ His point was to
reject the question, arguing that it arises from a distinction be-
tween number words and numbers parallel to that between, say,
furniture words and furniture, and that in the former case the
distinction was unwarranted. [Benacerraf 1960, p. 162]

Moreover, some of their considerations were motivated by a reading of Chap-
ter 2 of Cassirer’s 1910 book, in which Cassirer defends Dedekind contra Frege
on the foundations of arithmetic. Cassirer writes:

It is a fundamental characteristic of the ordinal theory [of natural
number] that in it the individual number never means anything by

6The dissertation Benacerraf [1960] is listed as item B1 in Benacerraf’s bibliography in
Morton and Stich [1996, p. 263] and its relation to his papers is discussed in Benacerraf
[1996, p. 24].
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itself alone, that a fixed value is only ascribed to it by its position
in the total system. [Cassirer 1923, pp. 47–8, 1910, p. 62].

To our ears, this both harkens back to Dedekind [1888, ¶¶73, 134], and
forward to modern structuralists like Shapiro and Parsons.

However, it is worth emphasising a contrast between Benacerraf’s and
Putnam’s considerations. Putnam forces us to ask: what does ‘27’ refer
to? Some of Benacerraf’s considerations simply ask us: which object is 27? 7

Suppose Benacerraf-style reasons have led us to focus on structure (informally
construed), i.e. on isomorphism types. Even if we have happily accepted
that mathematical terms, like ‘27’, do not pick out any particular object, we
will still want our mathematical theories to pick out particular isomorphism
types. But isomorphism types are abstract objects. So we now encounter
a Putnam-style concern, pitched at the level of theories rather than their
terms: what could allow a theory to pick out exactly one isomorphism type?

3 External categoricity

The most straightforward answer to the preceding question is for the theory
to be categorical ; that is, for all of its models to be isomorphic. For, if
theories ‘pick out’ their models, then categorical theories pick out a single
isomorphism type.8

7Similarly, some of Benacerraf’s considerations prompt us to ask: is 27 an object at
all? These are of course related, with Benacerraf writing: ‘I therefore argue, extending the
argument that led to the conclusion that numbers could not be sets, that numbers could
not be objects at all [. . . ]’ [1965, p. 69]. Obviously there are other places in Benacerraf’s
1965-essay where the explicit focus is on questions of reference (cf. [1965, pp. 55, 61]). Our
point here is just that one can distill from Benacerraf’s essay a particular question which
is less semantic in character.

8It is worth mentioning a second reason for aiming for categoricity. Since isomorphic
models satisfy exactly the same sentences, if a mathematical theory manages to be cat-
egorical, then all of its models agree on the truth-values of every sentence expressible in
the theory’s language. Corcoran [1980, 1981] and Awodey and Reck [2002, p. 18] note
that it is not always clear whether the late-19th and early-20th century practitioners of
categoricity (like Dedekind and Veblen) were motivated by categoricity per se, or by the
distinctive kind of completeness of theories which it delivers.
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3.1 External categoricity theorems

Unfortunately, an elementary result from model theory imposes an immediate
barrier to categoricity:

Löwenheim–Skolem Theorem. Every countable first-order theory with
an infinite model has a model of every infinite size.9

As an immediate corollary, no countable first-order theory with an infinite
model is categorical (since isomorphic models must be of the same size). But
the theories we are likely to be most interested in here—arithmetic, analysis,
and set theory—all have an infinite model, and so cannot be categorical. In
short, if we want categoricity, we must move beyond first-order logic.

In this context, we might move to full second-order logic, where there are
some famous categoricity results. Dedekind proved the categoricity of PA2

(second-order Peano Arithmetic):

Dedekind’s categoricity theorem. All full models of PA2 are isomorphic.

With a little massaging, Dedekind’s result also yields the categoricity of
second-order real analysis (see e.g. Shapiro 1991, p. 84). A result is also
available for set theory, which we discuss in §3.6. However, we shall begin
by discussing the philosophical uses of Dedekind’s Theorem.10

3.2 Model-theoretic scepticism and just more theory

Dedekind’s Theorem shows that, if we can appeal to full second-order logic,
then we can axiomatise arithmetic categorically. So our question becomes:
can we appeal to full second-order logic?

The ‘second-order’ component of ‘full second-order logic’ is surely unob-
jectionable. No one can prevent mathematicians from speaking a certain way,
or from formalising their theories using any symbolism they like. The qual-
ifying expression ‘full’, however, is rather more delicate. Here, it describes

9For a discussion of the history of this theorem, see [Mancosu et al. 2009, §4 pp. 352
ff]. Proofs of this theorem are available in most textbooks on model theory, textbooks
on first-order logic, and discussions of extensions of first-order logic. For instance, see:
[Marker 2002, §2.3 pp. 44 ff], [Rautenberg 2010, p. 112], [Shapiro 1991, p. 80].

10For Dedekind’s original proof of his theorem, see [Dedekind 1888, ¶132, 1930-1932,
vol. 3 p. 376; Ewald 1996, vol. 2 p. 821]. For a contemporary proof, see [Shapiro 1991,
pp. 82–3; Enderton 2001, p. 287].
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a particular semantics for second-order logic: one in which the second-order
quantifiers must range over the entire powerset of the first-order domain of
the structure. But if one formalizes these semantics and their constituent no-
tions (like powerset) in a first-order set theory, then the Löwenheim–Skolem
result applies once again, and categoricity must be abandoned. Equally,
we can supply a Henkin semantics for second-order logic—essentially treat-
ing second-order logic as a form of many-sorted first-order logic—and, once
again, obtain the Löwenheim–Skolem result.11

Such observations have been made repeatedly in the recent literature
(Weston [1976, p. 288], Parsons [1990b, pp. 14–17, 2008, pp. 394–6], Field
[1994, p. 308 note 1, 2001, pp. 319, 321–2, 338–9, 352–3], Shapiro [2012,
pp. 273–5], Väänänen [2012, p. 120], Meadows [2013, pp. 535–42], and Button
[2013, p. 28]). Here is Putnam’s statement of the general problem:

[. . . ] the ‘intended’ interpretation of the second-order formalism
is not fixed by the use of the formalism (the formalism itself ad-
mits so-called ‘Henkin models’[. . . ]), and [so] it becomes necessary
to attribute to the mind special powers of ‘grasping second-order
notions’. [1980, p. 481]

The parallel to Putnam’s just more theory manoeuvre is clear (see §2.2).
Using the Löwenheim–Skolem Theorem, we are presented with various al-
ternatives for what our mathematical theory, PA2, picks out: ‘the standard
model’ (i.e. one particular isomorphism type), or some ‘nonstandard model’
(i.e. some other type). In trying to spell out why PA2 picks out the former,
we appeal to Dedekind’s Theorem. But, for the Theorem to be relevant,
we must have ruled out the Henkin semantics for second-order logic; indeed,
in the vocabulary of §2.2, we might say that full models are preferable to
Henkin models. But the distinction between full models and Henkin models
essentially invokes abstract mathematical concepts. And these were precisely
what was at issue in the first place: we were hoping to secure a grasp of such
concepts by appeal to Dedekind’s Theorem. And so the worry goes that the

11Many-sorted first-order logic is a logic in which there are different classes of variables
reserved for different sorts of objects, but which is otherwise just like first-order logic. It
is a natural logic in which to study e.g. point-line geometry, since one could have a sort
reserved for points and another for lines. Many-sorted treatments of second-order logic
operate with a sort for first-order objects and a sort for second-order objects, along with
axiomatizations of the relation between them. For technical details, see Shapiro [1991,
pp. 70–6], or Manzano [1996, Chapter 6] or Enderton [2001, §§4.3-4.4].
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distinction between full and Henkin models is ‘just more theory’, and hence
up for reinterpretation.

3.3 Model-theoretic scepticism and intermediary log-
ics

We are here in the presence of a kind of model-theoretic scepticism. And so,
in an attempt to mollify the sceptic, we might retreat to a logic which is
weaker than full second-order logic, but still stronger than first-order logic.
One idea which has occurred to many is to:

(1) Employ a fragment of second-order logic equipped with second-order
variables X, Y, Z, . . . but no second-order quantifiers, with the seman-
tics organized so that ϕ(X) comes out true precisely when it is satisfied
by any subset of the first-order domain.

It is easy to see that we can axiomatise arithmetic categorically using such a
logic: just take the normal second-order theory, PA2, and delete the ‘∀X’ in
front of the induction axiom.12 But that this theory is categorical is neither
surprising nor very interesting (as noted by Field [2001, p. 354], Walmsley
[2002, p. 253], Pedersen and Rossberg [2010, pp. 333–4], and Shapiro [2012,
pp. 309–10]). For this logic is just a notational variant for the fragment of
full second-order logic in which formulas begin with at most one higher-order
universal quantifier and contain no further higher-order quantifiers. In this
context, this notational variant is surely no more philosophically significant
than the fact that, in propositional logic, we can omit the outermost pairs of
brackets in a sentence without risk of ambiguity.

Other intermediate logics have been considered. The following three aug-
mentations of first-order logic also allow for the categoricity of arithmetic:13

(2) Treat zero and successor as logical constants.
(3) Add a new quantifier for “there are finitely many”.

12The technical point here goes back to Corcoran [1980, pp. 192–3], and is also discussed
by Shapiro [1991, pp. 247–8]. McGee [1997, pp. 56ff.], Lavine [1994, pp. 224–40, 1999], and
Parsons [2008, pp. 262–93] have all invoked the framework of (1) in defence of philosophical
arguments based upon categoricity results. Importantly, though, they did so in the context
of the internal categoricity results of §4.3.

13Read [1997, pp. 89–92] discusses options (2), (3) and (5). Field [1980, ch. 9, 2001,
pp. 320, 338–40] defends option (3).
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(4) Introduce a single one-place predicate, whose fixed interpretation in an
arbitrary model of arithmetic is given by the numbers finitely far away
from (the interpretation of) zero.

As Read [1997, p. 91] notes, though, invoking either (2) or (3) simply ‘shifts
the problem from the identification of postulates characterizing [the natural
numbers] categorically. . . into the semantics and model theory of the logic
used to state the postulates’. Again, we hear echoes of the just more theory
manoeuvre.

A marginally more interesting approach is:

(5) Add Härtig’s binary quantifier, which expresses that there are exactly
as many ϕ’s and ψ’s (for any formulas ϕ(x) and ψ(x)).

To produce a categorical theory of arithmetic, we now add to the usual
axioms of arithmetic an axiom stating ‘if there are exactly as many entities
less than x as there are entities less than y, then x = y’; such a claim would be
false of certain nonstandard numbers. But to grasp the (intended) semantics
of Härtig’s quantifier seems to require a grasp of the behaviour of cardinality
in general, which again seems to presuppose within the semantics precisely
the notions we were seeking to secure. Similarly, we might

(6) Allow sentences containing (countably) infinitely many conjunctions
and disjunctions.

We then obtain categoricity by adding to first-order Peano arithmetic a
countable disjunction saying: ‘everything is either zero, or the successor of
zero, or the successor of that, etc.’. But to grasp this proposal, we need to
grasp that ‘etc.’; and that looks exactly like the original challenge of grasping
the (or a) natural number sequence.

Mathematically, the most interesting alternative is:

(7) Stipulate that the arithmetical function symbols ‘+’ and ‘×’, even if
not logical constants, must always stand for computable functions.

To obtain categoricity, we then invoke Tennenbaum’s Theorem [1959], that
all computable models of the first-order Peano axioms for arithmetic are
isomorphic (for proofs, see Kaye [2011] and Ash and Knight [2000, p. 59]).
However, this option faces the obvious challenge of cultivating a notion of
computability that is sufficiently independent from the arithmetical notions it
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seeks to vouchsafe. (For more on the philosophical interpretation of Tennen-
baum’s Theorem, see McCarty [1987, pp. 561–3], Dean [2002, 2014], Halbach
and Horsten [2005], Quinon [2010], Button and Smith [2012], and Horsten
[2012].)

3.4 Model-theoretic scepticism and transcendental ar-
guments

In §§3.2–3.3, we have been dealing with a model-theoretic sceptic, who seeks
to deny us anything beyond what is available in first-order logic. In response,
several philosophers have recently argued that there is something deeply
unstable about such model-theoretic scepticism. There are two main lines of
argument to this effect.

The first suggests that the model-theoretic sceptic cannot even state her
position without undermining it. For, the model-theoretic sceptic seems to
proceed as follows: she presents us with a nonstandard model, and asks us
how we can be sure that this was not the target of our mathematical language,
given that it is elementary equivalent to the supposedly standard model. But,
insofar as we understand what she has presented us with, it cannot be the
target of our mathematical language. To make this more concrete—although
this takes us beyond arithmetic to the case of set theory—suppose the scep-
tic has used the Löwenheim–Skolem Theorem to present us with a merely
countable model of set theory. If that were the target of our mathematical
discourse, then our word ‘countable’ would pick out only those sets which
are countable-in-the-model; but since the model itself is not countable-in-
the-model, it could not now be described to us as a ‘countable’ model. (See
Tymoczko [1989, pp. 287–90], Moore [2001, pp. 165–7, 2011, §3], and Button
[forthcoming, §3] for developments on this theme. All three authors draw
inspiration from Putnam’s [1977, p. 487, 1981, ch. 1] brain-in-vat argument.)

The second line of argument suggests that the model-theoretic sceptic
is not entitled, by her own lights, to employ the first-order model theory
with which she raises a sceptical challenge. For, the model-theoretic sceptic
is happy to employ the full power of first-order model theory. However, as
Bays [2001, p. 345] notes, ‘the notions of finitude and recursion are needed
to describe first-order model theory’, since first-order formulas ‘can be of
arbitrary finite length, but they cannot be infinite’, and first-order satis-
faction is defined recursively (cf. also Field [1994, pp. 397, 410–11, 2001,
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pp. 318, 338, 343] and Benacerraf [1985, p. 109]). Thus, the use of first-order
model theory itself presupposes a grasp of the natural numbers (at least up
to isomorphism). So if the model-theoretic sceptic employs first-order model
theory in an attempt to argue that the natural numbers are not unique up
to isomorphism, she saws off the branch on which she sits.

3.5 Other attitudes towards categoricity

Throughout §3, we have considered Dedekind’s Categoricity Theorem as a
means to grasp some particular isomorphism type. However, we should re-
member that a categoricity theorem, as a result of pure mathematics, does
not dictate its terms of philosophical employment. So it is worth surveying a
variety of different attitudes that one might take, when trying to assess the
potential significance of a categoricity theorem.

The Algebraic Attitude. Imagine a character who denies that there is a
single natural number structure (informally construed). Instead, she thinks of
arithmetic as algebraic. Such a character need not doubt the perfect mathe-
matical rigour of Dedekind’s Theorem. Rather, she—and all parties—should
conclude that any indeterminacy in the natural numbers is simply mirrored
by indeterminacy in second-order quantification, so that second-order logic
is inevitably algebraic (see Shapiro [2012, p. 308] and cf. Mostowski [1967,
p. 107] and Read [1997, p. 92]).

The Infer-To-Stronger-Logic Attitude. One might think that mathemati-
cal practice itself dictates that there is exactly one natural number structure
(informally construed). If we treat this structure (informally construed) in
terms of isomorphism types, then we can use the Löwenheim–Skolem Theo-
rem to argue that we must have access to resources beyond first-order logic.
Indeed, for those who are not too worried by model-theoretic scepticism, this
pattern of argumentation may look like nothing more than an inference to
the best explanation. This is part of Shapiro’s approach to second-order logic
[1991, pp. xii–xiv, 100, 207, 217–8, 2012, p. 306], and Shapiro cites Church
[1956, p. 326 n. 535] as a precedent (see also Benacerraf 1996, p. 36).

The Start-With-Full-Logic Attitude. Suppose we begin with the idea that
our grasp on full second-order logic is completely unproblematic. We can then
use our antecedently given grasp of this logic, coupled with our treatment
of mathematical structures (informally construed) as isomorphism types, to
explain how we can pin down the natural numbers. Equally, we can explain
how it is that we are equipped with a “finitary means of characterizing the
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infinite” (cf. Read [1997, p. 89]).
The Holistic Attitude. The previous two attitudes seem to presuppose a

clean separation between logic and mathematics. However, one might well
think that the boundary between the two is rather artificial (see Shapiro
[2012, pp. 311–22] and Väänänen [2012]). So the final alternative is to em-
brace a more holistic attitude, according to which our grasp of (e.g. full
second-order) logic and our grasp of determinate mathematical structures
(in the informal sense) come together, with each helping to illuminate the
other.

On any of the last three attitudes, the existence of a categorical axiom-
atization is likely to be regarded as a hallmark of success in the project
of providing axiomatisations (cf. Read [1997, p. 92] and Meadows [2013,
pp. 525–7, 536–40]). Whether that view is correct or not, our point here is
fairly simple. By themselves, categoricity theorems are simply results within
pure mathematics, and they are open to many different reactions. Moreover,
for the theorems to have any philosophical significance, it seems that we need
to have taken the step made in §2.1, of identifying mathematical structures
(in the informal sense) with isomorphism types (or something very close).

3.6 The quasi-categoricity of set theory

We now turn from the case of arithmetic to the case of set theory. The crucial
result here is Zermelo’s proof of the quasi -categoricity of ZFC2 (second-order
Zermelo–Fraenkel set theory):

Zermelo’s quasi-categoricity theorem. Given any two full models of ZFC2,
either they are isomorphic, or one is isomorphic to a proper initial segment
of the other.14

Famously, Kreisel [1967, p. 150] used Zermelo’s Theorem to argue that the
continuum hypothesis has a determinate truth value. After all, the contin-
uum hypothesis concerns only sets of low height, and hence is either true
in all full models of ZFC2, or false in all full models of ZFC2, by Zermelo’s
Theorem.

Kreisel here seems to have adopted the Start-With-Full-Logic Attitude.
Isaacson [2011, §5] has recently followed him. But what alternative attitudes
were available?

14For Zermelo’s original proof, see Zermelo [1930, 2010, pp. 400ff.] and Ewald [1996, vol.
2 pp. 1219 ff.]. For a contemporary proof, see Kanamori [2003, p. 19].
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Kreisel’s remarks came in the wake of an explosion of set-theoretic inde-
pendence results, initiated by Cohen’s proof that the continuum hypothesis
is independent from the standard axioms of set theory. And, reflecting upon
these independence results, Mostowski articulated the view that:

[. . . ] the incompleteness of set-theory [. . . ] is comparable [. . . ]
to the incompleteness of group theory or of similar algebraic the-
ories. These theories are incomplete because we formulated their
axioms with the intention that they admit many non-isomorphic
models. In [the] case of set-theory we did not have this intention
but the results are just the same. [Mostowski 1967, p. 94]

In short, Mostowski argued that recent mathematical developments had
shown that set theory itself was algebraic. And so, in contrast with Kreisel,
Mostowski adopted a similarly Algebraic Attitude towards second-order logic;
an attitude that was inevitable, given his claim that second-order logic ‘is
a part of set theory’ [1967, p. 107]. Hamkins has recently espoused ex-
actly the same Algebraic Attitude: on the basis that ‘[s]et theory appears
to have discovered an entire cosmos of set-theoretic universes’ [2012, p. 418],
Hamkins holds that Zermelo’s Theorem reveals the essentially algebraic na-
ture of second-order quantification [2012, pp. 427–8].

We have witnessed both the Start-With-Full-Logic and the Algebraic At-
titudes. But there is ammunition for the Infer-To-Stronger-Logic Attitude,
even in Mostowski’s own remarks. Having suggested that set theory is alge-
braic, Mostowski expressed a concern:

Of course if there are a multitude of set-theories then none of them
can claim the central place in mathematics. Only their common
part could claim such a position; but it is debatable whether this
common part will contain all the axioms needed for a reduction
of mathematics to set-theory. [Mostowski 1967, pp. 94–5; Moore
1982, p. 4]

This suggests why independence in set theory might be thought to be philo-
sophically troubling in a way in which, say, independence in group theory or
geometry is not: it potentially threatens our contemporary image of math-
ematics as that which is representable within the sets.15 And so one might

15Of course there is much more to say about Mostowski’s argument; we mention it here,
only because it makes vivid a reason for ‘worrying’ about independence results.
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contrapose his reasoning: If the image of set theory as foundational is thought
to be sufficiently central, and genuinely is threatened by regarding set the-
ory as algebraic, then we might be able to mount an ‘inference to the best
explanation’ that we can grasp full second-order logic. This would result in
the Infer-To-Stronger-Logic Attitude.

All that remains is the Holistic Attitude, and this is on display in Shapiro’s
recent work. He argues that there is a there is a ‘false dichotomy’ between
undertaking foundational research using set theory, or higher-order logic:

[. . . ] second-order logical consequence is intimately bound up
with set theory [. . . ]. But that does not disqualify second-order
logic from logical and foundational studies. Mathematics and
logic are a seamless whole, and it is impossible to draw a sharp
boundary between them. [Shapiro 2012, p. 312]

We have now witnessed all four attitudes towards categoricity results, in
the case of set theory. However, there is one last twist to consider. Zermelo’s
result is a mere quasi -categoricity result; roughly, it says that any two full set
hierarchies agree ‘as far as they go’, but that one might outstrip the other.
So, if we had hoped to explain how we grasp the set hierarchy (i.e. something
unique-up-to-isomorphism) by invoking the Start-With-Full-Logic Attitude
together with Zermelo’s Theorem, then we have a problem.

This has been recently discussed by Isaacson.16 Intriguingly, from the
unavailability of a complete categoricity result for set theory, Isaacson seems
simply to infer that the set hierarchy itself is somewhat indeterminate in
nature. Indeed, Isaacson maintains that ‘what is undecided in virtue of this
degree of non-categoricity is genuinely undecided’ [2011, p. 53; see also pp.
4, 50], and that ‘[t]he structure of the universe of sets is always partial and
extensible’ [2011, p. 45]. But one might ask what kind of modality Isaacson
has in mind, when he uses the word ‘extensible’. Until this is clarified, it is
natural to think that Zermelo’s Theorem does not allow us to grasp the set
hierarchy, but rather, to grasp many different set hierarchies.

16McGee [1997] also discusses this limitation, but argues that there is a full categoricity
result. However, McGee (unlike Isaacson) is concerned with internal categoricity. So we
postpone discussion of his position §4.4.
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4 Internal categoricity

In recent decades, discussion of categoricity has shifted from Dedekind’s and
Zermelo’s ‘classical’ categoricity results, towards related internal results.
These have been at the forefront of recent work by Parsons, McGee, and
Lavine. For reasons of space, we shall focus on Parsons, but we shall men-
tion various salient contrasts to these other authors.

4.1 Structures as predicates

Parsons is a structuralist, and his particular brand of structuralism shapes
the importance he assigns to categoricity. He defines his structuralism as:

[. . . ] the view that reference to mathematical objects is always in
the context of some background structure, and that the objects
involved have no more by way of a ‘nature’ than is given by the
basic relations of the structure [2008, p. 40, 1990a, pp. 303, 333]

In short, Parsons is a contextualist about mathematical reference, with his
contexts being ‘background structures’. This allows him to respond to Benac-
erraf’s observation (§2.1) as follows. A claim like ‘2 = {{∅}}’ has no absolute
truth value, but depends upon context. So: it is true in a Zermelo-style set-
theoretic context, false in a von Neumann-style set-theoretic context, and
simply indeterminate in a purely number-theoretic context [Parsons 2008, p.
103; see also p. 77].

Parsons’ notion of a structure, however, takes a little longer to explain.
When a model-theorist talks about ‘a model of second-order Peano arith-

metic’, she has in mind a triple 〈N, 0, s〉, i.e. a domain N , containing an
element 0 which implements zero, and a function s : N → N which imple-
ments the successor function. She will also consider PA2, a (collection of)
sentence(s) axiomatising arithmetic. Finally, she considers |=, which is a re-
cursively defined, bona fide, language–object relation. And she may run this
all together by saying, briefly, that 〈N, 0, s〉 |= PA2.

When Parsons talks about a ‘model of second-order Peano arithmetic’,
he has something very different in mind [1990a, p. 335, 2008, p. 112]. For
him, this will be: a one-place predicate N , a one-place function symbol s,
and a first-order variable 0, such that:17

17Note that this approach is possible only because PA2 is finitely axiomatisable. Of
course PA2 also typically contains infinitely many instances of the Comprehension Scheme.
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N0 ∧ ∀x(Nx→ Nsx) ∧ ∀x(Nx→ 0 6= sx) ∧
∀x∀y([Nx ∧Ny ∧ sx = sy]→ x = y) ∧
∀X([X0 ∧ ∀x((Xx→ Nx) ∧ (Xx→ Xsx))]→ ∀x[Xx↔ Nx])

This is just a formula in pure second-order logic, which axiomatises arith-
metic relative to N , 0, and s. In what follows, we abbreviate this formula
by PA(N, 0, s).

We cannot emphasise enough the difference between the model-theorist’s
expression 〈N, 0, s〉 |= PA2 and Parsons’ expression PA(N, 0, s). Parsons’
expression does not mention any (sets of) sentences, and all suggestion of a
satisfaction relation has vanished. So, when Parsons speaks of a ‘model of
second-order Peano arithmetic’, there is no longer any hint of any language–
object relation, and hence no hint of a model in the model-theorist’s sense.

4.2 The internal categoricity of arithmetic

In common with most versions of structuralism, Parsons [1990a, p. 13, 2008,
p. 272] wants to pin down a unique natural number structure. To do this, he
invokes a categoricity result: all models of second-order Peano arithmetic are
isomorphic. Stated thus, this looks almost exactly like Dedekind’s Categoric-
ity Theorem (see §3.1). However, we have dropped the qualifier ‘full’, whose
significance we emphasised throughout §3. To make sense of this omission,
we must recall that ‘models of second-order Peano arithmetic’ is meant here
in Parsons’ sense, rather than in the model-theorist’s language–object sense.
So, Parsons’ Categoricity Theorem is just a sentence of pure second-order
logic, of the following shape:

∀N1∀01∀s1∀N2∀02∀s2([PA(N1, 01, s1) ∧ PA(N2, 02, s2)]→
∃F Iso(F,N1, 01, s1, N2, 02, s2))

where ‘Iso(F, . . .)’ states that the second-order object F is a (second-order)
isomorphism.18 At the risk of repetition then: whilst we might offer similar

In the present context, however, these are assumed to be relegated to the background
second-order logic.

18So Iso(F,N1, 01, s1, N2, 02, s2) just abbreviates the conjunction of: ∀x∀y(Fx = y →
(N1x ∧ N2y)), i.e. ‘F ’s domain is N1 and codomain is N2’; and ∀x∀y(Fx = Fy → x =
y)∧∀y(N2y → ∃xFx = y), i.e. ‘F is a bijection’; and F01 = 02∧∀x(N1x→ Fs1x = s2Fx),
i.e. ‘F preserves structure’.
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informal glosses on Parsons’ and Dedekind’s Theorems, they are very differ-
ent statements. Dedekind’s Categoricity Theorem concerns structures, sat-
isfaction and sentences; Parsons’ Theorem is just a sentence of pure second-
order logic.

Crucially, Parsons’ Categoricity Theorem can be proved within a deduc-
tive system for second-order logic (for a simple proof, see Väänänen and
Wang 2015). Consequently, we do not need to say anything about the se-
mantics for second-order quantification in order to secure Parsons’ result.

We call Parsons’ result an internal categoricity result, and contrast this
with Dedekind’s external categoricity result.19 These labels are appropriately
suggestive. Crudely: an external result requires that we stand back from the
object language we were using, and consider its semantics in some meta-
language. By contrast, an internal result can be proved within the object
language.

4.3 What might an internal categoricity result show?

Internal categoricity results provide us with a notion of categoricity which
does not require any discussion of the semantics for full second-order logic.
Given what was said in §3, this might be thought a great advantage. However,
we must go slowly when considering what such results might show.

To be very clear: internal categoricity results cannot possibly aid in the
project of explaining how the semantics for mathematical language(s) get
fixed, or in defeating the model-theoretic sceptic. Parsons’ Categoricity The-
orem is a sentence of pure second-order logic, which does not mention any
sentences, and so tells us nothing (directly) about any language–object re-
lation, or indeed about any semantic facts. Of course, we might stand back
from Parsons’ Theorem, as it were, and start to explore the semantics for the
language in which we proved that Theorem. In so doing, we will see that Par-
sons’ Theorem entails Dedekind’s Theorem [Lavine 1999, p. 64; Väänänen
2012, p. 99]. But now Parsons’ Theorem has simply taken us on a long-
winded detour back to §3.

So let us now consider how Parsons himself attempts to use internal cate-
goricity. Parsons [1990b, pp. 35–8, 2008, pp. 283–8] imagines two characters,

19Walmsley [2002, pp. 249–51] seems to be the first author to use the phrase ‘internal
categoricity’, but Parsons [1990b, pp. 31–9] seems to be the first author to invoke such a
result. Sometimes internal categoricity results are called relative categoricity results.
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Kurt and Michael, who are both ‘doing arithmetic’. Kurt has a predicate
‘. . . is a natural number’, which we can symbolise as Nkurt or Nk, he has a
name ‘zero’, which we can symbolise as 0k, and he has a notion of function
‘the successor of. . . ’, which we can symbolise as sk. We similarly symbolise
Michael’s arithmetical vocabulary with Nm, 0m and sm. Assuming reason-
able levels of communication between Kurt and Michael, it will be obvious
to them that they are engaged in somewhat similar practices. But what they
might want to show is that their languages are essentially identical; that, for
arithmetical purposes, they differ only in the subscripts we have imposed;
that they are ‘syntactically isomorphic’, to use Lavine’s [1999, p. 47] phrase.

Parsons suggests that Kurt and Michael can establish this as follows. Let
us allow that Kurt and Michael are in communication with one another to
the point that both are able to take the other’s vocabulary into his own
language (and both know this). Both can now prove Parsons’ Categoricity
Theorem; and so, since they both have access to each other’s vocabulary,
both can prove:20

[PA(Nk, 0k, sk) ∧ PA(Nm, 0m, sm)]→ ∃F Iso(F,Nk, 0k, sk, Nm, 0m, sm)

Furthermore, both can presumably see that the antecedent obtains: they
affirm one of the conjuncts themselves, and their interlocutor happily affirms
the other. They therefore obtain the consequent. And this guarantees that,
for arithmetical purposes, their languages differ only in the subscripts we
have imposed.

To be clear, the foregoing argument will not decide whether 0k = 0m.
This is no surprise, given what we said at the start of §4.1. Indeed, context
may well leave it indeterminate whether ‘0k = 0m’ is true. But this does seem
to generate a slight tension for Parsons, since a natural kind of disquotation
principle will tell us that it may be indeterminate whether 0k = 0m; and yet
it is a theorem that 0k = 0m ∨ 0k 6= 0m. The more general point here is as
follows: Parsons’ notion of ‘structure’ eschews all semantic notions; however,

20In footnote 12, we noted that Parsons, Lavine and McGee all invoke the first weaker
logic (1) in our enumeration of such logics from §3.3. We can now see why this is so.
Parsons, Lavine and McGee want the predicate-variables of their logic to be open ended
over any future expansion of the object language. This is why Kurt is able to establish
a result which uses a predicate which originally belonged to Michael’s vocabulary (and
vice versa). However, see Field [2001, pp. 358–60] for discussion of Kurt’s warrant for
assuming that Michael may countenance and perform induction on predicates which Kurt
introduces.
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his contextualism is essentially and deliberately semantic; and we are not
given much guidance as to how the non-semantic and the semantic relate to
one another.

We can illustrate the same point by considering the impact of Parsons’
Theorem on the claim that all sentences of pure arithmetic have determinate
truth-values. Once Kurt and Michael have established the existence of their
second-order isomorphism, they can see that if they ever disagree (modulo
subscripts) about any arithmetical sentence, then only one of them is right.
But does this enable them to say that every sentence in the language of
arithmetic is either true or false? Presumably we shall want to say so;21 but
this evidently requires the use of semantic principles which do not themselves
appear anywhere within the categoricity result.

If the semantic principles that we need to invoke here are, in the end, just
the notions provided by model theory, then Parsons’ novel understanding
of structures, and his invocation of internal categoricity, would have been
a needless detour back to §3. Fortunately, Parsons seems to have a rather
different view in mind. Roughly put, he holds that, once we consider semantic
questions for our mother tongue, we can only answer them by ‘acquiescence
in our mother tongue’ [1990b, p. 39, 2008, p. 288]. This seems to amount
to the suggestion that there is no need to look to model theory to supply
a semantic theory for the mother tongue. Rather, such a ‘semantic theory’
merely amounts to using my own words to say what my own words refer to;
at which point, all I can provide is disquotational platitudes.22

To investigate this notion of ‘acquiescence’ in any detail would take us
very far afield; so we shall simply grant its coherence. To close our discussion
of Parsons, we shall explain how Parsons-style structuralism deals with the
challenge of referential indeterminacy and model-theoretic scepticism.

Given his contextualism, Parsons will not expect context-insensitive ref-
erential determinacy for arithmetical terms: ‘27’ may refer to one set in one
context, and to a different set in another context. So, if the challenge of
referential determinacy is to pose any problems, they will have to concern
referential principles which plausibly should be context-insensitive, e.g. that

21In §4.4, we shall see that McGee appeals to the internal categoricity of set theory in an
attempt to show that every sentence in the language of (pure) set theory has a determinate
truth value [1997, pp. 40–2].

22Continuing with the preceding footnote: McGee does not discuss ‘acquiescence in our
mother tongue’; however, he is a fairly thorough-going disquotationalist, and so is likely
to reach a similar conclusion.
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‘27’ refers to 27 (or maybe that ‘27’ refers to 27k). But for Parsons, this will
be guaranteed just by acquiescing in the mother tongue.

Exactly the same is true of Parsons’ response to model-theoretic scepti-
cism. His response does not turn upon his distinctive notion of structure, or
his internal categoricity result. Instead, his answer to that challenge involves
acquiescing in the mother tongue. His notion of structure, and his cate-
goricity result, come in to play further downstream, in showing that different
parties are engaged in the same practice. And note that Kurt cannot demon-
strate the existence of a shared practice just by acquiescing in his mother
tongue; for what he needs to show is that he shares a tongue with Michael
(in the relevant sense).

The idea is, therefore, as follows. I can deal with the sceptic by acqui-
escing in my mother tongue. But now the threat of mathematical solipsism
arises. This latter threat can be addressed by invoking internal categoricity.
We thereby arrive at the possibility of mathematical intersubjectivity. How-
ever, this falls short of establishing mathematical objectivity, in the sense
that nothing so far establishes that we are all talking about the same ob-
jects. This is ultimately how we understand Parsons’ [1990b, pp. 38–9, 2008,
pp. 287–8] invocation of internal categoricity.23

4.4 The internal categoricity of set theory

We have focussed on internal categoricity for arithmetic. Unsurprisingly,
there is an internal quasi-categoricity result for set theory (cf. Lavine [1999,
pp. 55–66, 89–95] and Väänänen and Wang [2015, §4]). But of course, since it
is an internal result, it simply abbreviates a second-order formula of roughly
the following shape:24

∀V1∀E1∀V2∀E2([ZFC(V1, E1) ∧ ZFC(V2, E2)]→
∃F Seg(F, V1, E1, V2, E2))

23We suggest a fairly similar reading of Pollard [2007, p. 89]. It is not clear whether
this is quite the right reading of McGee’s [1997] invocation of internal categoricity (more
on McGee below).

24So ‘ZFC(V,E)’ abbreviates a fairly long conjunction, axiomatizing second-order set
theory relative to ‘V ’ (intuitively, the sets) and ‘E’ (intuitively, membership). Likewise
‘Seg(F, . . .)’ indicates that F is a (second-order) isomorphism between an ‘initial segment’
of one and the ‘whole’ of the other.
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Crucially, and as in the case of Parsons’ Categoricity Theorem, no satisfac-
tion relation appears anywhere in this sentence. Consequently, it tells us
nothing directly about any language–object relation. Nonetheless, someone
might, Parsons-style, invoke internal quasi-categoricity in order to generate
the intersubjectivity of set theory, ‘so far as it goes’.

This squares well with Martin’s aims for quasi-categoricity. On Martin’s
view, sets derive ultimately from properties through a transfinite process of
set-formation [1970, p. 112, 2001, p. 6]. But this leaves space for a Parsons-
style worry: whereas Kurt forms a given property into this set, might Michael
form the same property into a distinct set? To address this worry we might
then invoke internal quasi-categoricity, Parsons-style, in order to convince us
that there is no more to set-theory (at low levels) than what is common to
Kurt’s and Michael’s processes (cf. [2001, 2005, 365 ff]).

In fact, though, we may be able to go beyond mere quasi -categoricity.
Typical formulations of set theory only involve quantification over sets. But
if set theory is to be applicable, then we shall want to be able to form sets
from entities that are not themselves sets, also known as urelements (cf.
McGee [1997, p. 49] and Potter [2004, pp. vi, 24, 50–1]). We can then distin-
guish pure sets—those which, intuitively, involve no urelements anywhere in
their construction—from impure sets. Let ZFCU2 be second-order Zermelo–
Fraenkel set theory with Choice and with urelements, coupled with the axiom
that there is a set containing all the urelements. McGee [1997] has proved
the internal categoricity result: any two models of ZFCU2 with unrestricted
first-order quantifiers have isomorphic pure sets. At the risk of pedantry,
since this is an internal categoricity result, it again has the shape:25

∀U1∀E1∀U2∀E2([ZFCU(U1, E1) ∧ ZFCU(U2, E2)]→
∃F PureIso(F,U1, E1, U2, E2))

So now we must investigate the significance of McGee’s Theorem.
McGee claims that his Theorem shows that every sentence in the language

of set theory has a determinate truth value. But this is not immediately
clear. Since McGee’s Theorem is an internal categoricity result, it mentions

25Here ‘ZFCU(U,E)’ abbreviates a fairly long conjunction axiomatizing second-order
set theory with urelements relative to ‘U ’ (intuitively, the urelements) and ‘E’ (intuitively,
membership), with no explicit relativisation on the hierarchy itself (as it were). Likewise
‘PureIso(F, . . .)’ indicates that there is a (second-order) isomorphism between ‘the pure
sets’.
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no sentences, and involves no satisfaction relation.26 So how could it tell us
about the truth of sentences?

Our explanation returns, once again, to our discussion of Parsons. Imag-
ine Kurt and Michael both ‘doing ZFCU2’. Subscripting in the obvious way,
McGee’s Theorem proves that φk ↔ φm, for any sentence φ in the language of
ZFCU2 (restricted to pure sets). Otherwise put: if set theorists ever disagree
(modulo subscripts) about any (purely) set-theoretic sentence, then only one
of them is right. And this is just what McGee is pointing to, when he talks
about the ‘determinacy of truth value’.

Now, since McGee’s Theorem is an internal categoricity result, we can
prove the result with a suitable deductive system for second-order logic, ig-
noring all semantic questions. So, just as in the case of Parsons: the result
does not turn upon whether we are entitled to full second-order quantifiers;
we only need access to the normal deductive system for second-order logic.
Equally, the proof does not turn on whether a first-order domain can be
‘absolutely unrestricted’, or whether we must believe that domains are ‘in-
definitely extensible’; we need only use the logic, without imposing any re-
striction on our first-order quantifiers within our object language. However,
it is worth pausing on both of these points.

First: consider again the use of second-order logic. We do not need to
discuss its semantics. But, in the context of the iterative conception of set,
one might simply object to the use of second-order logic even in the object
language. As Reinhardt once put it: using second-order logic in this context
rather makes it seems like one just “forgot” to add a level of sets ([1974,
p. 196], cf. Burgess [1985, p. 546]).

Second: consider the issue of restricted first-order quantification. When
Kurt aims to show that his language is ‘syntactically isomorphic’ to Michael’s,
he must establish that Michael is speaking so that ZFCU(Um, Em). And in
order to do this, Kurt must not regard Michael’s first-order quantifiers as
tacitly restricted, relative to Kurt’s own, when he incorporates Michael’s
vocabulary into his own. But there is room to doubt whether Kurt can

26McGee [1997, pp. 49–50] is explicit on this point. He is pushed in this direction by
Tarski’s Indefinibility Theorem (roughly, that no sufficiently rich, consistent theory can
define a truth predicate which provably has the properties we would want it to have). As a
consequence, he faces a choice: either offer a third-order definition of satisfaction suitable
for second-order theories, or relocate to internal categoricity. Since the former approach
seems to embark on a futile regress, McGee embraces the latter approach, describing it as
‘devious’ [1997, pp. 47–8, 50, 62].
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ever be warranted in treating Michael’s first-order quantifiers as unrestricted
in this way. (This feeds into Incurvati’s forthcoming critique of McGee’s
Theorem.)27

The significance of this latter objection may, however, depend upon the
standard of warrant in play. We have insisted that McGee’s Theorem, like
Parsons’, cannot help to deal with model-theoretic scepticism, since it is an
internal categoricity result. And, if we are no longer concerned to rebut a
sceptic, then Kurt may simply be able to take Michael, at his homophonic
word, that he is talking about ‘everything, without restriction’ (cf. Pollard
2007).

5 Conclusion

We began our survey with the traditional concerns of Putnam and Benac-
erraf about determinacy of reference in the case of mathematical language.
To assuage this concern, a natural move is to suggest that reference in the
case of mathematical language is secured only up to isomorphism. And the
traditional mechanism for securing such reference is a categoricity theorem,
which says that any two models of a theory are isomorphic.

Given the Löwenheim-Skolem theorem, any categoricity theorem for theo-
ries with infinite models has to be done in an enrichment of first-order logic.
But the appeal to such enriched logics has been thought to be question-
begging, since the notions that they involve, such as quantification over all
subsets of the first-order domain of the model, seem just as mathematical in
character as the notions which a categoricity result sought secure in the first
place.

This concern, among others, motivates a transition to internal categoricity
results, in which one seeks to operate in the object-language of a background
second-logic and prove results that have the consequence that any two models
agree on the truth-values of any sentence expressible in their common lan-
guage. But it is not clear whether these approaches can successfully explicate
semantic notions—such as truth and reference—using only object-language
resources. For this reason, some authors suggest that internal categoricity
results are valuable, not because they guarantee the determinacy of truth-
values, but because they guarantee mathematical intersubjectivity.

27Incurvati phrases his objection in terms of domains; though see [forthcoming, note 8].
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