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Abstract 

The current model of the basal ganglia system based on the “direct”, “indirect” and “hyperdirect” 

pathways provides striking predictions about basal ganglia function that have been used to develop 

deep brain stimulation approaches for Parkinson’s disease and dystonia. 

The aim of this short article is to challenge this scheme in light of new tract tracing information that 

has recently come available from the human brain using MRI-based tractography,  thus providing a 

novel perspective on the basal ganglia system. We will also explore the implications of additional 

direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in 

the pathophysiology of movement disorders. 
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Introduction 

Current knowledge of the functional circuitry of basal ganglia (BG) and cerebellum is mostly derived 

from data collected in rodents and primates with tract-tracing invasive approaches, immunochemistry 

and in situ hybridization techniques (DeLong, 1990) . Although they still represent the gold standard 

for anatomical brain connectivity studies, these techniques are restricted to animals (Nambu et al., 

2000; Lu, 2011) and have limitations (Ugolini, 2011). The development of diffusional resonance 

imaging (dMRI) and tractography has provided a new, powerful tool to explore, noninvasively, 

anatomical brain connectivity in humans (Henderson, 2012) allowing us to reconstruct major white 

matter (WM) fiber pathways with directional information provided by diffusion weighted images 

(DWI) (Basser et al., 2000). While accuracy and reliability of streamline tractography are currently 

a matter of debate, efforts have been made to understand its limits (Nucifora et al., 2007; Ciccarelli 

et al., 2008) and have prompted research groups to develop and improve tractographic outcomes 

(Côté et al., 2013). 

One of the most promising approaches is Constrained Spherical Deconvolution (CSD), a modeling 

technique that overcomes the well-known limitations of classic Diffusion Tensor Imaging (DTI) by 

solving partial volume effects and allowing a faithful reconstruction of complex fibers configurations 

within a single voxel (Tournier et al., 2007, 2008). In the present review, we will summarize the 

results of recent work in humans on the cortico-basal-cerebellar connectome using the non-invasive 

DWI-based approach with subsequent CSD-based tractography.  The physiological and clinical 

relevance is also discussed.  

 

The “classical” cortico-basal ganglia-cerebellar connectome 

According to the classical view, cortical outflow reaches basal ganglia via two major projection 

systems: the direct and the indirect pathways that originate from segregated populations of striatal 

neurons and have opposite effects upon the basal ganglia output (Alexander et al., 1986).   

Superimposed on this system, is the “hyperdirect pathway” that conveys input from the cortex to the 

pallidal outflow neurons via the subthalamic nucleus (STN) (Nambu et al., 2002; Sano et al., 2013). 

In this scheme, the basal ganglia lie in an information loop whose major function is to take input from 

the cortex and return it, once processed, via the thalamus back to both the cortex and directly back to 

the striatum via a direct thalamo-striatal connection. Despite its apparent simplicity, this model 

provides striking accurate predictions about basal ganglia function that have been used to devise deep 

brain stimulation (DBS) approaches to the basal ganglia diseases such as Parkinson’s disease (PD) 

and dystonia. 
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In the past ten years it has become possible using DWI and tractography to visualize this connectivity 

within the human brain, and even to distinguish variation in connectivity between individual brains. 

Thus, all the main pathways, including direct, indirect and hyperdirect pathways, plus the 

pallidothalamic, nigropallidal and thalamo-striatal projections, have all been successfully 

characterized to allow an in vivo, comprehensive reconstruction of the basal ganglia connectome 

(Lehéricy et al., 2004; Draganski et al., 2008; Verstynen et al., 2011; Forstmann et al., 2012; Lenglet 

et al., 2012). 

 

Additional connections identified with CSD-tractography in human brain 

The overall pattern of basal ganglia connectivity has been strikingly preserved over evolution and 

can be demonstrated even in the primitive brain of the lamprey. In the present note we wish to draw 

attention to additional pathways identified in the human that superimpose a more direct cortical 

control on basal ganglia output that bypasses the major relay in the striatum. 

Our recent work using High Angular Resolution Diffusion Imaging CSD-based tractography 

has allowed us to identify a direct connection between cortex and the external and internal 

segment of globus pallidus (GP). (see Figures 1-2).  In particular there are  extensive inputs 

from frontal (paracentral, precentral, middle –MFG-, superior -SFG- and inferior frontal gyri) 

and parietal (inferior, medial, supramarginal and precentral gyri) lobes to the external segment 

of the globus pallidus (GPe) and a smaller range of connections from SFG and pre/postcentral 

cortex to internal segment of the globus pallidus (GPi) (Milardi et al., 2015, Cacciola et al., 

2017a).  

However, some caution is needed in interpreting these findings, as cholinergic cells reside along the 

internal and external medullary lamina between the two pallidal segments. Therefore, it cannot be 

ruled out that some of the presumed cortico-pallidal projections are, instead, fibers targeting these 

cholinergic neurons (Milardi et al., 2015; Smith and Wichmann, 2015).  Nevertheless, the presence 

of a direct cortico-pallidal pathway has been confirmed by a recent study using probabilistic 

tractography (Middlebrooks et al., 2018) and also by recent DBS data from GPi-implanted dystonic 

patients showing a robust band of coherence in the beta band linking the motor cortex with GPi that 

could be mediated by a direct cortico-pallidal connection (Neumann et al., 2015, Cacciola et al., 

2016b). 

Although our data were the first to highlight the possible existence in vivo of a cortico-pallidal 

projection in humans, such a connection has previously been suggested from different tracing 

studies in a variety of animal species (Kornhuber et al., 1984; Naito and Kita, 1994; Milardi et al., 

2015; Cacciola et al., 2016a, 2017b). In rats, Naito and Kita reported the existence of a cortico-
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pallidal projection(s) after injecting the anterograde tracer biotinylated dextran amine (BDA) 

in various cortical region (Naito and Kita, 1994). They found that BDA injections into the 

precentral medial and lateral cortices (homologues of the supplementary motor area, and 

primary motor/portions of the somatosensory cortices in primates, respectively) resulted in 

anterograde labeling of the ipsilateral GP (Naito and Kita, 1994). In the lamprey, Stephenson-

Jones and co-workers showed that pallido-habenular neurons receive direct excitatory 

projections from the pallium (i.e., the homologue of the cerebral cortex in mammals), and 

proposed that this pathway is implicated in a reward-evaluation circuit used to select actions 

across vertebrates (Stephenson-Jones et al., 2013). The presence of direct glutamatergic  cortico-

pallidal projections has been demonstrated in monkeys and in humans  using vesicular 

glutamate transporter 1 (vGluT1), as a preferential marker of cortical terminals in the 

telencephalon (Smith and Wichmann, 2015). 

Direct cortico‐pallidal fibers have also been noted by the French anatomist Testut who, in a 

classical textbook of anatomy, comments: “Ascending and descending cortico‐caudal, cortico‐

putaminal, and cortico‐pallidal connections do exist. Cortico‐caudal and cortico‐putaminal 

fibers are indicated together as cortico‐striatal pathway: they are less than cortico‐pallidal 

fibers. The cortico‐pallidal fibers are prevalently but not exclusively cortico‐fugal (efferent). 

These fibers (demonstrated both by anatomic dissection and by neuronography), originate 

from area 6 (Testut and Latarjet, 1971). Finally, in DBS-implanted dystonic patients, GPi 

stimulation may increase corticospinal excitability tested 6ms later with transcranial magnetic 

stimulation (TMS) (Ni et al., 2018). Since GPi-DBS does not activate corticospinal fibers directly, 

these results also would be compatible with the presence of a fast, direct connection between GPi and 

primary motor cortex (Milardi et al., 2015; Cacciola et al., 2018; Ni et al., 2018).   

In addition to cortico-pallidal connections, we also described, using tractography, the existence of 

a cortico-nigral connection (Figure 3) (Cacciola et al., 2016a). The highest connectivity profile 

was between SN and the SFG, which is known to be an important prefrontal area; in addition, 

lower values of connectivity were found between SN and other prefrontal areas such as pars 

opercularis, pars orbitalis, pars triangularis, and rostral MFG. 

Our findings are in line with data regarding prefrontal cortex (PFC)-SN connectivity described 

in rodents (Bunney and Aghajanian, 1976; Kornhuber et al., 1984; Sesack et al., 1989) and primates 

(Leichnetz and Astruc, 1977; Frankle et al., 2006), and with the few existing results obtained in 

humans by means of DTI-based techniques (Menke et al., 2010; Kwon and Jang, 2014). 

Interestingly, connections between PFC and SN in humans appear to be more prominent than 

the sparse dorso-lateral PFC/SN projections described by Frankle and colleagues in macque 
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monkeys. On the other hand, compared to primates we unable to find any connectivity between 

the orbitofrontal cortex and SN (Frankle et al., 2006). We also found a well-represented 

structural link between SN and cortical areas related with motor functions, such as paracentral 

lobule and precentral gyrus: this finding is in line with the existing literature showing sparse 

connections between motor cortex, premotor cortex and SN in primates (Künzle, 1978; 

Monakow et al., 1979).  

The cerebellum is another important subcortical structure controlling multiple aspects of motor and 

cognitive behavior. For many years, it was thought that circuits linking cerebellum to the cortex were 

anatomically and functionally segregated from those connecting basal ganglia to cortex (Sakai et al., 

1996). Therefore, all interactions between cerebellum and basal ganglia were thought to occur 

primarily at the cortical level. Studies in primates and, more recently, in humans by our group have 

challenged this model by showing the anatomical existence of an extensive subcortical network 

connecting basal ganglia and cerebellum. In primates, Hoshi and co-workers demonstrated the 

existence of a topographically organized di- and trisynaptic system originating from dentate nucleus, 

passing via the thalamus, ending in the putamen and the external segment of GP (Hoshi et al., 2005). 

In addition, the same authors reported the presence of a disynaptic afferent pathway running from the 

STN to the cerebellar cortex with a relay in the pontine nuclei (Bostan et al., 2010). In this regard, 

we have recently confirmed, for the first time in vivo in humans, the existence of connections running 

from the STN to the cerebellar cortex with a relay in the pons (Milardi et al., 2016).   

As an extension of the results of the studies in primates, our data also appear to demonstrate the 

presence of a direct route linking the dentate nucleus to the GPi and the SN (Figures1-3). Although 

dentato-pallidal pathways have not been directly documented in animal studies, there is some 

evidence in rats suggesting the presence of a direct route linking the dentate with substantia 

nigra (Snider et al., 1976; Nieoullon et al., 1978).  In addition,  a recent study using a combination 

of magnetoencephalography and direct recordings of the GPi local field potential from DBS 

electrodes implanted in dystonic patients (Neumann et al., 2015) showed robust alpha band a 

coherence between GPi and cerebellum, although it was impossible to exactly localize the source 

of electrical activity over the cerebellum.  

The presence of direct connections between the dentate nucleus and GPi and SN, bypassing the 

thalamus, is very provocative considering the existence of direct cortico-pallidal and cortico-nigral 

connections bypassing the striatum both in human and monkeys (Cacciola et al., 2017b). It is 

tempting to hypothesize that the two systems may interact in the GPi and GPe, bypassing the striatum 

and the thalamus, respectively. In keeping with this hypothesis, we have recently demonstrated 

that the area of the GPi receiving from the cortex significantly overlaps with that receiving 
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input from the dentate nucleus (Cacciola et al., In Press, Mov Disord) (Cacciola et al 2019 in press 

Mov. Dis.).  A similar overlap may apply to the cortico-nigral and dentato-nigral systems although 

this remains to be demonstrated. However, due to the intrinsic limitation of tractography (see 

below), the existence of such direct connections between cerebellum and basal ganglia, by-

passing the thalamus, should to be viewed with some caution. 

 

Physiological relevance of these new connections  

A good deal more work needs to be done to define the functional role of these connections. Our 

working hypothesis is that they may be a phylogenetically new projection superimposed onto the 

older conserved cortico-basal ganglia anatomy. A parallel would be the development in primates of 

the monosynaptic component of the corticospinal tract. In rodents and cats, the motor cortex projects 

only to interneurons of the spinal grey matter, which then contact the spinal motoneurons to drive 

muscle contraction. In primates this is supplemented by an additional direct connection to spinal 

motoneurons, particularly those controlling the arm and hand. This direct connectivity is thought to 

allow the flexibility and fractionation of movement that is typical of hand control in higher primates. 

It could be that the direct cortical input to pallidum similarly allows a more direct influence on pallidal 

output. 

Indeed, it is suggestive that the most direct projections to GPi come from sensorimotor areas of cortex 

and cerebellum, indicating a prominent role of the “new” connectivity in motor control. The frontal 

areas projecting to the dorsal aspect of GPe are also highly involved in goal-directed behavior 

(Middleton and Strick, 1994; Parent and Hazrati, 1995; Akkal et al., 2007; Saga et al., 2011, 2013), 

again consistent with the notion that these connections may have a particular relevance to flexible 

motor behavior.  

A similar consideration can be applied to cortico-nigral connections exerting a supervision on direct 

and indirect pathways. This system could provide in humans a short-latency route, superimposed on 

old pathways, for fast interaction between the cerebellum, basal ganglia and the motor cortex, thus 

allowing them to quickly harmonize their outputs in real-time. This interpretation does not conflict 

with the findings in primates described above, if we assume that the appearance of this fast conducting 

system occurred phylogenetically later, in humans, triggered by the emergent importance of manual 

dexterity (Cacciola et al., 2017b) (Figure 3).  

The basal ganglia can be viewed as circuits organized to select desired actions and to inhibit 

potentially competing unwanted actions. The majority of outputs from basal ganglia arise from 

GPi and SNpr and are inhibitory to thalamic nuclei, superior colliculus, and the 

pedunculopontine area of the brainstem. Thus, the output of the basal ganglia resembles to a 
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braking system (Mink, 1996).When a desired action is initiated by a particular motor pattern 

generator in the cerebral cortex or brainstem, basal ganglia output neurons projecting back to 

that generator decrease their discharge, thereby removing tonic inhibition “releasing the 

brake” on that generator. Simultaneously basal ganglia output neurons projecting to other 

motor pattern generators, involved in competing actions, increase their firing rate and thereby 

apply the “brake” to those generators. In this way competing motor tasks are inhibited and the 

net result is the focused selection of desired actions and surround inhibition of competing 

actions. Disruption of the ability to facilitate desired movements and inhibit unwanted 

movements results in slow voluntary movements (parkinsonism), abnormal involuntary 

movement (chorea, dystonia, tics), or both (Mink, 2003). 

The model we propose here would reinforce the old vision where basal ganglia are characterized by 

the presence of discrete, parallel, segregated and functionally distinct but homologous circuits 

(Alexander et al., 1986) (Figure 4).  Within this new framework the possibility of direct control 

of basal ganglia output neurons through a direct cortico-pallidal pathway to GPe and GPi 

would allow more flexible control of direct and indirect pathways modulating surround 

inhibition of competing actions. Cortico-nigral pathways would provide an additional direct 

system modulating action selection according to the model proposed by Mink (Mink, 1996, 

2003). Our hypothesis is that direct cortico-GP and SN pathways, in cooperation with those from the 

dentate nucleus, give the cortex an ability to fine-tune decision making and motor action selection. 

In addition, they could give more rapid flexibility to any unexpected changes in the environment, 

which is prerogative of human species. Future studies are needed to disentangle the exact 

physiological role of these new circuits and how they might influence the firing patterns of neurons 

in the motor network.  

 

Clinical relevance of these new connections: adaptive and maladaptive plasticity within the 

cortico-BG-cerebellar connectome on basal ganglia disorders.  

The proposed model, with the presence of parallel direct and indirect projections running between 

the cortex, basal ganglia and cerebellum, complements new ideas that view movement disorders as 

disorders of a complex motor network rather than a limited disruption of individual nuclei in the basal 

ganglia. In this scenario it becomes easier to understand why stereotactic lesions of the globus pallidus 

and thalamus are not accompanied by severe motor dysfunction. A lesion within the BG will trigger 

reorganization within the cortico-basal-cerebellar connectome recruiting alternative pathways (such 

as cortico-nigral pathway for instance) which may compensate (or worsen) the primary deficit.  In 
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this respect DTI tractography is a promising tool to study anatomical connectivity of basal ganglia 

disorders and shed new light on the pathophysiology of movement disorders.    

Although most investigations on movement disorders have focused on the BG, increasing anatomical 

and pathophysiological evidence suggests that the cerebellum plays a substantial role of in the genesis 

of the clinical symptoms of both Parkinson’s disease and dystonia (Caligiore et al., 2017).  Indeed, 

there is a significant rearrangement within the cortico-BG-cerebellar connectome in patients with 

Parkinson’s disease.  For instance, it has been reported that during timed motor exercises, compared 

to normal controls, patients with Parkinson’s disease have significantly greater activation bilaterally 

in the cerebellum, in the right thalamus and in the left midbrain/SN (Jahanshahi et al., 2010).  

Moreover, in Parkinson’s disease during self-initiated movement, the measures of striatum–cortical 

and striatum–cerebellar effective connectivity are weakened, whereas the motor cortico-cerebellar 

connectivity is strengthened (Wu et al., 2011). 

The nature of such hyperactivation or strengthened connectivity of the cerebellum in Parkinson’s 

disease is still a matter of debate. Several lines of evidence indicate that it may have a compensatory 

role: cerebellar hyperactivity may counterbalance hypoactivity in some other regions, such as the 

supplementary motor cortex (SMA) and the striatum (Sabatini et al., 2000; Haslinger et al., 2001; 

Buhmann et al., 2003; Wu and Hallett, 2005). In fact it is possible that cerebellum may compensate 

for GPi hypoactivity in PD via our recently described dento-pallidal and dento-nigral pathways  or 

through the traditional cerebello-thalamo-cortical circuit (Sen et al., 2010). As Parkinson’s disease is 

preceded by a long prodromal phase without overt clinical symptoms, it is likely that compensatory 

effects of cerebellum and other brain regions within the cortico-basal-cerebellar connectome may 

delay the onset of motor symptoms, keeping performance within normal range. 

Although compensation may occur early in the disease, it could be that changes in the cerebellum 

later in disease progression become maladaptive. One example could be the occurrence dyskinesia. 

The pathophysiology of levodopa-induced dyskinesia (LID) is not completely understood; however, 

the cerebello-thalamo-cortical circuit seems to contribute to the appearance of LID in the later stages 

of the diseases (Wu and Hallett, 2013) (Wu et al ). Aberrant neuronal synchrony in Parkinson’s 

disease with LID may propagate from the STN to the cerebellum and “lock” the cerebellar cortex in 

a hyperactive state (Kishore and Popa, 2014; Rajan et al., 2017). In keeping with this hypothesis, 

DBS of the STN and GPi, the surgical procedures that alleviate levodopa-induced dyskinesia (Krack 

et al., 2003; Anderson et al., 2005), modulate neural activity or metabolism in the cerebellum and 

reduce this hyperactivity (Hilker et al., 2004; Payoux et al., 2004, 2009; Asanuma et al., 2006; 

Grafton et al., 2006; Geday et al., 2009). The effects are likely mediated by the subthalamic-pontine-

cerebellar pathways described in monkeys and by our group in vivo humans using DTI (Bostan et al., 
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2010; Milardi et al., 2016). The contribution of the cerebellum to LID is also consistent with the 

therapeutic effect of repetitive transcranial magnetic stimulation (rTMS) over the cerebellum in LID. 

These clinical improvements were paralleled by a reduction of 18F-fluorodeoxyglucose metabolism 

in the cerebellum (Brusa et al., 2012).  

Although the involvement of BG in the pathophysiology dystonia is indisputable, the mechanisms 

producing dystonia are incompletely understood, with recent evidence pointing to the involvement 

of a variety of brain areas including the cerebellum (Quartarone and Hallett, 2013; Jinnah et al., 

2017). As it is possible that the etiological heterogeneity of dystonias reflects the relative importance 

of different nodes in this extended motor network, one major challenge is determining first, the role 

and contribution of the different brain regions in the various forms of dystonia with a comprehensive 

model; second, if there is a final common pathway for all dystonias (Quartarone and Ruge, 2018). 

One important area again appears to be the cerebellum (Neychev et al., 2011; Caligiore et al., 2017; 

Quartarone and Ruge, 2018) particularly in contribution to sensorimotor integration. This is not 

surprising considering that cerebellum relays sensory afferent inputs to the motor cortex (M1) (Butler 

et al., 1992) and processes proprioceptive information for both temporal and spatial discrimination 

of sensory signals, mechanisms that are altered in primary dystonia (Restuccia et al., 2001; Pastor et 

al., 2004).  

In a recent MEG study Neumann and associates recorded direct local field potentials, from the human 

pallidum, simultaneously with whole head magnetoencephalography to characterize functional 

connectivity in the cortico-BG-cerebellar network in nine patients with idiopathic dystonia (Neumann 

et al., 2015) (Neumann et al 2016). The authors found that the cerebellum is interconnected with the 

internal pallidum through 7– 13 Hz alpha band oscillations. Interestingly, the degree of pallido-

cerebellar coupling was inversely correlated with the severity of dystonic symptoms, as indexed by 

the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), suggesting a compensatory role 

for the cerebellum in dystonia (Neumann et al., 2015). The pathways involved may include the 

dentato-thalamic connection or the dentato-pallidal connections described in human DTI studies 

(Cacciola et al., 2016b, 2017b; Milardi et al., 2016).  

The same authors found a negative correlation between cerebellar alpha band power (7–13 Hz) (see 

above) and motor cortical beta band power (Neumann and Kühn, 2016). It is possible that reduced 

cerebellar alpha band activity, which may be caused by a loss of structural fibre integrity (dento-

pallidal or dentato-thalamic), could lead to increased motor cortical beta oscillatory activity in 

patients with dystonia. In this framework the cortico-pallidal system may act as an important node 

involved in the functional interactions of beta signalling in the cortex-basal ganglia-cortex feedback 

loops for motor control (Cacciola et al., 2016b).  
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The data published in the last 10 years suggests the basal ganglia are part of a motor network 

involved in movement disorders. In this network it becomes difficult to localize the primary 

dysfunction since, as the pathological process starts, reorganization occurs within the whole 

circuit so that no part necessarily behaves as in the healthy brain. The picture is made more 

complicated by the existence of an extensive direct and indirect sub-cortical cross-talk between 

the cerebellum and basal ganglia. Thus localizing dysfunction to one part of the network 

becomes impossible.  

In such a scheme, tractography becomes important for defining subject-specific connectivity targets 

for the GPi or other sub-cortical structures, as suggested by a pilot study, where segmentation of GPi, 

based on probabilistic tractography, was used in the setting of DBS in PD patients (Middlebrooks et 

al., 2018). In keeping with anatomical and physiological studies in primates and in humans (Parent 

and Hazrati, 1995; Tisch et al., 2007), the best clinical results were achieved when electrodes were 

implanted in the voxels connected with M1 which corresponded to ventral-posterior sensorimotor 

territory (Middlebrooks et al., 2018).   

This is in line with our recent findings in which we segregated the GPe into a ventral associative 

cluster, a dorsal sensorimotor cluster and a caudal "other” cluster on the base of its cortical 

connectivity. Dentato-pallidal connections clustered only in the GPi, together with associative 

and sensorimotor clusters. Thus, we represented, for the first time, the topographical 

organization of both GPi and GPe according to cortical and cerebellar connections.  Such 

descriptions could be useful in DBS and FUS targeting for treating motor and non-motor 

symptoms in movement disorders (Cacciola et al., In Press, Mov Disord).  

 

Intrinsic limitations of tractography  

Although several algorithms for tractography have been developed and applied to the study of 

the human connectome, such computational reconstruction suffers from some intrinsic 

methodological limitations.  

First, the spatial resolution of DWI is inherently lower than the one achieved with conventional 

tract-tracing techniques that can establish synaptic connectivity. Indeed, classical diffusion 

weighted images used for tractographic reconstruction usually have a voxel resolution of 2x2x2 

mm3 which is notably higher than the axonal diameter (Jbabdi and Johansen-Berg, 2011), 

whilst traditional anatomical tracers can track the projections of single axons. Another major 

drawback of tractography is the inability to determine the polarity of a given connection and 

thus to establish whether a given fiber pathway is afferent or efferent (Parker et al., 2013).  
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In addition, simple diffusion signal modelling approaches cannot reliably disentangle the 

complex white matter architecture consisting of twisting, bending, crossing and kissing fibers 

thus failing in representing any of their orientations. To overcome this issue, “model-free” 

approaches have been developed in the last decade, such as Diffusion Spectrum Imaging (DSI) 

(Wedeen et al., 2005), Q-ball Imaging (Tuch et al., 2003) and CSD (Tournier et al., 2007).  

More recently, it has been argued that most tractographic algorithms are able to produce 

tractograms containing 90% of the ground truth bundles, recovering about one-third of their 

volumetric extent, while  producing, at the same time, large amounts of false-positive bundles, 

even though they are not part of the ground truth (Maier-Hein et al., 2017).    

Despite the abovementioned limitations, DWI and tractography are the only existing techniques 

able to investigate anatomical connectivity in the human brain in vivo and non-invasively. 

Indeed diffusion tractography has been extensively recognized as the first “in vivo dissection” 

approach to map the major fiber bundles in the human brain with extreme precision as well as 

to show the existence of new associative pathways that have been subsequently replicated using 

the traditional post-mortem Kingler dissection (Klingler, 1935; Klingler and Gloor, 1960). 

As final remark, the anatomical validity and reproducibility of DWI tractography have been 

assessed in vitro in a highly gyrated model of the porcin brain, demonstrating that tractography 

is able to reliably detected specific white matter pathways and therefore to be a precise and 

powerful tool in investigating anatomical brain connectivity (Dyrby et al., 2007). With these 

concepts in mind, tractographic results should always be interpreted with caution and we 

believe that there is an urgent need for methodological advances in diffusion tractography in 

order to ameliorate our knowledge of human brain structural connectivity.  
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Figure Legends 

Figure 1. Cortico- and dento-GPe connections. A) 3D axial view of the GPe (green VOI) and GPi 

(red VOI); B) Parasagittal view of the streamlines connecting different areas of the cerebral cortex 

with the GPe (green VOI in transparency); the same view allows to visualize the streamlines that link 

the dentate nucleus (light brown VOI) with the caudal-posterior area of the GPe running via the 

superior cerebellar peduncle; C) zoomed inset showing the streamlines at the level of the GPe. The 

streamlines are depicted according to a color-coded map in which red, blue and green colors indicate 

the principal streamline directions, according to the traditional nomenclature. 

 

Figure 2. Cortico- and dento-GPi connections. A) 3D axial view of the GPe (green VOI) and GPi 

(red VOI); B) Parasagittal view of the streamlines connecting the motor-related cortex with the GPi 

(red VOI); the same view allows to visualize the streamlines that link the dentate nucleus (light brown 

VOI) with the most posterior area of the GPi running via the superior cerebellar peduncle; C) zoomed 

inset showing the streamlines at the level of the GPi. The streamlines are depicted according to a 

color-coded map in which red, blue and green colors indicate the principal streamline directions, 

according to the traditional nomenclature. 

 

Figure 3. Cortico- and dento-SN connections. A) 3D axial view of the SN (purple VOI) at the level 

of the midbrain; B) Parasagittal view of the streamlines connecting mostly frontal and parietal areas 

with the SN (purple VOI); the same view allows to visualize the streamlines that link the dentate 

nucleus (light brown VOI) with the most posterior area of the GPi running via the superior cerebellar 

peduncle; C) zoomed inset showing the streamlines at the level of the GPi. The streamlines are 

depicted according to a color-coded map in which red, blue and green colors indicate the principal 

streamline directions, according to the traditional nomenclature. 

 

 

Figure 4. Proposed model integrating “classical” and “novel” cortico-basal ganglia-cerebellar 

pathways. This figure shows both the “classical” and “novel” cortico-basal ganglia-cerebellar 

pathways, thus pointing out the presence of discrete, parallel, segregated and functionally distinct but 

homologous circuits involved in the complex organization of the basal ganglia network. 

The most basic circuit model of basal ganglia function involving the “direct” and “indirect” pathways 

originally proposed by Albin and co-workers in 1989. Solid black lines highlight the “direct” pathway 

funnelling information from the cerebral cortex to the striatum and then to GPi/SNr via GABAergic 

inhibitory projections thus selectively reducing GPi/SNr activity and releasing the thalamocortical 
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circuits involved in motor pattern generators. The dashed black lines depict the “indirect” pathway: 

when excited by the glutamatergic inputs of the cerebral cortex, striatal D2 receptors allow the cells 

of the striatal matrix to send inhibitory signals to the GPe, thus exerting its tonic GABAergic 

inhibition on the STN. Therefore, the glutamatergic neurons of the STN can then excite the GPi/SNr 

thus suppressing thalamic activity on the cerebral cortex and increasing inhibitory influences on the 

upper motor neurons. More recently, a “hyperdirect” pathway has been described (blue lines between 

the cerebral cortex and STN), conveying excitatory stimuli from motor, associative and limbic brain 

areas on the STN, bypassing the “indirect” inhibitor circuit and leading to excited GPi/SNr activity. 

The same figure shows the connections between the cerebellum and basal ganglia as revealed by 

retrograde tracing studies in monkeys. Red lines indicate the output of the cerebellum on the basal 

ganglia via the dentate-thalamo-striatal pathway as well as the control of basal ganglia on the 

cerebellum via the STN-ponto-cerebellar cortex pathway. Green lines highlight the newly identified 

connections between the cerebral cortex, GPi, GPe and SN as well as the complementary circuits 

between the dentate nucleus and such nuclei as described in recent tractographic studies in humans.  

 

 


