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Hemispheric dominance for language can vary from task to task,

but it is unclear if this reflects error of measurement or

independent lateralization of different language systems.

We used functional transcranial Doppler sonography to assess

language lateralization within the middle cerebral artery

territory in 37 adults (seven left-handers) on six tasks, each

given on two occasions. Tasks taxed different aspects of

language function. A pre-registered structural equation analysis

was used to compare models of means and covariances.

For most people, a single lateralized factor explained most of

the covariance between tasks. A minority, however, showed

dissociation of asymmetry, giving a second factor. This was

mostly derived from a receptive task, which was highly reliable

but not lateralized. The results suggest that variation in the

strength of language lateralization reflects true individual

differences and not just error of measurement. The inclusion of

several tasks in a laterality battery makes it easier to detect

cases of atypical asymmetry.
1. Introduction
Hemispheric dominance for language is often assumed to be

unidimensional and consistent across language domains, but

this assumption can be questioned [1,2]. Discrepant laterality

across different language tasks [3–5] could be simply due to

measurement error [6]; alternatively, task differences may

represent meaningful individual variation in the hemispheric

organization of different language networks. It has been difficult

to distinguish these possibilities, because, while we have ample

evidence that the left hemisphere is heavily implicated in

language function at the group level, relatively little is known

about the reliability of lateralization in individuals. It is evident
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that a standard model based on average brain activation may give a misleading impression of uniformity

[7]. Furthermore, there is evidence that there may be subgroups of people with distinct laterality profiles,

related to handedness [8]. Such variability in cerebral lateralization may have functional significance, for

example, in terms of impaired language abilities [1]. In clinical neurosurgical contexts, it is important to

know whether a single indicator of an individual’s language laterality is sufficient, or whether a battery

of measures is needed to capture laterality in multiple language domains [3–5]. Before we can make

headway in answering such questions, we need to have reliable measures.

Here, we report a study using functional transcranial Doppler sonography (fTCD) [9] to measure the

speed of blood flow in left and right middle cerebral arteries (a proxy for neural activity in language-

related areas of the brain) during six different language tasks (tasks A–F). The tasks were designed to

assess lateralization across a broad range of language functions (namely phonology, semantics, syntax,

speech production and speech perception), while keeping non-linguistic demands as closely matched

as possible. The fTCD data were used to derive laterality indices (LIs), which quantify the balance of

activation in the middle cerebral artery (MCA) territories of the left and right hemispheres. All

participants were tested on the whole battery in two separate sessions on different days in order to

estimate the reliability of the LIs and the extent to which lateralization of different tasks could be

explained in terms of a common factor.

1.1. Laterality at the level of the population and the individual
The question of whether language lateralization is a unitary function has two distinct interpretations:

(a) whether there are differences in the extent of lateralization across different language functions or

(b) whether there are individual differences in how the strength of lateralization varies across

language functions. We first review existing literature on these questions and then present simulated

data to show how predictions made by the two accounts are independent and additive, but can be

tested within a common framework (structural equation modelling, SEM).

1.2. Task-related variation in the extent of language lateralization
Most theories of language lateralization have focused on how language functions are lateralized in the brain

in typical humans. Such theories are not concerned with individual differences, but make theoretical

statements about the properties of language that are associated with lateralized activity. An influential

example of such a theory is Hickok and Poeppel’s dual route model of speech processing [10]. This

contrasts a dorsal stream from superior temporal to premotor cortices via the arcuate fasciculus, which is

associated with sensorimotor integration of auditory speech sounds and articulatory motor actions; and a

ventral stream from temporal cortex to anterior inferior frontal gyrus, which is involved in access to

conceptual memory and mapping of sound to meaning [11]. Hickok and Poeppel proposed that the

dorsal stream is left lateralized, whereas the ventral stream is bilateral. This kind of theory makes

predictions about task-related differences that can be assessed by comparing mean LIs in a sample. Thus,

the prediction from the dual route model is that mean LIs for tasks involving the dorsal stream will show

left lateralization, whereas LIs from tasks primarily involving the ventral stream will not be lateralized.

Hickok and Poeppel’s model contrasts with other theoretical accounts. For instance, Dhanjal et al.
proposed that left lateralization was a characteristic of tasks involving lexical retrieval [12]. Evidence

came from an fMRI study investigating propositional speech (e.g. sentence generation) and non-

propositional speech (e.g. reciting memorized speech): articulatory jaw and tongue movements and

non-propositional speech co-activated bilateral dorsal areas, including the superior temporal planes,

motor and premotor cortices. Only the lexical retrieval component of propositional speech resulted in

left-lateralized activity (in the inferior frontal gyrus and premotor cortex).

Yet other accounts have focused on the complexity of the speech stimulus [13], or argued that

lateralization is specifically linked to aspects of complex syntactic processing [14,15].

1.3. Individual differences in cerebral lateralization
Discussions about the nature of language lateralization are complicated by individual differences;

although most people show the typical pattern of language laterality, some individuals show the

reverse pattern—right-hemisphere language. In a large-scale comparison of left- and right-handers,

Mazoyer et al. [8] reported that strong right-hemisphere bias for a sentence generation task was seen

exclusively in left-handers, though milder departures from left hemisphere dominance were seen in
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right- as well as left-handers. A subset of people with bilateral language has also been described for many

years [16], but this category is ambiguous. These could be people who engage both hemispheres equally

during language tasks, or people who are strongly lateralized for different tasks, but in different directions.

This latter scenario would provide strong evidence against a unitary hypothesis, by demonstrating that a

person’s language laterality could not be predicted by a single dimension.

Individual differences in cerebral lateralization have previously been observed in the comparison

between left-lateralized verbal functions versus right-lateralized nonverbal functions. This might

suggest complementarity of the two functions within the brain; however, where individual differences

in these biases have been assessed, several studies have found them to be dissociated ([17–21], cf. [22]).

Again, handedness has been noted as an important factor, with right-handers showing less evidence of

complementarity of verbal and visuospatial functions than left-handers [21]. Here, we consider whether

similar dissociations might be found within the domain of language. Although previous investigators

have considered association or dissociation in average patterns of activation for different tasks [23,24],

there has been little previous research documenting individual differences in task-related variation.

Inconsistent LIs from task to task could simply reflect noisy measurement, making dissociations hard to

interpret. Thus, in order to throw light on individual differences in language laterality, we need to

include repeated measures, so that the reliability of LIs from different tasks can be assessed.
sci.6:181801
1.4. Simulated data to illustrate predictions
It is possible to integrate models of task variation in lateralization with a model of individual differences

in the kind of framework shown in figure 1. The script used to generate this simulated data can be found

on Open Science Framework (OSF; https://osf.io/dbm4p/). For simplicity, this shows simulated data on

just two tasks, A and B, to contrast predictions from different models of the structure of language

lateralization. The Population Bias model is the simplest: it shows a population bias to left-sided

language laterality (i.e. positive LI values) that does not depend on the task. There are no consistent

individual differences: any variation in laterality is just caused by random error. This is not a very

plausible model, but provides a useful starting point from which to build more complex scenarios.

Formally, the function of predicting an individual’s LI is as follows:

LIij ¼ aþ eij

where i indexes the task, and j the individual, a is an intercept term corresponding to population bias,

and e is random error.

In the Population Bias model, the mean LIs for different language tasks (shown by the horizontal and

vertical red dotted lines) are all the same and equal to a (in this case set to 1). Note that because there are

no stable individual differences, the correlations between LIs for the same task measured on different

occasions (left-hand panel), and between different tasks measured on the same occasion (right-hand

panel) are zero.

The second model is the Task Effect model. This incorporates consistent task-specific variation,

without any stable individual differences. Formally,

LIij ¼ aþ ti þ eij

where ti is a task-specific term. The only difference from the Population Bias model is that the means

differ for different tasks—i.e. tasks A and B have mean LIs of 1 and 2, respectively. Again, variation

in individuals’ LI scores is due to random error (e), rather than any systematic individual differences,

as evidenced by zero test–retest correlations.

The next model is a Person Effect model. This includes stable individual differences: a person’s score

on any test occasion depends on an intrinsic lateral bias, which is constant from task to task but varies

from person to person, i.e.

LIij ¼ aþ ti þ pj þ eij

where pj is the person-specific term. This model predicts significant correlations between the same task

tested on different occasions, and different tasks tested on the same occasion. An important point is that

these correlations depend solely on the relative contribution of individual difference ( p) versus random

noise (e) to the LI. It does not matter whether there are also task-related effects (t) on the LI. Thus, in the

example, we have one task that is lateralized (mean LI of 2) and one that is not (mean LI of 0), yet on this

model, the test–retest correlation for either task will be the same, and equivalent to the cross-task correlation.

https://osf.io/dbm4p/
https://osf.io/dbm4p/
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3. Person Effect: LIij = a + ti + pj + eij
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4. Task × Person Effect: LIij = a + ti + pj + xij + eij
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Figure 1. Simulated data of different theoretical models of variance across sessions (1 and 2) and tasks (A and B) in language
lateralization. Red dotted lines show the mean lateralization index (LI) for the task/session. For further details, see https://osf.
io/dbm4p/.
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The final model incorporates a Task by Person Effect: i.e. there are stable individual differences that

show up as significant test–retest reliability on any one task, but the rank ordering of lateralization varies

from task to task, so cross-task correlations are low. Formally,

LIij ¼ aþ ti þ pj þ xij þ eij

https://osf.io/dbm4p/
https://osf.io/dbm4p/
https://osf.io/dbm4p/
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where xij reflects a contribution that is specific to the task and the individual. The depicted scenario in

figure 1 is an extreme one, with no relationship between a person’s laterality on tasks A and B; in

practice, there could be significant cross-task correlations, but if the within-task correlations are higher

than cross-task correlations, then this would be evidence that individual differences in laterality are to

some extent task-specific.

A key point illustrated by these simulations is that testing the multivariate model of language

laterality at the population level requires different evidence—i.e. testing between means—than a

multivariate model of individual differences, which requires us to consider correlations within and

between tasks. Furthermore, predictions from these two types of model are independent, because

correlations are not influenced by mean values.

We used SEM to evaluate the relative fit of these four models to data on language lateralization for

participants who have LIs assessed on a range of tasks on two occasions. SEM was used for a number of

reasons, including: (i) it allowed us to model the unobserved factors (also known as latent variables or

constructs) predicting lateralization strength across the observed tasks and sessions (also known as

manifest variables or indicators), (ii) it modelled both the mean strength of lateralization for each task

as well as the covariance between tasks, (iii) it explicitly modelled the residuals associated with each

latent variable, which allowed measurement error to be accounted for, and (iv) it allowed for different

models to be compared directly using likelihood ratio hypothesis testing.

1.5. Hypotheses
We pre-registered a set of hypotheses that were tested through SEM model comparison, as described in

the Methods.

We first tested two hypotheses concerning the group mean LI values. First, we tested the dorsal

stream hypothesis [10], which predicts that strength of lateralization depends on the extent to which

tasks map on to the dorsal versus ventral speech processing streams (dorsal ¼ stronger left

lateralization). Second, following Dhanjal et al. [12], we tested the lexical retrieval hypothesis, which

maintains that lateralization depends on the extent to which tasks require lexical retrieval (more

lexical retrieval ¼ stronger left lateralization).

A second set of hypotheses concerned individual differences in LI value. We predicted that a Task by

Person Effect model, whereby covariances between tasks were modelled by two latent factors, would

give a better fit to the data than a Person Effect model, where covariances were modelled by only one

factor.

Our approach was to use SEM to test a series of pre-specified, hypothesis-driven models. This differs

from using SEM to identify an optimal fit to the data via post hoc model modifications. We fitted all models

without modification from our pre-registered analysis plan and, to this end, we have reported the fit of

every model, even suboptimal ones, as the important detail is whether they offer an improved fit

relative to previous models in the series. This approach is of particular importance in designs with

(relatively) small sample sizes and low degrees of freedom, where overfitting is a real concern.
2. Methods
2.1. Pre-registration and data sharing
This project was pre-registered on OSF prior to data collection, and all task materials, analysis scripts and

anonymized data can also be found on OSF (https://osf.io/tkpm2/). A number of changes were made to

the analysis plan after collection of the data—an updated protocol is documented here: https://osf.io/

bjsv8/. Departures from the original protocol are explained in the Departures from pre-registered

methods section.

2.2. Design
A test–retest, within-subject design was used. Lateralization of brain activity was measured using

functional transcranial Doppler sonography (fTCD) during six language tasks: (A) List Generation, (B)

Phonological Decision, (C) Semantic Decision, (D) Sentence Generation, (E) Sentence Comprehension

and (F) Syntactic Decision. Participants were tested on two sessions spaced by between 3 days and 6

weeks. Hence, each participant provided data from six tasks tested twice (A1-F1, A2-F2).

https://osf.io/tkpm2/
https://osf.io/tkpm2/
https://osf.io/bjsv8/
https://osf.io/bjsv8/
https://osf.io/bjsv8/
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2.3. Participants

A sample size of n ¼ 30 was determined by simulations of data from six tasks administered on two

occasions, to determine the smallest sample size that would reliably distinguish data generated from a

two factor versus single factor model, and give acceptable fit indices (see SEM_power_test.R, https://

osf.io/r5e3p/). The simulations were based on the models of covariances, as the factor structure of the

measures is our primary interest, and this gave a more conservative power estimate. We note that

the sample size is small relative to those usually recruited for SEM analyses. However, because all

measures were taken twice, with no practice effects expected (on the basis of previous studies with

this method), there are several estimates of most parameters. For instance, the correlation between LIs

for tasks A and B is estimated from A1B1, A1B2 and A2B2. Thus, the repeated measures give low

degrees of freedom relative to the number of measures.

In our original study pre-registration, we did not plan to select participants according to handedness.

However, both prior literature and our own preliminary data indicated that it would be advisable to treat

right- and left-handers separately, as the pattern of associations between language tasks appeared to

differ according to handedness, so combining handedness groups could give a misleading picture. We

became concerned that results from our pre-registered analysis on 30 participants (seven left-handers)

were potentially misleading, as the factor structure that emerged seemed driven by a few left-handers.

We, therefore, tested additional participants to give a total sample of 30 right-handers and seven

left-handers, and we report analysis based on this larger sample as exploratory results.

All participants gave written informed consent. Procedures were approved by the University of

Oxford’s Medical Sciences Interdivisional Research Ethics Committee (approval number R40410/

RE004). Subjects were recruited using the Oxford Psychology Research Participant Recruitment

Scheme (https://opr.sona-systems.com) and by poster advertisements. The inclusion criteria were:

aged 18–45 years; English native language speakers; and with normal or corrected to normal hearing

and vision. Exclusion criteria were: a history of significant neurological disease or head injury; or a

history of developmental language disorder.

It was not possible to record a Doppler signal via the temporal window in three participants. In these

cases, the participant was reimbursed but not tested further, and another participant was recruited in

their place. One participant had excessive motion artefacts in his first session, so another participant

was recruited in his place. The initial group of 30 participants (17 female and seven left-handed) had

a mean age of 26.0 years (s.d. ¼ 7.2 years; range: 19.2–45.1 years). The final group, including seven

additional right-handers (two females) had mean age 25.9 years (s.d. ¼ 6.8 years) with the same

age range.

2.4. Procedure
The order of the six language tasks was counterbalanced between subject and session. At each session, 15

trials of each task type were conducted with breaks in between tasks.

2.5. Language tasks
The six tasks were designed to be matched in trial structure, as far as feasible, so that differences in

laterality should reflect as far as possible the linguistic task demands. The number of trials per

condition was the same for all tasks. We manipulated the task timings so that trial lengths (and

therefore the time on task and time since baseline) would be the same for all conditions. We were

able to make the timings within a trial for the phonological decision, semantic decision and sentence

comprehension tasks identical. Pilot testing was carried out and difficulty levels were titrated to make

task performance (accuracy and reaction time (RT) for decision tasks; the number of words spoken for

speech production tasks) as similar as possible between tasks. The first five tasks had a visual

stimulus on each trial presented against a grey background, to keep the visual demands as similar as

possible; the sixth task involved presentation of written words. All stimulus materials are available on

OSF (https://osf.io/8s7vn/).

The rest period prior to stimulus presentation was used for baseline correction to equate the left and

right channels. Trials were 33 s long, and followed the structure shown in figure 2. Trials started with the

word ‘CLEAR’ on screen for 3 s, indicating that participants must clear their mind in preparation for the

next trial. The language task followed, lasting for 20 s. Procedures for each task type are detailed below,

and examples of stimuli are shown in figure 3. Note that for tasks B, C, E and F, participants made

https://osf.io/r5e3p/
https://osf.io/r5e3p/
https://osf.io/r5e3p/
https://opr.sona-systems.com
https://opr.sona-systems.com
https://osf.io/8s7vn/
https://osf.io/8s7vn/
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Figure 3. Example stimuli for the language tasks. From left to right: picture stimulus for List Generation task (a; recite months of
the year); a matching picture pair (book/hook) for the Phonological Decision task (b); a matching picture pair for the Semantic
Decision task (c); picture stimuli for the Sentence Generation task (d ); and a picture pair for the Sentence Comprehension task
(e; The dog chases the girl who is jumping).
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responses to a series of stimuli on each trial to ensure the participant was engaged in language processing

throughout the activation interval. Rapid presentation of multiple stimuli in a trial has been shown by

Payne et al. [25] to maximize lateralized activation in fTCD. After the task, ‘REST’ appeared on screen

for 10 s, during which participants were required to clear their minds.

2.5.1. List generation

This task was based on the reference task used by Mazoyer et al. [8]. Participants were asked to recite an

automatic sequence of words (non-propositional speech) in response to a picture. In each trial, a line

drawing was displayed on a grey background for 3 s. Participants were trained to produce different

sequences for different pictures: reciting the numbers from 1 to 10, the letters from A–J, the days of

the week or the months of the year. A fixation cross was then presented in the centre of the screen for

11 s, during which the participant recited the words covertly (silently) in their head. Following this, a

‘REPORT’ prompt was shown for 6 s, indicating that participants should say the sequence aloud.

Similar tasks in fMRI [12] and fTCD [26] showed bilateral activations. The list generation task

involves generation of phonological output, and so should index the dorsal stream, but because it

involves repeated, overlearned material, it does not implicate the ventral stream; nor does it place

demands on lexical retrieval. Thus, the two specific theories of interest make contrasting predictions

about this task.

2.5.2. Phonological decision

Participants were required to make a rhyme judgement on pairs of words represented by pictures. The

pictures were easily nameable line drawings of single syllable words, mostly taken from the

International Picture Naming Project (IPNP) database (https://crl.ucsd.edu/experiments/ipnp/

index.html) [27]. The pictures were arranged into 45 rhyming and 45 non-rhyming pairs (based on

pairings devised by Bishop & Robson) [28]. Rhyming and non-rhyming pairs did not differ

significantly on orthographic similarity (assessed using MatchCalc software, http://www.pc.rhul.ac.

https://crl.ucsd.edu/experiments/ipnp/index.html
https://crl.ucsd.edu/experiments/ipnp/index.html
https://crl.ucsd.edu/experiments/ipnp/index.html
http://www.pc.rhul.ac.uk/staff/c.davis/Utilities/MatchCalc/
http://www.pc.rhul.ac.uk/staff/c.davis/Utilities/MatchCalc/
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uk/staff/c.davis/Utilities/MatchCalc/). For each trial, a series of six picture pairs were presented,

each for 3.33 s (totalling 20 s). For each pair, the participant decided whether the words represented

by the pictures rhymed or not, and responded by button press.

Similar rhyme decision tasks in fMRI [29] and fTCD [25] elicited left lateralization. This task involves

implicit generation of lexical items and their phonology, but does not require access to conceptual

meaning. Both the dorsal–ventral stream theory and lexical retrieval theory predict it should be

strongly lateralized.

2.5.3. Semantic decision

This task involved a semantic category judgement on objects represented in a pair of pictures.

The design of this task closely matched that of the phonological decision task. The pictures were mostly

taken from the IPNP database, as described above. The stimuli were matched for word familiarity,

orthographic neighbourhood, imageability, number of phonemes and frequency. Six picture pairs were

presented, each for 3.33 s. For each pair, the participant decided whether the objects were from the

same semantic category or not (e.g. both types of food) and responded by button press.

In fMRI, similar semantic decision tasks elicit left lateralization of ventral language areas [30,31], and

in fTCD it has shown to have moderate and highly reliable left lateralization [4,32]. For this task, it is

necessary to access conceptual meaning, but generation of word names is not implicated. This, then,

can be regarded as indexing the ventral stream. Both the dorsal–ventral stream theory and the lexical

retrieval theory predict weak lateralization for this task.

2.5.4. Sentence generation

This task required participants to generate spoken sentences in response to line drawings, following

methods described by Mazoyer et al. [8], but using pictures that were more culturally appropriate for

UK participants.

For each trial, a black line drawing was displayed on a grey background for 3 s. This was followed by

a fixation cross for 11 s, during which the participant was required to covertly generate a sentence.

Participants were trained in advance to generate sentences beginning with a subject (e.g. ‘the boy’),

followed by a description of the subject (with marbles), a verb (plays) and ending with a detail about

the action (on the floor). A ‘REPORT’ prompt was then presented for 6 s, and participants were

required to say their sentence aloud.

In fTCD, this task has been shown to be strongly left lateralized [26]. In fMRI, picture description has

been shown to activate dorsal stream areas including the posterior temporo-parietal cortex, premotor

cortex and inferior frontal cortex; but also ventral regions such as posterior and anterior portions of

the middle temporal gyrus [8,33]. These activations were bilateral, but biased to the left. This task

implicates both dorsal and ventral streams, and so might be expected to show weaker lateralization

than purely dorsal tasks. By contrast, the lexical retrieval theory predicts strong lateralization.

2.5.5. Sentence comprehension

This task required participants to decide which of two pictures corresponded to a spoken sentence. Each

trial comprised six picture pairs, each presented for 3.33 s, along with a spoken sentence that matched

one of the two pictures. The sentences were spoken at a rapid pace and included some involving

complex grammar with long-distance dependencies, such as ‘the shoe on the pencil is blue’, or ‘the

cow that is brown is chasing the cat’. Participants indicated which of the two pictures matched the

sentence by button press.

This task would appear to stress the ventral more than the dorsal stream, and so might be predicted

to have relatively weak lateralization. Auditory comprehension tasks have previously been shown to

activate left-lateralized ventral language areas [34,35] and have shown moderate left lateralization

with fTCD [36]. The task is hard to categorize in terms of lexical retrieval: it is necessary to hold word

meanings in memory while working out the meaning, though overt word generation is not required.

2.5.6. Syntactic decision

This task was designed to isolate syntactic processing with minimal involvement of semantics. This task

uses ‘Jabberwocky’ stimuli, based on a study by Fedorenko et al. [37], where content words of sentences

are replaced by plausible non-words. Half of the stimuli were ‘sentences’, where function words, word

http://www.pc.rhul.ac.uk/staff/c.davis/Utilities/MatchCalc/
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order and morphological cues were preserved to make the stimuli recognizable as syntactically valid

sentences (e.g. The tarben yipped a lev near the kruss). The other half had a pseudorandom word

order and were not perceived as sentences (e.g. Kivs his porla her tal ghep in with).

Each trial contained three Jabberwocky stimuli of eight words. Words were presented sequentially at

the same time as an audio recording of the spoken word. As all spoken words were recorded separately,

there were no prosodic cues to whether the stimulus is a ‘sentence’ or not. Each word was presented for

0.7 s, and the sequence was followed by a question mark for 1 s (making a total of 6.7 s for each

Jabberwocky stimulus). The participant was required to respond by button press following the ‘?’

prompt to indicate whether they thought the sequence formed a sentence or not.

An fMRI study using Jabberwocky sentences [38] showed small areas of left posterior superior

temporal and inferior frontal gyri that were sensitive to the syntactic structure of sentences in the

absence of meaningful semantics. In terms of the dorsal–ventral stream account, this task is predicted

not to show lateralization, as it is a purely receptive task. This was the only task involving

non-words, and should not be lateralized according to a lexical retrieval account.

2.6. Behavioural analysis
For tasks A and D, the average number of words generated for each trial was calculated. For tasks B, C, E

and F, percentage accuracy and average reaction time for correct trials (excluding trials where reaction

time was greater than 2 s.d. away from the mean) were calculated. The number of events where no

response was received was also recorded for each task—these events were scored as incorrect.

2.7. fTCD analysis
Our analysis of fTCD data departed from the method we pre-registered in three respects; sections

describing the altered methods are shown in italics, with a description and explanation of the change

shown in the section ‘Departures from pre-registered methods’.

The dependent measures derived from the fTCD analysis were the laterality indices (LI) from tasks A

to F at sessions 1 and 2. fTCD uses ultrasound probes positioned bilaterally over the temporal windows

to measure cerebral blood flow velocity (CBFV) in the left and right MCA. The probes emit ultrasound

pulses and detect reflected ultrasound signal. The frequency of the reflected ultrasound signal depends

on the speed of the blood moving in the MCA, due to Doppler shift. Hence the difference in frequency of

the emitted and reflected ultrasound signals can be used to determine the speed of blood flow. The data

are recorded as CBFV (cm s21) in the left and right hemispheres.

The fTCD data were analysed using a custom script in R Studio (RStudio Team, 2015). The script can

be found on OSF (https://osf.io/wku3s/). The CBFV data were first down-sampled from 100 to 25 Hz

by taking every fourth data-point. The data were segmented into epochs of 33 s, beginning 7 s before the

presentation of the ‘CLEAR’ stimulus at the start of the trial (27 s peri-stimulus time). Spiking or dropout

data-points were identified as being outside of the 0.0001–0.9999 quantiles of the CBFV data. If only a

single artefact data-point was identified within an epoch, it was replaced with the mean for that

epoch. If more than one data-point was identified, the epoch was rejected. The CBFV was then

normalized (by dividing by the mean and multiplying by 100) such that the values for CBFV become

independent to the angle of insonation and the diameter of the MCA. Heart cycle integration was

used to normalize the data relative to rhythmic modulations in CBFV. Each epoch was baseline corrected
using the interval from 25 to 2 s peri-stimulus time. Finally, artefacts were identified as values below

60% and above 140% of the mean normalized CBFV—any epochs containing such artefacts were rejected.

If a participant in one session had fewer than 12 acceptable epochs for any task (i.e. more than three of

the 15 epochs were rejected), the data for that task were excluded. If a participant had more than one task

excluded, all data for that participant were excluded.

The CBFV from left and right sensors was averaged over all epochs at each time-point, and the mean

difference (left minus right) within the period of interest was taken as the laterality index (LI). The period

of interest for tasks B, C, E and F was from 6 to 23 s peri-stimulus time. For tasks A and D, the period of

interest ended at 17 s to avoid activity related to overt speech production following the ‘REPORT’

prompt.

The LI value at each trial was also recorded, and used to calculate a standard error, which indicated

how variable the lateralization was over trials. Outlier standard error values were identified using

Hoaglin and Iglewicz’s procedure [39]. The standard error values for every LI measurement (across all

subjects, tasks and sessions; 360 values in total) were concatenated. The difference between the first

https://osf.io/wku3s/
https://osf.io/wku3s/


royalsoc
10
and third quartiles of the data was calculated (Q3 – Q1). In this dataset, outliers were defined as having

standard error value more than 2.2 times this difference above the third quartile (Q3); e.g. the threshold

limit ¼ Q3 þ 2.2 � (Q3 – Q1). Hence, if the LI value showed exceptionally high variability across trials, it

was deemed to be unreliable and therefore omitted from the final analysis.
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2.8. Departures from pre-registered methods
1. Baseline interval. The baseline interval was 2 s longer than that planned in the pre-registered protocol

(25 to 0 s), i.e. extending into the ‘Clear mind’ period. As shown in the electronic supplementary

materials, this baseline gives more stable estimates of LI than the original interval.

2. Definition of laterality index. In our pre-registered protocol, we planned to use a peak-based method

of measuring the laterality index (LI) developed by Deppe et al. [40], which has been standard in fTCD

studies of cerebral lateralization. This involves finding the absolute peak in the difference wave within the

period of interest and averaging the value of the difference over a 2 s time window centred on this peak.

The major limitation of this approach is that it creates a non-normal distribution of LI values, which

contributed to poor model fit in our SEM analyses, which assume normality. The mean-based method

that we report here gives LI values that are highly correlated with the traditional peak-based LI

(Spearman r ¼ 0.97), but with a normal distribution (see electronic supplementary material for further

details).

3. Outlier detection. In our pre-registered document, there was an error in our description of this

process; we mistakenly stated we would remove outliers based on LI scores, rather than the standard

error of the LI scores. Removing LI outliers would not be sensible in the context of this study, where

the focus is on individual differences; it would, for instance, lead us to exclude those with atypical

right-sided language laterality, who are of particular interest for our hypothesis. Our goal in outlier

removal was to exclude participants with noisy data, and the LI standard error is the appropriate

measure to use to achieve this goal.

4. SEM modelling. In addition to testing the models specified in the pre-registration document, we also

tested model fit of the best-fitting model using a leave-one-out procedure, which allowed us to check

whether the parameter estimates were unduly influenced by specific data-points. As described in the

electronic supplementary materials, our decision to test further right-handers was prompted by

discovering that there was undue influence from one left-hander, with the factor solution changing

when her data were omitted. Accordingly, we present here additional analyses with 30 right-handers

only, and with the full sample of 37 participants. We also computed the factor scores from the final

model and plotted these to aid interpretation of the factor structure. The SEM bifactor model requires

one variable to have fixed paths of 1 and 0, respectively, to the two factors. The fit of the model does

not depend on which measure is used for this purpose, but the specific path estimates will vary.

Given that the List Generation task was the only task with poor test–retest reliability, we present here

results using Sentence Generation for the fixed paths. This follows recommendations that the strongest

indicator for a specific factor should be used for the fixed paths [41].
2.9. Structural equation modelling
SEM, as implemented in OpenMx (https://openmx.ssri.psu.edu/), was used to test our hypotheses. All

analyses were conducted in R [42]. The script used to perform this analysis can be found on OSF

(https://osf.io/q8zka/). We distinguish between two sets of hypotheses: models of task effects, which

concerned predictions about means, and models of person effects, which concerned covariances. As

noted above, these are independent from one another. The models used to test each hypothesis are

described below and can be seen in figure 4.

We will briefly describe this approach, as it not widely used in laterality research. The aim is to test

how well a pre-specified model fits an observed dataset. Typically SEM is used to model covariances, but

it can also be used with means. Boxes denote observed variables, two-headed arrows show variances and

covariances. A triangular symbol denotes a mean value, typically set to one, with the path from the box

to the triangle corresponding to the mean value for that variable. Means can be set to be equivalent by

giving their paths the same label. We use capital letters for paths to means. For instance, in the Population

Bias model (figure 4), all paths to the mean are set to be the same, whereas, in the Task Effect

model (figure 4), the means differ from task to task, but within a task are the same from test session 1

to test session 2.

https://openmx.ssri.psu.edu/
https://openmx.ssri.psu.edu/
https://osf.io/q8zka/
https://osf.io/q8zka/
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task were fixed to be the same for each session. The triangle symbol denotes that this is a model of means: covariances between
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An oval symbol corresponds to a latent variable linking two observed variables: covariance between

two observed variables is computed as the sum of the product of the paths to those variables that are

linked by an oval. Paths to latent variables are shown as lower case letters. The difference between

modelling of means and covariances can be appreciated by comparing the Task Effect model and the
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Person Effect model in figure 4. These look similar, but the former depicts the situation where the means

for a task are constant across sessions, but covariances are not considered. Thus even if means are stable,

tasks may be unreliable in the sense that individual differences are just due to noise, and the rank order of

LIs of individuals is unstable. By contrast, the Person Effect model takes into account covariances, and is

a test of the reliability of the measures, assessing how far individuals are consistent in their LI across

occasions.

We report goodness of fit for each model relative to a ‘saturated’ model where all variables are

unconstrained, using the comparative fit index (CFI): a high CFI indicates good model fit, and it is

generally recommended that CFI needs to exceed 0.95 for the model to be regarded as a good fit to

the data. We also report the root mean square error of approximation (RMSEA), which is a measure

of badness of fit, and should ideally be below 0.08 [43].

Comparison of model fit to determine the most appropriate model is achieved using likelihood ratio

testing. Such comparisons are valid when we have nested models. For each hypothesis, we compare two

nested models computing the difference in 22 log likelihoods, and evaluated in terms of the difference in

degrees of freedom between the two models. The difference in log likelihoods follow a x2-distribution, so

a x2-test can be used to evaluate whether there is a statistical difference between the models. If a

significant difference is found, then one model will be a better fit to the data.

In general, when comparing a model against another more complex model, good model fit

corresponds to a non-significant p-value, which indicates that the more parsimonious model fits as

well as the more complex model, despite fewer degrees of freedom. Models that estimate many

parameters (and so have fewer degrees of freedom) will tend to fit the data better, and so the relative

fit of models is considered using indices that take this into account. Several indices that penalize the

likelihood ratio test are available, for example, Akaike’s information criterion or Bayesian information

criterion (BIC). Both these indices provide a value for each nested model and the lowest value among

all the models is the preferred model.

2.9.1. Step 1: testing stability of LI values

We began with a Fully Saturated model that modelled means and variances as totally independent, as

shown in figure 4 (top left). No correlations between LI values were modelled at this stage: the

triangular symbol denotes that the paths reflect the mean for each observed variable. As an initial

sanity check, we computed a Task Effect model where the LI value means and variances for each task

(A–F) were fixed to be the same at each testing session (i.e. the means and variances for A1 ¼ A2,

B1 ¼ B2, etc.). We predicted that the latter model would not deteriorate compared to the Fully

Saturated model, indicating that we would not need to specify separate means for different test occasions.

2.9.2. Step 2: testing models of means

Our first hypothesis proposed that a significant task effect on LI value would be observed; i.e. that the

mean LI values would vary between the six different tasks (tasks A–F). This was assessed by comparing

the two models shown in row 2 of figure 4: the Population Bias model and the Task Effect model.

The Task Effect model was then used as a baseline comparison model to test two more specific sub-

hypotheses regarding which tasks would show the strongest lateralization. In each case, we divided tasks

into three subsets, and fixed the means and variances for the tasks within each subset to be the same. We

adopted this approach to test the Dorsal Stream hypothesis and the Lexical Retrieval hypothesis.

2.9.3. Step 3: testing models of covariances

Two models of covariance were compared (figure 4, bottom). First, a Person Effect model was computed

where covariance was predicted by a single factor, i.e. was similar across all language tasks. This was

compared with a Person by Task Effect model, with two covariance factors. The Person Effect (single

factor) model is nested within the Task � Person Effect (bifactor) model, and so their relative fit can

be assessed by subtraction of negative log likelihoods.
3. Results
All data are available on OSF (https://osf.io/s9kx6/). Results from the pre-registered analysis protocol

(i.e. using the first 30 participants only) are shown in the electronic supplementary materials. As noted

https://osf.io/s9kx6/
https://osf.io/s9kx6/


Table 1. Behavioural data for tasks B, C, E and F. The table shows mean percentage accuracy and reaction times (with s.d.), and
results of t-tests comparing session 1 with session 2 for each measure. The number of omitted responses is reported as a
percentage of all events. B, Phonological Decision; C, Semantic Decision; E, Sentence Comprehension; F, Syntactic Decision.

measure session task B task C task E task F

accuracy (%) 1 91.3 (5.55) 95.9 (3.08) 92.5 (4.81) 89.6 (8.31)

2 93.3 (4.28) 95.0 (3.06) 94.2 (3.79) 89.4 (8.28)

1 versus 2 t ¼ 23.27,

p ¼ 0.002

t ¼ 1.61,

p ¼ 0.115

t ¼ 22.70,

p ¼ 0.011

t ¼ 20.07,

p ¼ 0.944

reaction times (s) 1 1.66 (0.22) 1.14 (0.2) 2.17 (0.12) 0.334 (0.08)

2 1.49 (0.21) 1.06 (0.2) 2.11 (0.15) 0.329 (0.07)

1 versus 2 t ¼ 8.73,

p , 0.001

t ¼ 4.77,

p , 0.001

t ¼ 3.27,

p ¼ 0.002

t ¼ 0.64,

p ¼ 0.528

omitted responses (%) 1 2.34 0.84 2.79 4.20

2 0.78 0.60 1.62 4.44
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above, the factor solution from this sample was unstable and unduly influenced by one left-hander. We

report here the results based on the final sample of 30 right-handers and seven left-handers, which gives

a stable solution, and we include exploratory analyses relating the findings to handedness. The LI values

reported here are based on the mean difference between left and right CBFV, as this gives normally

distributed variables, but the results are highly similar when the non-normal peak-based LIs are used

instead. The analysis script provided on OSF (https://osf.io/q8zka/) facilitates comparisons between

different analytic pathways.
3.1. Behavioural results
We did not have specific predictions for the behavioural results, but present them here for completeness.

For List Generation (A) and Sentence Generation (D), the number of words spoken per trial was recorded.

The number of words spoken in both tasks and sessions were very similar: for task A, session 1, mean ¼

9.5, s.d. ¼ 0.42, session 2, mean ¼ 9.6, s.d. ¼ 0.29; for task D, session 1, mean ¼ 9.2, s.d. ¼ 1.21, session 2,

mean ¼ 9.4, s.d. ¼ 1.24. A repeated measures ANOVA showed no significant effects of task (F1,36 ¼ 1.22,

p ¼ 0.278) on the number of words spoken, but there was a significant effect of session (F1,36 ¼ 5.73, p ¼
0.022) as participants produced more words at the second session. Trials where participants failed to

respond, or responded too early were excluded from analysis: these constituted less than 0.1% of trials.

For decision-making tasks (B, C, E and F), the accuracy and RT of each response, and the number of

omitted responses, were recorded (table 1). Note that for task F participants were required to wait until

the end of the word sequence before responding, and had only a second to respond; this accounts for the

fast reaction times and relatively high number of omitted responses in task F.

The Phonological Decision and Sentence Comprehension tasks (tasks B and E) showed evidence of

practice effects, as both accuracy and reaction times improved, and the number of omitted responses

fell from session 1 to session 2.
3.2. Lateralization results
Five outlier LI values were excluded where the standard error across trials was above the upper cut-off.

Six LI values were excluded because a subject had less than 12 useable trials for a given task in a given

session. The remaining data for these participants were retained in the analysis. Excluded data-points are

shown as red dots in figure 5.

Figure 5 shows the distribution of LIs as a pirate plot [44]. Task D (Sentence Generation) showed the

strongest left lateralization. Shapiro–Wilks normality tests showed that LI values for all 12 conditions

were normally distributed. One sample t-tests (testing for mean greater than 0) showed that all

conditions were significantly left lateralized, except task F (Syntactic Decision; session 1: t33 ¼ 0.77,

p ¼ 0.224; session 2: t36 ¼ 0.33, p ¼ 0.373).

https://osf.io/q8zka/
https://osf.io/q8zka/
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Figure 6 shows a correlation matrix of LI values for all tasks and sessions. Test–retest correlations

varied between tasks. Task A (List Generation) had poor test–retest reliability (Pearson’s r ¼ 0.13),

and low correlations with other tasks. Test–retest reliability for other tasks ranged from r ¼ 0.54 to

0.84. Tasks B, C, D and E were strongly intercorrelated. Task F (Syntactic Decision) had high

test–retest reliability (r ¼ 0.76) but relatively low correlations with other tasks.

3.3. Structural equation modelling
The LI data were entered into the SEM analysis to test hypotheses about the group mean LI values and

covariances in LI values across subjects. Table 2 summarizes the SEM results.

3.3.1. Step 1: testing stability of LI values

As shown in table 2, the fit of all the means-only models was very poor. This is to be expected, as these

models ignore covariances, and, as indicated in figure 6, there are substantial correlations both between

and within tasks. Our interest at this point, however, is in the relative fit of different models of means,

rather than overall model fit. The Fully Saturated model (with free means and variances) was compared

to the Task Effect model, which fixed the means and variances for each task to be stable over sessions (i.e.

A1 ¼ A2, B1 ¼ B2, etc.). The Task Effect model fit did not deteriorate significantly from that of the Fully

Saturated model, supporting the hypothesis that LI means for each task were stable across sessions.

3.3.2. Step 2: testing models of means

To demonstrate whether LI means differed between tasks, the Task Effect model (with different means

for each task) was compared to the Population Bias model (with means fixed to be the same for all tasks).

This may be seen as a null hypothesis that treats all tasks as equivalent measures of laterality. The

Population Bias model gave significantly worse fit (table 2), supporting the hypothesis that LI means

differed between tasks.

Two further models were compared to the Task Effect model. The Dorsal Stream model categorized

the language tasks according to the involvement of the dorsal or ventral stream. Tasks A and B were

categorized as involving strong dorsal stream activity, task C as strong ventral stream activity, and

tasks D, E and F as intermediate (hence, means for AB . DEF . C). This model gave significantly

poorer fit than the Task Effect model—as is evident from figure 5, which shows relatively weak

lateralization for tasks A and B compared to task D. The Lexical Retrieval model did not fare any

better. This categorized tasks B and D as involving strong lexical retrieval, whereas tasks A, C and F



Figure 6. Correlation matrix for LIs from the six language tasks given on two occasions.
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did not involve lexical retrieval, and task E was difficult to classify and so was considered as independent

of the other measures (BD . ACF). Again, this model gave a worse fit than the Task Effect model,

indicating that, while laterality varied between tasks, it did not fit either of the predicted patterns.

Note, however, that the pre-registered tests specified for both theories have some limitations, as

discussed further below.
3.3.3. Step 3: testing models of covariances

At Step 3, we tested whether the covariances between tasks had a single factor structure (Person Effect

model) or a bifactor structure (Task by Person Effect model). Not surprisingly, given the strong

correlations in figure 6, both within and across tasks, the Person Effect model gave a substantially

better fit than the Task Effect model (table 2); nevertheless, the overall fit of this model was poor. The

Task by Person Effect model gave a significantly improved fit. A plot of the two factors is shown in

figure 7: note that, although the model fit is not affected by task selection, the factor scores depend on

which task has fixed paths to the factors. The paths for the case when Sentence Generation is fixed are

shown in table 3. It can be seen that List Generation has only a weak loading on Factor 1, whereas

Phonological Decision, Semantic Decision and Sentence Comprehension have moderate loadings on

both factors. Syntactic Decision has a strong loading on Factor 2 but does not load on Factor 1,

reflecting the weak correlation of this task with Sentence Generation.

In our original analysis with 30 participants, a similar factor structure was observed, but there was a

concern that this depended solely on a single left-handed participant (see the electronic supplementary

material). With the larger sample of 37 participants, the bifactor (Task by Person Effect) model was

superior in all runs of a leave-one-out analysis. The bifactor model was also the best-fitting model

when only the 30 right-handers were included in the analysis. Nevertheless, it is clear from figure 7

that the two factors were highly intercorrelated, and the impression is that the bifactor solution is

heavily affected by some influential cases. Cook’s distance identified four bivariate outliers, marked

with circles in figure 7: all four outliers were left-handers. When the analysis was re-run omitting

these cases, the single factor model gave a better model fit when all N ¼ 33 subjects were included

(single factor BIC ¼ 2142.7, bifactor BIC ¼ 2138.6), and in all but one run of the leave-one-out analysis.

We can conclude from this analysis that, although univariate normality was satisfactory, our data did

not meet conditions of multivariate normality; this leads to the conclusion that the sample is

not homogeneous, but contains a mixture of laterality patterns. We discuss the implications of this

finding below.
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Table 3. Path weightings (and 95% confidence intervals) from each latent factor (Factor 1 and Factor 2) to each task (A to F)
from the winning bifactor model.

task

Factor 1 Factor 2

path 95% CI path 95% CI

A. List Generation 0.18 0.05 to 0.31 20.01 20.27 to 0.24

B. Phonological Decision 0.60 0.39 to 0.80 0.53 0.19 to 0.88

C. Semantic Decision 0.53 0.36 to 0.70 0.53 0.24 to 0.82

D. Sentence Generation 1.00 Fixed 0.00 Fixed

E. Sentence Comprehension 0.56 0.30 to 0.83 0.95 0.53 to 1.36

F. Syntactic Decision 0.13 20.13 to 0.40 1.16 0.76 to 1.56

20

r = 0.836

–10

–10 201510
Factor 1

Fa
ct

or
 2

50–5

0
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Figure 7. Correlation between two factors from the bifactor (Task by Person Effect) model, with left-handers shown in red, and
bivariate outliers as circles.
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In a final exploratory analysis, we tested whether the poor reliability of the List Generation task (A)

may have affected the SEM results. Re-running the SEM analyses with five tasks only (excluding List

Generation) did not change the rank order of the SEM model fits, or the significance of the model

comparisons. The bifactor model remained the best fit to the data, with path strengths very similar to

those shown in table 3. The results of this analysis are shown in the electronic supplementary material.
4. Discussion
The question of whether cerebral lateralization is a unitary function may be interpreted at two levels: at

the population level, we may ask whether all language tasks show a similar degree of lateralization, and

at the individual level, whether people show consistent differences in laterality profiles across tasks.

Although we used formal modelling to address these questions, a good insight into the answers can

be obtained by viewing figures 5 and 6. Figure 5 shows clear differences from task to task in the strength

of cerebral lateralization within the MCA territory, whereas figure 6 shows moderate-to-good test–retest

reliability for all but one task, coupled with significant cross-task correlations. This pattern of correlations

is indicative of a Person by Task interaction (as hypothesized in figure 1): there is a cluster of tasks (B, C,

D and E) that have strong cross-task correlations, indicating that they are driven by a common lateralizing

factor. By contrast, Task F has weak correlations with these tasks, despite having high test–retest

reliability. This suggests that lateralization on this task is driven by a second, independent factor.

The SEM analyses provided an economical approach for considering a range of hypotheses within a

single framework, allowing us to test statistically whether this pattern between tasks was significant.

SEM was used as it allowed us to formalize our hypotheses in statistical models that could then be

compared using likelihood ratio significance tests, rather than making subjective inferences from the

pattern of means and correlations alone. Regarding means, as expected, a null hypothesis of no

difference between tasks could be convincingly rejected. However, the specific patterns that we
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predicted should be seen on the basis of two existing models—the Dorsal Stream model and the Lexical

Retrieval model—did not give a good fit. It could be argued that the data are, in fact, consistent with the

Dorsal Stream model, insofar as the three tasks that involved implicit or explicit generation of speech—

List Generation, Phonological Decision and Sentence Generation—were the ones that showed the

strongest lateralization (figure 5). The poor fit of the Dorsal Stream model was, in part, due to the fact

that Sentence Generation was judged to implicate both streams, and was not, therefore, predicted to

be as strongly lateralized as tasks with weaker semantic demands. However, it clearly makes

demands on the phonological-articulatory system, and with hindsight it could be argued that in terms

of articulatory complexity it was more demanding than the other tasks. A key question is whether

blood flow measured using fTCD reflects the average of activity in a lateralized dorsal stream and a

bilateral ventral stream, or whether the absolute dorsal stream activity is the main factor affecting the

LI. In future, we plan studies to address this question using fMRI.

More generally, based on the pattern of results observed in this study, it appears that whole-

hemisphere lateralization as measured by fTCD is driven most strongly by the generation of

meaningful, connected speech (e.g. Sentence Generation). Lateralization for this task was stronger than

for automatic, non-propositional speech (List Generation) or implicit sub-vocalization (Phonological

Decision). By contrast, lateralization was non-significant for the Syntactic Decision task.

We would, however, emphasize the need for caution in treating any one task as an indicator of a

particular language function: it is evident that even minor modifications to task demands may affect

laterality, particularly when sample size is relatively small. For instance, in a related study with a

different sample of people, we recently found that List Generation was not lateralized [26]. In that

study we interleaved a simple number generation (counting) task with trials of Sentence Generation,

whereas in the current study, List Generation was administered in a separate block, with the type of

list (numbers, days of the week, months of the year) varied to engage the participants’ attention

throughout the block. Although the counting task used by Woodhead et al. [26] was not significantly

lateralized, it had good split-half reliability and was significantly correlated with Sentence Generation,

whereas the List Generation task used in the current study was the only task to show poor test–retest

reliability and relatively weak correlations with other tasks. Furthermore, our Semantic Decision task

was designed to tap into similar semantic processes as the pyramids and palm trees test [45], but

resulted in weaker LIs than seen in a study by Bruckert [32] using the pyramids and palm trees task.

It could be that the two-alternative forced choice task used in that study was more demanding than

our match/no-match decision, but this kind of difference cautions us about relying on a single test to

indicate a type of linguistic processing.

One convincing point to emerge from the analysis of mean data is that most language tasks (B, C, D, E

and F) showed stable lateralization measured in different sessions, but they differed in terms of the

strength of left lateralization. The question of why task A (List Generation) had such low test–retest

reliability remains open, but it is possible that the covert generation of speech sequences was not

sufficiently engaging to elicit robust, reliable brain activity. The behavioural measure used for this task

(number of words spoken) is not a very useful index of engagement in the task, as the overt speech

generation could be performed perfectly even if the participant did not covertly generate the words at

all. This is in contrast to task D (Sentence Generation) where covert generation would aid the

participant’s overt sentence reporting.

We acknowledge that the SEM models of means had poor fit but they were not required to fit the data

well as they were probably an over-simplification of the underlying structure. We only sought to discount

them as viable, more parsimonious models than the later complex models. The poor model fit limits their

interpretability; but our intention was not to interpret them in isolation. Rather, we view them as

stepping stones along the way, by identifying the optimal structure to explain the LI means prior to

adding the covariance structure. Only the later models achieved satisfactory fit for interpretation.

We turn next to the findings concerning covariances. It has been argued that fTCD is not useful for

studying cerebral lateralization because it is unreliable [22], but our data support those of Stroobant &

Vingerhoets [46] in demonstrating that there is significant individual variation in language laterality

between people that cannot just be attributed to noise. Furthermore, by moving from a definition of

laterality based on a peak in the L-R difference wave to a definition based on mean L-R difference

within a period of interest, we avoid the problem that can arise when laterality is forced into a non-

normal distribution (see also [26]). As shown in figure 5 and our tests of normality, when mean L-R

difference is used, the distribution of LI values is normal.

The SEM also tested whether a single factor could explain individual differences in language

lateralization. At first glance, the results suggested that this was not the case: the bifactor (Task by
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Person Effect) model showed superior fit over a single factor (Person Effect) model. This was the

conclusion suggested by our initial pre-registered analysis, based just on a sample of 30 individuals. A

leave-one-out analysis, however, made us cautious about accepting that result at face value, because

the factor structure changed when a single left-hander with strongly complementary laterality on two

tasks was excluded. For this reason, we collected more data, adding seven right-handers to the

sample. With this larger sample, we again found superiority for a bifactor solution, regardless of

whether we included only right-handers or the full sample including left-handers. Yet there remained

misgivings about the generalizability of the result, not least because the two factors were highly

correlated (Pearson’s r ¼ 0.84). A scatterplot of the two factors revealed a number of bivariate outliers

and, as with our initial analysis, the pattern of results relied on which participants were included. Of

course, it is not surprising that removing participants with the strongest dissociation between factors

changes the factor structure: the point we wish to make is not that the results can alter in this way,

but rather that the pattern of our SEM findings appears driven by heterogeneity within the sample,

reflected in the presence of bivariate outliers.

These results indicate that SEM can be useful for studying individual variation in patterns of

laterality, but it needs to be interpreted with caution. It can be tempting to focus on achieving a good

model fit, but, as Hooper et al. [47] noted, the purpose of SEM should be model-testing, and even a

well-fitting model may be suboptimal. Our data illustrate that point clearly: having found support for

a bifactor model with no paths between the latent factors, we expected that we would have two

independent factors that were binormally distributed. By performing further checks in terms of a

leave-one-out analysis and visualization of the two extracted factors, it became clear that this was not

the case, and that our data contained a mixture of two subgroups. One the one hand, we can

conclude that SEM is not optimal for investigating multivariate aspects of laterality, because it

assumes multivariate normality. On the other hand, by applying SEM and studying the anomalies

that resulted, we gained insights into the heterogeneous nature of our sample.

The answer to the question of whether laterality is a unitary function is that, clearly, there are some

individuals in whom laterality is different for different aspects of language. It is not, however, the case

that there are two factors that act independently in the general population. Rather, the majority of people

appear to have language laterality driven by a single process affecting all types of task, with a minority

showing fractionation of language asymmetry. This is consistent with observations of discrepant

hemispheric dominance for different language functions [3–5], which occurs in a small minority of

participants.

The pattern of results is also consistent with accounts of laterality that postulate qualitative rather

than just quantitative differences between individuals. Theoretical accounts have mostly focused on a

single dimension, arguing for laterality subgroups on the basis of non-normal distributions of scores

(e.g. [8]). Our results suggest that atypical laterality may be easier to identify when more than one

language measure is considered, as detection of bivariate outliers can be effective with smaller

samples than those required for detecting mixtures of distributions.

An association between atypical laterality and left-handedness has been established for many years,

ever because early observations were made of superior recovery from aphasia after gun-shot wounds in

left-handers [48]. However, most of the emphasis has been on atypical laterality in the sense of having

language mediated by the right hemisphere. Although the number of left-handers in our sample is

too small for numeric analysis, the fact that all of the four bivariate outliers were left-handers is a

striking departure from chance and compatible with the idea that language lateralization is more

likely to be multifactorial in left-handers than right-handers.

Further studies are needed to establish the key characteristics of tasks that index the two factors seen

in some people, but we offer here some speculations. The main contributor to the second factor was the

Syntactic Decision task, which differed from the other tasks in several regards. It used unfamiliar, non-

word stimuli, and required the listener to identify syntactic errors. It was one of two receptive language

tasks that involved processing of auditory language: the other was sentence comprehension, which had

moderately strong loadings on the second factor. Perhaps the most surprising finding from this study is

the fact that the one task that loaded on to the second factor (Syntactic Decision) was not lateralized, yet

showed high test–retest reliability (R ¼ 0.76). We had anticipated that a lack of lateralization on a task

might be a consequence of noisy data giving poor test reliability—or alternatively a lack of individual

variation if both hemispheres contributed equally in most people. Our data suggest that individuals

do vary in the hemisphere used when doing the syntactic judgement task, and that this bias is

reliable, but that it is not systematic across the population. A similar finding was recently reported in

an fMRI study investigating the validity and reliability of different language paradigms, which
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showed that a picture naming task showed high test–retest reliability despite not being lateralized [49].

These findings demonstrate that strength as well as direction of lateralization for a task are both stable

traits.

4.1. Limitations
As noted above, the principal limitation of fTCD is that it does not allow one to localize lateralized

activity within a hemisphere. LI as measured in fTCD reflects only the difference in blood flow within

the left and right MCA territories, and is insensitive to activation outside of those areas. In future

work, we plan to extend this line of investigation to consider whether similar patterns of lateralization

can be seen using comparable tasks with fMRI. The benefit of fTCD is that it is relatively inexpensive

and quick to administer, and so enables us to gather data that can be used as a basis for developing a

more hypothesis-driven approach that can then be extended and validated with fMRI.

A further limitation is that we lacked statistical power or range of measures that would be needed to

evaluate more complex models. The bifactor model that gave the best fit in our study must be interpreted

with caution. It will need to be replicated in larger samples and shown to generalize to new tasks—it

remains a possibility that using a different set of tasks would reveal different or further fractionation

of language lateralization. Furthermore, although we have shown a bifactor model is a better fit than

a single factor model, it is possible that more than two factors are needed to explain the full range of

patterns of language lateralization.

4.2. Summary
In summary, these results indicate that there are meaningful differences in language lateralization

between tasks, and meaningful individual variability in lateralization that is not simply due to

measurement error. Even when a language-related task is not left lateralized, there are stable

individual differences in the contribution of the two hemispheres. SEM of individual variability

indicated that although a two-factor model gave a better fit than a single factor model, the effect was

driven by a small subset of participants with discrepant laterality, and a single factor could account

for variation in the majority of participants. Overall, our findings suggest there are qualitative as well

as quantitative differences between people in laterality across tasks, and that consideration of

asymmetry profiles on several tasks together can help identify cases of atypical laterality.
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