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Abstract 

Emotional awareness (EA) is recognized as clinically relevant to the vulnerability to, and 

maintenance of, psychiatric disorders. However, the neurocomputational processes that 

underwrite individual variations remain unclear. In this paper, we describe a deep (active) 

inference model that reproduces the cognitive-emotional processes and self-report behaviors 

associated with EA. We then present simulations to illustrate (seven) distinct mechanisms that 

(either alone or in combination) can produce phenomena – such as somatic misattribution, 

coarse-grained emotion conceptualization, and constrained reflective capacity – characteristic 

of low EA. Our simulations suggest that the clinical phenotype of impoverished EA can be 

reproduced by dissociable computational processes. The possibility that different processes are 

at work in different individuals suggests that they may benefit from distinct clinical 

interventions. As active inference makes particular predictions about the underlying 

neurobiology of such aberrant inference, we also discuss how this type of modelling could be 

used to design neuroimaging tasks to test predictions and identify which processes operate in 

different individuals – and provide a principled basis for personalized precision medicine. 

Keywords: active inference; emotional awareness; somatic misattribution; emotional working 

memory; computational neuroscience 
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1. Introduction 

 

Trait emotional awareness (tEA) – the ability to conceptualize and understand one’s own 

affective responses – is now recognized as an important source of individual variability in both 

clinical psychology and neuroscience (Barrett, 2017; Lane et al., 2015; Panksepp et al., 2017; 

Smith et al., 2015; R Smith et al., 2017b, 2017c; Smith et al., 2018d, 2018b, 2018c, 2019e; Smith 

and Lane, 2015, 2016; Wright et al., 2017). Attempts to operationalize this variability have led to 

a range of overlapping constructs, including levels of emotional awareness (Lane and Schwartz, 

1987), emotion differentiation or granularity (Kashdan et al., 2015; Kashdan and Farmer, 2014), 

and alexithymia (Bagby et al., 1994a, 1994b).  

This aforementioned body of work is largely motivated by the clinical relevance of a 

person’s ability to understand the emotions of self and others. In previous studies based on the 

theory of levels of emotional awareness (Lane and Schwartz, 1987), lower awareness levels have 

been associated with several psychiatric disorders and poorer physical health (Baslet et al., 2009; 

Berthoz et al., 2000; Bydlowski et al., 2005; Consoli et al., 2010; Donges et al., 2005; Frewen et 

al., 2008; Lackner, 2005; Levine et al., 1997; Moeller et al., 2014; Subic-Wrana et al., 2005, 

2007); higher levels have instead been associated with a range of adaptive emotion-related traits 

and abilities (Barchard and Hakstian, 2004; Bréjard et al., 2012; Ciarrochi et al., 2003; Lane et 

al., 2000, 1996, 1990). Multiple evidence-based psychotherapeutic approaches also aim 

(although some more explicitly than others) to improve emotional awareness as a central part of 

psycho-education in psychotherapy (Barlow et al., 2016; Burum and Goldfried, 2007; Hayes and 

Smith, 2005). 
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Here, we focus on the construct of levels of emotional awareness. Within the theory of 

levels of emotional awareness (tLEA), and its accompanying measurement scale (the levels of 

emotional awareness scale), five different categorical levels are distinguished (although these are 

understood to reflect particular points on a continuum; (Lane et al., 1990; Lane and Schwartz, 

1987)). At the lowest two levels, subjective awareness of emotions is restricted to somatic 

sensations and valenced approach-avoidance tendencies, respectively. That is, a person with 

“level 1” emotional awareness would tend to somatize, in the sense that they may misattribute 

emotion-related sensations from their body to physical illness or disease, whereas a person with 

“level  2” emotional awareness may simply recognize that they feel emotionally “bad” or that 

they “feel like running away”. The third level corresponds to subjective categorization using 

distinct emotion categories, such as awareness of sadness, anger, and fear. The fourth level 

involves the ability to entertain multiple emotions in mind simultaneously, such as feeling a 

blend of anger and fear. The highest level corresponds to an additional theory of mind ability, 

where an individual is further able to distinguish the emotions of self and others. 

Aside from its clinical relevance described above, a number of neuroimaging studies 

have also attempted to characterize the neural basis of tEA. Based in part on this work, a “three-

process model” (TPM; (Smith et al., 2018a; Smith, 2019; Smith et al., 2019b) has recently been 

proposed to distinguish a range of processes that contribute to emotion episodes, and how 

individual differences in these processes could contribute to trait differences in emotional 

awareness (and in the subsequent use of this awareness to guide adaptive decision-making). The 

TPM distinguishes the following three broad processes: 
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1. Affective response generation: a process in which somatovisceral and cognitive processes 

are automatically modulated in response to an affective stimulus (whether real, 

remembered, or imagined) in a context-dependent manner, based on an (often implicit) 

appraisal of the salience of that stimulus for the survival and goal-achievement of the 

individual and of associated upcoming metabolic or behavioral demands. 

2. Affective response representation: a process in which the somatovisceral component of 

an affective response is subsequently perceived via afferent sensory processing, and then 

conceptualized under a particular emotion category (e.g., sadness, anger, etc.) in 

consideration of all other available sources of information (e.g., stimulus or context 

information, current thoughts or beliefs about the situation, etc.). 

3. Conscious access: a process in which somatovisceral percepts and emotion concepts are 

made accessible to domain-general cognition and can be held in working memory – 

allowing the use of this information in goal-directed decision-making (e.g., verbal 

reporting, selection of voluntary emotion regulation strategies, etc.).1  

 

While this theory has proposed a tentative mapping between these processes and large-scale 

brain structure and function, their neuro-computational implementation has received less 

                                                      
1 The term "conscious access" is taken from global neuronal workspace (GNW) models of conscious awareness 
(Dehaene et al., 2014), which are based on a body of empirical work examining neural activity underlying the 
reportable experience of sensory stimuli generally (for a review, see (Dehaene, 2014)). According to these models, 
reportable conscious experience requires that perceptual information is made widely accessible (through a type of 
selective "broadcasting" process) to the large-scale frontal-parietal networks that underlie domain-general 
cognition. While necessary for reportable awareness, it remains an open debate whether this type of "access" is 
necessary for phenomenal experience ("what it is like") itself. Some authors argue that it is necessary (e.g., see 
(Dehaene, 2014; Smith, 2017, 2016)), whereas others instead argue that an individual could subjectively 
experience a stimulus while concurrently self-reporting no awareness of having seen (heard, felt, etc.) that 
stimulus (e.g., see (Block, 2005)). The TPM, as described here, does not take a position in this debate. As used here, 
"conscious access" only refers to those processes necessary for self-reportable awareness of one's own emotions 
and the use of that information in guiding goal-directed decision-making. 
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attention. The computational level of description can provide additional mechanistic insights, 

which could potentially be leveraged to inform and improve clinical interventions. While 

previous theoretical work has applied active inference to emotional phenomena (Allen and 

Friston, 2018; Barrett and Simmons, 2015; Clark et al., 2018; Joffily and Coricelli, 2013; Owens 

et al., 2018; Seth, 2013; Seth and Friston, 2016; R Smith et al., 2017c, 2017a; Smith et al., 

2019a), formal modeling of the processes currently under discussion has only recently begun to 

emerge (e.g., for formal modeling work with respect to emotion concept learning, see (Smith et 

al., 2019d)). This type of modeling may be central to addressing a significant issue in research on 

the development and selection of individualized interventions: the fact that more than one 

underlying aberrant neural (and/or cognitive) process can produce the same measurable 

symptoms and clinical signs (Anderson, 2014).  In the context of the present discussion, this 

suggests that two individuals could have equally low levels of emotional awareness as measured 

by current research instruments – even if distinct underlying mechanisms are responsible for this 

difference. As such, a particular intervention could target the relevant mechanism for one 

individual but not for the other. Because computational approaches can characterize underlying 

processes that generate observable outcomes, they are promising both in highlighting the 

relevant processes and motivating the development of more sensitive measures that can 

disambiguate process theories on an individual basis. 

In this manuscript, we provide an in-depth theoretical example – using the levels of 

emotional awareness construct – to illustrate how a computational model can reproduce a clinical 

phenomenon of interest and afford insights about processes relevant to treatment selection. 

Specifically, we present a hierarchical (deep temporal) neuro-computational model motivated by 

the active inference framework (Friston et al., 2017a, 2016) that can account for multiple levels 
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of emotional awareness (EA). This model allows for quantitative simulations of how affective 

bodily responses can be represented (EA level 1/2) and categorized as emotions (EA level 3), 

and how multiple emotions – including those of both oneself and others – can then be held in 

mind to inform verbal reports and goal-directed decisions (EA level 4/5). We do not fully 

address the theory of mind abilities associated with the fifth level of emotional awareness; 

however, the current report serves as a foundation for future work along these lines.  

We first provide a brief primer on active inference, and then describe our model and the 

results of a number of simulations. These simulations illustrate the way individual differences in 

(seven) distinct underlying deep inference processes result in measurable phenotypes associated 

with different levels of emotional awareness. Our simulations will also show that, based on the 

neural process theory accompanying active inference (Friston et al., 2017a), predictions about 

empirically measurable individual differences in neuronal and behavioral responses can, in 

principle, be generated and used to identify which underlying processing mechanisms are most 

likely contributing to low emotional awareness in different individuals. After presenting these 

simulations, we highlight how a better understanding of the plurality of processes could inform 

the development and selection of clinical interventions on an individualized basis. 

 

2. Active inference 

 

According to active inference (Friston et al., 2017a), the brain is an inference machine 

that approximates probabilistic (Bayesian) belief updating across perceptual, cognitive, and 

motor domains. From this perspective, the brain embodies a generative model that can simulate 

(i.e., generate predictions about) the sensory data that it would receive if its model of the world 
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was apt. Predicted sensory data can be compared to sensory inputs, and differences between 

predicted and observed sensations can be used to update the model. Over short timescales (e.g., a 

single sensory observation), this updating corresponds to inference (perception), whereas on 

longer timescales it corresponds to learning (i.e., updating expectations about how external 

causes generate patterns of sensory input). In other words, perception optimizes beliefs about the 

current state of the world, while learning optimizes beliefs about the relationships between states 

of the world and their implicit contingencies. This can be seen as ensuring the generative model 

remains an accurate model of the world that it seeks to regulate (Conant and Ashbey, 1970). 

Active inference casts decision-making in terms of uncertainty reduction; c.f., planning as 

inference. Actions are chosen to resolve uncertainty about states of affairs under a generative 

model (i.e., sampling from domains in which the model does not make precise predictions). This 

active sampling of sensory outcomes minimizes anticipated deviations from predicted outcomes. 

Actions can also be chosen to realize the observations that an agent prefers (e.g., observing 

preferred amounts of warmth, social support, food, etc.). Under active inference, such 

preferences are also formally treated as expectations. In other words, if the agent “expects” to 

observe her preferred actions, actions will be chosen so as to fulfill those expectations – thereby 

minimizing surprise and uncertainty. Based on the formalism underlying active inference 

(described further below), actions are typically first chosen to minimize uncertainty about the 

environment; once the agent is confident in her understanding of the environmental context in 

which she is operating, action then becomes goal-seeking (i.e., to fulfill prior preferences). 

Mathematically, this can be described as selecting sequences of actions (policies) that maximize 

“Bayesian model evidence” expected under a policy, where model evidence is the (marginal) 
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likelihood that particular sensory inputs would be observed under a given model, which is 

characterized by a set of prior preferences.  

In real-world settings, directly computing Bayesian model evidence is generally 

intractable. Thus, some approximation is necessary. Active inference uses an approximation 

based on minimizing a quantity called “variational free energy”, which provides a bound on 

model evidence, such that model evidence is maximized indirectly. In this case, decision-making 

is approximately (Bayes) optimal, if the model infers (and enacts) the policy that will minimize 

expected free energy (i.e., free energy with respect to a policy, where one takes expected future 

observations into account).  

Expected free energy can be decomposed in different ways that reflect uncertainty and 

prior preferences, respectively (e.g., epistemic and instrumental affordance or ambiguity and 

risk). This formulation means that any agent that minimizes expected free energy generally 

engages in exploratory behavior to minimize uncertainty in a new environment. Once uncertainty 

is resolved, the agent then uses her acquired familiarity with the environment to choose actions 

that fulfill prior preferences. The formal basis for active inference has been detailed elsewhere 

(Friston et al., 2017a), and the interested reader is referred to this previous work for a full 

mathematical treatment. 

When the generative model is formulated as a partially observable Markov decision 

process – a mathematical model of decision-making in cases where states of the world are not 

directly known but must be inferred from sensory input, and where only some states of the world 

are under the control of the agent – active inference takes a particular form. Here, the generative 

model is specified by writing down plausible or allowable policies, hidden states of the world 

(that must be inferred from observations), and observable outcomes (i.e., sensory input or lower 
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level representations), as well as several matrices that define the probabilistic relationships 

between these quantities. This sort of generative model is illustrated in the top left panel of figure 

1, that describes the model used in this work.  

 

Figure 1. Bottom: Illustration of the working memory task performed by the agent. On each trial, the 
agent was required to identify the internal state (emotional and/or somatic state) that she is currently 
feeling at three different points in time. The third internal state that the agent was asked to identify 
came after a delay period, and the task was to reflect on whether this third internal state was the same 
as one of the previous two states. Each possible internal state was probabilistically associated with a 
unique combination of internally observable bodily (valence, arousal, motivation) and cognitive (beliefs 
about context) features, and the agent needed to selectively attend to these features in order to infer 
her internal state. Thus, there were in fact two nested tasks – a lower level state recognition task and a 
higher level working memory task that depended on state recognition. Top left: Illustration of the 
Markov decision process formulation of active inference used in the simulations described in the main 
text. The generative model is here depicted graphically, such that arrows indicate dependencies 
between variables. Here observations (o) depend on hidden states (s), as specified by the A matrix, and 
those states depend on both previous states (as specified by the B matrix, or the initial states specified 
by the D matrix) and the sequences of actions/policies (π) selected by the agent. The probability of 
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selecting a particular policy in turn depends on the expected free energy (G) of each policy with respect 
to the prior preferences (C matrix) of the agent. The degree to which expected free energy influences 
policy selection is also modulated by a prior policy precision parameter (γ), which in turn depends on 
beta (β) – where higher values of beta entail lower confidence in policy selection (i.e., less influence of 
the differences in expected free energy over policies). This model, in the single-level form depicted, was 
used to model the internal state recognition process within the task. Top right: illustration of the two-
level generative model used to model the higher level working memory processes: here, the internal 
states recognized at the first level of the model are treated as the observations made at the second level 
of the model. This entails a temporally deep structure in which the second level of the model operates 
at a slower time scale than the first. In this case, the higher level observes and integrates information 
about the different internal states that are inferred by the lower level at several distinct time points. For 
more details regarding the associated belief updating, see figure 2 as well as (KJ Friston, Lin, et al., 2017; 
KJ Friston, Parr, et al., 2017). 

 

 

 

The A-matrix indicates which observable outcomes are generated by each combination of 

hidden states (e.g., the likelihood mapping specifying the probability that a particular set of 

sensory inputs would be observed given a particular set of possible causes outside of the brain). 

The B-matrix is a probability transition matrix, indicating the probability that one hidden state 

will change into another over time. The agent controls some of these transitions (e.g., those that 

pertain to the positions of its body) based on the selected policy. The D-matrix encodes prior 

expectations about the initial hidden state the agent will occupy. The E-matrix encodes prior 

expectations about the policies an agent will select, where sufficiently strong expectations for a 

given policy mean that that policy will be selected habitually (i.e., in a manner insensitive to 

explicit predictions about future outcomes). Finally, the C-matrix specifies prior preferences 

over observations; it quantifies the degree to which different observed outcomes are preferred or 

aversive to the agent. In these models, observations and hidden states can be factorized into 

multiple outcome modalities and hidden state factors. This means that the likelihood mapping 
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(the A-matrix) can also model the interactions among different hidden states when generating 

outcomes (observations).  

In a hierarchical setting where a model has multiple levels (see figure 1, top right panel), 

the hidden states inferred at the first level are then treated as the observed outcomes at the 2nd 

level (Friston et al., 2018). These models can also have a deep temporal structure, such that the 

hidden states at the 2nd level can generate sequences of hidden states at the first level. In the case 

of reading, for example, the first level of a model could be used to infer the identity of a 

particular letter, whereas the 2nd level could infer the identity of a word based on a sequence of 

the letters inferred at the level below.  

One potential empirical advantage of active inference model stems from the fact that they 

have a well-articulated plausible biological basis that affords testable neurobiological 

predictions. Specifically, these models have companion micro-anatomical neural process 

theories, based on commonly used message-passing algorithms (Friston et al., 2017a; Parr et al., 

2019; Parr and Friston, 2018). Under these process theories, the activation level of different 

neural populations (typically portrayed as consisting of different cortical columns) encode 

posterior probability estimates over different hidden states (see figure 2). These activation levels 

are then updated by synaptic inputs with particular weights that convey the conditional 

probabilities encoded in the A and B (among other) matrices described above. In what follows, 

we describe how a hierarchical generative model was specified to produce an agent with 

different levels of emotional awareness. We then provide examples of the types of simulated 

neuronal responses that can be generated – and potentially lead to empirical predictions that 

could be tested in future clinical neuroscience research. 
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Figure 2. This figure illustrates the neuronal message passing framework for the hierarchical MDP 
formulation of active inference that was used to perform the simulations described in this paper. The 
differential equations in the left panel approximate Bayesian belief updating within the graphical model 
depicted in the upper portion of Figure 1 via a gradient descent on free energy (F). The right panel 
illustrates the proposed neural basis by which neurons making up cortical columns at two 
interconnected hierarchical levels could implement these equations. The equations have been 
expressed in terms of two types of prediction errors. State prediction errors (ε; line 1) signal the 
difference between the (logarithms of) expected states (s) under each policy and time point—and the 
corresponding predictions based upon outcomes/observations (A matrix) and the (preceding and 
subsequent) hidden states (B matrix, and D matrix for the initial hidden states at the first time point). 
These represent prior and likelihood terms respectively – depicted as messages being passed between 
neural populations (colored balls) via particular synaptic connections in the right panel. These 
(prediction error) signals drive depolarization (v; line 5) in the neurons encoding hidden states (s), where 
the probability distribution over hidden states is then obtained via a softmax (normalized exponential) 
function (σ; line 6). Outcome prediction errors (ς; line 2) instead signal the difference between the 
(logarithms of) expected observations (o) and those predicted under prior preferences (C). This term 
additionally considers the expected ambiguity or conditional entropy (H) between states and outcomes 
(computed from the A matrix). This prediction error is weighted by expected observations (line 9) to 
evaluate the expected free energy (G; line 4) for each policy (π). These policy-specific free energies are 
then integrated to give the policy expectations via a softmax function (line 7). The E matrix in line 7 
reflects a prior distribution over policies (which can be thought of as encoding habits based on self-
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observed regularities in past behavior), and γ is a policy precision parameter that modulates the degree 
to which policy selection is influenced by habits (E) vs. model-based beliefs (G). Actions at each time 
point (u; line 10) are then chosen out of the possible actions under each policy weighted by the value 
(negative expected free energy) of each policy. Line 8 expresses a Bayesian model average that is 
necessary for estimating the probability over states (by taking into account the probability of each policy 
and the probability of each state given each policy).  The resulting posterior distributions over states at 
the first level are then treated as observations by the second level (levels are denoted by the superscript 
i, where each level operates based on the same equations but over different timescales). In the 
proposed neuronal implementation on the right, probability estimates have been associated with 
neuronal populations that are arranged to reproduce known intrinsic (within cortical area) connections. 
Red connections are excitatory, blue connections are inhibitory, and green connections are modulatory 
(i.e., involve a multiplication or weighting). These connections mediate the message passing associated 
with the equations on the left panel. Cyan units correspond to expectations about hidden states and 
(future) outcomes under each policy, while red states indicate their Bayesian model averages. Pink units 
correspond to (state and outcome) prediction errors that are averaged to evaluate expected free energy 
and subsequent policy expectations (in the lower part of the network). Expected free energy and policy 
evaluation are each depicted as occurring subcortically. This (neural) network formulation of belief 
updating means that connection strengths correspond to the parameters of the generative model 
described in the text. Only exemplar connections are shown to avoid visual clutter. Furthermore, we 
have just shown neuronal populations encoding hidden states under two policies over three time points 
(i.e., two transitions), whereas in the task described in this paper there are greater number of allowable 
policies. For more information regarding the mathematics and processes illustrated in this figure, see (KJ 
Friston, Lin, et al., 2017; KJ Friston, Parr, et al., 2017). 

 

3. A deep temporal model of emotional awareness 

  

In this paper, we explicitly model the second and third processes in the TPM: affective 

response representation (emotion conceptualization) and conscious access. Within these 

processes, after being generated in a particular context, the (exteroceptive, proprioceptive and 

interoceptive) aspects of an affective response are first used to infer the current emotional state, 

and representations of this emotional state are then made available to domain-general cognition 

and held in working memory, where they can be combined with other information and used to 

inform decision-making and verbal reporting. The emotion conceptualization process is 

necessary for the third level of emotional awareness in the theory of levels of emotional 

awareness (Lane et al., 1990), where an individual is capable of becoming aware of single 
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emotional states like sadness and fear. Note that an emotional state is a hidden state in the 

generative model, meaning that emotions play the role of hypotheses or representations that best 

explain the multimodal sensations at hand (e.g., inferences corresponding to contents such as "I 

am anxious" are implicitly encoded as the best explanations for  particular patterns of current 

exteroceptive and interoceptive signals). The conscious access process is necessary for the fourth 

and fifth levels of emotional awareness in the theory, where an individual is capable of holding 

information about emotions in mind over an extended period of time, combining it with other 

information, and using this integrated information within domain-general cognition – as in the 

ability to contemplate multiple emotions at once or the ability to simultaneously think about 

one’s own emotions and someone else’s (e.g., "She is anxious because I am clearly frightened"). 

To model this type of emotion-focused cognition, we constructed a simple working 

memory task for an agent or synthetic subject to perform (see figure 1, bottom panel). In this 

task, the agent was presented with different affective bodily responses – characterized by distinct 

combinations of valence, arousal, and action tendencies – associated with particular 

(interpretations of) contexts. After the onset of each affective response, the agent’s task was to 

attend to the different aspects of this response and its eliciting context, and to categorize that 

response under different possible internal state concepts (some of which corresponded to 

emotion concepts and others which corresponded to non-emotional somatic concepts). 

Subsequently, however, the agent was also instructed to hold that internal state in working 

memory, while experiencing a second affective response. This was followed by a delay period, 

after which the agent experienced and categorized yet a third affective response. While holding 

all three perceived internal states in mind, the agent’s task was to self-report whether the third 

internal state was the same or different in relation to one of the first two states. This particular 
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task was chosen for two reasons: 1) because of its similarity to previously published studies of 

emotion-focused working memory and its relation to emotional awareness (R Smith et al., 

2017b; Smith et al., 2018b, 2018c; Waugh et al., 2014; Xin and Lei, 2015), and 2) because it 

requires several elements associated with different levels of emotional awareness; including 

perceived bodily responses, internal state categorization, and the ability to hold multiple internal 

states in mind at once. 

To simulate affective responses, internal state categorization, and working memory 

(based on the task described above), we first needed to specify an appropriate generative model. 

Once this model is specified, standard (variational) message passing schemes can be used to 

simulate belief updating and behavior in a biologically plausible manner (for more detail, please 

see figure 2 as well as (Friston et al., 2017a, 2017b)). In the first level of our model, the 

observable aspects of an affective response (the outcomes in the model) included a feature space 

including: two possible valences (neutral, unpleasant), two possible interoceptive arousal levels 

(low, high), two possible motivational states (approach, avoid), and three types of beliefs about 

the eliciting context (i.e., a belief that it is a non-threatening context, social threat context, or 

physical threat context).  

It is worth highlighting that these features are fairly high-level observations, which would 

need to be derived from interoceptive and exteroceptive sensory processing at lower levels; i.e., 

where these sensations would themselves have been generated by a stimulus/context and the 

subsequent affective response generation process of the TPM, which we do not explicitly model 

here. To model the belief updating of interest here, these affective response features were 

sufficient for our purposes. Thus, in the simulations below, we simply presented the model with 

affective and contextual cues to assess the degree of awareness attained by the agent. We do not 
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model the generation of affective bodily outcomes themselves (i.e., which would occur via 

selection of visceromotor and skeletomotor policies) in response to a context and its subjective 

interpretation. In short, we assume affective outcomes reflect inferences drawn by a lower 

hierarchical level, whose role is to explain interoceptive data: e.g., as in (Allen et al., 2019). This 

means that they should not be interpreted as sensory data, but as lower-level inferences about the 

causes of sensory data. For example, we might expect changes in valence to correspond to 

changes in the precision/confidence associated with lower-level visceromotor and skeletomotor 

policy selection, or to related internal estimates that can act as indicators of a model’s current 

successfulness in resolving uncertainty and achieving preferred outcomes; see (Clark et al., 2018; 

de Berker et al., 2016; Joffily and Coricelli, 2013; Peters et al., 2017)). 

In the first level of our model (see figure 3A and 3B), the A-matrix specified a likelihood 

mapping between affective outcomes and the first hidden state factor, which included five 

internal state concepts that could explain outcomes (neutral state, sadness, panic, sickness, heart 

attack), such that each outcome combination was predicted by each concept category with 

distinct probabilities. Note, we focus primarily on negatively valenced states here, due to their 

clinical relevance and relation to somatic misattribution. These mappings meant that: 1) an 

emotionally neutral state predicted neutral valence, either low or high arousal, either approach or 

avoidance motivation, and a non-threatening context; 2) sadness predicted negative valence, low 

arousal, avoidance, and a social threat context; 3) panic predicted negative valence, high arousal, 

avoidance, and a social threat context; 4) sickness predicted negative valence, low arousal, 

avoidance, and a physical threat context; 5) heart attack predicted negative valence, high arousal, 

avoidance, and a physical threat context.  
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While certainly oversimplified, the likelihood mappings specifying the content of sadness 

and panic were motivated by previous literature linking these emotion concepts to the above-

mentioned lower-level outcomes. For example, the concept of sadness, as modeled here, is based 

on research (e.g., (Badcock et al., 2017)) focused on the low-arousal form of sadness more often 

associated with social isolation and clinical depression (i.e., as opposed to a higher-arousal, acute 

form of sadness associated with active crying, etc.). The concept of panic, as modeled here, is 

based primarily on the types of panic attacks that often occur in social contexts (e.g., crowded 

public spaces) and that are often associated with agoraphobia and/or social anxiety disorder (Jack 

et al., 1999; Potter et al., 2014). Of course, panic attacks can also occur in objectively dangerous 

situations, but more often there is no objective physical danger and helping an individual to 

identify the affective origin of panic-related bodily sensations can itself aid in emotion regulation 

(e.g., “okay, this is just a panic attack – it will go away in a few minutes and I’m not going to 

die”).  

It is also important to clarify that these likelihood mappings are probabilistic; for 

example, one could still feel neutral at a funeral or feel sick at a crowded event. These 

possibilities were simply coded as having lower probabilities. The specific precision of these 

probabilistic mappings was controlled via the precision or inverse temperature parameter of a 

softmax function applied to a fully precise form of the likelihood mappings between concepts 

and affective outcomes; for a more technical account of this type of precision or attention 

modelling, please see (Parr and Friston, 2017a)). By default, the precision applied to these 

mappings (and to the working memory content mappings at the higher level described below) 

was set to a value of 1.5, resulting in a relatively precise mapping that was sufficient for high 

performance (however, lower precisions were applied to specific state-outcome mappings in 
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specific simulations described below). The corresponding B-matrix for the internal state factor 

was an identity matrix, such that the internal state was a priori stable across each trial, with 

greater or lesser precision. 
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Figure 3. First-level model. (A) Displays the levels of hidden state factor 1 (internal state concepts) and 
their mapping to different lower-level representations (here modeled as affective outcomes and 
feedback). Each internal state generated different outcome patterns with different probabilities (see 
text for details). The A-matrix encoding these mappings is illustrated in the upper left (i.e., lighter colors 
indicate higher probabilities). The B-matrix in the lower left illustrates an identity mapping between 
internal states, such that internal states were believed, a priori, to be stable within trials. The precision 
of these matrices (i.e., implicit beliefs about how precisely different internal states are associated with 
different observations or beliefs about internal state stability) could be adjusted via passing them 
through a softmax function with different precisions. This model simulates the affective response 
representation process within the three-process model of emotion episodes (Smith et al., 2018a). The 
grey arrows/boxes at the bottom of the figure denote a further process within the three-process model 
(i.e., affective response generation, understood as a form of lower-level skeleto/visceromotor policy 
selection) that is not explicitly modeled in the current work. (B) Displays the levels of hidden state factor 
2 (focus of attention) and its mapping to outcomes. Each focus of attention mapped deterministically 
(the A-matrix was a fully precise identity matrix) to a “location” (i.e., an internal source of information) 
at which different outcomes could be observed. The B-matrix in the upper left illustrates that the agent 
could choose to shift her attention from one internal representation to another to facilitate inference. 
The final attentional shift in the trial was toward a (proprioceptive) motor response to report an internal 
state (i.e., at whatever point in the trial the agent became sufficiently confident, at which point the state 
could not change until the end of the trial), which was either correct or incorrect. The agent most 
preferred (expected) to be correct in reporting a specific internal state and least preferred to be 
incorrect. If the agent was not sufficiently confident to report a specific emotion, but was confident that 
it was feeling some type of negative emotion, it could also choose to simply report the more coarse-
grained feeling of “bad” – which was preferred to an intermediate degree between the other two 
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possible outcomes. Because policies (i.e., sequences of implicit attentional shifts and subsequent explicit 
reports) were selected to minimize expected free energy, inference under this model induces a sampling 
of salient representational outcomes and subsequent report – under the prior preferences described 
above. 
 

 

 

To incorporate the role of selective attention in emotional awareness – a type of mental 

action (Limanowski and Friston, 2018; Metzinger, 2017) –  we also included a state 

corresponding to attentional focus. Specifically, precise information about the various aspects of 

an affective outcome was only available within certain attentional states (e.g., the agent needed 

to pay attention to her bodily arousal to learn whether it was high or low). This attention-

dependent access to information was built into the A-matrix mapping internal states to different 

affective outcomes (e.g., arousal level) under different attentional states, such that these 

mappings were only informative when the agent adopted the associated attentional state (e.g., the 

“attention to arousal” state). The B-matrices for this factor specified all possible (controllable) 

transitions between attentional states, such that the agent could choose all one-step policies that 

allowed her to attend to as few or as many features as she deemed necessary, prior to reporting 

her beliefs about her own internal state. Self-reports were also modeled as additional states 

within the same hidden state factor, such that the agent can attend to emotional states or make a 

report once sufficiently confident (but not both). This included reporting the belief that she was 

feeling neutral, feeling sad, feeling panic, feeling sick, or experiencing a heart attack. If 

insufficiently confident about which emotion was experienced, she could also simply report 

feeling emotionally bad. At this point, the agent would also observe a type of “social feedback” 

indicating whether the self-reported state matched the hidden state that generated the observed 

pattern of affective response features. The C-matrix was constructed such that the agent 
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preferred to correctly report one of the specific internal states, least preferred to receive feedback 

that she was incorrect, and had an intermediate preference for being correct about the more 

general state of feeling bad. To ensure that the agent was sufficiently motivated to attend to 

multiple features before selecting a report, the agent assigned higher negative value to reporting 

incorrectly than she assigned positive value to observing correct feedback.   

The second level of our model corresponded to domain-general cognition (see figure 4A 

and 4B). This level included 4 hidden state factors. The first was the state to be remembered 

where we included 6 exemplary states: sadness, panic, both sadness and panic, both sadness and 

sickness, both heart attack and panic, and both heart attack and sickness. The reason that some of 

these are composite, while others are single states, relates to the trial structure outlined below. In 

short, there are two emotional state presentations before the delay. These may include two 

different states or a neutral state and a single emotional state. While we could have included all 

possible combinations of first level states, these were sufficient to simulate the relevant 

mechanisms associated with emotional awareness described below. They can also be mapped 

onto clinically relevant cognitive states; for example, I could recognize that I am sad because I 

am sick, or that I am sad because I just had a terrible panic attack in public. The second hidden 

state factor corresponded to the 3rd internal state presented to the second hierarchical level, to 

which she compared the first two (and answered whether it was the same state or a different state 

from the first two). This can be thought of as modelling a situation in which I reflect upon 

whether my current emotional state is similar to how I felt at a particular point in the past (e.g., 

as often occurs in psychotherapy contexts). The third hidden state factor was the time point 

within the trial. This included the starting state, the first internal state, the second internal state, a 
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maintenance phase, the third internal state, and then the response phase. The fourth hidden state 

factor was the agent’s report (undecided, same, different).  
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Figure 4. Second-level model. (A) Displays the levels of hidden state factor 1 (working memory contents) 
and 2 (the third comparison state), and their mapping to the different internal states at the lower level. 
Each possible emotional context corresponded to different combinations of internal state 
representations (see text for details). The colored arrows illustrate these mappings as they are specified 
in the A-matrix, which is also depicted in the bottom right. The B-matrix specified an identity mapping 
between working memory contents, such that contents were stable within trials. The precision of these 
matrices (i.e., implicit beliefs about how precisely different internal state representations update 
working memory contents or about the stability of working memory contents over time, respectively) 
could be adjusted via passing them through a softmax function with different precisions. This higher-
level model simulates the conscious access process within the three-process model of emotion episodes  
(Smith et al., 2018a). (B) Displays the levels of hidden state factor 3 (task structure) and 4 (self-report), 
and their mapping to both internal states and feedback. Each of these mappings were fully deterministic 
(the relevant A-matrices were maximally precise). The relevant B-matrices specified deterministic 
transitions from one task phase to the next and allowed the agent to report that the third internal state 
was either the “same” or “different” in relation to the previous two internal states experienced (i.e., 
deep policies in which the agent could only remain in an “undecided” state until the final report phase at 
which time it could make its choice). The agent most preferred (expected) to be correct. 
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The first outcome modality corresponded to each of the five possible internal states that 

were inferred at the lower level, as well as a “blank” outcome that corresponded to the starting 

state and the maintenance phase (this blank outcome was included as an additional hidden state 

in the lower-level model described above, but had imprecise mappings to affective outcomes; 

this is omitted in our figures depicting the first-level model for clarity). The second outcome 

modality corresponded to feedback, such that after each trial the agent was told whether she was 

correct or incorrect in the comparison between the three internal states experienced over time. 

The C-matrix was then set such that the agent preferred to observe correct feedback, and 

available policies only included choosing to report either “same” or “different.” 

 

4. Simulating individual differences in emotional awareness 

 

4.1 Foundational simulations  

As an initial validation, we enabled the first level of the model and presented it with 100 

different internal state responses – 20 corresponding to each of the five internal state concepts. 

With a moderately precise mapping from internal state concepts to affective outcomes (precision 

= 1.5), we observed that the agent correctly inferred and reported her internal state 100% of the 

time. This confirmed that, with moderately precise probabilistic state-outcome mappings, the 

agent could successfully deploy selective attention and infer internal states (see figure 5A for 

illustration of an example trial). 
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Figure 5. Example trials illustrating optimal performance under high levels of emotional awareness. (A) 
shows successful inference about a single emotional state in the lower level of the model. As shown on 
the left, the agent first chose to attend to her beliefs about context (and observed social threat) and 
then chose to attend to her arousal level (and observed low arousal), at which point she was sufficiently 
confident to report feeling sad (cyan dots indicate the true action taken; darker colors indicate higher 
levels of confidence in one action over others). The right panel illustrates the simulated neuronal firing 
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rates (darker = higher firing rate) and local field potentials (rates of change in firing rates) that would be 
predicted under the neural process theory associated with active inference that is depicted in figure 2 
(Friston et al., 2017a). (B) Displays successful inference of a combination of two emotions in the higher-
level model. The right panel shows that the agent reported “different” and then observed “correct” 
feedback. The left panel shows simulated neuronal firing rates and local field potentials for both the first 
and second levels of the model. As can be seen, at the first level, the first emotion represented was 
sadness and the second emotion represented was panic, followed by a delay (“blank” state), followed by 
the third represented emotion, which was neutral. At the second level, it can be seen that evidence first 
accumulates to suggest that sadness and panic are both present, at which point firing rates in the neural 
populations encoding that combination are maintained throughout the rest of the trial so that they can 
be used to inform decision-making at the end. 

 

We then engaged the second level of our model, and presented it with multiple internal 

states over time, corresponding to each of the six internal state combinations included in the 

model. Here, we presented the model with 10 examples of each of the six internal state 

combinations (i.e., 60 trials in total). We again observed that the model was capable of 

successfully gating each of these combinations of internal states into working memory, holding 

them in an active state over a delay period, and reporting correctly whether a third internal state 

matched one of the previous two (see figure 5B for an example trial of holding both sadness and 

panic in mind). Thus, the model performed optimally, both at inferring its own internal states and 

subsequently holding them in memory to perform subsequent cognitive operations on them. The 

model in this particular configuration was therefore capable of emulating emotional awareness. 

Having constructed our model and establishing that it could generate emotional 

awareness behavior, we will now consider a number of exemplar simulations demonstrating that 

distinct mechanisms can produce different trait levels of emotional awareness – as it is 

empirically measured via reporting behavior. As discussed in the introduction, articulating these 

distinct mechanisms may be clinically useful, as they imply distinct therapeutic intervention 

targets. They also highlight distinct potential mechanisms that could be used as hypotheses to 
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guide the development of measures that could phenotype individuals in terms of the underlying 

processes contributing to low levels of emotional awareness. 

To illustrate different types of aberrant belief updating that would produce somatic 

misattribution (EA level 1) and low emotion granularity (EA level 2), as well as belief updating 

allowing for awareness of single granular emotions (EA level 3), we will focus on the first level 

of our model. Note that, for illustrative purposes, in these simulations we allow the agent to 

report her emotions in the absence of first gating them into domain-general cognition at the 

second level. However, as there is behavioral evidence that emotion concepts can be primed in 

the absence of awareness (Smith and Lane, 2016; Zemack-Rugar et al., 2007), and a large body 

of neural and behavioral evidence that the brain can represent information in the absence of 

conscious awareness (Dehaene, 2014), actual self-reportability is thought to further depend on 

the higher-level conscious access processes included in the second hierarchical level of our 

model. Thus, we will subsequently focus on the second (working memory) level of our model, 

which is relevant to understanding individual differences in the ability to hold single or multiple 

emotions in mind over an extended period of time (i.e., a necessary condition for EA levels 4 and 

5). 

 

4.2 Mechanism 1: Abnormal affective response generation 

 

Although fairly simple, one straightforward mechanism that would lead to the absence of 

self-reported emotions is if affective outcomes are not available in the first place. Somewhat 

trivially, if our model is only presented with neutral outcomes, it never reports awareness of any 

emotions – even if it has precise emotion concept knowledge. Although seemingly trivial, this 
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potential mechanism is worth highlighting, because it appears to be prescient for some 

individuals with low emotional awareness (and high alexithymia scores; (Smith et al., 2019b)). 

Such individuals can show an absence of normative skin conductance responses as well as 

atypical valence-related facial muscle responses when presented with affective stimuli. Yet, they 

can understand emotion concepts and perform well at recognizing the emotions of others. 

The cause of this type of deficient affective response is unclear. One possibility is that it 

could reflect congenital abnormalities in the neural circuitry associated with the generation of 

unconditioned and/or conditioned bodily responses to normatively emotion-provoking stimuli. 

Another possibility, however, is that it relates to the way in which perceived situations are 

cognitively evaluated in terms of their significance to the individual. Within appraisal theories of 

emotion, for example, affective responses are generated based on appraisal dimensions such as 

the controllability of a situation, whether or not it is congruent with one’s goals and values, 

whether it was expected or unexpected, whether one assigns responsibility to the self or others, 

among others (Moors et al., 2013; Scherer, 2009). Thus, affective responses could also fail to be 

generated if such appraisal processes and related mechanisms for predicting present and future 

metabolic demands failed to process information in a normative and adaptive manner. 

 

4.3 Mechanism 2: Strong prior expectations for somatic conditions 

 

The second mechanism in our model that could plausibly produce low emotional 

awareness involves having learned strong prior expectations for dangerous somatic conditions 

(e.g., as in people who have high levels of anxiety sensitivity or are otherwise preoccupied with 

possible threats to health; see (Mueller and Alpers, 2006) for evidence that anxiety sensitivity is 
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associated reduced awareness of emotion). To illustrate this, we equipped the model with biased 

(precise) expectations that the dangerous somatic states of heart attack and sickness were more 

likely than emotional states. As in our initial model simulations described above, we presented 

the model with 20 responses corresponding to each of the five internal states – but did so under 

various levels of somatic expectation. These simulations showed that if model parameters were 

specified as if the agent expected to experience dangerous somatic states at least seven times 

more often than emotional states, then affective responses began to be reliably misrecognized as 

indicative of somatic conditions. Specifically, the agent showed a strong tendency to somatize, 

misrecognizing sadness as sickness and panic as a heart attack (see figure 6 for an example trial 

and simulated neuronal responses that would be predicted based on the neural process theory 

depicted in figure 2). This was due in part to the overlap between these pairs of internal states 

(e.g., sadness and sickness both involve avoidance, negative valence, and low arousal; panic and 

heart attack both involve avoidance, negative valence, and high arousal). To differentiate these 

pairs, it was necessary to attend selectively to contextual factors. However, as illustrated in 

figure 6, when equipped with beliefs that somatic explanations are more likely, such factors 

tended to be ignored. Specifically, the agent tended to first attend to arousal, and then “jump to 

conclusions” that her observations indicated sickness if arousal was low (in 100% of the 

simulated trials) and heart attack if arousal was high (in 95% of the simulated trials). This form 

of belief updating may therefore provide a possible explanation for the type of somatic focus and 

misattribution associated with the lowest level of emotional awareness.  
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Figure 6. Example trial displaying suboptimal performance as a result of strong prior expectations for the 
presence of physical health threats (i.e., states such as sickness and heart attack). As shown on the left, 
the agent first chose to attend to her arousal level (and observed high arousal), at which point it 
immediately inferred that heart attack was most likely (cyan dots indicate the true action taken; darker 
colors indicate higher levels of confidence in one action over others). The right panel illustrates the 
simulated neuronal firing rates (darker = higher firing rate) and local field potentials (rates of change in 
firing rates) that would be predicted under the neural process theory depicted in figure 2 (Friston et al., 
2017a). As can be seen, the neuronal populations encoding sickness and heart attack start out with 
elevated firing rates, and upon observing high arousal, firing rates further increase in the neuronal 
population encoding heart attack. 

 

 

4.4 Mechanism 3: Poor conceptual understanding of emotions 

 

A third plausible mechanism that could produce low levels of emotional awareness 

corresponds to poor emotion concept acquisition – as may occur in individuals who fail to learn 

about emotions due to impoverished social learning opportunities early in development (e.g., 

parental neglect; (Lane et al., 2018)). Here, impoverished knowledge about emotions was 

simulated by reducing the precision of the mapping from emotion concepts to affective response 
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features at the lower level, such that each emotion concept less clearly predicted one pattern of 

affective response features over others. This was accomplished by passing the A-matrix 

encoding these state-outcome mappings through a softmax function with a low precision (0.01), 

leading to significantly less precise mappings. Under these conditions, the agent tended to avoid 

reporting specific emotions, and instead simply chose to report that it felt “bad” in 85% of 

simulated trials. As exemplified in figure 7, the agent’s uncertainty also promoted repeated shifts 

in attention in an attempt to gain more information before reporting (leading to slower reactions 

times). Thus, the primary result of poor emotion concept acquisition was a reduction in 

granularity, where distinct affective responses were not conceptually differentiated (i.e., level 2 

emotional awareness).  

 

Figure 7. Example trial displaying suboptimal performance as a result of poor emotion concept 
acquisition (here operationalized as a highly imprecise mapping from emotional state representations to 
the observable features associated with an affective response at the level below). As shown on the left, 
the agent first confidently chose to attend to her beliefs about context (and observed social threat), at 
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which point she became highly uncertain about what to attend to next to further reduce her uncertainty 
and continually shifted between attending to arousal and context information until the final time step, 
where she simply reported feeling bad (cyan dots indicate the true action taken; darker colors indicate 
higher levels of confidence in one action over others). The right panel illustrates the simulated neuronal 
firing rates (darker = higher firing rate) and local field potentials (rates of change in firing rates) that 
would be predicted under the neural process theory depicted in figure 2 (Friston et al., 2017a). As can be 
seen, the neuronal populations encoding sadness and panic quickly acquire elevated firing rates, and 
continue to fire at equivalent rates throughout the rest of the trial (reflecting the belief that both 
emotion categories are equally probable). 

 

 

We did note two particular dependencies on other parameters, however. First, the agent’s 

tendency to “play it safe” and only report the coarse-grained category depended on the aversion 

to incorrect feedback. As this negative preference was lowered, the agent had stronger and 

stronger tendencies to guess on each trial, leading to chance levels of accuracy (see figure 8 for 

an illustration of an example trial). This mimicked what has been observed in childhood during 

emotion concept learning, where children tend to first use specific emotion terms in a non-

specific way (i.e., they are used more or less interchangeably to mean “bad”; (Widen and 

Russell, 2008)). This also highlights the fact that a person ‘needs to care’ to a sufficient degree 

about being accurate when conveying their emotions to others. As a further effect, we noted that 

as the level of emotion concept precision decreased, the magnitude of prior expectations favoring 

somatic conditions necessary to promote somatization also became lower. Thus, poor emotion 

concept acquisition also created a greater vulnerability to somatic misattribution. 
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Figure 8. Example trial displaying suboptimal performance as a result of a combination of poor emotion 
concept acquisition (as in the previous simulation) and an attenuated aversion to reporting incorrectly. 
As shown on the left, the agent first chose to attend to her beliefs about context (and observed social 
threat), at which point, despite being equally confident in reporting sad or panic, simply chose to guess 
one of the two (cyan dots indicate the true action taken; darker colors indicate higher levels of 
confidence in one action over others). The right panel illustrates the simulated neuronal firing rates 
(darker = higher firing rate) and local field potentials (rates of change in firing rates) that would be 
predicted under the neural process theory depicted in figure 2 (Friston et al., 2017a). As can be seen, the 
neuronal populations encoding sadness and panic quickly acquire elevated firing rates, but neither 
population outcompetes the other before the agent makes a choice. 

 

4.5 Mechanism 4: Biased attention 

 

A fourth mechanism discussed in previous literature pertains to selective attention biases 

(Lane et al., 2018; Smith et al., 2018a; Smith and Lane, 2016). That is, even if an individual has 

appropriate prior expectations – and has acquired precise emotion concept knowledge – the 

maladaptive allocation of selective attention could still hinder evidence accumulation necessary 

to correctly infer upon one’s own internal states. Here, we simulated two examples of such an 
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attentional bias, by equipping the model’s E-matrix (a prior bias over policy selection) with 

strong prior expectations favoring the selection of some policies over others (see figure 9 for an 

example trial). We first explored the consequences of equipping the model with the strong habit 

of focusing on its own bodily state (valence, arousal, and action tendencies), while ignoring 

external contextual information. Here, we observed that, if the agent possessed these suboptimal 

attentional or epistemic habits, this promoted extended periods of attentional sampling and self-

reported internal states became inconsistent. In other words, the agent could not differentiate 

between emotional and somatic causes, and therefore simply guessed on each trial between 

sadness/sickness and panic/heart attack (leading to chance levels of accuracy). This is consistent 

with previous studies of context effects in emotion recognition, illustrating, for example, that 

attention to facial information alone is insufficient to infer the emotional states of others, and that 

available contextual information is necessary to disambiguate between different possible 

emotions (Aviezer et al., 2008; Barrett et al., 2011). If biased expectations favoring somatic 

causes were also present under these conditions, we noted that this again promoted somatic 

misattribution, whereas reductions in emotion concept precision led to greater numbers of 

coarse-grained emotion reports. Thus, this type of attentional bias could produce 

confusion/uncertainty about emotional versus somatic causes, but consistent somatic 

misattribution or coarse-grained reporting still required the further influence of biased prior 

expectations or poor emotion concept acquisition. 
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Figure 9. Example trial displaying suboptimal performance as a result of two different types of 
attentional biases. The top panel illustrates the agent’s behavior in the context of an “external” bias in 
which she had a strong tendency to focus on the context and ignore bodily sensations. As shown on the 
top left, this bias only allowed the agent to disambiguate situations that were more or less likely to 
involve emotions but did not allow her to distinguish finer-grained categories. In this case, as the 
context involved social threat, she therefore simply reported feeling bad (cyan dots indicate the true 
action taken; darker colors indicate higher levels of confidence in one action over others). The top right 
panel illustrates the simulated neuronal firing rates (darker = higher firing rate) and local field potentials 
(rates of change in firing rates) that would be predicted under the neural process theory depicted in 
figure 2 (Friston et al., 2017a). As can be seen, the neural populations encoding sadness and panic 
quickly acquire elevated firing rates, but neither population outcompetes the other before the agent 
makes a choice. The bottom panel illustrates the agent’s behavior in the context of an “internal” bias in 
which she had a strong tendency to focus on bodily sensations and ignore context. This resulted in a 
greater number of attentional shifts (i.e., slower reaction time) before responding, and precluded the 
ability to distinguish between emotional and non-emotional bodily states – on this trial, leading her to 
guess heart attack after observing high arousal, negative valence, and avoidance motivation. The 
associated simulated neuronal firing rates and local field potentials reflect an initial decrease in 
confidence in the states of sadness and sickness, and then subsequent decreases in confidence in a 
neutral state and simultaneous (equivalent) increases in confidence in both panic and heart attack over 
time. 

 

 

We subsequently simulated an external attentional bias where the agent ignored its 

affective bodily responses and only attended to contextual information. In this case, on emotion 
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trials it reported that it felt “bad” in 100% of cases. Thus, an external bias could also promote 

behavior consistent with coarse-grained, “level 2” emotional awareness. This external bias bears 

some conceptual similarity to constructs currently measured via self-report scales of low 

emotional awareness (e.g., the externally oriented thinking tendency measured by the Toronto 

alexithymia scale [TAS-20]; (Bagby et al., 1994b)). 

 

4.6 Mechanism 5: Beliefs favoring high emotional volatility 

 

A fifth mechanism that could produce reductions in emotional awareness corresponds to 

the belief that emotional states are highly unstable. Of course, an individual’s affective responses 

could in fact be highly volatile, or these beliefs could be exaggerated; borderline personality 

disorder, for example, is characterized by highly volatile emotions, and has also been associated 

with lower levels of emotional awareness (Levine et al., 1997). To illustrate the effects of this 

mechanism, we applied the same softmax manipulation described above (precision = 0 .01) to 

the model’s B-matrices that specified beliefs about the probability that each emotional state 

would transition to a different internal state across the trial, but kept the actual affective response 

features stable across the trial. This caused the agent to repeatedly attend to the same information 

over and over again (to repeatedly check whether the state had changed; similar to the simulation 

shown in figure 7) and then simply report that she felt bad (85-100% of trials) or occasionally 

report a somatic misattribution (i.e., believing that she may have started out in an emotional state 

but that she was now in a dangerous somatic state; e.g., “This may have started out as a panic 

attack, but now I’m definitely having a heart attack.”).  
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4.7 Summary of first-level simulation results 

 

In summary, these simulations highlight a range of interacting mechanisms that can each 

produce (either in isolation or combination) the somatic misattribution and low emotion 

granularity phenomena characteristic of the lower levels of trait emotional awareness. Each 

mechanism or combination produced different profiles, involving either somatic misattribution, 

coarse-grained emotion reports, or the inconsistent use of specific emotion terms. Each was also 

associated with different amounts of time (i.e. number of attentional shifts) before the agent 

chose to make its report, which could be understood as different reaction times in a behavioral 

task. This suggests that – for an individual to display higher levels of emotional awareness, in 

which specific emotion concepts can be adaptively and reliably used to understand their own 

affective responses – none of these mechanisms can interfere with emotion-related belief 

updating. That is, affective response generation mechanisms must be functioning adaptively, a 

person must expect that emotions are likely to occur, they need to have acquired precise emotion 

concept knowledge, they must possess attentional habits that incorporate both bodily and 

contextual factors in the inference process, and they need to believe that emotional states are 

sufficiently stable to infer them by accumulating evidence over time. 

 

4.8 Mechanism 6: Access to domain-general cognition 

 

While we allowed for first-level reporting behavior in the simulations described above, 

this was primarily to illustrate the effect of confidence and biases on the granularity of emotion 

reports. As noted above, in the three-process model (Smith et al., 2018a), and other neuro-
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cognitive models of conscious awareness more generally (e.g., global neuronal workspace 

models; (Dehaene, 2014)), internally representing information is not sufficient for reportable 

awareness (e.g., studies have shown that sensory stimuli – including those associated with 

emotion concepts – can produce both perceptual and conceptual/semantic priming effects on 

behavior in the absence of self-reported experience/recognition of those stimuli, and top-down 

attention can also have influences outside of awareness; (Dehaene et al., 2014, 2006; Panksepp et 

al., 2017; Schnuerch et al., 2016; Smith, 2019; Smith and Lane, 2016; Zemack-Rugar et al., 

2007)). These models suggest that, in addition, reportable awareness also requires that the 

perceptual/conceptual contents of a given neural representation (i.e., the electrochemically 

encoded messages that it passes to other neuronal populations) are selectively “gated” or 

“broadcast” to higher-order cognitive systems that have limited capacity (i.e., these higher-order 

cognitive systems are suggested to correspond to distributed, large-scale neural networks 

spanning medial and lateral frontoparietal association cortices). Thus, in addition to inferring 

one’s own most probable internal state as we simulated above, a model of emotional awareness 

should also include this type of gating mechanism, and a failure of emotional state information to 

be made accessible to higher-order cognition could represent an additional factor promoting low 

emotional awareness.  

 

To simulate this type of mechanism, we enabled the second hierarchical level of our model 

associated with emotion-focused working memory. We then again used a softmax function 

(inverse temperature parameter = 0.01) to manipulate the precision of the mapping from working 

memory contents to lower-level internal state representations – as, in active inference, this would 

determine the degree to which emotion concepts are reliably broadcast into working memory. In 
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other words, assigning higher or lower levels of precision to a given representation (i.e., which 

could be done in a context-specific or goal-specific manner) determines whether or not that 

representation has a significant influence in updating the contents of domain-general cognition. 

When manipulating the precision of the mapping between particular emotion concepts and 

working memory in our model, we were able to confirm this expected effect. That is, when the 

precision of this mapping was lowered, emotion concepts did not gain appropriate access to and 

update working memory contents, leading to chance accuracy on the working memory task.  

Figure 10 illustrates an exemplar case, where the precision of the mapping from sadness 

and panic into working memory was reduced. This mimics an individual who, while having a 

good conceptual understanding of such emotions, and perhaps reacting in a manner consistent 

with such emotions, may ignore the possibility that they are feeling emotions and focus on other 

types of information. For example, someone who believes that focusing on certain emotions is a 

sign of weakness or otherwise considers this type of information of low value. In the example 

trial shown, the posterior probability distribution representing working memory contents remains 

highly imprecise, while the lower-level emotional state representations remain precise (i.e., a 

potential example of unconsciously represented emotion). The agent also was incapable of 

reflecting on her emotions and correctly determining whether her emotion at the third time point 

(neutral) was similar to her earlier emotions. Across 60 trials (10 trials for each of the six internal 

state combinations that could be held in working memory), we confirmed that low levels of 

precision for lower-level emotions rendered the agent capable of accessing and holding other 

somatic internal states in working memory – and performing the comparison task correctly with 

respect to other somatic states (i.e., the state corresponding to sickness and panic attack) – but 

failed to reliably access or use working memory contents that included the concepts of sadness 
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and/or panic. In short, reportable awareness of single emotions or emotion combinations 

(characteristic of “level 4” emotional awareness) were compromised, while other internal state 

representations remained accessible. 

 

 

 
Figure 10. Displays suboptimal inference of a combination of two emotions in the higher-level model as 
a result of reduced precision in the mapping between represented emotional states at the first level and 
working memory contents at the second level – leading to a failure to “broadcast” represented emotion 
concepts into domain-general cognition. Shown are the simulated neuronal firing rates and local field 
potentials generated by both the first and second levels of the model. As can be seen, at the first level 
the first emotion represented was sadness and the second was panic. The third represented emotion 
was neutral. In contrast, it can be seen that the higher-level is not updated to include information about 
sadness and panic (i.e., it only knows that the state isn’t sickness and heart attack), preventing 
reportable emotional awareness and successful task performance (right). 
 

 

4.9 Mechanism 7: Working memory content stability 
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The final mechanism we considered corresponds to previous empirical observations that 

higher emotional awareness is associated with greater emotion-focused working memory 

capacity (R Smith et al., 2017b). As shown in previous simulation work (Parr and Friston, 

2017b), once information has been gated into working memory, the ability to maintain and 

manipulate working memory contents over a delay period then depends on the rate with which 

that information decays – which in turn depends on the stability of the contents of working 

memory, here operationalized as the precision of the model’s B-matrix for the hidden state factor 

corresponding to working memory contents. In other words, working memory capacity will be 

reduced (i.e., information will decay more quickly) if past and future states are assumed to be 

less predictable from present states. Thus, the greater the probability that working memory 

contents will defuse away from their current state, the more difficult it will be to maintain and 

reflect on multiple emotions. This is a necessary condition for the highest levels of emotional 

awareness (i.e., in which an individual can contemplate multiple emotions at once, including 

both their own emotions and someone else’s).  

To simulate differences in emotion-focused working memory capacity, we therefore 

manipulated the precision of the model’s transition beliefs about working memory contents using 

the same manipulation as in previous simulations applied to the relevant B-matrix (precision = 

0.5). Figure 11 illustrates the results of an exemplar trial. As can be seen, the posterior 

probability distribution over hidden states of the second level disperses over time until it 

becomes highly imprecise, corresponding to an inability to maintain precise contents. This was 
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confirmed in 100 repeated simulations

 

Figure 11. Displays an inability of the higher-level model to hold lower-level information in working 
memory as a result of reduced transition precision, such that the mapping between the contents of 
working memory at one point in time does not precisely predict the contents of working memory at past 
and future times. Shown on the top left are the agent’s posterior (retrospective) beliefs regarding 
higher-level states across the trial. As can be seen, while the contents associated with the true state 
(cyan dots) are precise at the second and third time point, there is subsequent decay such that, by the 
end of the trial, beliefs over states become highly imprecise – leading to poor task performance. Also 
shown are the simulated first-level firing rates, and the local field potentials generated by both the first 
and second levels of the model. As discussed in the text, low transition precision could reflect a stable 
trait difference, but it could also reflect temporary reductions in internal estimates of the reliability of 
long timescale regularities during stressful or otherwise high arousal situations. 

 

 

In individuals with low emotional awareness, reductions in high-level transition precision 

could plausibly operate in both a state and trait manner. For example, emotional awareness could 

be constrained in a trait manner, as there appear to be stable individual differences in working 

memory capacity generally – and in emotion-focused working memory specifically (Melby-

Lervåg and Hulme, 2013; R Smith et al., 2017b). In contrast, it is also plausible that estimates of 
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transition precision over longer timescales – associated with working memory – could be 

modulated in a context-dependent manner. For example, it may be that under threatening or 

otherwise stressful conditions, information about longer timescales is implicitly estimated as less 

informative/precise, as such situations may require immediate reflexive action (e.g., 

evolutionarily, extended deliberation in such cases may have led to death). This would 

correspond to an attenuation of transition precision, which could temporarily reduce working 

memory capacity as simulated here. This corresponds to a large body of previous work that has 

demonstrated reductions in reflective capacity – and reductions in prefrontal neural firing rates 

that would be predicted by our model – under conditions of high stress and autonomic arousal 

(Arnsten, 2015; Teigen, 1994). It is also consistent with previous empirical results indicating that 

emotional awareness levels can fluctuate in a state-dependent manner (Versluis et al., 2018). 

 

5. Clinical and Research Implications 

 

In this paper we have used simulations – based on a computational implementation of the 

three-process model (Smith et al., 2018a) – to demonstrate quantitatively distinct mechanisms 

that could contribute to individual differences in emotional awareness. These simulations 

highlight how a single, clinically relevant psychological construct, measured via self-report 

behavior, need not have a 1-to-1 correspondence to a single aberrant process. Instead, at the level 

of information processing simulated here, multiple processes could contribute, either in isolation 

or in combination, to produce the same measured phenotype. This could be important, as low 

emotional awareness (or the related construct of alexithymia) is a notoriously difficult condition 

to treat (Ogrodniczuk et al., 2011). One way our model might help is by providing a framework 
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that allows clinicians to systematically consider each of the seven mechanisms illustrated above 

as possible targets for therapeutic intervention. Further, as reviewed in the introduction, reduced 

emotional awareness manifests in a large number of conditions (e.g., somatic symptom disorders, 

depression, substance dependence, autistic spectrum disorders, schizophrenia, PTSD, eating 

disorders). However, the basis for reduced emotional awareness in each of these clinical 

conditions has not been systematically studied. Our model could also potentially facilitate future 

work in this area, by providing the basis for testable hypotheses (e.g., perhaps different 

underlying mechanisms are at work in different disorders). 

For some examples of ways in which mechanistic knowledge could guide the 

development and selection of individualized treatment, see table 1. In this table, we list each of 

the seven mechanisms introduced above and highlight potential ways in which they might relate 

to assessment and treatment. Established treatment modalities that address the mechanisms in 

question are listed, although it is acknowledged that each modality listed is actually more 

complex and broader in scope than the mechanisms listed. The table also implicitly highlights 

potential gaps where new assessment tools and interventions could be useful. For example, if the 

primary contributing mechanism involved maladaptive affective response generation, effective 

therapeutic interventions might attempt to modify the way individuals evaluate the situations 

they perceive and represent, as in current cognitive therapies (Barlow et al., 2016), such that 

more adaptive automatic responses are generated. If, in contrast, the major contributing 

mechanism involves maladaptively strong prior expectations for dangerous somatic conditions, 

the relevant intervention point would likely involve addressing and correcting such expectations. 

For example, if a therapist facilitates the repeated experience and recognition of emotions during 

(and outside of) the therapeutic setting, this could plausibly increase a client's prior expectations 
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for emotions – increasing the chances that future affective responses will be interpreted as 

emotions instead of as somatic conditions, as in emotion-focused therapy (Greenberg, 2010). 

Given our observation that, in our particular implementation, a 7-fold greater expectation for a 

somatic interpretation was associated with reduced emotional awareness, a clinical hypothesis to 

be tested is that reducing but not eliminating this bias, say reducing it by half, could have 

significant clinical benefits.  

 

Table 1. Assessments, measures, and interventions potentially relevant to each of the 
computational mechanisms discussed. 
Computationa
l mechanism 

Clinical Assessment Relevant measures Relevant interventions 

Maladaptive 
affective 
response 
generation 

1. Evaluate for flat or 
exaggerated affect and 
situational 
appraisal/interpretatio
n biases 

1. Peripheral 
physiological 
measures 

2. Valence/arousa
l rating 
measures 

3. Appraisal bias 
measures 
 
 

(Lang et al., 2008; 
Scherer, 2009; Scherer 
and Brosch, 2009; 
Siemer et al., 2007; 
Smith et al., 2019b) 

1. Beta blocker to 
attenuate high arousal 
states 

2. Cognitive therapeutic 
interventions involving 
identifying automatic 
situational 
interpretations and 
alternative 
interpretations  

3. Exposure therapy 
4. Acceptance and 

commitment therapy 
5. Emotion Regulation 

Therapy 
 

(Barlow et al., 2016; Foa et al., 
2007; Hayes and Smith, 2005; 
Mennin and Fresco, 2014) 

Somatically 
biased prior 
expectations 

1. Evaluate for beliefs 
about the likelihood of 
somatic threats and 
past experience of 
trauma and illness 
 

1. Anxiety 
sensitivity index 

 
(Mueller and Alpers, 
2006) 

 
 

1. Psychoeducation about 
bodily expression of 
emotions and the 
benign nature of most 
somatic sensations 

2. Focusing – deriving 
emotional meaning 
from bodily sensations 
in context  
 

(Gendlin, 1982; Lumley et al., 
2017)  
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Poor emotion 
concept 
acquisition 

1. Evaluate a client’s self-
reported beliefs about 
the causes of specific 
emotions, and the 
typical thoughts, bodily 
feelings, and behaviors 
associated with those 
emotions 
 

1. TAS-20: 
difficulty 
describing and 
identifying 
feelings 
subscales 
(Factors 1 and 
2) 

2. Emotion 
understanding 
subscales 
within trait and 
ability 
emotional 
intelligence 
tests 

3. Emotion 
granularity 
measures 

 
(Kashdan et al., 2015; 
Lane et al., 1990; Mayer 
et al., 2003; Parker et 
al., 2003; Petrides et al., 
2016) 

1. Psychoeducation—
teaching emotion 
concepts 

2. Practice identifying 
one’s own emotions, 
their causes, and the 
bodily sensations and 
behaviors that typically 
follow 

3. Emotion-focused 
therapy  

 
(Greenberg, 2010; Hayes and 
Smith, 2005) 

Biased 
attention 

1. Evaluate for tendencies 
to primarily focus 
externally or primarily 
focus only on bodily 
sensations  

1. TAS-20: 
externally 
oriented 
thinking 
subscale 
(Factor 3) 

 
(Parker et al., 2003) 

1. Attention bias 
modification  

2. Mindfulness/meditatio
n training (Mindfulness-
Based Stress Reduction 

 
(Segal et al., 2004) 

High 
emotional 
volatility 

1. Evaluate for mood 
stability 
 
 

1. Personality 
measures of 
neuroticism 
 

(Costa and McCrae, 
1992) 

1. Training adaptive 
emotion regulation 
habits (e.g., reappraisal, 
acceptance, etc.) 

2. Dialectical Behavior 
Therapy 

3. Emotion Regulation 
Therapy  

 
(Mennin and Fresco, 2014; 
Swales, Heidi L. Heard, J. Mark 
G., 2000) 

 

Conscious 
inaccessibility 

1. Evaluate attitudes 
about emotions (e.g., 
do they provide useful 
information?; Are they 
a sign of weakness?) 

1. Measures of 
cognitive 
suppression 
tendencies in 
emotion 
regulation 

1. Psychoeducation with 
regard to the value of 
emotions 

2. Correcting emotion 
avoidance tendencies  
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(Gross, 1998a; Gross and 
Levenson, 1997; 
Spaapen et al., 2014) 

3. Psychodynamic 
psychotherapy (analysis 
of defense) 
 

(Barlow et al., 2016) (Brenner, 
1973) 

Reduced 
reflective 
capacity 

1. Evaluate whether 
problematic behaviors 
in a client’s life tend to 
occur in high arousal 
situations 

2. Evaluate whether 
problems pertain to 
impulsivity or 
insufficient reflection 

3. Evaluate for general 
cognitive ability 

1. Measures of 
future-oriented 
thinking 

2. Measures of 
emotion-
focused 
working 
memory 
capacity 

 
(R Smith et al., 2017b; 
M. Toplak et al., 2014; 
M. E. Toplak et al., 2014) 

1. Training adaptive 
emotion regulation 
habits 

2. Interventions designed 
to counter impulsive 
behavior 

3. Mentalization-based 
therapy  

 
(Fonagy and Luyten, 2009) 

 
 

Next consider an individual whose primary contributing mechanism involves poor 

emotion concept acquisition. In this case, the most sensible intervention would plausibly involve 

psychoeducation (Burum and Goldfried, 2007; Lumley et al., 2017). That is, an individual would 

need to be given the opportunity to gain greater conceptual understanding of the content of the 

different emotion categories employed within their particular culture. In contrast, if an 

individual’s primary issue involved biased attention, cognitive-behavioral interventions – in 

which an individual explicitly practices and keeps records of the thoughts, feelings, and action 

tendencies they experience in particular situations – would likely be relevant to countering such 

maladaptive attentional habits, as would more recent mindfulness-based approaches (Barlow et 

al., 2016; Hayes and Smith, 2005; van der Velden et al., 2015). Of course, many individuals may 

have multiple contributing mechanisms in play, and these mechanisms can interact in significant 

ways. For example, if an individual has high prior expectations for somatic conditions, our 

simulations suggest that they will be more likely to selectively attend to information that would 
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confirm these expectations if they were correct, and then jump to a conclusion before attending 

to other informative signals. The therapeutic task in such cases would clearly be more complex, 

corresponding to the added difficulty of identifying and targeting multiple simultaneous and 

mutually reinforcing mechanisms.  

Moving on to consider higher-level cognitive factors, if an individual tends to ignore or 

avoid reflecting on their own emotional state – here operationalized as failing to gate emotion 

concept representations into working memory – one major therapeutic task would likely involve 

identifying the underlying driver of this tendency. For example, if an individual’s past 

experience has not afforded or motivated considerable attention to emotions, this could lead 

simultaneously to poor emotion concept acquisition and to a higher-level estimate that emotion 

concept representations convey unreliable information to higher processing levels (for simulation 

work illustrating the role of biased attention in preventing emotion concept learning, see (Smith 

et al., 2019d)). A somewhat (but not completely) overlapping possibility, might be that an 

individual has developed the habit of ignoring thoughts about emotions for value-based reasons, 

such as the belief that information about emotions is not useful in decision-making or that 

reflecting on emotions entails a type of weakness or undesired vulnerability (e.g., as in cases of 

gender-and culture-based socialization; (Chaplin et al., 2005)). Optimal therapeutic interventions 

could then presumably target such beliefs through psychoeducation regarding the 

value/usefulness of emotions. Yet another focus could be sources of insecurity or fear of 

vulnerability that are driving cognitive strategies aimed at emotion avoidance, or the related fear 

that thinking/talking about previous emotionally troubling experiences could generate more 

intense discomfort (e.g., as in individuals with PTSD (Foa et al., 2007)). 



50 
 

The final mechanism we have considered involves reduced higher-level transition 

precision, which would promote reduced working memory capacity. It is currently unclear 

whether this type of trait difference in transition precision is malleable, and previous attempts to 

improve working memory capacity have met with limited success (Melby-Lervåg and Hulme, 

2013). One interesting possibility that should be investigated in future research is whether 

successful interventions could be designed that would allow individuals to learn that long 

timescale regularities are more reliable. For example, individuals who grow up in stressful and 

unpredictable environments appear to learn that distant future states/outcomes are unpredictable, 

leading decision-making to focus on achieving proximal versus distal goals (e.g., steeper delay 

discounting, greater risk-taking, etc.; (Kavanagh and Kahl, 2018)). If such individuals could 

learn that distant future states are more predictable in their current adult environment, this could 

potentially promote greater reflective tendencies (i.e., it would be more internally rational to “bet 

on” predictions about the distant future when making decisions). However, there is insufficient 

evidence at present to assess the plausibility of this possibility. 

On the other hand, state differences in the transition precision of working memory 

contents may be more therapeutically addressable. Specifically, consider cases where recurring 

context-dependent influences, such as high levels of stress and autonomic arousal, lead to 

repeated situations in which a person’s reflective capacity is reduced (e.g., leading to impulsive 

and suboptimal decision-making). For example, if this occurs as a result of chronic stress, then 

this could be addressed by practicing emotion regulation strategies (e.g., as in dialectical 

behavior therapy or emotion regulation therapy; (Mennin and Fresco, 2014; Swales, Heidi L. 

Heard, J. Mark G., 2000)) or finding ways of preventing/improving recurring stressful or 

problematic situations. In some cases, exposure therapies could also be beneficial if they help a 
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person learn that they can handle being in a fear-provoking situation; it could also potentially 

lead to reductions in this type of situation-dependent arousal and therefore improve reflective 

capacity in such contexts. One would expect that if an individual is better able to understand and 

reflect on how they’re feeling before acting in such situations that their decision-making would 

become more adaptive. 

The above considerations, while speculative, illustrate the way that an active inference 

formulation of emotion-related processes – even the simple toy model presented here – may be 

able to further clinical thinking. In addition, it could also guide complementary empirical 

research. As we have shown, under the neural process theory associated with active inference 

(Friston et al., 2017a), many of these mechanisms are predicted to produce different patterns of 

neural firing rates and local field potentials that could be tested in neuroimaging paradigms. 

Some mechanisms should also be associated with faster responding times than others, depending 

on whether they promote overconfidence and “jumping to conclusions” or instead promote 

continued information gathering behavior as a result of low confidence. In principle, this 

suggests that different reaction times when people are asked to report their emotions could 

provide evidence for the operation of one mechanism versus another. Given an appropriate 

emotion reporting task, neuroimaging studies could also test for the predicted patterns of neural 

responses in specific brain regions (e.g., activation of default mode network regions associated 

with emotion conceptualization processes, or executive control network regions associated with 

higher-level working memory processes; (Barrett and Satpute, 2013; Binder et al., 2009; 

Rottschy et al., 2012; Seeley et al., 2007)).  

It is important to stress the simplified nature of the model we have presented. For 

example, while we were able to simulate the ambiguous, probabilistic mapping between emotion 
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concepts and lower-level perceptual experiences such as the valence, arousal, and action 

tendencies felt in one’s body during affective responses (i.e., consistent with constructivist 

accounts of emotion conceptualization; (Barrett, 2017)), these were modeled purely as binary 

variables, whereas in reality they involve multiple levels and dimensions (Colibazzi et al., 2010; 

Posner et al., 2005). This suggests that emotion conceptualization likely draws on a much richer 

generative model, with more complex mappings to lower-level representations. Furthermore, 

most people also have many more emotion concepts and somatic concepts than we considered. 

That said, the general mechanisms we have simulated – with regard to the precision of concept-

percept mappings, attentional biases, prior expectations, and beliefs about the predictability of 

future states – would still be expected to hold in a more complete generative model. Self-directed 

emotion recognition tasks that would allow behavior to be fit to our model will need to be 

designed to confirm this possibility. 

There are some additional future directions that should also be considered in relation to 

our model. First, although we have illustrated how neurocomputational processes can afford 

simple cognitive or behavioral uses of emotional state inference, the adaptive use of emotional 

awareness in guiding more complex behavior was not modeled. This represents an important 

direction for future work. As one example, an important ability that is plausibly facilitated by 

emotional awareness is the broader construct of emotion regulation (ER; (Aldao, 2013; Morrish 

et al., 2019)) – which includes many subtypes, such as taking action to modify emotion-

provoking situations, engaging in cognitive strategies to adjust one’s interpretation of those 

situations, and suppressing maladaptive automatic action tendencies (Gross, 1998b). Many of 

these strategies can be understood in terms of interactions between conscious access processes 

and affective response generation processes within the TPM (e.g., manipulating situational 
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interpretations in working memory so as to alter subsequent affective response generation). 

Understanding how one is feeling  (i.e., emotional state representation) plausibly represents an 

important piece of information that could adaptively guide the use of each of these strategies 

(e.g., in guiding attention to the cognitive or situational sources of that emotion, informing 

predictions about its time course given different actions, etc.); extending our model to include a 

policy space of voluntary emotion regulation strategies could therefore provide additional 

mechanistic insights of potential clinical relevance (Aldao et al., 2010). There is also evidence 

that emotional awareness can facilitate a kind of “automatic” emotion regulation, in which 

simply identifying how one is feeling can lead to reduced emotional arousal (Kircanski et al., 

2012). This opens up an additional possibility for future work to model the way that top-down 

influences of emotional state inference can directly modulate lower-level visceral policy 

selection. 

Yet another opportunity to extend our model in future work would be to incorporate the 

influence of other higher-level cognitive biases (e.g., expectations of low reward, negativity 

biases, etc.) on emotion inference and somatovisceral policy selection, such as those often 

included in cognitive and computational models of depression and that have been linked to 

particular neural systems (e.g., dopaminergic and serotonergic dysfunction in depression; 

(Adams et al., 2015; Chekroud, 2015; R Smith et al., 2017a)). While we did model a form of top-

down attentional bias, our model did not include the types of depressive schema-based 

interpretation biases that are also of significant clinical importance and that could also interact 

with emotional awareness in interesting ways. For example, negativity biases could in part be 

associated with (and modeled as) precise prior expectations to experience negatively valenced 
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states, which could in turn bias emotional state inference (and emotion concept learning during 

development; see (Smith et al., 2019d)) away from recognition of neutral or positive emotions. 

Finally, future modeling work should also incorporate the role of bidirectional 

interactions with the environment as they pertain to the generation and internal representation of 

emotions. In active inference models, this can be done by separately simulating the generative 

process (the actual environmental dynamics giving rise to an agent’s sensations) and the 

generative model (the agent’s beliefs about the causes of those sensations). In the present 

context, for example, this could afford modeling the types of social interactions with other agents 

in which more or less adaptive affective responses could be generated by different inferences 

about others’ emotional states and in which iterative interactions with other agents could be 

guided more or less adaptively by different inferences about one’s own emotional states. Such an 

approach could fruitfully build on recent work using active inference to model social and 

environmental niche construction (Bruineberg et al., 2018; Constant et al., 2018). 

 

6. Conclusion  

 

To conclude, we have used the example of trait emotional awareness to illustrate the way 

that clinically relevant individual differences can be produced by a range of underlying neuro-

computational mechanisms (for related work on computational mechanisms of psychotherapy, 

see (Moutoussis et al., 2017; Smith et al., 2019c)). Our simulations suggest that many underlying 

processes can combine in different ways to produce the same observable clinical phenomenon. 

Formally, this speaks to a degenerate (many-to-one) mapping between pathophysiology and 

psychopathology. In principle, this should also apply to other clinical phenomena that are 
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measured via self-reported experience. This highlights the need to identify the underlying 

processes at work in any given individual and to design/implement interventions targeting those 

particular processes in those individuals. Our hope is that this model can inspire neuroimaging 

and behavioral paradigms that, in conjunction with this type of model, could help in identifying 

these mechanisms and eventually inform treatment selection.  

 

Software note 

Although the generative model – specified by the various matrices described in this paper – 

changes from application to application, the belief updates are generic and can be 

implemented using standard routines (here spm_MDP_VB_X.m). These routines are available 

as Matlab code in the SPM academic software: http://www.fil.ion.ucl.ac.uk/spm/. The 

simulations in this paper can be reproduced (and customised) via running the Matlab code 

included here is supplementary material (MDP_EA_final.m). 
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