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1 Preliminaries

Some connectives cause havoc when added to a language. One such connective is
Prior’s (1960) Tonk, defined via these inference rules:

φ
tiφ t ψ

φ t ψ
teψ

If you add Tonk to a language, then triviality ensues. Of course, languages containing
Tonk are perfectly goodobjects of formal study. However, languages are not just objects
of study, but things we use, and we must refuse to add Tonk to the languages we use.
So this raises a general question: Which connectives should we be willing to add to the
languages we use?

One kind of answer has the following shape: We should we willing to add exactly
those connectives with suitably assigned meanings. Such an answer demands a general dis-
cussion of how connectives are assigned meanings, and here there are two very broad
camps. Inferentialists focus on the inference rules governing connectives, whereas se-
manticists focus on their semantic conditions.

The case of Tonk places inferentialists on the back foot. Tonk cannot be given se-
mantic conditions, so semanticists have no reason even to entertain adding Tonk to
their languages; indeed, they may go so far as to deny that Tonk is evenmeaningful. By
contrast, Tonk has perfectly well-defined inference rules. So, at the very least, infer-
entialists need to tell us which kinds of inference rules succeed in ‘suitably’ assigning
meanings.

Inferentialists have said many things in response. However, my aim in this paper is
not to consider those responses, but rather to show that semanticists are in a very simi-
lar position to inferentialists. Crudely: semanticists face their ‘very own Tonk’. Slightly
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more precisely: there are connectives which implement perfectly well-defined seman-
tic functions, but which we should refuse to add to the languages we use. Such nasty
connectives somewhat even the score between inferentialists and semanticists.

In the next section, I use many-valued truth-tables for classical sentential logic to
define a nasty connective, Knot. In §3, I argue that we should refuse to add Knot to the
languages we use. In §4, I show that Knot reverses the standard dialectic surrounding
Tonk, and also yields a novel solution to the problem of many-valued truth-tables for
classical sentential logic. I reserve all proofs for §5.

2 Many-valued truth-tables andKnot

We are all familiar with the usual system of truth-tables for classical sentential logic:

¬
1 0
0 1

∧ 1 0
1 1 0
0 0 0

∨ 1 0
1 1 1
0 1 0

→ 1 0
1 1 0
0 1 1

But here is a less usual system of truth-tables, due to Church (1944: 494, 1953: 50; see
also Carnap 1943: 73ff.; Smiley 1996: 6; Koslow 2010: 125–6):

¬
1 0
a b
b a
0 1

∧ 1 a b 0
1 1 a b 0
a a a 0 0
b b 0 b 0
0 0 0 0 0

∨ 1 a b 0
1 1 1 1 1
a 1 a 1 a
b 1 1 b b
0 1 a b 0

→ 1 a b 0
1 1 a b 0
a 1 1 b b
b 1 a 1 a
0 1 1 1 1

Suppose we treat 1 as the only designated semantic value (hence the bold font). Intu-
itively, this is to say that somepremises entail a conclusion iff, whenever all the premises
have value 1, the conclusion also has value 1. Wehavenowdefined a logic using our four-
valued truth-tables. (Throughout, I take a logic just to be any two-place relation which
relates sets of sentences—think ‘premises’—to individual sentences—think ‘conclu-
sion’.) This four-valued definition may be unfamiliar, but the logic it defines is very
familiar indeed: it is our old friend, classical sentential logic. Otherwise put: the two
different systems of truth-tables yield the very same logic (see Theorem 1).

The four-valued system, though, provides us with the opportunity to introduce
some genuinely new connectives. So, letKnot, symbolisedwith �, be the one-place con-
nective which simply swaps a with b, but leaves 1 and 0 unchanged.¹ This truth-table
illustrates the behaviour of Knot, and of a few related formulas.

¹An anonymous referee noted that Knot can be regarded as a Conflation operator, in Fitting’s
sense (1994: 123). However, that comparison is imperfect, since this four-valued system is distinctively
Boolean (see §5), whereas Fitting defines Conflation for systemswhich cannot have Boolean negation.

2



φ �φ ¬φ φ → φ φ ∨ ¬φ φ → �φ ¬(φ → �φ) ¬¬(φ → �φ)
1 1 0 1 1 1 0 1
a b b 1 1 b a b
b a a 1 1 a b a
0 0 1 1 1 1 0 1

Now let ⊧� be the logic defined using our four-valued truth-tables, for sentences whose
only connectives are among¬,∧,∨,→ and �. Thanks to the presence of Knot, the logic
⊧� violates four common logical principles (these principles are defined in §5).

First,⊧� violates the Substitutivity of Equivalents; that is it violates the principle that
substituting a subsentence for a logically equivalent subsentence never affects entail-
ment. Glancing at our table, we see that p and �p are logically equivalent in the sense
that p ⊧� �p and �p ⊧� p; however, we have ⊧� p→ p but /⊧� p→ �p.

Second, ⊧� violates→r. Once again, our table confirms that p ⊧� �p, but /⊧� p → �p.
We can equally regard this as a failure of→-introduction.

Third, ⊧� violates ∨l. We have p ⊧� p → �p and ¬p ⊧� p → �p, but p ∨ ¬p /⊧� p → �p.
We can equally regard this as a failure of ∨-elimination.

Finally,⊧� violates¬r. Wehave¬(p→ �p) ⊧� �, but /⊧� ¬¬(p→ �p). We can equally
regard this as a failure of ¬-introduction.

3 Knot is nasty

I have just defined a new connective, Knot. Given the discussion of §1, I should now
consider whether we should bewilling to addKnot to the languages we use. I think that
we should refuse to add Knot to our language, since doing so would force us to adopt
an undesirable logic.

To be clear, Knot is less horrible than Tonk. Adding Tonk to a language leads to
logical triviality, and⊧� is certainly not trivial. However, the lesson of §2 is that, if we add
Knot to our language, then wemust abandon the Substitutivity of Equivalents,→r, ∨l
and ¬r. Classical logic validates all four principles. By contrast, logics lacking all four
principles are extremely weak; too weak, I think, for us to want to use them.

Admittedly, such weak logics are not unheralded. Indeed, ⊧� has an exactly similar
modal counterpart.² Let T be a Kripke frame containing two worlds, w1 and w2, both
of which can see the other, and neither of which can see itself. A valuation onT is then
an assignment of each atomic sentence to one of four possible values (intuitively, the
worlds ‘where the atomic sentence is true’), namely: 1 = {w1,w2}, a = {w1}, b = {w2}
(In detail: Fitting requires a partial order on the semantic values, with a top and bottom element, such
that x ≤ y⇒ ¬x ≤ ¬y; but if t is the top element under ≤, then ¬t ≤ t and hence t = ¬¬t ≰ ¬t.)

²Many thanks to an anonymous referee for supplying this construction.
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and 0 = ∅. Now let ⊧◻ be the global consequence relation for T, i.e.: Σ ⊧◻ ρ iff no
valuation onTmakes every σ ∈ Σ true at all worldswhilstmaking ρ false at someworld.
It is easy to check that ⊧◻ amounts to ‘preservation of the value 1’, so that ⊧◻ and ⊧� differ
only in that one uses the sign ‘◻’ where the other uses the sign ‘�’.

I mention this construction, since some supervaluationists about vagueness hold
that the correct logic for vagueness is obtained by adopting a suitable global conse-
quence relation and reading ‘◻’ as a determinacy operator (see Williamson 1994: ch.5).
Given the equivalence between the two logics ⊧◻ and ⊧� , then, it is worth noting that
Knot cannot plausible be read as a determinacy operator. Since ⊧� �φ ∨ �¬φ, reading
Knot as a determinacy operator would license the general principle: either x is definitely
pink, or definitely x is not pink. Similarly, since⊧� φ↔ ��φ, it would license the principle:
x is pink iff x is definitely definitely pink. Both principles violate the vagueness of pink.

This rules out one potential reason for speaking a language which includes Knot. It
falls short of showing that no one could ever find a reason to speak a language includ-
ing Knot. Nonetheless, I suspect that many philosophers will agree that we should no
more add Knot than add Tonk to our language, since doing so would leave us with an
undesirable logic. In any case, I assume as much for the remainder of the paper.

4 Knot lends support to inferentialism

Having refused to add Knot to our language, we may want to say more to justify our
decision. In §1, I noted that certain philosophers are prepared to add exactly those con-
nectives with ‘suitably’ assigned meanings. I then distinguished two broad approaches
for considering the meanings of connectives: inferentialists focus on inference rules,
whilst semanticists focus on semantic conditions. My aim now is to show why Knot
helps inferentialists whilst raising problems for semanticists.

Knot clearly implements awell-defined semantic function. So semanticists need, at
least, to tell us which kinds of semantic constraints succeed in ‘suitably’ assigningmean-
ings. The situation here reverses the dialectic concerning Tonk perfectly: since Tonk
has well-defined inference rules, inferentialists need, at least, to tell us which kinds of
inference rules succeed in ‘suitably’ assigning meanings.

This reversal of fortunes continues. Just as semanticists are untroubled by Tonk,
so inferentialists are untroubled by Knot. To see why, note that if Knot were somehow
added to our language, then it would have to cause the loss of other inference rules.
(For example: the inferentialist presumably insists that the conditional is governed by
the rules of→-elimination and→-introduction, but we saw in §2 that→-introduction
fails in the presence of Knot.) However, the inferentialist has stipulated that these in-
ference rules are to hold always and without exception. The inferentialist can therefore
legitimately maintain that Knot simply cannot be added to our language, given the (in-
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ferentially specified) meanings of the other connectives.
This raises a further parallel between inferentialist reactions to Knot and semanti-

cist reactions to Tonk. Semanticists sometimes allege that the natural deduction rules
for Tonk fail even to define a meaningful connective, on the grounds that Tonk cannot
be given semantic conditions. By exactly the same token, inferentialists might allege
that the semantic conditions for Knot fail even to define a meaningful connective, on
the grounds that Knot cannot be given natural-deduction-style inference rules, given
the (inferentially specified) meanings of the other connectives.

In any case, inferentialists have highly principled reasons for refusing to incorporate
Knot into their language. And it gets even better for inferentialists. Not only does Knot
cause them no problems; their principled story concerning Knot suggests a new line of
response to what we might call the problem of many-valued truth-tables.³

That problem arises as follows. As we saw in §2, there are systems of truth-tables
with more than two truth-values, which nonetheless characterise classical sentential
logic. Call thesemany-valued truth-tables for classical sentential logic. Consequently, the
classical inference rules for the connectives ¬, ∧, ∨ and → fail to pin down the two-
valued truth-tables uniquely (up to isomorphism). From this, onemight conclude that
the connectives’ inference rules fail to determine their meanings. I say ‘might’, because
it is not entirely obvious that the availability of many-valued truth-tables amounts to a
problematic indeterminacy of meaning. But if it does, then inferentialism fails.

However, if inferentialists want to pin down the truth-tables for classical sentential
logic, they can. Suppose they stipulate: It is impossible to add further connectives to our
language which would cause violations of any of→r,∨l or¬r. This stipulation is perfectly
in the spirit of inferentialism: it invokes no semantic notions, and it simply repeats the
inferentialist’s principled reasons for denying thatwe should (or could) addKnot to our
language. However, when assessed at the semantic level, it guarantees that any system
of truth-tables has the usual relation between designated and undesignated values, i.e.
(see Theorem 3):

¬φ is designated iff φ is undesignated
φ ∧ ψ is designated iff both φ and ψ are designated
φ ∨ ψ is designated iff either φ or ψ is designated
¬φ ∨ ψ is designated iff either φ is undesignated or ψ is designated

Furthermore, consider the stipulation: It is impossible to add further connectives to our
language which would cause violations of the Substitutivity of Equivalents. This stipulation
again seems in the spirit of inferentialism: it mentions only inferential concerns, and
inferentialists can insist upon Substitutivity as a constraint on inference (perhaps as a

³This relates to Carnap’s categoricity problem (see Carnap 1943: 73ff.; Smiley 1996: 6; Koslow
2010: 125–6).
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structural rule). However, assessed at the semantic level, this rule uniquely determines
the usual, two-valued truth-tables (up to isomorphism; see Theorem 6).

To summarise: a single inferentialist idea explains both why we should refuse to
add Knot to our language, and dissolves the problem of many-valued truth-tables. Se-
manticists, however, still owe us a discussion of Knot.

Of course, just as inferentialists have said things about Tonk, so semanticists will
have things to say about Knot. It will be interesting to hear what they have to say. In the
meantime, Knot somewhat evens the score between inferentialists and semanticists.

5 Technicalities

To close this paper, I shall explore the technicalities surrounding nasty connectives and
many-valued truth-tables for classical sentential logic.

I shall consider multiple languages for sentential logics. The atomic sentences of
these languages are always just p and q, with arbitrary primes. The set of connectives for
these languages always includes {¬,∧,∨,→}. The sentence-formation rules are stan-
dard, so that a language’s set of connectives determines its sentences. I use lower-case
Greek letters for arbitrary sentences, upper-case Greek letters for sets of sentences, and
treat ‘�’ as an abbrevation for ‘(p ∧ ¬p)’.

Let L be any set of connectives. AnL-semantic-pair is any pair ⟨A,D⟩ such thatA is
an algebraic L-structure—i.e. each n-place connective in L is interpreted as an n-place
function overA’s domain, A—andD ⊆ A. The intuitive idea is to define a logic for the
sentences whose connectives are members of L, by generating truth-tables from A’s
functions and treatingD as the set of designated values.

In detail, an interpretation on an L-structureA is any map, v, from the set of atomic
sentences to A, which assigns values to complex sentences via these clauses:

v(△φ) =△v(φ) for each 1-place connective△ ∈ L
v(φ◁ ψ) = v(φ)◁ v(ψ) for each 2-place connective◁ ∈ L

etc.

In each clause, the same symbol occurs on the left, to indicate a connective of the ob-
ject language, and on the right, to indicate a function on A. These clauses guarantee
that our object-language connectives are truth-functional, and so are associated with
characteristic truth-tables. To obtain our logic, we now define: Σ ⊧AD ρ iff there is no
interpretation v onA such that v(σ) ∈ D for all σ ∈ Σ but v(ρ) ∉ D.

It might help to connect this framework to the four-valued truth-tables of §2. So,
consider the Boolean algebra whose Hasse diagram is:
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. ..1 .

..a . ..b

. ..0 .

Expand this to a {¬,∧,∨,→}-structure by defining (x → y) =df (¬x ∨ y). By consid-
ering the interpretations on this structure, we obtain the initial four-valued truth-tables
from §2. Expand this even further, to an {¬,∧,∨,→, �}-structure, by defining �1 = 1,
�a = b, �b = a and �0 = 0; we now obtain the truth-table for Knot. Finally, if we call
this {¬,∧,∨,→, �}-structureK, then ⊧K

{1}
is just the logic ⊧� .

It is worth introducing some terminology to handle such uses of Boolean algebras.
For any signature L ⊇ {¬,∧,∨,→}, say that an L-structureA is canonically-Boolean iff
both (x→ y) = (¬x ∨ y) inA andA’s {¬,∧,∨}-reduct is a Boolean algebra.⁴ In these
terms, the {¬,∧,∨,→, �}-structureK is canonically-Boolean.

Most semantic-pairs are not very interesting, but some will be extremely impor-
tant to us. Using ⊧ for our familiar classical sentential logic, say that a semantic-pair
⟨A,D⟩ is proto-classical just in case the relations ⊧ and ⊧AD are coextensive over any sen-
tences whose only connectives are among ¬, ∧, ∨ and →. Intuitively, the logic of a
proto-classical semantic-pair behaves exactly like classical sentential logic, provided we
restrict our attention to sentences containing the usual connectives. My interest lies in
what happens when we consider other connectives.

To explore this, it will help to consider some general principles that might govern a
logic. I call the following fourteen principles the classical principles:

repφ ⊢ φ
Σ ⊢ φ φ,Δ ⊢ ρ

cut
Σ,Δ ⊢ ρ

Σ ⊢ ρ
lw

φ,Σ ⊢ ρ
Σ ⊢ � rw
Σ ⊢ ρ

φ, ψ,Σ ⊢ ρ
∧l

φ ∧ ψ,Σ ⊢ ρ
Σ ⊢ φ Σ ⊢ ψ

∧r
Σ ⊢ φ ∧ ψ

φ,Σ ⊢ ρ ψ,Σ ⊢ ρ
∨l

φ ∨ ψ,Σ ⊢ ρ
Σ ⊢ φ

∨r1Σ ⊢ φ ∨ ψ
Σ ⊢ φ

∨r2Σ ⊢ ψ ∨ φ

⁴Cf. Church (1953: n.3). When we have two signatures L+ ⊇ L and an L+-structureM+, we can
obtain a unique L-structureM by ignoring the interpretations of all the symbols in L+ ∖ L; we then
say thatM isM+’s L-reduct, and thatM+ is a signature-expansion ofM.
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Σ ⊢ φ
¬l¬φ,Σ ⊢ �

φ,Σ ⊢ �
¬r

Σ ⊢ ¬φ dne¬¬φ ⊢ φ

φ,Σ ⊢ ψ
→r

Σ ⊢ φ → ψ
Σ ⊢ φ ψ,Σ ⊢ ρ

→l
φ → ψ,Σ ⊢ ρ

Classical sentential logic validates ∧r, for example, in that if both Σ ⊧ φ and Σ ⊧ ψ,
then Σ ⊧ φ ∧ ψ. Indeed, the classical principles are so named, because they provide a
sound and complete sequent-calculus-style proof theory for classical sentential logic.

In addition to the classical principles, I should also mention the Substitutivity of
Equivalents, more briefly called sub:

Σ ⊢ ρ φ ⊢ ψ ψ ⊢ φ
sub

Σ ⊢ ρ∗
when ρ and ρ∗ differ only in that one contains an instance

of φ as a subsentence where the other contains ψ

Classical sentential logic validates all of the classical principles and sub. My aim is to
classify the circumstances under which proto-classical semantic-pairs can violate either
a classical principle or sub.

I shall start by generalising the construction of many-valued truth-tables from §2.⁵

Theorem 1: Let A be canonically-Boolean with D ⊆ A. Then ⟨A,D⟩ is proto-classical iff
D is a filter on A.

Proof. Left-to-right. Fix A as described, and suppose D ⊆ A is not a filter. There are
three possible cases to consider, and in each case ⟨A,D⟩ is not proto-classical:

Case 1. 0 ∈ D. Then ⊧AD p ∧ ¬p, since v(p ∧ ¬p) = 0 ∈ D for all v.
Case 2. a ∈ D and a ≤ b but b ∉ D, for some a, b ∈ A. Then p /⊧AD p ∨ q, since
v(p) = a and v(q) = b gives v(p ∨ q) = b ∉ D.

Case 3. a, b ∈ D but a∧ b ∉ D, for some a, b ∈ A. Then p, q /⊧AD p∧q, since v(p) = a
and v(q) = b gives v(p ∧ q) = a ∧ b ∉ D.

Right-to-left. Fix A as described, with a filter D ⊆ A, and a set of sentences Σ ∪ {ρ}
whose only connectives are among ¬, ∧, ∨, and→. Wemust show that Σ ⊧AD ρ iff Σ ⊧ ρ.

Necessity. If Σ ⊧AD ρ, then there is no interpretation v onA such that v(σ) = 1 for all
σ ∈ Σ and v(ρ) = 0. A fortiori, there is no interpretation v with range {0, 1} such that
v(σ) = 1 for all σ ∈ Σ and v(ρ) = 0. Hence Σ ⊧ ρ

Sufficiency. If Σ ⊧ ρ, then there is a sequent-style proof, using only the classical
principles, whole last line is Σ0 ⊢ ρ, for some finite Σ0 ⊆ Σ. I claim that, for any sequent

⁵This extends Church’s (1944: 494, 1953: 41–2) observation that any Boolean algebra yields a
truth-table for classical sentential logic if we treat either {1} or some ultrafilter on the algebra as desig-
nated. (Church describes the truth-tables that result fromultrafilters as ‘normal in the sense of Carnap’.)
Recall that D is a filter provided (1) 0 ∉ D; (2) if a ∈ D and a ≤ b then b ∈ D; and (3) if a, b ∈ D then
a ∧ b ∈ D. D is an ultrafilter provided also (4) either a ∈ D or ¬a ∈ D for all algebraic elements a.
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Φ ⊢ τ in this proof, we have v(⋀Φ) ≤ v(τ) for any interpretation v onA. The claim is
established by induction on height. For example, consider a use of ∨l:

φ,Γ ⊢ τ ψ,Γ ⊢ τ
∨l

φ ∨ ψ,Γ ⊢ τ

Suppose, for induction, that v(φ ∧ ⋀Γ) ≤ v(τ) and v(ψ ∧ ⋀Γ) ≤ v(τ). Then by
invoking the recursion clauses for v and the distributivity laws of Boolean algebras:

v((φ ∨ ψ) ∧⋀Γ)) = v(φ ∧⋀Γ) ∨ v(ψ ∧⋀Γ) ≤ v(τ) ∨ v(τ) = v(τ)

as required. The other cases are similar, establishing that v(⋀Φ) ≤ v(τ). Since D is
closed upwards and closed under finite meet, Φ ⊧AD τ. Hence Σ0 ⊧

A

D ρ and so Σ ⊧AD ρ.

However, Theorem 1 does not exhaust the proto-classical semantic-pairs. LetF be an
{¬,∧,∨,→}-structure with domain {1, a,0} and functions given by

¬
1 0
a 1
0 1

∧ 1 a 0
1 1 0 0
a 0 0 0
0 0 0 0

∨ 1 a 0
1 1 1 1
a 1 0 0
0 1 0 0

→ 1 a 0
1 1 0 0
a 1 1 1
0 1 1 1

Intuitively, a is a frivolous alternative to 0 in the two-valued truth-tables, hence ⟨F,{1}⟩
is proto-classical. ButF is not canonically-Boolean, since ¬¬a = 0 ≠ a.

We now have a sense of the range of proto-classical semantic-pairs. The next task is
to generalise the construction ofKnot from§2. Say that a semantic-pair ⟨A,D⟩ is knotty
iff there is some signature-expansionB ofA such that⊧BD violates all of sub,→r,∨l and
¬r. Intuitively, a semantic-pair is knotty just when we can add a single new connective
which would be exactly as disruptive as Knot. The next Theorem gives us a sufficient
condition for knottiness:

Theorem 2: If ⟨A,D⟩ is proto-classical and there is some a ∈ A such that a,¬a ∉ D, then
⟨A,D⟩ is knotty.

Proof. Let † be a one-place connective not inA’s signature. ExpandA toB by defining
† on A as follows: †a = ¬a, †¬a = a and †x = x otherwise. Here is a compressed truth-
table for some pertinent formulas for the logic ⊧BD :

φ φ → φ φ ∨ ¬φ φ → †φ ¬(φ → †φ) ¬¬(φ → †φ)
a or ¬a ✓ ✓ × × ×

otherwise ✓ ✓ ✓ × ✓
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A tick on a row indicates that the sentence is designated (i.e. v assigns it a member of
D) for the stated value of φ; a cross on a row indicates that it is undesignated for that
value. For example, the table indicates: if v(φ) ∈ {a,¬a}, then v(φ → †φ) ∉ D. To see
this, observe that φ → ¬φ ⊧BD ¬φ, since ⟨B,D⟩ is proto-classical; so if v(φ) ∈ {a,¬a}
then v(¬φ) = ¬v(φ) ∉ D, so that v(φ → †φ) = v(φ → ¬φ) ∉ D. Equally, the table
indicates: if v(φ) ∉ {a,¬a}, then v(φ → †φ) ∈ D. To see this, observe that ⊧BD φ → φ,
since ⟨B,D⟩ is proto-classical; and so if v(φ) ∉ {a,¬a} then v(†φ) = †v(φ) = v(φ),
so that v(φ → †φ) = v(φ → φ) ∈ D. The other entries on the table can be confirmed
similarly. It follows that:

sub fails: since p ⊧BD †p and †p ⊧BD p and ⊧BD p→ p, but /⊧BD p→ †p.
→r fails: since p ⊧BD †p, but /⊧BD p→ †p.
∨l fails: since p ⊧BD p→ †p and ¬p ⊧BD p→ †p, but p ∨ ¬p /⊧BD p→ †p.
¬r fails: since ¬(p→ †p) ⊧BD �, but /⊧

B

D ¬¬(p→ †p).

Note that Theorem 2 assumes only that ⟨A,D⟩ is proto-classical, and not that A is
canonically-Boolean. Moreover, since � in ⊧� is just a special case of † in ⊧

B

D , this The-
orem properly generalises the construction of Knot.

The key to Theorem 2 is the existence of an undesignated element whose negation
is also undesignated. Banning this case pins down the behaviour of the logic signifi-
cantly, as the next three results show.

Theorem 3: Let ⟨A,D⟩ be proto-classical, with no a ∈ A such that a,¬a ∉ D. Then:
¬a ∈ D iff a ∉ D; a ∧ b ∈ D iff both a ∈ D and b ∈ D; a ∨ b ∈ D iff either a ∈ D or b ∈ D;
and a→ b ∈ D iff either a ∉ D or b ∈ D.

Proof. Negation. Since ⟨A,D⟩ is proto-classical, A has at least one undesignated value,
say c. If there were some a ∈ D such that both a,¬a ∈ D, then setting v(p) = a and
v(q) = cwe would have p,¬p /⊧AD q, contradicting proto-classicality.

Conjunction. This holds since p, q ⊧AD p ∧ q and p ∧ q ⊧AD p and p ∧ q ⊧AD q.
Disjunction. If a ∈ D then a ∨ b ∈ D, since p ⊧AD p ∨ q; likewise if b ∈ D then

a∨b ∈ D. Conversely, if a, b ∉ D, then¬a,¬b ∈ D by the clause for Negation; and since
¬p, p ∨ q ⊧AD q, we must have a ∨ b ∉ D.

Conditional. Since ⟨A,D⟩ is proto-classical, a→ b ∈ D iff¬a∨b ∈ D; so this follows
from the clauses of Negation and Disjunction.

WithTheorem 2, this vindicatesmy remark that we can pin down the relations between
designated and undesignated values via the stipulation: It is impossible to add further
connectives to our language which would cause violations of any of→r, ∨l or ¬r (see §5).

The next Theorem shows that Knot-like connectives are the nastiest possible con-
nectives which can be defined on semantic-pairs, and that our sufficient condition for
knottiness (from Theorem 2) is also necessary:
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Theorem 4: Let ⟨A,D⟩ be proto-classical. Then ⊧AD validates all the classical principles,
except perhaps→r, ∨l, ¬r. Furthermore, if there is no a ∈ A such that a,¬a ∉ D, then ⊧AD
validates all the classical principles.

Proof. I shall prove the hardest case, leaving the remainder for the reader. The case is
that ∨l holds when there is no a ∈ A such that a,¬a ∉ D. So suppose that φ,Σ ⊧AD ρ and
ψ,Σ ⊧AD ρ. Suppose that v(σ) ∈ D for all σ ∈ Σ, and v(φ ∨ ψ) = v(φ) ∨ v(ψ) ∈ D. Then
by Theorem 3 either v(φ) ∈ D or v(ψ) ∈ D; and either way, v(ρ) ∈ D, because both
φ,Σ ⊧AD ρ and ψ,Σ ⊧AD ρ. Hence φ ∨ ψ,Σ ⊧AD ρ.

Between them, then, Theorems 2 and 4 yield a necessary and sufficient condition for
knottiness. Moreover, Theorems 1–4 immediately yield a nice Corollary:

Corollary 5: Let A be canonically-Boolean with D ⊆ A. Then ⟨A,D⟩ is proto-classical but
knotty iff D is a filter but not an ultra-filter on A.

Finally, even when a semantic-pair is not knotty, we can almost always find some nasty
connectives; we just need to focus on failures of sub.

Theorem 6: If ⟨A,D⟩ is proto-classical, then the following are equivalent:

(a) A’s {¬,∧,∨}-reduct is isomorphic to the two-element Boolean algebra
(b) for any signature-expansion B of A, ⊧BD validates sub

Proof. (a) ⇒ (b). Just observe that {¬,∧,∨} is expressively adequate for the two-
element Boolean algebra.

(b)⇒ (a). Suppose (a) is false. Since ⟨A,D⟩ is proto-classical, A has at least three
members; so suppose we have distinct a, b ∈ D and c ∉ D (the other case is exactly
similar). ExpandA toB by adding three one-place function-symbols, a, b and †, to its
signature, interpreted as follows:

ax = a for all x ∈ A
bx = b for all x ∈ A
†x = x for all x ∈ A ∖ {b}, but †b = c

Then ap ⊧BD bp, bp ⊧BD ap and ⊧BD †ap, but /⊧BD †bp.

Given our ability to move between algebraic structures and truth-tables, Theorem 6
vindicates my claim that we can pin down the usual truth-tables via the stipulation: It
is impossible to add further connectives to our language which would cause violations of the
Substitutivity of Equivalents (see §4). Moreover, Theorem6has an immediate corollary:

11



the usual connectives are expressively adequate only for the two-valued truth-tables. In
many-valued contexts, by contrast, expressive adequacy is a bad thing.⁶

Abstract: Prior’s Tonk is a famously horrible connective. It is defined by its inference
rules. My aim in this paper is to compareTonkwith somehitherto unnoticednasty con-
nectives, which are defined in semantic terms. I first use many-valued truth-tables for
classical sentential logic to define a nasty connective, Knot. I then argue that we should
refuse to add Knot to our language. And I show that this reverses the standard dialectic
surrounding Tonk, and yields a novel solution to the problem of many-valued truth-
tables for classical sentential logic. I close by outlining the technicalities surrounding
nasty connectives on many-valued truth-tables.
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