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Abstract

Physics is experiencing an exciting period of exploration into the nature of dark energy, dark

matter, and gravitation. With 95% of the mass-energy of the Universe still unexplained, the

answers to many further fundamental questions of astro-, theoretical- and particle-physics

are being hampered. In the coming years, DES, HSC, KiDS, Euclid and LSST will im-

age billions of galaxies, aiming to use observational data from the late Universe to infer

cosmological parameters and compare cosmological models.

One of the most promising observables is the weak gravitational lensing effect. Using

the statistical power from many small distortions, called shear, DES has provided excellent

constraints. However, the standard 2-point statistics do not capture the full information

in the data. In the late Universe, gravitational collapse has led to a highly non-Gaussian

density field, for which 2-point correlations are not a unique statistical description, and

even all N-point functions cannot completely characterize. The research presented in this

thesis focuses on methods to reconstruct mass maps from DES weak lensing data and using

map-based statistics to infer cosmological parameters and assess theoretical models in a

principled Bayesian framework.

In Chapter 2, I compare three mass mapping methods with closed-form priors using

DES SV data and simulations. In Chapter 3, I demonstrate how the Wiener filter (one of

the above methods) computation can be sped up by an order of magnitude using Dataflow

Engines (reconfigurable hardware). In Chapter 4, I present a Bayesian hierarchical model

which takes into account added uncertainty introduced when noisy simulations are used to

generate theoretical predictions. In Chapter 5, with my publicly available DeepMass code,

I demonstrate how mass maps reconstructions can be improved (> 10% mean-square-error

compared with previously presented methods) using deep learning techniques trained on

simulations. In Chapter 6, I discuss future work and the applicability of likelihood-free

inference methods for map-based statistics.
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This work, particularly Chapter 2, has directly contributed to the science exploitation

of Dark Energy Survey (DES) data. DES is an international collaboration, which is in co-
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Chapter 1

Introduction and background

...that celebrated saying of Archytas of Tarentum, I think it was – a saying

which I have heard repeated by our old men who in their turn heard it from

their elders. It is to this effect:

“If a man should ascend alone into heaven and behold clearly the structure of

the Universe and the beauty of the stars, there would be no pleasure for him in

the awe-inspiring sight, which would have filled him with delight if he had had

someone to whom he could describe what he had seen.”

Cicero, Laelius de Amicitia (translation 1923)

The Heavens Reflect Our Labours

Motto of Scunthorpe
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1.1 Cosmology and gravity

Gravity is the force of nature most clearly at work in the physical systems studied in this the-

sis. This is the same in much of modern cosmology. On cosmological scales, the interplay

between gravitation1 and the matter distribution (of which dark matter is likely the largest

fraction) controls the expansion of the Universe, the formation of large-scale structure, and

the apparently curved trajectories of particles and light.

As far as has been currently measured, dark matter interacts only through the gravi-

tational force. Though the word “dark” has become the chosen adjective, its lack of inter-

action with electromagnetism would lead to “invisible” being a more ordinary description.

Direct detection experiments in high energy physics collaborations have yet to show signs of

dark matter interacting with known particles through the electroweak or strong interactions

as understood in the standard model of particle physics.

Due to its importance to the content of this thesis, I shall begin by introducing the

key concepts of gravitation as described by General Relativity. Given the work in this

thesis, it is a coincidence that the year in which it was begun, 2015, is precisely 100 years

since the publication of both the finalised Einstein field equations (Einstein, 1915a) and the

derivation of the bending of light (lensing) in General Relativity (Einstein, 1915b). The year

of submission, 2019, also marks 100 years since the Eddington Experiment measurement

of this lensing effect (Dyson et al., 1920).

This four year gap between Einstein’s conjecture and Eddington’s observation seems

remarkably short by modern standards. Another weak-field gravitational effect, the conjec-

tured gravitational waves (Einstein, 1916) had to wait much longer for their direct detection

from Earth (Abbott et al., 2016), which resulted in the 2017 Nobel Prize.

1.1.1 Homogeneity and isotropy

At the start of this introduction I described gravitation as a force. Famously in General Rel-

ativity (GR) we need not, or should not, think of gravity as a force, but rather as variations

in the metric of a spacetime manifold. Newton’s pull of gravity becomes Einstein’s free fall

in a curved spacetime.

The Newtonian concept that the inertial mass of F=ma is the same as the gravitational

mass suggests that there are trajectories of free fall, known as inertial, which are followed

1including “dark energy” or cosmological constant
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by all particles not accelerated by an external2 force. This motivates the Weak Equivalence

Principle, which Carroll (2003) formulates as: “the motion of freely-falling particles are

the same in a gravitational field and a uniformly accelerated frame”. This leads us towards

what is sometimes known as the Einstein Equivalence Principle, which states that locally

(in small enough spacetime regions) physics reduces to that of special relativity.

It is impossible to use global inertial frames in this framework. On Earth, an inertial

frame for a test particle A falling at the north pole will not be inertial for a test particle B

falling at the south pole, in which the effect of gravity would appear like an external force

acting on B. However, a test particle A′ that is close enough in time and space to A, and is

therefore sharing the same trajectory, can be thought of as sharing a locally inertial frame.

This all necessitates a geometry that has curvature but is approximately flat locally, for

which mathematics provides the concept of a differential manifold as the relevant object.

The line element, defining infinitesimal distances, of a trajectory in a curved space can

be written as

ds2 = gµνdxµdxν (1.1)

with a Lorentzian metric tensor gµν . The line element is often a useful way of expressing a

metric in a given coordinate system, and so is itself sometimes called the metric.

To arrive at a general metric that describes the global evolution of the Universe, we can

invoke the cosmological principle. As an overall principle it uses the a priori expectation

that we are not especially unique in the Universe. Firstly, as observers, we did not pop

into existence in a spatial position that is noteworthy. There would be no difference to our

average inferences from observations if we were instead translated to an arbitrary different

position an arbitrarily large distance away. This translation invariance in space is known as

homogeneity. The other part of the cosmological principle is isotropy, which corresponds

to rotational symmetry of our average inferences. If we require that everywhere in space at

a given time is isotropic we also get homogeneity for free.

The Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric is a general 4-dimensional

Lorentzian metric that is invariant under spatial translation and rotation (homogeneity and

isotropy respectively). It is the maximally symmetric solution with these constraints. Using

a (+,−,−,−) signature, it is given by

2non-gravitational
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ds2 = dt2−a2(t)dσ
2 , (1.2)

where a(t) is the scale factor and the spatial term dσ2 is a metric on a maximally symmetric

three-manifold with the speed of light c set to one. It is worth noting that this has already

been slightly motivated by observation, rather than pure reason as it might appear to have

been presented. We have assumed it is space, not spacetime, that follows the cosmological

principle. As such, time and space are already separated in this metric. The scale factor a(t)

is a parameter that is free to vary as a function of time. Physically, this corresponds to how

distances between points change as the Universe contracts or, as has been observed (Hubble,

1929), expands.

Using the most general dσ2 in polar coordinates gives us the full FLRW metric

dσ
2 = dt2−a2(t)

[ dr2

1−Kr2 + r2dθ
2 + sin2

θ dφ
2
]
, (1.3)

where K, which is the only degree of freedom in the maximally symmetric ds2, is a constant

of global curvature. There is one convention where, with no loss of generality, we could

restrict K to values of 0 or ±1 (with appropriate adjustments to the units of a and r).

Whatever the convention, positive curvature K > 0 is known as a closed Universe,

negative curvature K < 0 is known as an open Universe, and K = 0 is a flat Universe. For

the flat case, the metric simplifies greatly in Cartesian coordinates

ds2 = dt2−a(t)2
δi jdxidx j , (1.4)

which, but for the scale factor a(t), is the same as the metric for flat Minkowski space of

special relativity: ηµν = diag(1,−1,−1,−1).

With homogeneity and isotropy still in mind, we can consider a perfect fluid; that is,

one which is completely described by its rest-frame energy density ρ and momentum p.

Consider the energy-momentum (or stress-energy) tensor T µν , which is a symmetric (2,0)

tensor that represents the flux of four-momentum

pµ = mU µ = m
dxµ

dτp
, (1.5)

with mass m, and four-velocity U µ with respect to proper time τp.
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Taking the cosmological perfect fluid for our flat Universe in Cartesian coordinates,

homogeneity makes it possible to define a comoving observer and isotropy ensures that

momentum density T i0 and stress/shear T i j (where i 6= j) are zero, as there can be no non-

zero 3-vectors. This gives

T µν =


ρ 0 0 0

0 Pa−2 0 0

0 0 Pa−2 0

0 0 0 Pa−2

 , (1.6)

where ρ is the energy density and P is the pressure (Dodelson, 2003) with the speed of

light c set to one. The factors of a−2 take into account the expansion of the Universe.

A comoving observer follows the expansion of the universe, hence the lack of (peculiar)

velocity components.

For a non-comoving observer in a general coordinate system (Hobson et al., 2006), the

energy-momentum tensor is given as

T µν = (ρ +P)U µUν −Pgµν . (1.7)

For a comoving observer, such that U µ = (1,0,0,0), we can lower the index of the

energy-momentum tensor (equation 1.6) to give it a simpler (metric independent) form

T µ

ν = T µγgγν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 . (1.8)

1.1.2 Evolution of a smooth Universe

The previous section described how we can use homogeneity and isotropy to arrive at the

FLRW metric and the energy-momentum tensor for a perfect fluid. The resulting metric

has a single degree of freedom, namely the scale factor as a function of time a(t), with the

unspecified energy-momentum content encapsulated in the density and pressure terms, ρ

and P respectively.

The evolution of the metric follows the Einstein field equations,
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Gµν +Λgµν =
8πGN

c4 Tµν

where Gµν = Rµν −
1
2

Rgµν

(1.9)

where Rµν and R are the Ricci curvature tensor and scalar respectively, and GN is the New-

tonian gravitational constant. For completeness c has been included, but in what follows we

take c = 1.

It is possible to subsume the cosmological constant term, Λ, into the stress-energy

tensor, Tµν , by interpreting the cosmological constant as an energy density. This seems

to be preferred by certain communities which wish to go on to interpret the cosmological

constant as a quantum vacuum energy effect (e.g. Weinberg 1989) or by those who wish to

explain the observed acceleration of the Universe by extensions to known physics. It can

additionally be done to make the mathematics appear simpler (as will be done shortly).

I think it is of some importance, however, that when deriving the Einstein field equa-

tions from a principle of least action, according to various constraints and caveats, the cos-

mological constant term appears naturally.

Lovelock’s theorem states that deriving a four-dimensional gravitational theory from

an action involving the metric tensor and up to its second derivatives, results in the Einstein

field equations (equation 1.9) with a cosmological constant term (Lovelock 1971, Lovelock

1972, Clifton et al. 2012). The following action fulfils these requirements,

S =
∫ [
− 1

8πGN
(
1
2

R−Λ)+LM

]√−gd4x , (1.10)

where g is the metric determinant, and this yields the Einstein field equation (after some

calculus of variations). Written this way, the first term (with the Ricci scalar) is the Einstein-

Hilbert action, and the second term is a constant (the cosmological constant) which is free

to vary. The final term LM is the Lagrangian density for matter, which contributes to the

energy-momentum tensor

Tµν =
2√−g

δ (
√−gLM)

δgµν
. (1.11)

Despite the “naturalness” of Λ as an independent term in the action, in what follows

it will be treated as a form of matter. This is simpler because a cosmological constant term
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can be treated as a perfect fluid (though a strange fluid with negative pressure).

Absorbing Λ into the energy-momentum tensor, we can rewrite the Einstein field equa-

tions as

Rµν = 8πGN

(
Tµν −

1
2

gµνT
)

(1.12)

where T is the trace of Tµν . Evaluating this leads to only two distinct equations as the

off-diagonal terms vanish (due to isotropy), giving a time 00 degree of freedom and only

a single spatial i j degree of freedom (due to homogeneity). These two equations can be

represented as the Friedmann equations,

( ȧ
a

)
=

8πGN

3
ρ− K

a2 ; (1.13)

and

( ä
a

)
=−4πGN

3
(ρ +3P) , (1.14)

where K takes the convention of having units and is free to be an arbitrary real number (not

necessarily 0,−1, or +1). The Hubble parameter is defined as

H ≡ ∂ta
a

=
ȧ
a

. (1.15)

Conservation of energy-momentum gives us the final equation constraining the evolu-

tion of the scale factor. In General Relativity, this conservation law is expressed as

∇µT µ

ν = 0 , (1.16)

where the covariant derivative is defined as

∇µAν = ∂µAν +Γ
ν
µσ Aσ , (1.17)

∇µAν = ∂µAν −Γ
σ
µνAσ , (1.18)

and
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∇µFν
γ = ∂µFν

γ +Γ
ν
σ µFσ

γ −Γ
σ
γµFν

σ , (1.19)

for vectors, covectors and (1,1) tensors respectively.

Combining this with equation 1.8, gives the conservation equation

ρ̇

ρ
=−3(1+w)

ȧ
a

, (1.20)

where we have assumed that the fluid obeys the equation of state

P = wρ . (1.21)

We can consider three relevant fluids: dust with density ρM and negligible pressure w = 0

(e.g. stars and galaxies), radiation (or any relativistic particles) with density ρR and w = 1
3 ,

or cosmological constant with density ρΛ and w = −1. If w is constant (as it is for these

examples), we can integrate equation 1.20 to get

ρ ∝ a−3(1+w) . (1.22)

For radiation the value w = 1
3 can be derived using the energy momentum tensor for

electromagnetism: T µν = Fµλ Fν

λ
− 1

4 gµνFλσ Fλσ (Carroll, 2003). For a massless photon,

evaluating the energy density for w = 1
3 gives

ρR ∝ a−4 . (1.23)

To explain this result, the energy density of radiation ρR changes due to the number density

falling as a−3 as space expands and a further factor of a−1 due to the photons losing energy

in an expanding Universe – this is known as redshift (c.f. equation 1.32 discussion).

If we define a density parameter

Ωi =
ρi

ρc
(1.24)

with critical density

ρc =
3H2

8πGN
(1.25)
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for the different cosmological fluids labelled i, then we can rewrite the Hubble parameter

using equation 1.13 as

H2 = H2
0

(
Ω0,Ra−4 +Ω0,Ma−3 +Ω0,ka−2 +Ω0,Λ

)
, (1.26)

where the zero subscript refers to the value today. The curvature is subsumed into the

curvature density as

Ωk = 1−ΩR−Ωm−ΩΛ , (1.27)

where ΩK = 0 is a flat Universe3. At late times (large a), equation 1.26 shows that the

radiation density ρR becomes negligible compared to the other components.

Equation 1.26 is succinct in showing some of the unknown (or to-be-inferred) quanti-

ties of this model. The Hubble parameter on the left hand side is observable4, and is related

to the unknown cosmological parameters on the right hand side.

These equations are the beginnings of the Λ Cold Dark Matter (ΛCDM) model, the

standard model of cosmology. There are, of course, further elements and possible exten-

sions. One clear extension from these equations is known as wCDM, which allows the dark

energy fluid which causes acceleration to be something other than Λ (e.g. w = f (a)).

1.1.3 Distances

What follows is a brief overview of some of the distance measures in the FLRW Universe.

Freely falling test particles in a curved spacetime follow geodesics, with a path xµ(λ )

obeying the geodesic equation

d2xµ

dλ 2 +Γ
µ

νγ

dxν

dλ

dxγ

dλ
= 0 . (1.28)

The affine parameter λ monotonically increases between points, and therefore monotoni-

cally increases with time. If it were necessary, we could choose to have the affine parameter

be the proper time of the test particle.

A photon is massless, so its four momentum pµ = (E, pi) has zero magnitude

pµ pµ = 0 . (1.29)

3As predicted by inflation (section 1.2) and measured with the Cosmic Microwave Background (CMB,
section 1.4.1).

4Either directly or indirectly.
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Combining this with the Friedmann equations, the energy of the photon E can be related to

the scale factor

E ∝ a−1 . (1.30)

This matches the redshift result from equation 1.23. From this we can see that the observed

wavelength of a photon Lo is redshifted from its emitted wavelength Le according to the

value of the scale factors at those respective points

Le

Lo
=

ae

ao
. (1.31)

The redshift value

z =
Lo−Le

Le
(1.32)

is one of the most important quantities for observational cosmology. It can be measured if

the emitted frequency of a photon is known, for example by its relation to known features in

an object’s spectra (distribution of emitted photos) for example. Its measured value is then

related to the value of the scale factor at the point the photon was emitted

ae =
1

1+ z
(1.33)

where the scale factor now ao is normalised to one by convention. In this regard z, in the

absence of peculiar5 velocities, acts as both a measure of distance and time.

A comoving distance is a rescaling by the time-evolving scale factor of the physical

distance, such that two particles initially at rest in the evolving FLRW metric would stay

equidistant in comoving coordinates (whatever the behaviour of a(t)). The comoving dis-

tance (or time with c = 1) to an object observed today, which emitted light when the scale

factor was ae, is

Dc(ae) =
∫ t(a0)

t(ae)

dt ′

a(t ′)
. (1.34)

The true amount of time that has elapsed, however, is called the lookback time

5(non-comoving)
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tlookback(ae) =
∫ t(a0)

t(ae)
dt ′ . (1.35)

The final two distances used often in cosmology are the luminosity distance and angu-

lar diameter distance (Dodelson, 2003).

The luminosity distance is the extension of the inverse square law for observed flux,

extended to an FLRW spacetime. If we have observed flux

F =
L∗

4πD2
L

, (1.36)

from an object with luminosity L∗, then DL is the luminosity distance. The luminosity

distance in terms of comoving distance Dc and redshift is

DL = (1+ z) fK(Dc) (1.37)

with function fK dependent on the curvature K

fK(Dc) =



1
H0
√
|ΩK |

sin(
√−ΩKH0Dc) ΩK < 0

Dc ΩK = 0

1
H0
√
|ΩK |

sinh(
√

ΩKH0Dc) ΩK > 0 .

(1.38)

Angular diameter distance is an extension to FLRW of a geometric reckoning of dis-

tance using an object’s physical size X and its angular size θ (assumed to be small), such

that

DA =
X
θ

. (1.39)

Evaluating this (Dodelson, 2003) in terms of comoving distance Dc gives

DA =
fK(Dc)

1+ z
. (1.40)
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1.2 Cosmic inflation

1.2.1 Motivation

Cosmic inflation is a mechanism proposed to solve a series of perceived problems with the

initial conditions in the Big Bang cosmological model. Some of these include the problem

of the initial singularity (a→ 0), the flatness problem, and the horizon problem. The initial

steps towards the inflationary model were made by Guth and Tye (1980) to address the

apparent lack of magnetic monopoles predicted by Grand Unified Theories (GUT) .

The view held by the Astronomer Royal, Martin Rees, regarding this monopole argu-

ment,

“Sceptics about exotic physics might not be hugely impressed by a theoretical

argument to explain the absence of particles that are themselves only hypothet-

ical” (Rees, 1997) ,

might be extended to some of the justifications listed so far. Some of these perceived prob-

lems may only be problems from a certain prior world-view.

As will be explained in more detail, the flatness and horizon problems (Guth, 1981)

are related to the observed lack of global curvature6 and to the principle of homogeneity.

Inflation could explain why the Universe seems to have these properties, but it could be that

the Universe is just the way it is.

It is a tricky business trying to assign probabilities to different hypothetical physics.

Without a prior probability for a given configuration of the Universe, it becomes difficult to

then be surprised that the Universe is a certain way (e.g. flat or homogeneous). This is not

to say that resolving these problems is not good a justification for inflation; it might be that

explaining flatness is better than just accepting it.

It seems, however, that the value of the inflationary theory is really in its prediction

of overall homogeneity with small fluctuations. Primordial fluctuations from the infla-

tionary period (Mukhanov and Chibisov 1981, Mukhanov and Chibisov 1982, Hawking

1982, Starobinsky 1982, Guth and Pi 1982, Bardeen et al. 1983) are an ideal way to seed

the growth of structure in the Universe. The prediction of an almost (but not quite) flat spec-

trum of primordial fluctuations at different length scales has been since verified by Cosmic

Microwave Background experiments (Planck Collaboration et al. 2016, Planck Collabora-

tion et al. 2018a).
6ΩK observed as zero or close to zero
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A further prediction of many inflationary models is near-Gaussian initial conditions,

which will be of importance throughout this thesis.

1.2.2 Solution to flatness and the horizon problems

We can consider the comoving Hubble radius

rHubble =
1

aH
(1.41)

and compare it with Friedmann equation 1.13 rewritten as

ΩK =
−K
(aH)2 , (1.42)

which shows that deviations from flatness increase with increasing comoving Hubble radius.

In particular, as long as w > −1
3 , any small deviation from ΩK = 0 will grow over time. If

the Universe appears close to flat now, it must have been much closer to flat in its primordial

state.

For the horizon problem (see Baumann 2009 for a review), we take comoving dis-

tance (equation 1.34) as a “time since the initial conditions” coordinate. This is known as

conformal time

η(t) =
∫ t

0

dt ′

a(t ′)
. (1.43)

This can be interpreted as a causal, particle or comoving horizon. To explain this, we can

consider the FLRW metric (equation 1.3) of a flat Universe in one spatial dimension,

ds2 = dt2−a2(t)dχ
2 (1.44)

for a particle with radial trajectory (with coordinate χ). This can be rewritten in term of

conformal time as

ds2 = a2(η)(dη
2−dχ

2) . (1.45)

In this new coordinate system, a photon following a null geodesic ds2 = 0 will have a

trajectory

χ = constant±η , (1.46)
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which corresponds to two straight lines in the χ-η plane crossing at a single point repre-

senting an event. This is known as the light cone.

In the (+,−,−,−) metric, two points in spacetime separated by ds2 > 0 are timelike

and two separated by ds2 < 0 are spacelike. A pair of points with a timelike or null (also

known as lightlike) interval can be in causal contact, meaning they can share information

by exchange of particles from one to the other.

The comoving horizon (in terms of the scale factor or the comoving Hubble radius) is

η(a) =
∫ a

0

da′

Ha′2
=
∫ lna

−∞

rHubble(a′)d[lna′] . (1.47)

Comparing this with the Friedmann equations (1.13 and 1.14), we can see that the comoving

horizon grows monotonically with time for any combination of matter and radiation (as

wi > 0). This means that in a Universe with matter and radiation, if a length scale drops

below the comoving horizon as the Universe expands, then it had previously always been

larger than the comoving horizon and it spans points that have never been in causal contact.

In the classical example of the horizon problem, we consider temperature measure-

ments of the CMB from photons emitted at last-scattering (z∼ 1100) from different patches

on the sky. Patches that should not have been in causal contact appear to have the same

average temperature and have correlated perturbations over causally disconnected regions.

As a possible solution to this, we can look again at equation 1.47. The comoving

Hubble radius rHubble can be thought of as a distance over which particles can travel by a

given time, or as the largest scales observable at a given time. The comoving horizon η can

be thought of as a distance over which information could travel in the whole history of the

Universe. To make the patches of the CMB in causal contact, we need η to be much bigger

now than rHubble (Dodelson, 2003).

Inflation was proposed to be a period in the early Universe during which the comov-

ing Hubble radius rHubble shrank. During inflation, length scales that were previously well

within the comoving Hubble radius (and which were therefore in causal contact) became

larger than rHubble. In the late Universe, as rHubble increases, length scales that previously

had been lost re-enter the growing Hubble sphere. To an observer who wasn’t aware of

inflation, regions that seem to be newly coming into contact with each other appear to have

already been interacting (see figure 1.1).

The Friedmann equations (1.13 & 1.14) show that for the Hubble radius rHubble to
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Figure 1.1: This conformal diagram shows how patches of the CMB (with photons emitted at the
last scattering surface) could have been in causal contact in a previous inflationary pe-
riod. Adapted from Baumann (2009), where Baumann defines conformal time at the
end of inflation (reheating) with η = 0 as an “apparent” Big Bang; this would be the
initial singularity if inflation were not considered and would lead to the existence of the
horizon problem.

shrink, we require w <−1
3 , which corresponds to an accelerating Universe (ä > 0). For this

reason, inflation is often referred to as an early period of accelerated expansion.

Accelerated expansion during an inflationary period not only solves the horizon prob-

lem, but also the flatness problem. As can be seen from equation 1.14, acceleration corre-

sponds to w <−1
3 , which for flatness will bring ΩK extremely close to zero (equation 1.42).

Physically, one can think of space stretching out any initial curvature.

1.2.3 Slow-roll inflation

A standard approach begins by assuming that inflation is driven by a scalar field φ called

the inflaton7. Many of the details of inflation, including its duration, are somewhat model

dependent (see Carroll 2003 and Baumann 2009 for overviews).

7Multiple field inflation is an important area of research, but its results are not directly relevant to the work
in this thesis.
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We can take a typical Lagrangian density for a single scalar field

Lφ =
1
2

gµν
∇µφ ∇νφ −V (φ) . (1.48)

The energy-momentum tensor associated with this Lagrangian is

Tµν = ∇µφ ∇νφ −gµν

(1
2

gγσ
∇γφ ∇σ φ −V (φ)

)
, (1.49)

which can be compared to the energy-momentum tensor of the perfect fluid for a comoving

observer (see equations 1.6 & 1.8), to get the equation of state

w =
Pφ

ρφ

=
1
2 φ̇ 2−V
1
2 φ̇ 2 +V

. (1.50)

From this equation of state, we can see that if the potential term dominates over the kinetic,

such that V (φ)� φ̇ 2, then we get an accelerating Universe with w≈−1.

This fulfils our requirements for an inflationary period (w < −1
3 ), but only if V (φ)�

φ̇ 2 is maintained for a sufficient duration. This is where slow roll (Linde 1982, Albrecht

and Steinhardt 1982) comes in. We can imagine a potential with a few conditions that leads

to an inflationary period of expansion that then stops after a certain amount of time.

The Langrangian for the inflaton φ (equation 1.48) yields the equation of motion

0 = gµν
∇µ∇νφ +

dV
dφ

. (1.51)

For a homogeneous inflaton field (∂iφ = 0) the equation of motion becomes

0 = φ̈ +3Hφ̇ +
dV
dφ

. (1.52)

The behaviour of φ can be related to the expansion of the Universe using the Friedmann

equation 1.13 combined with the equation of state for inflation (equation 1.50), giving

( ȧ
a

)2
= H2 =

8πGN

3

(1
2

φ̇
2 +V (φ)

)
. (1.53)

We can require that slow roll keeps both the kinetic φ̇ 2 and acceleration terms φ̈ of equa-

tions 1.52 & 1.53 small



1.2. Cosmic inflation 41

V � φ̇
2

|3Hφ̇ | � |φ̈ |∣∣∣dV
dφ

∣∣∣� |φ̈ | ,
(1.54)

and define the slow roll parameters as

εV =
1
2

(V,φ

V

)2

ηV =
1
2

V,φφ

V
,

(1.55)

with notation V,φφ = ∂φ ∂φV , where sometimes these are defined with a Planck mass factor

M2
pl to make them dimensionless.

While these conditions are being fulfilled, the inflaton field is “slowly rolling” down

the potential V and accelerated expansion is continuing. At the end of inflation, φ falls into

a minimum V = 0, at which point the field is conjectured to couple with the standard model

(and hypothesised dark matter) fields and oscillates away its energy. This period is known

as reheating.

1.2.4 Initial conditions

During inflation small-scale quantum fluctuations could be rapidly expanded to extremely

large scales. These fluctuations could then form the initial perturbations that grew into the

large-scale structure in the Universe today (see Lahav and Liddle 2014 and Tanabashi et al.

2018 for modern implications).

In harmonic (Fourier) space, any oscillating mode with length 2π

k is frozen out if, dur-

ing inflation, the Hubble radius drops such that rHubble � 2π

k . At this point, scales which

are larger than the Hubble radius can no longer have any effect as they span regions that

are not in causal contact. The quantum fluctuations imprint random initial conditions which

only then begin evolving once a length scale comes back into play as the post-inflationary

Universe expands.

I will not include any depth of detail regarding this process. Though a rich subject,

its relevance to the work in this thesis is through its generation of near-Gaussian initial

conditions with a primordial power spectrum.
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As an overall picture, we can imagine an inflating Universe flattening out any existing

perturbations and rapidly diluting any existing particles, leaving a vacuum in an accelerating

Universe. The Gibbons-Hawking temperature

TGH =
H
2π

∝
√

V , (1.56)

is the temperature of a quantum vacuum state in expanding de Sitter (w =−1) space (Gib-

bons and Hawking, 1977). This is analogous to the Unruh effect and the corresponding

temperature apparent to an accelerating observer in a vacuum (Unruh, 1976).

During inflation, fluctuations at different scales are frozen out at k ≈ aH with ampli-

tudes related to |∆φ | ≈ TGH. The variance of the fluctuations at different 2π

k scales can be

related to the value of the potential V and its derivative V,φ , which are combined into the

slow roll parameters (equation 1.55).

The variance of harmonic modes at different length scales can be represented by the

power spectrum. For an isotropic and homogeneous field δ ( #»x ) with three-dimensional

coordinate #»x , it is defined by

〈δ̂ ( #»

k )δ̂ (
#»

k ′)∗〉= (2π)3
δD(

#»

k − #»

k ′)P(k) , (1.57)

where δ̂ (
#»

k ) is the Fourier transform of δ ( #»x ), given by

δ̂ (
#»

k ) =
∫
R3

d3x ei #»x · #»k
δ ( #»x ) , (1.58)

and k is the magnitude of
#»

k (Peebles, 1980). The statistics of a homogeneous field are

invariant under spatial transformation so the Fourier modes are uncorrelated, hence the

Dirac delta factor δD(
#»

k − #»

k ′). Isotropy means the power spectrum is a function of only

the magnitude, k, not of
#»

k .

In most inflationary models, correlations of order higher than two are sup-

pressed (Weinberg, 2008), so the two-point correlation terms dominate. The initial

energy-density perturbations δρ imprinted by inflation are therefore near-Gaussian (see

section 1.2.5) for many, often simpler (e.g. Starobinsky 1982), models. More complex

models of inflation may lead to deviations from Gaussianity (e.g. Allen et al. 1987, Kofman

and Pogosyan 1988, Salopek et al. 1989), a detection of which may give evidence for a

given inflationary model (Verde and Heavens, 2001).
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The primordial power spectrum is close to scale invariant. If we define a dimensionless

power spectrum

∆
2(k) =

k3

2π2 P(k) , (1.59)

then

d[ln∆2(k)]
d[lnk]

= 0 (1.60)

would correspond to a scale-free spectrum. This had already been proposed as a primordial

power spectrum before any prediction from inflation (Harrison 1970, Zeldovich 1972, Pee-

bles and Yu 1970).

Fortunately for our ability to test inflation, the primordial power spectrum from infla-

tion is only nearly scale-free. For slow-roll models that are entirely characterised by V and

V,φ , the spectrum of the scalar metric perturbations can be expressed as

d[ln∆2
s (k)]

d[lnk]
= ns−1 , (1.61)

where

ns = 2ηV −6εV +1 . (1.62)

As I will discuss in section 1.3.1, perturbations to the metric (caused by quantum fluctu-

ations in this case) can be decomposed into scalar, vector and tensor components. Vector

components are irrelevant here, but the tensor component corresponds to gravitational waves

sourced by the same fluctuations.

In addition to a scalar spectrum, there is a tensor spectrum

d[ln∆2
t (k)]

d[lnk]
= nt =−2εV . (1.63)

Having a nearly scale-free spectrum corresponds to ns− 1� 1 and nt � 1, which is ex-

pected from the slow-roll conditions. Measurement, or inference, of ns and nt is another

task for observational cosmology. As their values are model dependent, they provide a way

towards understanding the form of the potential V (φ).

In section 1.4.1 I will discuss the current constraints on the inflationary model from



44 Chapter 1. Introduction and background

the CMB.

1.2.5 Gaussian random fields

Gaussianity is a statistical property which means a field (e.g. perturbations imprinted by

inflation) are randomly drawn from a Gaussian distribution. A zero-mean Gaussian field

f ( #»x ) has a probability distribution given by

P( f ( #»x ))dDx =
1

det |2πΣ| exp
(
− 1

2
f ( #»x )T

Σ
−1 f ( #»x )

)
dDx , (1.64)

where 〈 f ( #»x ) f ( #»x )T 〉 = Σ is the covariance matrix and the dimension D is the number of

elements in the vector #»x . It is simple to generalise to a field g( #»x ) with a non-zero mean µ

by the transformation g( #»x ) = f ( #»x )+ µ . Equivalently this transformation can remove the

mean. This has allowed us so far to think of perturbations δ ( #»x ) as being Gaussian without,

as yet, thinking about the total density.

We can imagine that if the Universe were run many times over, the perturbations would

be initialised differently, with each realisation of these perturbations being independent and

identically distributed (according the same probability distribution). As we only observe

one Universe, the property of ergodicity is invoked to say that averaging over large volumes

would be the same as averaging over many realisations of the Universe (Peacock, 1999).

The covariance matrix is the generalisation of variance to include correlations between

different elements of f ( #»x ). As previously discussed, homogeneity means that Fourier

modes are uncorrelated, which would mean that the covariance matrix of δ̂ (
#»

k ) would be

diagonal.

This view of things makes it possible to think again about homogeneity and isotropy

as presented initially. The Universe is clearly not completely homogeneous; there are ob-

servable perturbations on all scales (e.g. galaxies, the cosmic-web, people). The Universe

is statistically homogeneous, meaning that these perturbations average away over many re-

alisations.

For correlations of Gaussian random fields with greater than order two, we can invoke

Wick’s (or more fairly Isserlis’) theorem (Wick 1950, Isserlis 1918). With our notation, it

implies that
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〈 f ( #»x 1)... f ( #»x 2n+1)〉= 0

〈 f ( #»x 1)... f ( #»x 2n)〉= ∑
distinct

partitions
into pairs

∏
n pairs

i, j

〈 f ( #»x i) f ( #»x j)〉 (1.65)

for integer n. Taking the examples of n = 3 & 4 with a shorthand notation for our Gaussian

field f ( #»x i) =
#»
fi , Wick’s theorem gives

〈 #»
f1

#»
f2

#»
f3〉 = 0

〈 #»
f1

#»
f2

#»
f3

#»
f4〉= 〈

#»
f1

#»
f2〉〈

#»
f3

#»
f4〉+ 〈

#»
f1

#»
f3〉〈

#»
f2

#»
f4〉+ 〈

#»
f1

#»
f4〉〈

#»
f2

#»
f3〉 .

(1.66)

For a Gaussian random field, the expected odd-number correlations are zero and the even-

number correlations are combinations of the two-point correlations.

This confirms something that was clear from the form of equation 1.64, that the Gaus-

sian random field is entirely characterised by its mean and its two-point correlations (i.e. the

covariance matrix). It additionally provides ways to measure non-Gaussianity, for example

by measuring a non-zero three-point correlation.

If we do not want to work in Fourier space with the power spectrum, but rather in con-

figuration space where #»x lives, then we can use the two-dimensional correlation function

ξ ( #»r ) = 〈δ ( #»x )δ ( #»x + #»r )〉 , (1.67)

which can be related to the power spectrum using equation 1.57 (Peacock, 1999) to give

ξ ( #»r ) =
1

(2π)3

∫
d3kP(k)e−i

#»
k · #»r . (1.68)

Keeping in harmonic space, but remembering that observations are often on the celestial

sphere, we turn to spherical harmonic analysis. For a field on the sphere f (
#»
φ ) defined at

angular positions8 #»
φ (where the two elements of

#»
φ could be right ascension and declina-

tion), the spherical harmonic transform is given by

8note the arrow indicating a vector, which is used to distinguish this from the inflaton
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f (
#»
φ ) =

∞

∑
`=0

+`

∑
m=−`

f`mY`m(
#»
φ ) . (1.69)

The spherical harmonic coefficients f`m are the spherical analogue of δ̂ (
#»

k ). Similarly, the

Y`m form a complete set of eigenfunctions for an expansion on the sphere in the way that

as ei
#»
k · #»x do for Euclidean space in Fourier analysis (Dodelson, 2003). The angular power

spectrum is given by

〈 f`m f ∗`′m′〉= δ
K
``′δ

K
mm′C` (1.70)

where δ K is the Kronecker delta function.
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1.3 Growth of structure

1.3.1 Scalar perturbations

Solving the Einstein equations in the isotropic and homogeneous FLRW Universe does

recover the global time evolution in the form of the Friedmann equations (equations 1.13

& 1.14), which are functions of ρ(t) and P(t) for different spatially-constant fluids. To

go further and predict the formation of structure and the trajectories of light, we need to

consider perturbations to the FLRW metric that represent inhomogeneities.

We can split the metric into an FLRW (ḡ) and perturbative (h) part

gµν = ḡµν +hµν . (1.71)

We assume that hµν is small and does not effect the global evolution of the scale factor a

of the background ḡµν . There is a proposed, and controversial, process by which structure

formation does lead to changes in the evolution of the scale factor; this backreaction debate

appears to not yet have disappeared (Buchert and Räsänen 2012, Kaiser 2017).

The metric tensor must be symmetric, so there are 10 degrees of freedom in hµν . For

the flat, K = 0, case, the perturbed metric can be written as

ds2 = a(η)2
(
(1+2A)dη

2−2Bidxidη− (δ K
i j +hi j)dxidx j

)
. (1.72)

Scalar-vector-decomposition can then split Bi into the sum of its scalar and (divergence-

free) vector parts, and by extension hi j into 2 scalar, 1 vector and 1 tensor part. At linear

order these decomposed parts are decoupled and evolve independently (Dodelson, 2003). A

certain linear combination of these, for which the metric is invariant under any general co-

ordinate transformation, are the Bardeen variables which are gauge independent (Bardeen,

1980).

I will not discuss the issue of gauge with great depth, as the final standard, quasi-

Newtonian result is the goal here. The choice of gauge is related to how hµν is separated

from the background, as the background itself can be changed by a coordinate transforma-

tion (Ellis and van Elst, 1999). The fact that changing gauge can give the same observable

prediction is gauge freedom.

It is possible to fix the gauge, by choosing a coordinate transformation that simplifies

an expression or calculation. The metric in the Newtonian gauge (equivalent to fixing B =
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EBardeen = 0), with only the scalar perturbations, is given by

ds2 = a(η)2
(
(1+2Φ)dη

2− (1−2Ψ)δi jdxidx j
)

(1.73)

where Φ = A and −2Ψ is the scalar part of hi j. The gauge looks similar to the Newtonian

limit in Minkowski space, as the time and space parts are orthogonal, and if there is no

anisotropic stress (Ψ = Φ) these scalar perturbations behave like the Newtonian gravita-

tional potential.

We are focussing on the scalar part, which represents compressional modes, as these

are the (primary) cause of structure formation in the Universe (Weinberg, 2008). Tensor

modes have already been discussed as primordial gravitational waves in the context of in-

flation. The vector components, which represent vortical modes, can be safely ignored here

as they rapidly decay with the expansion of the Universe.

Solving the Einstein equations (1.9) to predict the evolution of the scalar perturbation

in the Newtonian gauge Φ at linear order, a long exercise not repeated here (Dodelson

2003, Weinberg 2008, Baumann 2014), gives

− k2
Φ−H

(
Φ
′+H Φ

)
= 4πGNa2

δρ , (1.74)

iki(Φ
′+H Φ) =−4πGNa2 (

ρ̄ + P̄
)
δUi , (1.75)

Φ
′′+3H Φ

′+
(
2H ′+H 2)

Φ = 4πGNδP , (1.76)

where the derivative with respect to conformal time is

A′ =
dA
dη

, (1.77)

and the conformal Hubble parameter, H (η), is defined as

H =
dlna
dη

. (1.78)

We can define overdensity δ with respect to the mean background density ρ̄ as
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δ (t,x) =
δρ(x, t)

ρ̄(t)
=

ρ(x, t)− ρ̄(t)
ρ̄(t)

. (1.79)

For scales which are far below the Hubble radius k−1 << rHubble, which are often

called sub-horizon, equation 1.74 reduces to the Newtonian form of the Poisson equation

∇
2
Φ = 4πGNa2

ρ̄ δ , (1.80)

with a scale factor contribution accounting for expansion9.

In addition to solutions using the Einstein equations, we can also make use of the

conservation equation (1.20). The time component of this gives the relativistic continuity

equation

δρ
′+3H

(
δρ +δP

)
+
(
ρ̄ + P̄

)(
ikiδU i−3Φ

′)= 0 , (1.81)

and the spatial component gives the relativistic Euler equation

δUi
′+H δUi + ikiΦ+

P̄′ δUi + ikiδP
ρ̄ + P̄

= 0 . (1.82)

This acts per fluid component, unlike the Einstein equations which act on the sum. For

a single evolving fluid, conservation is already intrinsic to General Relativity. The set for

all fluids form a set of Boltzmann equations (Dodelson, 2003)10 which combined with the

Einstein equation results can be used to model the evolution of perturbations.

1.3.2 Growing modes

As the work in this thesis is focussed on weak lensing and maps of dark matter from the

late Universe, here I will present a few results relevant to structure formation in the late

Universe.

In this case “late” means that the Friedmann equations are dominated by the matter (or

late-time dark energy) terms, so ρ̄R is negligible. It also means the time after baryons and

radiation have decoupled, so we can assume there is a single matter component with P� ρ .

I will also ignore the (comparatively small) effect of neutrinos, which free-stream in the late

Universe and suppress the formation of structure (Park et al., 2012).

9This can also be achieved by eliminating the second term of equation 1.74 using equation 1.74 and redefin-
ing only the right hand side of equation 1.80 to be in a different gauge.

10We have already used a few assumptions (e.g. anisotropic stress) which need not be made in the full
analysis (e.g. including neutrinos).
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In this regime (Dodelson 2003, Baumann 2014) the continuity and Euler equations

reduce to

δ
′+∇ ·u−3Φ

′ = 0 , (1.83)

du
dη

+H u+∇Φ = 0 . (1.84)

where, having moved out of Fourier space, the simpler notation for the peculiar velocity u

is used.

Combining equations 1.74 & 1.76 with w = 0 gives Φ = constant, so we can drop the

Φ′ term in equation 1.83. We can say that Φ is frozen during matter domination. Then,

rewriting the Poisson equation in the sub-horizon limit (equation 1.80) as

∇
2
Φ(x) =

3
2

Ωm(η)H 2(η)δ (x,η) , (1.85)

allows us to eliminate the spatial derivatives from equations 1.83 & 1.84, which gives

δ
′′(k,η)+H δ

′(k,η) =
3
2

Ωm(η)H 2(η)δ (k,η) , (1.86)

a second order differential equation (Scoccimarro 1998, Bernardeau et al. 2002). I have

arbitrarily (as there are no spatial derivatives) written these perturbations as functions of k

here, as it is often more useful to imagine evolving harmonic modes.

We now go to linear order in perturbation theory

δ (k,η) = D1(η)δ (k,0)+ . . . (1.87)

for which we ignore the decaying solution of equation 1.86 (which is second-order and

therefore permits two independent solutions) and call D1 the linear growing mode.

A simple solution for D1 is with Ωm = 1 and ΩK = 0, the so-called Einstein-de Sitter

Universe (Einstein and de Sitter, 1932). In this case the linear growing mode would have a

scaling given by

D1(t) ∝ t
2
3 , (1.88)
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showing that structure grows with time in a flat, matter-dominated Universe.

The evolution of D1 is often represented by

f =
dlnD1

dlna
(1.89)

which for a flat Universe, 1 = Ωm +ΩΛ, can be parameterised as approximately f = Ωγ

with γ ≈ 5
9 (Peebles 1980, Lightman and Schechter 1990, Lahav et al. 1991, Bouchet et al.

1995). Modifications to ΛCDM or General Relativity would give a different value of γ .

1.3.3 Non-linear structure

The research in this thesis focusses on dark matter maps from weak lensing data. The

large-scale structures featured in these maps are from the late Universe, where non-linear

collapse has led to a highly non-Gaussian density field. To understand and model the density

distribution in this case, we cannot rely on the linear techniques introduced in the previous

section.

There are many techniques to model non-linear structures in the Universe. In the initial

small δ regime, perturbation theory (PT) has some success (as will be discussed shortly), but

will quickly become unhelpful for truly non-linear dynamics. Of particular historical sig-

nificance was the theory of Press and Schechter (1974), which introduced a simple model of

spherically symmetric collapse resulting in a mass distribution of virialised halos. Though

this theory and its extension are a good approximation (Sheth and Tormen 1999, Jenkins

et al. 2001), the theory does not generate predictions which match results from N-body sim-

ulations exactly. N-body simulations, and software11 combining N-body and PT, will be

used throughout this thesis to model the non-linear density field in the late Universe.

PT is a powerful predictive tool to model the formation of structure evolving from

the Gaussian initial conditions, even into the mildly non-linear regime. The technique of

Langrangian perturbation theory (LPT), which can can be contrasted with the more natu-

ral Eulerian perturbation theory (Scoccimarro 1998, Bernardeau et al. 2002) uses a new,

Lagragian, coordinate system. We replace the standard Eulerian coordinates x with a La-

grangian coordinate q,

x(η) = q+ψ(q,η) . (1.90)

11L-PICOLA
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The two coordinate systems are related through a displacement field ψ , which becomes the

time-evolving object. As q does not evolve, it corresponds to initial particle positions.

To transform between densities in the different coordinate systems the Jacobian is used

J(q,η) = det
∣∣∣∂qi

∂x j

∣∣∣= det
∣∣∣δ K

i j +
∂ψi

∂x j

∣∣∣ . (1.91)

We can also enforce a conservation of mass constraint in the new coordinate system

ρ(x,η)d3x = ρ(q)d3q , (1.92)

which, after dividing by the mean density ρ̄ , gives the Jacobian as

J(q,η) =
1

1+δ (x,η)
. (1.93)

With the new coordinates, equation 1.84 is simply now in terms of the displacement field

d2ψ

dη2 +H
dψ

dη
+∇xΦ = 0 , (1.94)

where the gradient is still in terms of the Eulerian coordinates. Multiplying by the Jacobian

(equation 1.93) and taking the gradient gives

J∇x

(
ψ
′′+H ψ

′
)
=

3
2
H 2(J−1) , (1.95)

where we have used the Poisson equation 1.85 on the right hand side. To get the gradient in

Lagrangian coordinates, the Jacobian can be used for coordinate transformation.

The Zel’dovich Approximation (ZA) is the linear order solution to equation 1.95 (Zel’dovich,

1970). We expand the displacement to linear order

ψ = ψ
(1)+ . . . , (1.96)

where

ψ
(1) = b(η)p(x) . (1.97)

The solution to first order is
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∇qψ
(1)(q,η) =−D1(η)δ (q) , (1.98)

where D1 is the linear growth from equation 1.87 and δ (q) are the initial (Gaussian) matter

fluctuation.

The equations of motion can then evolve the linear growth factor, D1(η), indepen-

dently. The dynamics here lead to growth of the density perturbations into flattened

Zel’dovich pancakes, due to structures collapsing in the direction with negative eigenvalues

λi (with our sign definition) of the matrix pi, j. This behaviour can be shown by expanding

the Jacobian to linear order, which gives

1+δ (x,η) = det
∣∣∣δi j +b(τ)

∂ pi

∂q j

∣∣∣−1

= 1−b(τ)∑
i

λi +O(ψ2) ,
(1.99)

where λi are the eigenvalues of the matrix pi, j =
∂ pi
∂q j

. Continuing at linear order gives

δ (x,η) =−b(η)∑
i

λi

=−b(η)∇qp(q)

=−∇qψ
(1) .

(1.100)

The appearance of ZA structure is in agreement with the filamentary structure of full N-body

dynamics, though the lack of higher order “damping” terms lead to catastrophic caustic

behaviour (Shandarin and Zeldovich, 1984). Even a simple collapsing cloud of particle

leads to a singularity (Peacock, 1999).

The point of failure is sometimes known as shell crossing, and can be interpreted as

the coordinate transformation becoming ill-defined due to multiple streams being displaced

from initial q points to the same x (Bernardeau et al., 2002). This failure is not only

restricted to ZA; problems with shell crossing are inherent to all LPT due to the coordinate

transform (Carlson et al., 2009).

Second order Lagrangian perturbation theory (2LPT)
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ψ = ψ
(1)+ψ

(2)+ . . . , (1.101)

gives the next order displacement (Bouchet et al., 1995), which takes into account tidal

gravitational effects,

∇qψ
(2) =

1
2

D2(η)∑
i 6= j

ψ
(1)
i,i ψ

(1)
i, j −ψ

(1)
i, j ψ

(1)
j,i , (1.102)

where D2 is the second order growth factor (Bernardeau et al., 2002).

The structures represented in weak lensing maps from the late Universe, which are

of interest given the work in this thesis, are extremely non-linear. This PT approach is

restrictive as we can no longer assume we are in a perturbative regime when δ � 1. Though

we will see that the results from LPT can still play a part, we rely on simulations to model

truly non-linear growth.

N-body simulations evolve a large number of particles according to the equations of

motion, primarily the Euler and Poisson equations. Particle-mesh (PM) is a popular and

simple approach where the forces (or potentials) at each time-step are calculated from a

grid. In the simplest case, the grid points are assigned the total mass from all particles within

the point’s own unique volume (Efstathiou et al., 1985). As these particles are meant to

represent a fluid, but actually have large individual masses and are not continuous in space,

the forces can be set to a constant below a certain length scale. This softening procedure

avoids large scattering-like events between particles in the simulation (Peacock, 1999).

One of the most popular software packages, GADGET (Springel, 2005), is primarily an

N-body method, if we ignore its smoothed-particle hydrodynamics. GADGET models the

non-interacting (cold) dark matter density field as a large number of collisionless particles

which only interact through gravitation. This assumption neglects the effect of baryonic

matter or neutrinos, which both can affect the matter evolution.

The grid-interpolation of pure PM inevitably introduces inaccuracies in the force cal-

culation at length scales corresponding to the grid spacing. GADGET’s TreePM algorithm

uses both a PM, which predominantly solves for the large distance scales, and a tree

method (Hernquist et al., 1991), which computes the short range forces. The PM grids

the particles onto a mesh on which the Poisson equation (equation 1.85) calculates the

forces at each grid position. The forces are calculated in Fourier space, achieved using a
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fast-Fourier-transform (FFT).

For large volume cosmological simulations, standard methods such as GADGET can

be computationally slow and memory-intensive. Even without the more complex baryon

interactions, full N-body methods are often too computationally intensive to run enough

simulations for certain problems. For dark matter map statistics, the simulations must si-

multaneously have a volume as large as a modern galaxy survey and high enough resolution

to accurately resolve the peak structure. L-PICOLA (Howlett et al., 2015) is a good candi-

date to generate a large enough sample of simulations (rather than using the full N-body

methods).

Figure 1.2: Image taken from Tassev et al. (2013): “We show slices through three N-body simu-
lations evolving the same initial conditions up to z = 0. The particles (each of mass
4.6×109 M�/h) are shown as red points. Each slice is 20 Mpc/h on the side (the full
simulation box is 100 Mpc/h on the side), and about 3 Mpc/h thick. The left panel
shows the 2LPT approximation used for building mock catalogs using the PTHalos ap-
proach. Calculating the 2LPT particle positions requires an equivalent of roughly 3
timesteps performed by an N-body code. The middle panel shows the result obtained
with our modified N-body code with as few as 10 timesteps. The rightmost panel shows
the “true” result obtained from GADGET-2 after approximately 2000 timesteps starting
with 2LPT initial conditions at z = 49.”

L-PICOLA is a light-cone implementation of the COLA algorithm, which is an N-body

extension of 2LPT. The COLA method (Tassev et al., 2013) allows the large scale quasi-

linear dynamics to be solved by the perturbative approach but also uses N-body methods to

help in recovering the small scales. This requires far fewer timesteps to recover the non-

linear and large scale dynamics than an N-body code such as GADGET, as can be seen in

figure 1.2.

The L-PICOLA implementation uses an initial theoretical power spectrum, with pa-

rameters Ωm, Ωb (baryon density), h, σ8, and ns, and calculates the initial density up to a

user-defined initial redshift using 2LPT.
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The σ8 parameter is the standard deviation of linear matter fluctuations in 8 Mpc h−1

spheres, which defines the amplitude of the power spectrum. Here h is the rescaled Hubble

parameter

h = H0/100 (km/s)/Mpc . (1.103)

At every user-defined iteration step from the initial redshift to the final, the particles are

evolved according to both 2LPT and the PM method. The PM implemented in L-PICOLA

accounts for the effect of 2LPT, and applies the PM as a final correction. Such evolution

can be seen in figure 1.3.

The dark matter halos recovered from L-PICOLA are not as collapsed as with a full

N-body. When compared with GADGET-2 simulations, Howlett et al. (2015) found that the

lack of the smaller scale forces lead to “puffed out” halos. This propagates to the correlation

functions, where the recovered power spectrum is very accurate up until a cut-off at a certain

small length scale that depends on the specific simulation parameters. However, above

this scale the power spectrum and 3-point statistics agree very well with theoretical and

simulated power spectra and bispectra.
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Figure 1.3: Three projected density snapshots from different timesteps of a L-PICOLA simulation
using a comoving (600 Mpc) simulation box with periodic boundary conditions. A
near-Gaussian density field at early times evolves to highly non-Gaussian cosmic-web
distribution at late times. Density estimates were calculated from particle positions
using PYNBODY (Pontzen et al., 2013).
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1.4 Overview of cosmological observables

In the previous sections the main aspects of the standard model of cosmology were pre-

sented, with a main focus on results which will become relevant in the following chapters.

Similarly, in this section I will show a few main ways this model has been constrained from

observational data, results which will used throughout this thesis.

A brief presentation of the mechanism of the Cosmic Microwave background is out-

lined in section 1.4.1. I will present select results from the Planck analysis that have affected

some of the analysis choices made in the work of this thesis.

In section 1.4.2, I will present how distance ladders and Type Ia supernovae can be

used to constrain cosmological parameters and models, and particularly how H0 seems to

disagree with the result from the CMB. In the work described in Chapter 4, supernovae

distance ladder (JLA) data will be used to demonstrate the effects of noisy simulations on

parameter inference.

I will discuss how cosmological models and parameters can be constrained from N-

point functions of the galaxy distribution in section 1.4.3. This has much in common with,

and can be contrasted with, the main topic of this thesis, weak gravitational lensing, which

is presented in section 1.4.4.

1.4.1 Cosmic Microwave Background

This extremely brief description of some of the elements of the CMB will be to allow the

presentation of a few relevant results. Those which will be of particular relevance to the

work in this thesis are: flatness, a dark matter component, and primordial spectrum that

matches inflation.

As discussed in section 1.2, in the post-inflationary Universe the Hubble sphere ex-

pands, reintroducing modes with increasingly large length scales. Once a mode with a

given length scale becomes sub-horizon, it is able to evolve once more.

In the early Universe, the baryon fluid and photon fluid were tightly coupled due to

efficient Thompson scattering between the photons and electrons12. As such, they can be

treated as one single fluid which has pressure, unlike the dark matter component which

could only interact gravitationally with the baryon plasma. Solving the Boltzmann equa-

tions shows that modes in this fluid start oscillating once they are sub-horizon.

As the Universe expanded, the temperature of the baryon-photon plasma decreased.

12Baryons in this context include electrons, much to the confusion of particle physicists.
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Figure 1.4: Adapted from Planck Collaboration et al. (2018b). The upper panel is the foreground
removed (SMICA) map. The grey outline shows the mask, which covers the central
Milky Way galaxy region, which has been inpainted. The lower panel is the foreground-
subtracted and frequency-averaged angular power spectra for temperature, where D` =
C``(`+1)/(2π).

Once the temperature dropped below a critical level, neutral hydrogen could form out of

the plasma; this time period is known as recombination. At this time (∼ 4× 104 years

after inflation), photons decoupled from electrons and free-streamed. Observations of these

photons at the present day give a snapshot of this surface of last scattering.

These photons, now redshifted by a factor of ∼ 1100, form the Cosmic Microwave

Background (CMB). The discovery of the CMB by Penzias and Wilson (1965) gave spec-

tacular evidence for the hot Big Bang model (Dicke et al., 1965). This was followed

by a precise measurement of the photons’ black body spectrum with a temperature of

2.725±0.002 K (Fixsen et al. 1996, Mather et al. 1999).

In recent years, the angular anisotropies in the CMB temperature and polarisation have

provided unique constraints on cosmological parameters and models. Figure 1.4 shows the

angular power spectrum (defined in equation 1.70) for the CMB temperature fluctuations

along with a reconstructed map of the underlying temperature fluctuations.
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The acoustic peaks at different ` multipoles in the angular power spectrum can be un-

derstood in terms of the different length scales coming into the growing Hubble sphere at

different times. Smaller scales in the baryon fluid, corresponding to larger `, began oscil-

lating at earlier times and so had more oscillatory periods before recombination; hence the

oscillations at different ` scales are out of phase. At recombination the baryon fluid stopped

oscillating as the pressure from radiation was lost; some modes that were at the extrema of

their oscillation show enhanced power. The exact form of the temperature angular power

spectrum can be calculated using linear Boltzmann codes, such as CMBFAST (Seljak and

Zaldarriaga, 1996) or CAMB (Lewis et al., 2000).

As the CMB is in the relatively early Universe, non-linear structure formation has not

taken place. The primordial temperature anisotropies are therefore extremely Gaussian (as-

suming Gaussian initial conditions from inflation). The angular power spectrum therefore

contains all of the information about the temperature field (excluding the mean).

Despite this, there is additional information encoded in the linear polarisation of the

CMB photons. Polarisation occurs due to scattering from quadrupole distributions of in-

coming photons. A polarisation map across the celestial sphere can be composed of in-

dependent linear Stokes Q and U parameters. These can be combined into rotationally

invariant E and B fields, which have the benefit that tensor (gravitational wave) modes from

inflation induce only B-modes and not E-modes in the primary CMB (Kamionkowski et al.

1997, Seljak and Zaldarriaga 1997, Zaldarriaga 2001, Kovac et al. 2002).

The photon distribution is not exactly a snapshot of the last-scattering surface. Sec-

ondary anisotropies, which I won’t explore in detail, include inverse Compton scattering,

the Sunyaev-Zel’dovich effect (Sunyaev and Zeldovich, 1980), and the late-time integrated

Sachs-Wolfe effect (Sachs and Wolfe, 1967). Gravitational lensing, changing the appar-

ent trajectories of photons, causes distortions which are a probe of the matter distribution

between the time of last scattering and now (see Hu and Dodelson 2002 for review).

These following results, which are selected for their relevance to the work in this the-

sis, are all from the Planck Collaboration’s final 2018 analysis release (Planck Collaboration

et al., 2018a); Planck was an ESA space mission which took CMB temperature and polari-

sation measurements for 30 months between 2009 and 2013.

Flatness from the CMB has been measured to a great enough precision that global

spatial curvature ΩK will be assumed negligible in all of the work in this thesis. The combi-
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nation of temperature, polarisation and lensing gives ΩK = 0.0106±0.0065, where 0.0106

is the mean of the marginal posterior probability distribution13 and 0.0065 is the standard

deviation (i.e. 1σ ).

An inferred cold dark matter density of Ωch2 = 0.1200±0.0012 can be compared with

the total matter density Ωmh2 = 0.1430±0.0011. The factors of h2 reflect the dependence

on the Hubble parameter. This is clear evidence (using temperature, polarisation, and lens-

ing) that the matter distribution in the Universe is primarily non-baryonic dark matter.

Though the tensor contribution to the CMB has disappointingly remained elusive, the

index of the scalar primordial power spectrum ns is well constrained. The most recent

measurement from Planck gives ns = 0.9649±0.0042. This statistical inference combines

CMB temperature, polarisation and lensing data using a ΛCDM model to give a parame-

ter constraint which is “8σ” away from ns = 1 (Planck Collaboration et al. 2016, Planck

Collaboration et al. 2018a). This is compelling evidence of a prediction of inflation that is

explicitly different from the pre-inflationary theory (i.e. the Harrison-Zel’dovich-Peebles

spectrum with ns = 1).

1.4.2 Distance ladder

Objects with a known luminosity can be thought of as being a standard candle, which

can be used to estimate distances (Leavitt, 1908). Type Ia supernovae (SNe Ia), which are

expected to occur due to mass transfer onto a white dwarf star from a second star (Whelan

and Iben, 1973), are often termed standardisable candles. Their observed peak luminosity

can be related to the luminosity distance with corrections that include the observed colour,

light-curve shape, and mass of the host galaxy (e.g. Betoule et al. 2014).

By combining the luminosity distance and the observed redshift of the host galaxy,

SNe Ia were famously used to great effect by Perlmutter et al. (1999) and Riess et al. (1998)

to provide strong evidence that ΩΛ > 0, work which led to the 2011 Nobel Prize in Physics.

The Hubble tension is a name that has been given to the apparently discrepant results

for the value of H0, Hubble parameter at z = 0, from the CMB (e.g. Planck) and so-called

“direct measures” using SNe Ia in a distance ladder. The final Planck analysis (Planck

Collaboration et al., 2018a) gives a “low” result for the reduced Hubble constant as h =

0.674±0.005. Based on data which included the Hubble Space Telescope (HST) SH0ES14

programme, Riess et al. (2019) present a “high” result of h = 0.74±0.014.

13See section 1.5 for the definition of marginal posterior.
14Supernovae, H0, for the Equation of State of dark energy
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In order to make such a local measurement of H0 from supernovae alone, the intrinsic

magnitude of the SNe Ia would need to be known. The technique used, which is sometimes

referred to as calibrating the distance ladder, joins up local measurements of absolute dis-

tances to the low redshift tip of SNe Ia observed magnitude-redshift curve. In broad terms15

the ladder connects: (1) local geometric distance measurements (including parallax), (2)

pulsating cepheids variable stars using an assumed period-luminosity relation (Leavitt and

Pickering 1912, Eddington 1917), and (3) observed SNe Ia.

The benefit of the local distance ladder, rather than the full ΛCDM Planck analysis,

is that a cosmological model does not need to be assumed, and H(z) can be modelled as a

flexible function in terms of z (e.g. Taylor expansion, Visser 2004) where H0 = H(z = 0).

It is possible to have an inverse distance ladder, where the absolute distance is cali-

brated at high redshift using only the sound horizon from the CMB and having a flexible

form for H(z) (e.g. Lemos et al. 2019). Combining 207 SNe Ia from DES, 122 low red-

shift SNe Ia from external data sources, BAO measurements from external spectrocopic

data, and the sound horizon result from Planck, Macaulay et al. (2019) infer a value of

h = 0.678±0.013. As this result used the sound horizon from the CMB at high redshift, it

is perhaps not too surprising that this result agrees with Planck, rather than the local distance

ladder.

1.4.3 Galaxy clustering

The distribution of galaxies in the Universe is expected to trace the underlying matter distri-

bution. Using this assumption, galaxy surveys are able constrain cosmological parameters

and models using observed N-point correlation functions or the N-point spectra (in har-

monic space).

The link between the bright observable galaxies and the dark underlying density field

is encapsulated in galaxy biasing. We think of galaxies as biased tracers, as they do not

exactly trace the underlying matter distribution. This is clear enough when one considers

that different types of galaxies (e.g. spiral or elliptical galaxies) are observed to cluster

differently (Dekel and Lahav, 1999).

Initial work (Kaiser 1984, Bardeen et al. 1986) assumed that galaxies would form at

growing peaks in the primordial Gaussian density field, where the potential well is deepest.

In the linear regime, this leads to a galaxy overdensity given by

15See Riess et al. 2019 for details, additional routes and “half-steps” up the ladder.
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δg(x) = b δ (x) , (1.104)

where, in the most general case, b is the bias parameter for a certain type of galaxy at a

given time or redshift.

This then gives a simple relation for the power spectrum of the galaxy distribution

Pg(k) = b2 P(k) , (1.105)

where P(k) is the matter power spectrum.

One clearly might desire to expand on the simple assumptions made up to this point.

For example, adding a redshift dependence to the bias parameter b(z) has been proposed

(Nusser and Davis 1994, Fry 1996, Tegmark and Peebles 1998). Indeed, choosing to ig-

nore redshift evolution has been shown to affect the inferences made about the dark energy

equation of state w (Clerkin et al., 2015).

The form of equation 1.105 might suggest a perturbation theory point of view. One

could consider adding higher-order (non-linear) biasing terms. It was suggested quite early

on that linear bias was incompatible with data (Gaztanaga, 1992). With this view, one

could consider expanding to increasingly higher order with operators combining perturbed

density, the potential, and scale k (see Desjacques et al. 2018 for a recent review). Bias with

scale k variation, b(k), would be a particularly difficult problem, as it can introduce effects

that are indistinguishable from the power spectrum P(k).

It is typical to choose some flexible model and treat any free bias parameters as nui-

sance parameters. These are free to be constrained by the data and are included in the

statistical inference, but are of little eventual interest. Whatever the bias model, it provides

a link between the N-point functions of galaxy overdensity and the N-point functions of the

matter overdensity.

The most accurate strategy to map the distributions of the galaxies is to measure

their spectral energy distribution (SED), the frequency distribution of observed photons per

galaxy. The various absorption and emission features, which are known in the rest-frame,

are redshifted. This allows a spectroscopic experiment like the Sloan Digital Sky Survey

(SDSS, Abolfathi et al. 2018) to map galaxies with three coordinates: z, right ascension

(RA), declination (DEC).
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Figure 1.5: Left panel: the matter power spectrum at z = 0 using linear theory and excluding the
effects of redshift space. Right panel: the corresponding two-point correlation function.
Both show the baryonic acoustic oscillation (BAO) feature. The chosen cosmological
parameters match the MICE simulations (e.g. Fosalba et al. 2015) and calculations were
performed with CLASS and NBODYKIT (Lesgourgues 2011, Audren and Lesgourgues
2011, Hand et al. 2018).

One feature of observing the apparent redshift of a galaxy with high-quality spectrom-

etry is redshift space distortion. The z coordinate only corresponds to a unique distance in

the absence of peculiar velocities. The quasi-random paths of galaxies within a halo leads

to a Doppler broadening, elongating the redshift distribution, which is grandly known as the

Fingers-of-God effect (Jackson, 1972). A second Kaiser effect (1987) flattens the structures

in the z direction due to infalling galaxies.

Figure 1.5 shows the linear theory matter power spectrum at z = 0 and the correspond-

ing two-point correlation function ξ (r) evaluated using CLASS and NBODYKIT (Lesgour-

gues 2011, Audren and Lesgourgues 2011, Hand et al. 2018). The baryon acoustic oscil-

lation (BAO) feature can be clearly seen. The comoving length scale of the oscillations

corresponds to the comoving sound horizon at recombination (c.f. section 1.4.1), which has

a Planck value of rd = 147.18±0.29 Mpc (Planck Collaboration et al., 2018a). This BAO

oscillation corresponds to a sharp feature at this comoving length scale in the configuration

space (i.e. not harmonic space) correlation function. This can be used as a standard ruler

across different redshifts, providing particularly good constraints on the cosmological pa-

rameters when combined with CMB results (e.g. Baryon Oscillation Spectroscopic Survey,

Alam et al. 2017).

The next generation spectroscopic survey DESI (DESI Collaboration et al., 2016),

based at the Mayall 4-meter telescope at Kitt Peak National Observatory, will take spec-
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tra and determine the redshift of 35 million galaxies. In comparison, both the upcoming

space-based ESA Euclid mission (Amendola et al., 2016) and the ground-based Large Syn-

optic Survey Telescope (LSST, LSST Science Collaboration et al. 2009) will observe ap-

proximately 1 billion galaxies. This gain in the number of galaxies is at the expense of the

quality of the redshift measurement. Both Euclid and LSST will primarily16 be photometric

surveys.

A photometric redshift measurement relies on measuring a galaxy’s flux in a relatively

low number of colour filters, measurements which are then used to estimate the redshift of

a galaxy (or the redshift distribution of galaxies). The ongoing Dark Energy Survey (DES)

experiment, which will feature often in the work of this thesis, is expected to have observed

300 million galaxies in such a way by the completion of its analysis. DES uses a wide-field

camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in

five filters (Dark Energy Survey Collaboration et al., 2016).

1.4.4 Weak gravitational lensing

Light propagating through non-uniformities in the metric between a distant source galaxy

and an observer leaves a distortion imprinted on the image of the galaxy. This distortion,

though it may be small, is controlled by the distribution of matter along the path of the

photon. Given enough galaxies across the sky and with a suitable distribution in radial

distance, it is possible to infer properties of the matter distribution.

The power of gravitational lensing is that all matter contributes to the effect. Un-

like with galaxy counts (section 1.4.3) where we were reduced to proposing galaxy biasing

schemes to infer the dark matter distribution, weak lensing can “see” the dark matter di-

rectly.

In this section I will present some standard results from weak gravitational lensing,

primarily based on Bartelmann and Schneider (2001), Castro et al. (2005), and Kilbinger

(2015). Throughout it will be assumed that we are in the weak field limit, such that the

potential is small Φ� c2, as are the angles through which the light’s path is deviated. To

make the weak field explicit, the factors of the speed of light c will be reintroduced at first.

The assumption from section 1.3.1, that Φ = Ψ, will carry through here.

To begin lensing, we can again consider scalar perturbations to the FLRW metric

(equation 1.73), but dropping the scale factor a as we only care about local lensing17. This

16Euclid will actually have an additional grism-based spectrograph.
17We can also think that δη = aδ t, so the argument from Fermat’s principle still applies.
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gives

ds2 =
(

1+
2Φ

c2

)
c2dt2−

(
1− 2Φ

c2

)
dr2 , (1.106)

where we are using the proper (non-conformal) time coordinate t and are only considering

the radial spatial coordinate r. To first order

c
dt
dr

= 1− 2Φ

c2 , (1.107)

where the right hand side is acting like a refractive index term in classical lensing.

Similarly to classical lensing, we can use Fermat’s principle for δ t = 0. Solving the

calculus of variations (Blandford and Narayan 1986, Schneider 1985) gives a deflection

angle #̂»
α ,

#̂»
α =− 2

c2

∫
#»

∇⊥Φ dr , (1.108)

which can be thought of as the scattering angle of the incoming photon. The gradient is

with respect to the physical coordinates of the perpendicular plane at the lens.

We consider the unperturbed perpendicular distance between two incoming light rays
#»x 0 at some comoving distance ω , which can be given in terms of the observed angular

separation
#»

θ

#»x 0 = fK(ω)
#»

θ . (1.109)

If a light ray is perturbed by d #̂»
α , the perpendicular distance will change by

d #»x = fK(ω)d #̂»
α . (1.110)

The physical separation between two close light rays will therefore be given by

#»x (ω)= fK(ω)
#»

θ − 2
c2

∫
ω

0
fK(ω−ω

′)
(

#»

∇⊥Φ
(1)( #»x (ω ′),ω ′)− #»

∇⊥Φ
(2)(ω ′)

)
dω
′ . (1.111)

The angle in the absence of any lensing
#»

β , which can be thought of as a true angle in the

classical lensing analogy, can be written as
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#»

β =
#»

θ − #»
α , (1.112)

where #»
α is called the reduced deflection angle and corresponds to

#»
α =

2
c2

∫
ω

0

fK(ω−ω ′)
fK(ω)

(
#»

∇⊥Φ
(1)( #»x (ω ′),ω ′)− #»

∇⊥Φ
(2)(ω ′)

)
dω
′ . (1.113)

The Born approximation assumes that the observed angle to a point,
#»

θ , deviates only

a small amount from the true angle
#»

β , so the change in distance of the photon’s path is neg-

ligible. To first order, this corresponds to substituting Φ(1)( #»x (ω ′),ω ′) = Φ(1)( fK(ω)
#»

θ ,ω ′)

in the integral.

We consider the lensing matrix, a Jacobian which transforms between observed angular

coordinates and (hypothetical) true angular coordinates

Ai j =
∂βi

∂θ j
= δi j−

∂αi

∂θ j
, (1.114)

If we define a lensing potential as

ψl(θ ,ω) =
2
c2

∫
ω

0
dω
′
[ fK(ω)− fK(ω)′

fK(ω) fK(ω)′

]
Φ( fK(ω)′θ ,ω ′) , (1.115)

the lensing matrix can be rewritten as

Ai j = δi j−∂i∂ jψl . (1.116)

This now gives us the relationship between scalar perturbations to the metric, which in our

weak-field limit and chosen gauge corresponds to the Newtonian potential, and the angular

distortion of light bundles. That is, we can see how images of distant galaxies are distorted

by fluctuations in the foreground matter distribution.

The Ai j matrix can be decomposed into the functions κ(
#»

θ ) and γ(
#»

θ ) = γ1 + iγ2, by

Ai j = δi j−
∂ 2ψl(

#»

θ )

∂θi∂θ j

A=

 1−κ− γ1 −γ2

−γ2 1−κ + γ1

 .

(1.117)
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Through the definition of the lensing potential and the Poisson equation (1.85), the conver-

gence can be expressed as an integral of the overdensity along the line of sight,

κ(
#»

θ ,ω) =
3H2

0 ΩM

2

∫
ω

0
dω
′ω
′(ω−ω ′)

ω

δ (
#»

θ ,ω)

a(ω ′)
. (1.118)

From this we would be able to calculate quantities such as the angular power spectrum Cκ
`

from the matter power spectrum evolving with comoving distance P(k,ω).

By inspection of equation 1.117, we can see that the shear and convergence are related

to derivatives of the lensing potential

κ =
1
2
(
∂1∂1 +∂2∂2

)
ψl =

1
2

∇
2
θ ψl

γ1 =
1
2
(
∂1∂1−∂2∂2

)
ψl

γ2 = ∂1∂2ψl ,

(1.119)

and therefore we can transform between γ and κ (up to an integration constant). As shear is

observable under certain definitions and convergence is the projected matter density (equa-

tion 1.118), it is possible to directly map dark matter (Kaiser and Squires, 1993). This will

be discussed thoroughly in Chapters 2 and 5.

For the observable ellipticity quantities in lensing, we can define the reduced shear as

gi =
γi

1+κ
(1.120)

and rewrite equation 1.117 as

A= (1−κ)

 1−g1 −g2

−g2 1+g1

 . (1.121)

If we consider an image with elliptical isophotes (contours of equal brightness), at angle φ

and major-to-minor axis ratio a/b, then the ellipticity (Seitz and Schneider, 1997) is given

by

ε =
(a−b)
(a+b)

exp(2iφ) =
g+ εS

1+g∗ εS
(1.122)

for |g| ≤ 1, and where the unlensed source ellipticity εS has mean zero. In the weak lensing
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Pure E-mode:

Pure B-mode:

Figure 1.6: Headless vectors represent the shear field, where the direction corresponds to the major
axis of an elliptical isophote (adapted from Cabella and Kamionkowski 2004). Gravita-
tional lensing in the weak field limit generates no B-mode patterns.

limit (γ � 1) the observed ellipticity for a galaxy becomes analogous to a noisy measure-

ment of the shear: ε = γ + εS.

Unfortunately for weak lensing, σεS ∼ O(10−1), whereas σγ ∼ O(10−2), as we will

see in the following chapters. Weak lensing therefore benefits from a large angular density

of observed galaxies, which will essentially average away the uncorrelated source ellipticity

terms.

Similarly to polarisation in the CMB (section 1.4.1), the shear field can be decomposed

into a curl-free E-mode and a divergence-free B-mode. As the convergence is a real scalar

field (equation 1.118) in the weak lensing limit (based on equations 1.119) the lensing shear

field should be free of B-modes. Higher order terms (e.g. Krause and Hirata 2010), biases

and noise can all in fact contribute B-mode components.

Figure 1.6 shows the E- and B-mode patterns. The headless vectors represent the ori-

entation and magnitude of the lensing induced shear. The π (180 deg) rotational symmetry

of the complex shear, indicated by the factor of exp(2iφ) in the ellipticity, demonstrates

that the shear is a spin 2 field. If we wish to go beyond the small-angle, flat-sky approxi-

mation we made in the derivation above, on the sphere there is a natural formalism of spin

2-weighted spherical harmonics (Newman and Penrose, 1966).
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In this (often formidable) framework one can derive the E- and B-mode angular power

spectra with less recourse to simplifying assumptions. However, as the work in this thesis

uses data which covers a small fraction of the celestial sphere (high multipole `), we will

only ever work with the results with small-angle approximations.
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1.5 Inference

1.5.1 Bayesian background

The posthumous presentation of Thomas Bayes’ An Essay towards solving a Problem in the

Doctrine of Chances at the Royal Society in 1763, sent with the “abstract” opening

“Dear Sir, I Now send you an essay which I have found among the papers of

our deceased friend Mr. Bayes, and which, in my opinion, has great merit, and

well deserves to be preserved.” Richard Price 1763,

presents a surprising introduction to a great moment of scientific and epistemological his-

tory. Despite brilliant work18 by Laplace in the following decades (Laplace, 1840), the

“Doctrine of Chances” seems to have been barely considered until the 20th Century.

The Bayesian approach, as it has come to be known, provides clear and precise re-

lationships between unknown quantities and observations. For many people who were

presented to “Statistics” as a box of byzantine tools to justify this or that after an exper-

iment, a unified framework to quantify belief and uncertainty comes as a revelation. In

many ways, it is similar to discovering how one can replace the bookkeeping of Newtonian

vectors and conserved quantities with the elegance of Lagrangian mechanics and Noether’s

theorem (Noether, 1918).

Here, there is maybe a warning from history. The reemergence of Bayesian methods

in the late 20th Century has probably more to do with our improved ability to calculate and

compute, than a spontaneous shift in philosophy. With the growth of machine learning, and

particularly deep learning, in this so-called Artificial Intelligence (AI) revolution, the flood

of new techniques might feel like a return to messy “Statistics”.

For some problems where the naive Bayesian approach might be impractical and suf-

fer from the curse of dimensionality, deep learning solutions have appeared which seem

miraculous, but perhaps also mysterious and lacking in principled interpretation. This may

be very well in some fields, but not for cosmologists. We want to know exactly how much

we know about the Universe. We have been gifted a challenge, to connect AI methods with

our Bayesian principles.

18who was perhaps even unaware of Bayes
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1.5.2 Bayes’ theorem

To introduce Bayes’ theorem, following Sivia and Skilling (2006), we can begin by consid-

ering a system with a single proposition or outcome A (e.g. rolling a five with dice). The

probability of A and the probability of not A (denoted Ā) are defined such that

P(A|M )+P(Ā|M ) = 1 . (1.123)

This is known as the sum rule. Here M is the model, in which one might include any

information about the system. Certainty about a given outcome would be represented as

P(A|M ) = 1.

If we consider a second outcome B, we can say that the probability of both A and B

occurring is the same as the probability of A given the knowledge B has occurred multiplied

by the probability B occurs. This is known as the product rule

P(A,B|M ) = P(A|B,M )P(B|M ) (1.124)

and is, of course, symmetric

P(A,B|M ) = P(B|A,M )×P(A|M ) . (1.125)

These rules of probability were presented by Cox (1946) as “credited by common sense with

a wider validity than can be established by deducing them from the frequency definition of

probability”. This contrasts with the frequentist definition, where probability is defined as a

fraction (or frequency) of outcomes. The few requirements used, broadly that (1) knowing

something about A tells us something about the converse Ā and (2) knowing about A and

then knowing about B given that knowledge is sufficient to know about A&B, lead to the

product and sum rule19.

As a direct result of these rules we arrive at Bayes’ theorem

P(A|B) = P(B|A) P(A)
P(B)

. (1.126)

As a further result we arrive at the marginal probability

19after suitable definitions, including transitivity of belief
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P(B|M ) = ∑
Ai

P(Ai,B|M ) (1.127)

for a complete set of Ai outcomes.

For typical problems in cosmology we can consider a set of parameters θ , where the

elements may be continuous (rather than discrete Ai). This might be unknown parameters of

our model M , for example θ = {Ωm,σ8}. We may have observed some data encapsulated

in a vector d. Bayes’ theorem gives us

P(θ |d,M ) =
P(d|θ ,M ) P(θ |M )

P(d|M )
. (1.128)

The left hand side of this equation is the posterior probability distribution; it quantifies the

(a posteriori) belief in parameters θ having observed some data. In the switch to continuous

parameters, this distribution became a density, meaning that a probability element would be

given by P(θ | . . .)dNθ θ , where Nθ is the dimension of the vector θ . This posterior is a

probability density function (PDF) in Nθ dimensions.

The first factor in the numerator on the right hand side of equation 1.128 is the like-

lihood distribution P(d|θ ,M ). This is a PDF in terms of d (meaning integrating over d

would be unity), and gives the probability of observing some data, given some parameters

and a model. This simultaneously encapsulates the relationship between the data and pa-

rameters in terms of causal predictions (e.g. the theoretical power spectrum for a given set

of parameters) and the properties of random contribution (e.g. measurement noise).

The second factor in the numerator is the prior probability distribution P(θ |M ). This

must represent the state of belief in the unknown parameters prior to any influence by the

new data d. Other datasets may be included in the prior, as long as they are independent

of the new data. If we combine datasets that are not independent, then a likelihood that

includes both datasets must be used, e.g. P(d(1),d(2)|θ ,M ).

The denominator in equation 1.128 is the model evidence, which will be a single num-

ber for a given set of data. The probability density of the data given the model may appear to

be just a factor to ensure that the posterior normalises to unity. However, if the two models

(α and β ) are considered, its role as an evidence becomes clear

P(d|M α)

P(d|M β )
=

P(M α |d)
P(M β |d) ×

P(M β )

P(M α)
. (1.129)
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Figure 1.7: Evaluation at 20 grid positions of an underlying posterior probability distribution. For
low dimensional parameter spaces, this can be the most efficient approach.

With no prior belief in either model α or β , the second factor is one, so the ratio of evidences

becomes an ratio of probability for the models given the data. This is an odds ratio for

different models.

The evidence is also called the marginal likelihood, as it can be calculated using the

continuous form of the marginalisation equation 1.127 and the likelihood,

P(d|M ) =
∫

P(d|θ ,M ) P(θ |M ) dNθ θ . (1.130)

The prior in this integral, the second factor, can affect the evidence value as much as the

likelihood here. Even if the prior is a uniform distribution, changing its range can give

different values of the evidence, so care is often needed.

1.5.3 Calculation

For many problems in cosmology (see Trotta 2008 and Hobson et al. 2010 for review), the

dimension of θ will be greater than six. Already, this is quite a high dimensional problem

for brute-force calculation. In figure 1.7, 20 evaluations of the posterior distribution (within

a prior range) give a relatively good description of the distribution. Even if this distribution

continued to be nicely behaved in higher dimension, with only five more parameters, the

number of evaluations of the posterior distribution would be 206 = 6.4×107.

Markov Chain Monte Carlo (MCMC) methods provide a solution to this impractical

scaling. In Chapter 3 the target posterior distribution will have dimension Nθ > 103, where

no amount of computer time or memory would justify the brute-force evaluation. MCMC

methods randomly generate samples defined at points in parameter space, such that the
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Figure 1.8: Evaluation of six-dimensional toy-model posterior using Markov Chain Monte Carlo
(MCMC). The two-dimensional projections show contours of the estimated two-
dimensional marginal distributions. The single one-dimensional marginal distributions
are also shown.

density of the samples in parameter space match the target distribution. With sufficient

samples, the underlying distribution, or properties of it, can be estimated.

The first such method by Metropolis et al. (1953) has many of the features shared by

subsequent MCMC algorithms. As a Markov chain, the next sample added to the chain

depends only on the current position. From a given position in parameter space at a given

time i, a new point is chosen randomly at the next step i+1 according to some criteria (e.g.

the P(θi+1)/P(θi) ratio) that ensures the final distribution matches the target.

Figure 1.8 shows the result of such a procedure. The marginal distributions (posterior

distributions of a parameter subset following equation 1.127) are simple to calculate using

the samples. The density of the samples in one parameter’s dimension corresponds to the

marginal distribution of that parameter.
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Figure 1.9: Image reproduced from Goodfellow et al. (2016), which was adapted from images
from Zeiler and Fergus (2014). From Goodfellow et al. (2016): “The input is pre-
sented at the visible layer, so named because it contains the variables that we are able
to observe. Then a series of hidden layers extracts increasingly abstract features from
the image.”

As will be discussed in Chapter 3, knowing how many samples is enough and whether

the distribution has properly been explored by the chain are important for interpreting the fi-

nal result. Many large experiments currently releasing posterior distributions of parameters

often omit to either report or perform these vital tests.

An extension of the simple scheme represented by equation 1.128 could be to use

multilevel or hierarchical models (Gelman et al., 2006). If a statistical model has a number

of variables, some of which depend on others but not all, their conditional dependencies

can be represented as a directed acyclic graph (DAG). This is described as a graph in the

mathematical sense of a network, and this field of Bayesian networks is included in the

study of probabilistic graphical models (Koller and Friedman, 2009).

In Chapter 4, such a probabilistic model will be presented, where, because of the cho-

sen priors, the marginal distribution of interest can be calculated analytically. However, this

is not always so simple, and for certain models even recourse to sampling methods will not

be computationally efficient. In this case, one may be able to approximate a target marginal

distribution using variational inference methods (see Bishop 2011 for overview). These

often benefit from optimization techniques shared with machine learning.
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1.5.4 Learning

Deep learning is a branch of machine learning20 whose methods generally solve statistical

problems by finding complex21 representations. A deep method is one with a large hierarchy

of simple features that build to something with more complexity.

Supervised learning methods use training data to approximate some unknown func-

tion. It can be thought of as a high-dimensional interpolation or inference problem (Mallat,

2016). As will be reintroduced in Chapter 5 in the context of weak lensing, when using

such methods, we hope that some unknown function f (d) exists that takes observed data d

as input and returns some unknown quantity Q. This d data may be pixels from an image

and Q may be the name of a person in that image. The data could also be a noisy image and

the unknown quantity might be the clean image.

We do not know this hypothetical function, but we seek an approximation FΘ to the

function

Q̂ = FΘ(d) , (1.131)

where the parameters of the function Θ are to be learned (Goodfellow et al., 2016). We

learn these parameters by minimising a cost function J(Θ) evaluated with a set of training

data which consists of pairs of d and known Q.

Convolution neural networks (CNN) are neural network architectures introduced

by LeCun et al. (1990). These methods approximate the unknown function by applying

repeated layers of convolution and non-linearity to input data (see Chapter 5 for more de-

tails). They have been shown to be particularly suited to image data, or any data with

translation invariant features.

Figure 1.9 is a cartoon example showing how progressively more layers create complex

features which correspond to structures in the image. This can be compared to transforma-

tions such as Fourier or wavelets (Starck et al., 2015), where the decomposition of an image

gives coefficients corresponding to a fixed set of basis functions. It can also be compared

with the approach where one chooses the important features in data which then become the

only input to any machine learning. With the CNN, the series of convolutional filters and

non-linear functions which act on the data are flexible and, after training, can correspond to

20which itself is a branch of AI
21“Complex” meaning in terms of complexity, not imaginary numbers.
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features most relevant for a given problem.

Cosmology has now enjoyed more than a twenty-five year history of supervised

learning, including examples of object classification (Connolly et al. 1995, Lahav et al.

1995, Weir et al. 1995), redshift estimation (Firth et al. 2003, Collister and Lahav 2004),

and fast emulation of theoretical predictions (Habib et al., 2007).

In Chapter 5, I will discuss some interpretation of the outputs from deep learning in a

Bayesian framework, specifically the relationship between the cost function J and Bayesian

point estimates. In Chapter 6, I will discuss how combining outputs from machine learning

methods with likelihood-free inference techniques can provide posterior distributions, rather

than just point estimates, of unknown parameters. A promising future for statistics from

dark matter maps might involve the combination of observed data with simulated training

data, deep learning methods, and Bayesian uncertainties.



Chapter 2

Improving DES SV weak lensing maps with

Gaussian and sparsity priors

This Chapter is based on Jeffrey et al. (DES Collab.) 2018: Improving weak lensing mass

map reconstructions using Gaussian and sparsity priors: application to DES SV. Monthly

Notices of the Royal Astronomical Society 479.3 (2018): 2871-2888.
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Mapping the underlying density field, including non-visible dark matter, using weak

gravitational lensing measurements is now a standard tool in cosmology. Due to its impor-

tance to the science results of current and upcoming surveys, the quality of the convergence

reconstruction methods should be well understood. We compare three methods: Kaiser-

Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion, not accounting for

survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a

Bayesian framework. GLIMPSE uses sparsity, aiming to reconstruct non-linearities in the

density field. We compare these methods with several tests using public Dark Energy Sur-

vey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter

and GLIMPSE offer substantial improvements over smoothed KS with a range of metrics.

Both the Wiener filter and GLIMPSE convergence reconstructions show a 12 per cent im-

provement in Pearson correlation with the underlying truth from simulations. To compare

the mapping methods’ abilities to find mass peaks, we measure the difference between peak

counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a

standard data vector when inferring cosmology from peak statistics); the maximum signal-

to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9

for GLIMPSE. With simulations we measure the reconstruction of the harmonic phases; the

phase residuals’ concentration is improved 17 per cent by GLIMPSE and 18 per cent by the

Wiener filter. The correlation between reconstructions from data and foreground redMaPPer

clusters is increased 18 per cent by the Wiener filter and 32 per cent by GLIMPSE.
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2.1 Introduction

Mass map reconstruction from weak gravitational lensing recovers the underlying matter

distribution in the universe from measurements of galaxy shapes. Images of distant galaxies

are deformed by the inhomogeneous matter distribution along the line of sight. Any matter

can contribute to the lensing effect, making it a direct probe of non-visible dark matter.

Weak lensing, which takes advantage of the statistical power from many small dis-

tortions (that is, gravitational lensing induced “shears”), is now a well established tool in

constraining cosmology. The Dark Energy Survey (DES) has used the 2-point correla-

tion function of shear to contribute to excellent constraints on cosmological parameters and

models, including the nature of dark energy (DES Collaboration et al., 2017b). Shear 2-

point correlation functions have been used to constrain cosmology from many other survey

datasets (van Uitert et al. 2017, Kilbinger et al. 2013). These methods use the shear mea-

surements directly, as the shear can be related to the underlying matter distribution without

needing to explicitly reconstruct mass maps.

A zero-mean Gaussian random field can be characterised entirely by its 2-point corre-

lations. The matter density field in the early universe is expected to be highly Gaussian, a

property which persists into the late universe for the large scales that were less affected by

gravitational collapse. For the smaller scales at late times, non-linear gravitational collapse

has led to a highly non-Gaussian density field. Much valuable information can be extracted

from this non-Gaussianity, although this requires additional methods beyond 2-point statis-

tics.

Popular proposed methods to extract this information include N-point statistics and

higher order moments (Cooray and Hu, 2001), peak statistics (Dietrich and Hartlap 2010,

Kacprzak et al. 2016, Peel et al. 2017, Shan et al. 2017, Martinet et al. 2017), and Minkowksi

functionals (Kerscher et al. 1996, Petri et al. 2013). It is often either essential or convenient

to apply these methods to the density field directly (rather than in the space of the shear

measurements), thereby necessitating a reliable mass map reconstruction.

Peak statistics are particularly promising, as peaks in the density field probe the non-

Gaussian structure directly. Peaks can be identified from aperture mass maps, which are

derived by convolving the shear data with a kernel, or from the reconstructed density field.

The first approach has the advantage of having local noise, while the second is “closer” to

the underlying density field and often has faster algorithms. Both methods often require
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simulations to provide a link between the theory and data, with the exception of proposed

semi-analytic models (Lin and Kilbinger 2015, Shan et al. 2017).

In addition to using mass maps for higher order statistics to constrain cosmological

parameters and models, the mass maps can themselves be intrinsically useful. Clerkin et al.

(2017), using the original DES Science Verification (SV) mass map, show evidence that the

1-point distribution of the density field is more consistent with Log-Normal than Gaussian.

Combining mass maps with the spatial distributions of stellar mass, galaxies, or galaxy

clusters allows the relationship between the visible baryonic matter and invisible dark matter

to be studied. Using mass maps to constrain galaxy bias (Chang et al., 2016), the relation

between the distribution of galaxies and matter, can in turn aid cosmological probes other

than weak lensing. Maps also enable simple tests for systematic error in the galaxy shape

catalogues.

Since the first application of mass mapping methods to wide-field surveys with the

Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) data (Van Waerbeke et al.,

2013), mass maps have been a standard product of large weak lensing surveys. In addition

to DES, current surveys reconstructing the density field from weak lensing data include the

Kilo-Degree Survey (Giblin et al. in prep.) and the Hyper Supreme-Cam Subaru Strate-

gic Program (HSC-SSP) (Oguri et al., 2017). Mapping dark matter is key to the science

goals of the future Euclid Mission (Amendola et al., 2016) and the Large Synoptic Survey

Telescope (LSST Science Collaboration et al., 2009).

DES is a ground based photometric galaxy survey, observing in the southern sky from

the 4m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile

with five photometric filters covering the optical and near-infrared spectrum using the Dark

Energy Camera (Flaugher et al. 2015, Dark Energy Survey Collaboration et al. 2016). The

SV data come from an initial run over a fraction of the final sky coverage, but to almost

the full exposure time of the final survey. The sky coverage is still large, 139 deg2, and

the nearly full exposure (Chang et al., 2015) gives a galaxy density almost equal to what is

expected after the complete 5 years of DES observations.

This Chapter uses the public DES SV data to compare the quality of mass mapping

reconstruction methods. The maps are of the two-dimensional convergence, κ , a weighted

projection of the density field in the foreground of the observed background galaxies. Re-

covering the convergence from the shear data is an ill-posed inverse problem, troubled by
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survey masks and galaxy “shape noise”.

This work follows on from that of Chang et al. (2015) and Vikram et al. (2015) in

which the original DES SV mass map was created using the Kaiser and Squires (1993)

method. In this Chapter we compare three quite different methods: Kaiser-Squires (KS);

Wiener filtering (Wiener, 1949); and GLIMPSE (Leonard et al. 2014, Lanusse et al. 2016), a

sparsity-based reconstruction method. The Kaiser-Squires method is a direct inversion from

shear to convergence, taking no account of missing data or the effect of noise. The Wiener

filter and GLIMPSE assume different prior knowledge about the underlying convergence to

account for the effects of noise and missing data.

In section 2.2 we describe the theoretical foundation for weak lensing mass mapping

and the three different methods used for this work. In section 2.3 we describe the DES

SV shear data, the accompanying simulations, and the redMaPPer galaxy cluster catalogue.

Foreground galaxy clusters are expected to trace the true density field, and therefore should

be correlated with the convergence reconstruction. The different methods are also applied

to realistic data simulations where the true convergence is known. In section 2.4 we present

our results on data and simulation, using various quality metrics for the reconstruction. On

simulations these metrics are the Pearson correlation coefficient, the pixel root-mean-square

error (RMSE), the variance of the 1-point distribution of pixel values, the phase residuals,

and peak statistics. On data we compare the convergence reconstructions to the foreground

galaxy clusters. We conclude in section 2.5.

2.2 Methodology

2.2.1 Weak gravitational lensing

We can use measurements of the distortion of background galaxy shapes by weak gravita-

tional lensing to learn about the mass distribution in the foreground without making many

physical assumptions or relying on phenomenological models. For convenience, here we

summarise some of the existing literature relevant for mass mapping from weak lensing

(Bartelmann and Schneider 2001, Kilbinger 2015).

The weak lensing formalism follows photon paths along geodesics in a perturbed

Friedmann-Robertson-Walker (FRW) metric. The perturbations are sourced by the density

field of large scale structure. Throughout we assume that the perturbations are small, and

that the measurements are made over a small enough patch of the sky that the sky geometry

is Euclidian. Consistent with the Planck CMB results (Planck Collaboration et al., 2016)
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and motivated by inflationary theory, we assume that the global geometry of the universe is

flat.

The density contrast, δ = (ρ − ρ̄)/ρ̄ , of a pressureless fluid is related to the scalar

gravitational potential perturbation, Φ, through the Poisson equation,

∇
2
Φ =

3H0Ωm

2a
δ , (2.1)

where H0 is the present value of the Hubble parameter, a is the cosmological scale factor,

and ρ and ρ̄ are the local and mean density respectively.

For a flat universe, the lensing potential is given by

ψ(
#»

θ ,ω) = 2
∫

ω

0
dω
′
[

ω−ω ′

ωω ′

]
Φ(

#»

θ ,ω ′) , (2.2)

where ω is the comoving distance.

The Born approximation assumes that the observed angle to a point,
#»

θ , deviates only

a small amount from the true angle
#»

β , so the change in distance of the photon’s path is

negligible. We can characterise the effect of lensing on the galaxies using the Jacobian

of the transformation, Ai j = ∂βi/∂θ j, which is decomposed into the functions κ(
#»

θ ) and

γ(
#»

θ ) = γ1 + iγ2, and which is given by

A =
(

δi j−
∂ 2ψ(

#»

θ )

∂θi∂θ j

)
=

 1−κ− γ1 −γ2

−γ2 1−κ + γ1

 .

(2.3)

Using the definition of the lensing potential and the Poisson equation, the convergence can

be expressed as an integral over the density along the line of sight,

κ(
#»

θ ,ω) =
3H2

0 Ωm

2

∫
ω

0
dω
′ω
′(ω−ω ′)

ω

δ (
#»

θ ,ω ′)
a(ω ′)

. (2.4)

For a distribution n(ω) of lensed galaxies, the lensing efficiency kernel is defined to be

p(ω ′) =
∫

ω∞

ω ′

(
ω−ω ′

ω

)
n(ω)dω ; (2.5)

this weights the contribution of the foreground density fluctuations to give the convergence
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weighted over the redshift distribution of source galaxies,

κ(
#»

θ ) =
∫

∞

0
n(ω)κ(

#»

θ ,ω)dω

=
3H2

0 Ωm

2

∫
∞

0
dω
′p(ω ′)ω ′

δ (
#»

θ ,ω ′)
a(ω ′)

.

(2.6)

The shear, γ(
#»

θ ), which is assumed to be an observable in the weak lensing limit, is given

by

γ(
#»

θ ) =
1
π

∫
R2

d2
θ
′D(

#»

θ − #»

θ
′)κ(

#»

θ
′)

where D(
#»

θ ) =−(θ1− iθ2)
−2 .

(2.7)

For surveys where the integral is over large angles on the sky, this formulation breaks down,

and requires a full treatment in spherical bases. Wallis et al. (2017) show that errors can

be introduced at an O(1 per cent) level for correlations between points at DES SV angular

separation depending on the projection. All of the methods used here use the small angle

approximation, and should suffer equally.

The real and imaginary parts of the shear γ represent a chosen two dimensional coor-

dinate system. In weak lensing, the observed ellipticity1 of a galaxy εobs is related to the

reduced shear g plus the intrinsic ellipticity of the source galaxy εs through

εobs ≈ g+ εs

where g =
γ

1−κ
.

(2.8)

The reduced shear is approximately the true shear, g ≈ γ , in the weak lensing limit. This

allows a standard definition of observed shear, γobs = εobs, where the measurements are

degraded by “shape noise”, caused by the εs values of the observed galaxies:

γobs ≈ γ + εs . (2.9)

The shape noise for a given galaxy is modelled as a randomly-drawn Gaussian variate,

1Using the Bartelmann and Schneider (2001) equation 4.10 ellipticity definition for ε .
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εs ∼ G(0,σε), where σε is estimated from data. The distribution of the ellipticity from the

SV data in figure 2.2 is not an exact Gaussian, as the true distribution is the result of galaxy

astrophysics, though a Gaussian still has properties that make it a good approximation. The

Gaussian would be the maximum entropic, least informative, distribution for known mean

and variance, and, by the central limit theorem, would be the correct distribution in the limit

of large numbers of galaxies averaged in pixels.

It is possible to extend the simple Kaiser-Squires method (section 2.2.2) to use the

reduced shear, g, for the mildly non-linear lensing regime when it is no longer appropriate

to assume g≈ γ (Schneider and Seitz 1995a, Seitz and Schneider 1995, Seitz and Schneider

2001). This is also done by GLIMPSE (section 2.2.4).

In matrix notation, the problem as given by equations 2.7 and 2.9 can be expressed as

a linear model, with a data vector of observed shear measurements

γ = Aκ +n , (2.10)

where A is a discretised version of equation 2.7 and n is a noise vector due to shape noise

(equation 2.9). The elements of the data vector can either correspond to the individual shear

measurements or to measurements binned into angular pixels (in which case the noise vector

would be the average noise in the pixel).

The convergence need not be reconstructed with the same pixelisation as the shear

measurements, giving κ and γ vectors of different length. Missing data due to survey masks

would correspond to a shorter γ vector; here one may wish to fill in the convergence in the

masked region — this is known as inpainting. Different sized κ and γ vectors result in a

non-square A matrix, potentially causing inversion problems.

2.2.2 Kaiser-Squires reconstruction

2.2.2.1 Theory

The convergence-to-shear relationship, equation 2.7, is a convolution in the two dimensional

angular plane. The two-dimensional Fourier transforms of the shear and convergence, de-

fined for κ as

κ̃(
#»

k ) =
∫
R2

d2
θκ(

#»

θ )exp(i
#»

θ · #»

k ) , (2.11)

are related through an elementwise product via the convolution theorem
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γ̃(
#»

k ) = π
−1D̃(

#»

k )κ̃(
#»

k ) , (2.12)

where the Fourier transform of the kernel is given by

D̃(
#»

k ) = π
(k2

1− k2
2 +2ik1k2)

| #»k |2
; (2.13)

here k1 and k2 are the components of
#»

k . Using D̃D̃∗ = π2, equation 2.12 can be rewritten:

κ̃(
#»

k ) = π
−1

γ̃(
#»

k )D̃∗(
#»

k ) for
#»

k 6= #»
0 . (2.14)

The inverse Fourier transform then returns the convergence reconstruction in configuration

space (Kaiser and Squires, 1993).

The real and imaginary parts of the reconstruction are the E- and B-modes respectively,

where κrecon = κE + iκB. In standard cosmology (equation 2.7), the convergence sourced by

a real density field should be a pure E-mode. Errors, noise or other systematic effects can

lead to B-mode contributions to the reconstruction.

2.2.2.2 Implementation

In the matrix formulation of equation 2.10, this deconvolution corresponds to multiplying

the Fourier space shear field with the inverse of A in Fourier space. For a case with no shape

noise, that is

γ̃ = Ãκ̃ , (2.15)

the Kaiser-Squires method is identical to using the inverse matrix

[
Ã−1]

i j =
k2

1,i− k2
2,i−2ik1,ik2,i

k2
1,i + k2

2,i
δi j

=
[
Ã†]

i j ,

(2.16)

where the Kronecker delta function, δi j, relates the element-wise multiplication in Fourier

space to a diagonal matrix operator, and † is the conjugate transpose.

For the Kaiser-Squires inversion in configuration space, the A and A† matrices are not

diagonal, and therefore are slower to compute. The discretisation of the underlying smooth
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shear field into finite configuration space makes the property AA† = I inexact. As a result of

these factors, we choose to implement the Kaiser-Squires reconstruction in Fourier space.

The shear due to lensing is much smaller than the shape noise, and not all places on the

sky contain usable galaxies. Both the shape noise and the random sampling of background

galaxies propagate error through this noisy reconstruction. Binning the shear measurements

into larger pixels can reduce the shape noise per pixel and ensure that there are no empty

pixels, but this comes at a loss of the small scale information and cannot deal with masks or

the edges of the survey.

A smoothing filter is applied to the Kaiser-Squires reconstruction to reduce the noise.

This will similarly lose any small scale structure, and especially suppress peaks in the con-

vergence. In this work, matching Chang et al. (2015), we smooth the Kaiser-Squires maps

with a Gaussian kernel. The standard deviation scale, σsmooth, of this Gaussian kernel is free

to be chosen, where σsmooth = 0 corresponds to standard, unsmoothed Kaiser-Squires.

2.2.3 Wiener Filter

2.2.3.1 Theory

The Wiener filter is the linear minimum-variance solution to linear problems of the type

in equation 2.10, where the noise is uncorrelated. The Wiener filter reconstruction (Lahav

et al. 1994, Zaroubi et al. 1995) is given by

κW = Wγ

W = SκA†[ASκA† +N
]−1

.
(2.17)

Here Sκ and N are the signal and noise covariance matrices respectively, which are 〈κκ†〉
and 〈nn†〉 for this problem.

This filter is the linear minimum-variance solution, as W is a linear operator that min-

imises the variance

〈(Wγ−κ)†(Wγ−κ)〉 . (2.18)

If the chosen prior on κ does not constrain the reconstruction, so that S−1
κ → 0 (Simon et al.,

2009), or if the data are noise-free, N = 0, then the linear minimum variance filter becomes

the Kaiser-Squires reconstruction. Setting S−1
κ → 0 is equivalent to removing the signal
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prior in the following Bayesian framework.

From a different starting point, for the Wiener posterior we begin by assuming a Gaus-

sian likelihood (Jasche and Lavaux, 2015)

Pr(γ|κ) = 1√
(det2πN)

exp
[
− 1

2
(γ−Aκ)† N−1(γ−Aκ)

]
, (2.19)

where it is assumed that N is known and the noise is both uncorrelated and Gaussian, as

assumed in equation 2.10. Intrinsic alignments of clustered galaxies will violate this uncor-

relation condition.

The prior on the convergence is that of a Gaussian random field, which is applicable

for the density field on large scales at late times,

Pr(κ|Sκ) =
1√

(det2πSκ)
exp
[
− 1

2
κ

† S−1
κ κ

]
. (2.20)

Using Bayes’ theorem and the fact that Pr(γ|Sκ ,κ) = Pr(γ|κ), the full posterior is

given by

Pr(κ|Sκ ,γ) =
Pr(γ|κ)Pr(κ|Sκ)

Pr(γ)

∝
1√

(det2πSκ)

1√
(det2πN)

×

exp
[
− 1

2
κ

†S−1
κ κ− 1

2
(γ−Aκ)†N−1(γ−Aκ)

]
∝ exp

[
− 1

2
(κ−Wγ)†(S−1

κ +AN−1A†)(κ−Wγ)
]
,

(2.21)

where W is the Wiener filter, so the maximum a posteriori (MAP) solution is that of the

Wiener reconstruction.

The choice of Gaussian prior is physically motivated for the large, linear scales of the

density field (see section 2.1); alternative prior distributions can be used to give different κ

posterior distributions that can be maximised or from which samples can be drawn (Schnei-

der et al., 2017). Recent work by Böhm et al. (2017) proposes the use of a Log-Normal

prior distribution. This appears to fit the κ distribution from simulations (figure 2.6) and

data (Clerkin et al., 2017) better than Gaussian, but, unlike the Wiener filter, lacks an ana-

lytic MAP solution.

If the aim of the reconstruction is to infer cosmology from the non-Gaussian com-
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ponent of the density field, the Wiener filter may not be the ideal method for mass map

recovery. The small scale modes with less power are often suppressed, losing the peak

structure. Qualitatively it can be thought of as either the Gaussian prior being inappropriate

or as the linear filter being insufficient.

2.2.3.2 Implementation

Using the exact Fourier space property Ã−1 = Ã† we rewrite equation 2.17 as

κ̃W = Ã−1S̃γ

[
S̃γ + Ñ

]−1
γ̃

= Ã−1
γ̃W

= Ã†
γ̃W ,

(2.22)

where we have used ÃS̃κÃ† = 〈Ãκ̃ κ̃†Ã†〉 = 〈γ̃ γ̃†〉 = S̃γ . This shows that applying the

Wiener filter to the shear to recover γW and then applying the Kaiser-Squires inversion in

Fourier space is equivalent to directly calculating the Wiener filter of the convergence.

In configuration space, the noise covariance matrix is given by

[
N
]

i j =
2σ2

ε

pi
δi j , (2.23)

where pi is the galaxy count per pixel. Empty pixels in the masked region have infinite

variance, absorbing the mask into a special case of the Wiener filter denoising.

The signal properties for a Gaussian random field are constrained entirely by the mean

and the signal covariance matrix, which in harmonic space is identical to the power spec-

trum. The cosmological principle implies that the angular distribution of a field on the sky

is statistically isotropic, so the angular power spectrum, C`, can contain all the 2-point sta-

tistical information. The angular power spectrum of the physical shear E-mode shear signal

is defined as

C`,E =
1

2`+1

+`

∑
m=−`
〈|a`m,E |2〉

=C`,κ ,

(2.24)

where a`m are the spherical harmonic coefficients and the brackets 〈 〉 average over realisa-
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tions of the signal. The second equality assumes the flat sky approximation for high2 `.

We generate a theoretical power spectrum using the Limber approximation with the

COSMOSIS package (Zuntz et al., 2015) with our prior fiducial cosmological parameters:

Ωm = 0.286, ΩΛ = 0.714, Ωb = 0.047, h = 0.7, σ8 = 0.82, ns = 0.962 and w = −1. We

use a background galaxy distribution defined from equation 2.31, and shown in figure 2.1.

It is commonly asked whether it is reasonable to assume cosmological parameters in

the map reconstruction, if the maps are then used to infer cosmological parameters. Though

we assume a specific set of cosmological parameters, it would still be possible to use the

maps for cosmological parameter estimation, from peak statistics for example, if the same

prior is used on the simulations and the data identically. If simulations are not used, the

power spectrum can be jointly inferred from the data (Jasche and Lavaux, 2015) using Gibbs

sampling.

In order to generate the power spectrum in flat Fourier space, rather than on the curved

sky, we again use a flat sky approximation

k2
θ P(kθ ) =

(
N

2π

)2

`(`+1)C` , (2.25)

adapted from Loverde and Afshordi (2008), where N is the total number of pixels in the

map, kθ is the magnitude of the projected Fourier mode, and where we have defined our

projected angular power spectrum as

P(kθ )δ (kθ −k′θ ) = 〈 γ̃(kθ ) γ̃
†(kθ ) 〉 . (2.26)

The largest scale mode is ` = 20.51, which corresponds to an angular separation of

17.55 deg.

Though the signal covariance matrix is diagonal in harmonic space (equation 2.26),

and the independent noise has covariance which is diagonal in configuration space (equa-

tion 2.23), there is no natural basis in which both are sparse. Inversion of dense matrices to

evaluate the Wiener filter is bypassed using the algorithm presented in Elsner and Wandelt

(2013), where an additional messenger field is used to pass information between harmonic

and configuration space, iteratively converging to the Wiener filter solution.

These messenger field methods were extended by Jasche and Lavaux (2015) to draw

2We omit a prefactor which goes as 1−O(`−2) for high `.
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Markov chain Monte Carlo (MCMC) samples from the whole Wiener posterior (equa-

tion 2.21). The first application of messenger field methods to weak lensing data was

by Alsing et al. (2016a, 2017), who drew samples from the Wiener posterior and generated

Wiener filtered shear (not convergence) maps from CFHTLenS data. By comparison, in this

work we do not sample from the Wiener posterior; instead, we use the original messenger

field algorithm of Elsner and Wandelt (2013) to calculate the Wiener filter reconstruction of

the convergence map from DES SV shear data and simulations.

2.2.4 Sparsity reconstruction

2.2.4.1 Theory

Consider the coefficients α of the decomposition of a signal x in a representation space (or

“dictionary”) Φ, so that x = Φα . Example dictionaries include the Fourier transform or

wavelet transforms. Assuming a sparse prior on the signal x in the dictionary Φ means that

its representation α is expected to be sparse, that is, with most of the coefficients equal to

0 (Starck et al., 2015). A simple example is a cosine function signal and a Fourier transfor-

mation; in this sparse basis only two coefficients have a non-zero value (corresponding to

the frequency of the cosine function).

Formally most signals cannot strictly be made sparse, and are merely compressible

with a choice of an appropriate transformation, such as a wavelet transform (Starck et al.

2015, Leonard et al. 2014). For a compressible signal the magnitude-ordered sparse coeffi-

cients, αi, are expected to have exponential decay and therefore to have a Laplace distribu-

tion (Tibshirani, 1994).

Consider a generic linear inverse problem of the form y = Ax+n. A robust estimate

of the signal x can be recovered by solving the (“LASSO”) optimisation problem

argmin
α

||y−AΦα||22 +λ ||α||1 , (2.27)

where λ is a Lagrangian multiplier (Tibshirani, 1994). Here the first term corresponds to

a χ2 minimisation, ensuring fidelity of the signal reconstruction, while the second is the

sparsity-promoting regularisation term.

We can include non-constant noise variance by weighting the first χ2 according to the

variance. If the noise variance is included in the χ2 term, the λ value can be interpreted as



2.2. Methodology 93

a signal-to-noise level in the transformed (e.g. wavelet) space.

The second term does not use the Euclidan l2 norm, but instead uses the sparsity-

promoting l1 norm, defined as

||α||1 = ∑
i
|αi| . (2.28)

These methods are non-linear, so it can be difficult to derive properties analytically. With

realistic simulations of the data and true signal, the value for λ can be chosen to maximise

some success metric. This is analogous to selecting a theoretical power spectrum for the

Wiener filter, or a smoothing scale for Kaiser-Squires.

Sparse recovery methods are non-linear and are not necessarily formulated in the

Bayesian framework of the Wiener filter. If one wishes to, one could make a frequentist

estimate of the error of the sparse reconstruction by propagating the noise properties of the

data using bootstrapping or Monte Carlo techniques.

Alternatively, sparsity can be derived from a Bayesian3 perspective, with the l1 regu-

larisation term corresponding to a Laplacian prior (Tibshirani, 1994).

2.2.4.2 Implementation/GLIMPSE

The choice of dictionary depends on the structures contained in the signal. Theory of struc-

ture formation in the universe predicts the formation of quasi-spherical halos of bound

matter. It is standard practice to represent the spatial distribution of matter in halos with

spherically symmetric Navarro-Frenk-White (Navarro et al., 1996) or Singular Isothermal

Sphere profiles. Coefficients of Isotropic Undecimated Wavelets (Starck et al., 2015) in two

dimensions are well suited to the observed convergence of a dark matter halo. The wavelet

transform used in the GLIMPSE algorithm is the starlet (Starck et al., 2007), which can

represent positive, isotropic objects.

The sparsity prior in the starlet basis enforces a physical model that the matter field is a

superposition of spherically symmetric dark matter halos. This is not wholly correct, but is

an approximation which is true for the non-linear regime in the standard model of structure

formation, similarly to how the assumption of Gaussianity holds in the linear regime. On

large scales, where the density field is expected to be Gaussian, the GLIMPSE sparsity prior

is less appropriate.

3Since this work was carried out, Price et al. (2018) demonstrated a possible method whereby credible
intervals (posterior-derived Bayesian error bars) can be approximately calculated at pixel level in the mass map.
Sparse MCMC methods have also been proposed by for radio interferometric imaging by Cai et al. (2018).
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The GLIMPSE algorithm aims to solve the optimisation problem

κ̂ = argmin
κ

||N− 1
2
[
γ−T†ÂFκ

]
||22

+λ ||ωΦ
†
κ||1 + iIm(κ)=0 ,

(2.29)

where F is the Fourier transform matrix, T is the Non-equispaced Discrete Fourier Trans-

form (NDFT) matrix, Â is defined in equation 2.16, ω is a diagonal matrix of weights, and

Φ
† is the inverse wavelet transform. The indicator function iIm(·)=0 (defined in section 2.6)

in the final term imposes realness on the reconstruction (no B-modes). The use of NDFT

allows the first term to perform a forward fitted Kaiser-Squires-like step without binning

the shear data, allowing the smaller-scales to be retained in the reconstruction. The full

algorithm, including the calculation of the weights, is described in section 3.2 in Lanusse

et al. (2016).

Though the problem presented in equation 2.29 is an optimisation using the shear data

γ , in fact it is the reduced shear (equation 2.8) that GLIMPSE uses to recover κ (Lanusse

et al., 2016). As an extension, the GLIMPSE algorithm can also perform the joint reconstruc-

tion with reduced shear and flexion, a third-order weak gravitational lensing effect (Bacon

et al., 2006) (although no flexion data are available for our galaxy shear catalogue).

As the prior knowledge in this reconstruction relates to the quasi-spherical clustering

of bound matter, enforced through a sparsity prior in starlet space, this method should better

reconstruct the smaller scale non-Gaussian structure than the Wiener filter.

2.3 Data and Simulations

2.3.1 Dark Energy Survey Science Verification Data

The shear data are from the 139 deg2 SPT-E field of the public DES SV data. This initial

test dataset was taken during an observing run before the official start of the full science

survey. The galaxy catalogue comes from the SVA1 (Science Verification) Data Release4.

Due to changes to the catalogues before final release (more galaxy shear measurements are

now available to us), the catalogue used in this work is not identical to that used by Chang

et al. (2015), even when the same data selections are made. All maps are therefore new, and

slightly different to the previously published SV map.

4http://des.ncsa.illinois.edu
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The photometric redshifts from five optical filters (grizY) were estimated using the

Bayesian Photometric Redshifts (BPZ) code (Benı́tez 2000, Coe et al. 2006, & Bonnett

et al. 2016). The final median depth estimates are g ∼24.0, r ∼23.0, i ∼23.0 and z ∼22.4

(10-σ galaxy limiting magnitude). The “background galaxies”, the ones from which the

shear is measured, are taken in the range 0.6 < zmean < 1.2. The zmean value for each galaxy

is the mean of the posterior probability distribution function (PDF) estimated using the BPZ

code. The PDF for each galaxy is very broad, giving a total stacked PDF of background

galaxies that extends beyond the [0.6,1.2] redshift range, as can be seen in figure 2.1.

Using the ngmix shape catalogue, we apply a selection of sva1 flag = 0 &

ngmix flag= 0 to obtain galaxies with a well-measured shear. The ngmix catalogue con-

tains corrections to measurement bias, in the form of “sensitivities”, which can be applied to

a weighted ensemble of hundreds or thousands of galaxies, but which cannot be applied per

galaxy (which is not ideal for mass mapping). The structure of equation 2.7 implies that a

multiplicative shear bias would lead to a convergence amplitude bias. Under the assumption

that multiplicative shear bias will not vary across the survey area, we correct all measured

ellipticities by the same debiasing factor

εobs,i = εmeasured,i× s̄−1 , (2.30)

where i is a galaxy index and s̄ (≈ 0.82) is the mean sensitivity correction from all galaxies

in our ngmix-selected catalogue. The total number of galaxies after the redshift and shape

measurement selection is 1,628,663.

For the Kaiser-Squires reconstruction, the shear measurements are binned into angu-

lar pixels in a 256× 256 map, with average pixel size of 4.11 arcmin, using a sinusoidal

projection with a centre at RA=71.0 deg. This is similar to the 5 arcmin pixel scale of the

original Chang et al. (2015) map. The choice of central RA for Kaiser-Squires is to min-

imise the mask in the square projection, which is a large source of systematic error. For the

Wiener filter, where the mask is taken into account, the shear measurements are also binned

into angular pixels in a 256× 256 map, but sinusoidally projected with a central RA=81.3

deg, to make the square maximally isotropic. The GLIMPSE algorithm does not bin the

input shear measurements, but requires a pixel scale for the reconstruction, which we set as

3 arcmin using its gnomonic projection centred on RA=76.95 deg and DEC=−52.23 deg.
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Figure 2.1: The redshift distribution from BPZ of the selected background galaxies with 0.6 <
zmean < 1.2. The blue solid histogram is of the galaxies’ point estimate mean redshifts in
bins of ∆z= 0.02. The red line is the stacked redshift probability density function (PDF)
of all selected galaxies. The green dashed line is the lensing efficiency (equation 2.5) of
the background galaxies.
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Figure 2.2: Distribution of the first component of ellipticity, ε1, from the selected SV catalogue. A
Gaussian distribution with the same mean and standard deviation shows that the ellip-
ticity distribution is not a true Gaussian, though the noise per pixel will be more closely
Gaussian due to the central limit theorem.
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2.3.2 redMaPPer Clusters

Groups and clusters of galaxies are expected to trace the highest density regions in the

foreground. They are luminous objects that correspond to regions of highly non-linear

growth, where the density field has deviated from Gaussianity.

The public redMaPPer cluster catalogue (Rykoff et al., 2016) used the redMaPPer algo-

rithm to optically identify clusters and to estimate each cluster’s richness, λRM. The richness

is defined as the sum of the membership probabilities over all galaxies within a scale radius

(chosen to minimise the scatter in the mass-richness relation); it gives an estimate for the

number of galaxies in a cluster. Cluster mass is expected to scale approximately linearly

with richness. The redshift uncertainty is excellent, around σz/(1+ z) ∼ 0.01, due to the

clusters containing large numbers of well modelled, red galaxies. The public redMaPPer

catalogue used in this work contains only clusters with λRM > 20, so that the clusters with

less certainty of detection and characterisation are not used.

2.3.3 Simulations

To compare the reconstructions between different methods, we use a simulated catalogue

with a known true convergence. We use a set of N-body simulations developed for the DES

collaboration and designed to be representative of the DES data (Busha et al., 2013). The

simulations used are N-body light cones composed from three boxes (14003, 20483, and

20483 particles in boxes of comoving length 1050 Mpc/h, 2600 Mpc/h, and 4000 Mpc/h

respectively). The cosmological parameters for the simulations are: Ωm = 0.286, ΩΛ =

0.714, Ωb = 0.047, σ8 = 0.82, h0 = 0.7, ns = 0.96, w =−1. We apply a mask to match the

SV data.

Source galaxies have randomly-assigned positions in the simulations, as correlation

between the background galaxy positions and the weak lensing shear signal is expected to

be negligible. The simulated catalogues contain the lensing matrix components, Ai j, for

each galaxy, calculated with the ray-tracing code CALCLENS (Becker, 2013). This provides

the true κ and γ per galaxy, from which we derive the reduced shear. The shape noise due

to the intrinsic ellipticities of the source galaxies, εs, is simulated by adding an ellipticity

component to the reduced shear. Each noise realisation is generated from the data by ran-

domly exchanging the ellipticity values between galaxies in the catalogue to remove the

weak lensing signal and leave the shape noise.

We attempt to match the redshift distribution of the simulated galaxies to the observed
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Figure 2.3: The convergence (κ) map reconstructions using the DES SV shear data with the three
different methods. Top panel: Kaiser-Squires reconstruction with a smoothing scale
σsmooth = 10 arcmin. Right panel: The GLIMPSE reconstruction with a regularisation
parameter λ = 3.0. Both tuning parameters were chosen to maximise the Pearson cor-
relation coefficient r when tested on simulations (See section 2.4.1). Left panel: The
Wiener filter reconstruction. Note that the colour scale for the Wiener filter is less than
that for the other reconstructions, as the pixel values are closer to zero.
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Figure 2.4: The top left panel is an example of a true convergence map, κ truth, from simula-
tion. The top right panel is the Kaiser-Squires reconstruction with a smoothing scale
σsmooth = 10 arcmin. The bottom right panel is the GLIMPSE reconstruction with reg-
ularisation parameter λ = 3.0. Both tuning parameters were chosen to maximise the
Pearson correlation coefficient r when tested on simulations (see section 2.4.1). The
bottom left panel is the Wiener filter reconstruction. Note that the colour scale for the
Wiener filter is less than that for the other reconstructions, as the pixel values are closer
to zero.
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redshift distribution, n(z). We use the stacked posterior probability density functions of

individual galaxy redshifts from the selected data catalogue (figure 2.1), giving an estimate

of the true underlying distribution. This assumes that

n(z) = ∑
i

pi(z) , (2.31)

where pi(z) are the individual probability distributions for the galaxies from BPZ. This is not

necessarily exact, due to errors in pi(z) per galaxy (Leistedt et al., 2016), but is a reasonable

choice for a simulated catalogue. Using rejection sampling in bins of ∆z = 0.02 we select

galaxies with a probability equal to the ratio between the desired n(z) from the data and

the distribution in the simulation. One typical simulated catalogue contained 1,629,024

galaxies, slightly different to the data catalogue due to the sampling scheme, but with the

desired n(z).

2.4 Results

To ensure that the mass map tests are consistent with different output formats, all maps were

converted onto a spherical pixelisation using HEALPix (Górski et al., 2005). A HEALPix

map comprises twelve subdivisions on the sphere, which are then each partitioned into

NSIDE×NSIDE grids. Each pixel of a HEALPix supersampled NSIDE= 4096 map was filled

according to the value at the corresponding RA and DEC in the reconstructed maps. The

supersampled high NSIDEmaps were then degraded to NSIDE= 1024. The true convergence

maps from the simulations were directly binned from the convergence values at galaxy

positions to NSIDE = 1024. For all maps the same mask is applied, where pixels with no

galaxies are masked.

Figure 2.3 shows the mass map reconstructions from the SV shear data using the three

different methods. An example simulation with truth and the three reconstructed maps is

shown in figure 2.4. The “tuning parameters”, σsmooth = 10.0 arcmin for Kaiser-Squires and

λ = 3.0 for GLIMPSE, are tuned to maximise the Pearson correlation coefficient r with the

underlying truth when tested on simulations.

Using a suite of 10 simulations, in section 2.4.1 we calculate the Pearson correlation

coefficient between the truth and the reconstruction with different methods as a test of the

reconstruction’s quality. In section 2.4.2, we calculate the root-mean-square error of the

residuals between the truth and the reconstruction. In section 2.4.3 we calculate the variance
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Figure 2.5: Kaiser-Squires (top) and GLIMPSE (bottom). Three different statistics comparing the
true κ map and the reconstruction with 10 simulations. Left panel: The Pearson corre-
lation coefficient, r (equation 2.32). The errorbar on the mean is the standard deviation
of the sample. The better the reconstruction, the higher the value of r. Middle panel:
The lower the pixel RMSE (equation 2.34), the better the reconstruction. Right panel:
Ratio of variances between the 1-point distribution of the pixels in the reconstruction
and pixels in the true map (equation 2.35).

of the 1-point distribution of the pixel values in the reconstruction and compare with the

truth. In section 2.4.4 and section 2.4.5 we quantify the quality of the reconstruction of

the phase and peak statistics respectively, by comparing to the simulated truth. The final

result presented in section 2.4.6 compares the reconstruction from the DES SV shear data

with foreground galaxy clusters from the redMaPPer catalogue (which are expected to trace

non-linearities in the underlying density field).

In this work we do not use correlation functions as a test of the map reconstruction.

None of the mass mapping methods here are expected to reproduce the correct correlation

functions or power spectra. It is simple to show this analytically with the Wiener filter,

where despite the filter giving the MAP pixel values, the pixel variance, and therefore the

power spectrum, is suppressed.

2.4.1 Pixel Cross Correlation

We quantify the correlation between the true convergence from simulation and the recon-

structed convergence of the simulated catalogue using the Pearson correlation coefficient.

As with other metrics of success for mass map reconstruction, this can be used to tune the
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sparsity λ parameter and the smoothing scale for Kaiser-Squires.

The Pearson correlation coefficient, r, between the pixels’ true convergence, κ truth, and

the reconstruction, κ recon, is given by

r =
∑

n
i=1(κ

truth
i − κ̄ truth)(κ recon

i − κ̄ recon)√
∑

n
i=1(κ

truth
i − κ̄ truth)2

√
∑

n
i=1(κ

recon
i − κ̄ recon)2

, (2.32)

where the summations are over all pixels i in the map and κ̄ is the mean convergence in the

map.

In the left panels of figure 2.5, the Pearson r value from 10 simulations is plotted

for varying tuning parameters. Almost all of the simulations and also their mean have a

maximal Pearson r value at σsmooth = 10.0 arcmin for Kaiser-Squires and at λ = 3.0 for

GLIMPSE.

Table 2.1 presents the mean value from the 10 simulations, where the tuning parameter

is chosen to maximise r when relevant. All methods show good correlation with the under-

lying true convergence. Both the Wiener filter and GLIMPSE have the same highest value

of r = 0.37, 12 per cent higher than Kaiser-Squires.

Note that the Pearson correlation coefficient as presented in equation 2.32 is invariant

under a rescaling of the reconstruction. Despite the Wiener filter reconstruction having

values closer to zero, the Wiener filter maps still have good correlation to the truth. This

second aspect is addressed in section 2.4.3 and in the second column of table 2.1.

2.4.2 Pixel Residuals

The difference between the true convergence from simulation and the reconstruction in pixel

i is defined as

∆κi = κ
truth
i −κ

recon
i . (2.33)

We define the root-mean-square error (RMSE) as

RMSE(κ truth,κ recon) =

√
1
n

n

∑
i=1

∆κ2
i (2.34)

where n is the number of pixels.

A smaller value of RMSE for a given method implies a better reconstruction according

to this metric. It is this RMSE that the Wiener filter attempts to minimise using a linear
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Figure 2.6: Pixel histograms (1-point distributions) for various map reconstructions from the simu-
lated data shown in figure 2.4. The histograms are normalised such that the largest value
of each is equal to one. The ratio of the variance between the reconstructions and the
truth is presented in table 2.1.

filter, as defined in equation 2.18, by using an assumed signal covariance 〈κκ†〉 (see sec-

tion 2.2.3.1).

The centre panel of figure 2.5 shows that increasing the smoothing scale, σsmooth, for

Kaiser-Squires or the regularisation parameter, λ , for GLIMPSE initially reduces the pixel

RMSE, but increased filtering contributes little beyond σsmooth = 10.0 arcmin for Kaiser-

Squires or λ = 3.0 for GLIMPSE.

The smallest mean pixel RMSE is 1.0× 10−2 for Kaiser-Squires and 9.9× 10−3 for

GLIMPSE. The Wiener filter, whose smoothing is constrained by the prior on C` and which

therefore cannot be tuned, has a pixel RMSE of 9.4×10−3.

2.4.3 Pixel 1-Point Variance

The 1-point distribution can be thought as a histogram of the pixel values. Figure 2.6 shows

an example of such a histogram (derived from the simulated truth map and reconstructions

of figure 2.4).

The mean of this distribution is unconstrained by weak lensing, due to an integration

constant in equation 2.7. The variance of the 1-point distribution is increased compared to

the underlying truth due to shape noise in the unsmoothed Kaiser-Squires reconstruction. A

reconstruction method would aim to reduce the variance of the 1-point pixel distribution to
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Table 2.1: The centre column gives the average Pearson correlation coefficient r (equation 2.32)
between κ truth and κ recon from 10 simulations. The choices of σsmooth = 10 arcmin and
λ = 3.0 maximise the Pearson r value. The right column gives the ratio of the pixel
variance between κ recon and κ truth (equation 2.36).

Method Pearson r Variance Ratio
KS (σsmooth = 10 arcmin) 0.33 3.7 ×10−1

Wiener filter 0.37 6.3 ×10−2

GLIMPSE (λ = 3.0 ) 0.37 5.0 ×10−1

match that of the underlying truth.

We define the estimate of the variance of the 1-point distributions of the truth or recon-

structed κ as

Vartruth =
1

n−1

n

∑
i=1

(κ truth
i − κ̄

truth)2

Varrecon =
1

n−1

n

∑
i=1

(κ recon
i − κ̄

recon)2 ,

(2.35)

where the notation matches equation 2.34. The ratio of these variances is given by

Varrecon

Vartruth
=

∑
n
i=1(κ

recon
i − κ̄ recon)2

∑
n
i=1(κ

truth
i − κ̄ truth)2

, (2.36)

The closer this value is to 1, the better the variance of the pixel distribution matches the truth.

Using 10 simulations we can calculate this quantity for different reconstruction methods

(and at different smoothing scales or λ regularisation values where relevant).

In figure 2.5 the right panel shows the result of this test for GLIMPSE and Kaiser-

Squires. Both methods show a pixel distribution that has too high variance for insufficient

filtering, and too low variance for over-filtering. For Kaiser-Squires, the ratio is closest to

1 at a smoothing scale of σsmooth = 5 arcmin. For GLIMPSE, the ratio is closest to 1 at a

sparsity regularisation value of λ = 2.

Both of these reconstruction methods have a matching variance at a smoothing param-

eter value less than that which maximises the Pearson correlation coefficient r. If one chose

this parameter to maximise the Pearson r value, such that λ = 3 and σsmooth = 10 arcmin, a

good reconstruction should also have the ratio of the variances as close to 1 as possible.

The right column of table 2.1 gives the mean variance ratio from 10 simulations with

the different methods. The choice of λ = 3.0 and σsmooth = 10 arcmin are the tuning pa-
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rameters that maximise the Pearson r value for GLIMPSE and Kaiser-Squires respectively.

Though GLIMPSE and the Wiener filter reconstructions both have the same Pearson r value,

the variance of the pixel values of the Wiener filter is much lower with respect to the un-

derlying truth than is the case for GLIMPSE. This can also be seen in the reconstructions

of figure 2.4, where the Wiener filter pixel values are closer to zero than the simulated true

convergence.

The histogram of figure 2.6 shows, for one single example, the distributions matching

what the results of the second column of table 2.1 describe. GLIMPSE outperforms the

other methods at matching the variance of the underlying truth, however it still falls short.

Also, all methods, including GLIMPSE, have distributions which are symmetric, unlike the

asymmetric, heavy-tailed distribution of the true κ values.

Though GLIMPSE reconstructs maps with the 1-point distribution variance closest to

the truth, it is also the only method to have convergence values dropping below the truth.

These unphysical “negative peaks” can also be seen in the map reconstructions from data

(figure 2.3) and from simulated catalogues (figure 2.4), and are likely to come from en-

forcement of sparsity for positive and negative wavelets equally. The physical motivation

for GLIMPSE comes from a density field of superimposed halos. Though there should be

no negative halos, negative wavelets are included to map the underdense regions, clearly at

the expense of producing these very negative regions.

2.4.4 Phase reconstruction

The summation over all m modes at each ` multipole in the angular power spectrum (equa-

tion 2.24) loses all phase information; only the magnitudes are retained. This phase infor-

mation corresponds to the spatial distribution of anisotropies. As the phases are dependent

on the physical underlying structure, they contain information beyond what can be gained

by 2-point statistics. Their retention is a well-motivated, desired property of a mass mapping

reconstruction.

Inspired by Chapman et al. (2013), who use phases to test the reconstruction after

foreground removal from simulated Epoch of Reonization 21-cm maps, we use the phase

residual as a metric of success between our three methods.

The phase difference between the true map and the reconstruction is defined as
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∆θ`m = θ
truth
`m −θ

recon
`m

= arg
(
atruth
`m
)
− arg

(
arecon
`m

)
,

where arg(z) = arctan
( Im(z)

Re(z)

)
.

(2.37)

A small phase difference ∆θ`m between the truth and the reconstruction implies that the

phase has been well reconstructed. For random variables drawn from a Gaussian distri-

bution, this would correspond to a small standard deviation. Here, however, a Gaussian

distribution would be an inappropriate choice as it assumes the data are defined on an un-

bounded Euclidean space.

The two dimensional data space of phase pairs, {θ truth
`m ,θ recon

`m }, is a torus, T 2, and

the projected data space of the phase difference, ∆θ`m, is a circle, S1. On a circle, the

maximum entropy, least informative, distribution for specified mean and variance is the von

Mises (Jammalamadaka and Sengupta, 2001), which in one dimension is given by

Pr(∆θ`m|C,µ) =
1

2πI0(C)
exp
[
C cos(∆θ`m−µ)

]
, (2.38)

where I0 is the modified Bessel function of order 0, and C is a concentration parameter. For

µ = 0, a large concentration parameter (analogous to 1/σ2) would correspond to a small

dispersion in the phase reconstruction error. The aim is therefore to compare the inferred

value of the concentration, C, between different mass mapping methods, with a larger value

of C implying a better phase reconstruction.

By assuming that the error on the phase reconstruction is independent between phases,

we can say that the phase differences, ∆
#»

θ , are independent and identically distributed ran-

dom variables, with a likelihood distribution given by

Pr(∆
#»

θ |C,µ) = ∏
`m

1
2πI0(C)

exp
[
C cos(∆θ`m−µ)

]
=

1
[2πI0(C)]n

exp
[
C∑

`m
cos(∆θ`m−µ)

]
.

(2.39)

As only the relative values of C are needed to compare different mass mapping methods,

the full posterior distribution is not required. Additionally, any reasonable prior distribution,
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Figure 2.7: The maximum likelihood value of the concentration of the phase residual distribution,
ĈMLE, as described by equation 2.39. The ĈMLE values are shown for 10 different sim-
ulations and with Kaiser-Squires (top panel) at varying smoothing scale, σsmooth, and
GLIMPSE (bottom panel) at varying regularisation parameter λ . The phase reconstruc-
tion is best for σsmooth = 5 arcmin and λ = 3.0 respectively.

Pr(C), will be either flat or monotonically decreasing above zero, so the ranking of maps by

the largest maximum likelihood value or maximum posterior value of C will be identical.

For the purposes of this comparison the simpler maximum likelihood estimate, ĈMLE, will

therefore do.

We calculate the maximum likelihood values of µ and C by taking the spherical har-
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Table 2.2: The mean over 10 simulations of the von Mises concentration maximum likelihood esti-
mate, ĈMLE, from phase residuals (equation 2.39).

Method Phase reconstruction
Concentration ĈMLE

KS (σsmooth = 5 arcmin) 0.501
Wiener filter 0.591

GLIMPSE (λ = 3.0 ) 0.584

monic transform of our HEALPix map to recover the a`m coefficients up to `max = 1024,

calculating the phase residual as defined by equation 2.37 between the truth and the re-

construction for each coefficient, and then maximising the likelihood (equation 2.39). The

maximisation is performed using the scipy package BFGS algorithm (Byrd et al. 1995, Zhu

et al. 1997, Morales and Nocedal 2011), using 3 random initialisation values to test for ro-

bustness.

Figure 2.7 show the results for the phase reconstruction from 10 simulations using

Kaiser-Squires and GLIMPSE with varying tuning parameters. For Kaiser-Squires the mean

phase reconstruction value, ĈMLE, is maximised at σsmooth = 5.0 arcmin. For larger smooth-

ing scales the phase reconstruction quality drops, as phase information is lost. For GLIMPSE

the mean phase reconstruction value, ĈMLE, is maximised at λ = 3.0. The maximum value

of ĈMLE is not particularly pronounced, and the ĈMLE values are quite stable over a range

of λ .

Table 2.2 presents the mean values of ĈMLE with the best tuning parameters for the

three map reconstruction methods. Both GLIMPSE and the Wiener filter do much better than

Kaiser-Squires for reconstructing the phases. Though the variance from these 10 different

simulations is large, the Wiener filter does slightly better than GLIMPSE, as can be seen in

figure 2.7.

2.4.5 Peak Statistics

Peak statistics are a promising method for inferring cosmological parameters from data, as

they access information beyond what can be inferred from 2-point correlation functions.

Unlike higher order correlation functions, such as the bispectrum, peak statistics are in-

herently high signal-to-noise. They also probe the highly non-linear regions, where non-

Gaussianity is greatest. The effect of masking is trivially taken into account by applying the

identical mask to the suite of simulations used to construct a likelihood.

We cannot truly test which mass mapping method best constrains cosmology with
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Figure 2.8: The mean ndata, nrandoms and n∆ functions with 10 simulated data catalogues and 10 ran-
dom catalogues from GLIMPSE (λ = 3) reconstructions. n∆ is defined in equation 2.40.
Errorbars are standard deviation sample estimates from the 10 simulations, and are con-
sistent with Poissonian noise. Figure 2.9 shows the signal-to-noise of n∆ using the
estimated Poissonian noise for different reconstruction methods and tuning parameters.

the statistics of density peaks without fully deriving the posterior probability distributions

of cosmological parameters. It is possible to test which method returns peaks which are

distinguishable from noise and at which convergence values. Distinguishing a large number

of peaks from noise at high values of κ would mean the map is reconstructing the non-linear

regions well.

For a given convergence map, we can define a function, n(κ), that gives the number

of peaks as a function of convergence. For a given mass reconstruction method we can

compare the peaks in reconstructions from simulated data with the peaks in reconstructions

from catalogues of “randoms”, with shape noise but no weak lensing shear signal (equiv-

alent to γ = 0 in equation 2.9). If a given map from data or from a simulated catalogue

has the same n(κ) as the random catalogues, then the mass mapping method used has been

useless for peak statistics. On the other hand, if the map from data or simulation has a very

different n(κ) function to that from the reconstruction from the random catalogue, then the

map reconstruction method has recovered “true”, physical κ peaks.

In the DES SV cosmology constraints from peak statistics, Kacprzak et al. (2016) use

this difference as the data vector used to constrain cosmology,
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Figure 2.9: The estimated signal-to-noise (SNR) of n∆(κ) (equation 2.40) using 10 simulated data
catalogues and 10 random catalogues with the three different mass mapping methods.
Kaiser-Squires and GLIMPSE maps can be tuned by their respective parameters. The
width of the left (Wiener filter) panel is purely nominal; it does not actually have a “flat
structure”, just no parameter to tune.

n∆(κi) = ndata(κi)−nrandoms(κi) . (2.40)

This function is far from zero at a given κ if there is a large difference between the number

of peaks counted in maps reconstructed (a) from data and (b) from random catalogues.

It is reasonable to believe that the number of peaks, n(κi), in the ith bin, κi, is drawn

from a Poisson distribution. The difference between two Poissonian random variables fol-

lows the Skellam distribution. Using this distribution, we expect the difference in the num-

ber peaks in maps from data and from random catalogues to have a mean given by

µ∆(κi) = µdata(κi)−µrandoms(κi) , (2.41)

and a variance given by

σ
2
∆(κi) = µdata(κi)+µrandoms(κi). (2.42)

We can therefore define a peak signal-to-noise estimate

SNR(κi) =
µ∆(κi)√
σ2

∆
(κi)

. (2.43)

Figure 2.8 shows ndata, nrandoms, and n∆ from GLIMPSE (λ = 3) from 10 simulations

and 10 random catalogues. Here we define a peak as a local maxima in the HEALPix map.

Across different methods and smoothing parameters, the predicted variance from equa-
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tion 2.42 matches well with the estimated sample variance, verifying that the peak distribu-

tion is indeed Poissonian for a given κ .

Figure 2.9 shows the peak signal-to-noise (SNR) estimates from 10 simulations and

from 10 random catalogues as a function of κ and smoothing scale, for Kaiser-Squires, or

λ , for GLIMPSE. As the peaks in the maps from data have higher convergence values than

those from random catalogues, the SNR(κ) function is negative for low values of κ .

In the figures, the GLIMPSE reconstruction gives better signal-to-noise estimates on the

peaks than does the Kaiser-Squires reconstruction. For Kaiser-Squires, the largest positive

and negative signal-to-noise values are 1.52 and -1.28. For GLIMPSE, the largest positive

and negative are signal-to-noise values of 2.32 and -13.72. For the Wiener filter these values

are 4.20 and -5.41.

The Wiener filter therefore has the highest signal-to-noise of the peak function n∆(κ),

though the κ values of these peaks are very low. As can be seen in the reconstruction from

the SV data in figure 2.3, the pixel values of the Wiener filter are much closer to zero.

This is reflected in the peak statistic signal-to-noise values. In the left panel of figure 2.9,

the Wiener filter detects negligibly few peaks with κ > 0.0125, whereas GLIMPSE detects

peaks with positive signal-to-noise up to higher values of κ . It is at these high values where

the non-Gaussian information due to non-linear structure formation can be probed.

2.4.6 Foreground Clusters

Comparisons with foreground clusters of galaxies is an independent test of the mass map

reconstructions, as it uses data (unlike our tests on simulations).

In figure 2.10 the redMaPPer clusters described in section 2.3.2 are overlaid on the

DES SV κ map reconstructions shown in figure 2.3. The maps show good spatial correlation

between the locations of the clusters and the κ peaks in the map.

The size of a cluster marker is the effective lensed cluster richness λ
e f f
RM , rather than

the redMaPPer cluster richness. This concept is adapted from the definition of κg presented

in Chang et al. (2015). For a given cluster, this is defined as

λ
e f f
RM =

p(z)ω(z)
a(z)

×λRM×
〈λRM〉
〈λ e f f

RM 〉
, (2.44)

where z is the redshift of the cluster, p(z) is the lensing efficiency at the location of the

cluster (see figure 2.1), and ω(z) is the comoving distance to the cluster (so that the first

term matches the integrand of equation 2.6). The final term normalises the mean, where
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Table 2.3: The Pearson correlation coefficient value, r, between effective richness, λ
e f f
RM , of the

foreground redMaPPer clusters and the reconstructed convergence map at the location
of each galaxy cluster.

Method redMaPPer Cluster λ
e f f
RM

Pearson r

KS (σsmooth = 10 arcmin) 0.116
Wiener filter 0.129

GLIMPSE (λ = 3.0 ) 0.152

〈λRM〉 is the average richness over all galaxy clusters. The effective lensed cluster richness

gives the richness as “seen” by the lensing effect, where clusters at the peak of the lensing

efficiency should contribute more to the κ map. We therefore calculate the correlation

between λ
e f f
RM for each cluster and the reconstructed κ value at the cluster centre.

This method does not take into account multiple clusters overlapping in a given line

of sight. In figure 2.10, many small clusters overlap on large peaks in the reconstructed κ

map. The naive one-to-one correspondence between cluster and κ would mistake this for

an excess of κ in the reconstruction. However, all methods will suffer equally from this

assumption. A more thorough treatment of this overlapping effect is left for future work.

Table 2.3 presents the Pearson correlation coefficient r between the λ
e f f
RM value of each

cluster and the κ recon value at the corresponding pixel. The tuning parameters for Kaiser-

Squires and GLIMPSE are chosen to maximise the Pearson correlation coefficient r between

the reconstruction and the truth from simulations (see section 2.4.1).

Though both GLIMPSE and the Wiener filter take into account the noise and the mask

in the data, and therefore do better than Kaiser-Squires, the GLIMPSE reconstructions show

higher correlation with the effective richness of the foreground clusters than do the Wiener

filter reconstructions. This is no surprise, as GLIMPSE is expected to do better at recon-

structing non-Gaussian κ , which would correspond to the non-linear matter structures in

which clusters of galaxies form.

2.5 Conclusions

In this work we have presented convergence map reconstructions using the public DES

SV shear data with three different methods: Kaiser-Squires, Wiener filter, and GLIMPSE.

Kaiser-Squires is a simple inversion from shear to convergence, whereas the Wiener filter

and GLIMPSE use prior knowledge about the true convergence to help regularise the recon-
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Figure 2.10: The mass map reconstruction from DES SV shear data with the three different meth-
ods, as presented in figure 2.3), with the locations of redMaPPer clusters overlaid. The
size of the cluster marker is the effective richness of the cluster, as defined in equa-
tion 2.44. Note that the colour scale for the Wiener filter is less than that for the other
reconstructions, as the pixel values are closer to zero.

struction and to reduce the effects of noise and missing data. The Wiener filter is a Bayesian

MAP estimate if the signal and noise are Gaussian and the respective covariance matrices

are known. The GLIMPSE method enforces a sparsity-promoting l1 norm in a wavelet space

where the wavelets represent positive, isotropic, quasi-spherical objects well. GLIMPSE is

therefore expected to do well at reconstructing non-linear structures. The Wiener filter and

GLIMPSE therefore aim to reconstruct different regimes: the linear and non-linear density

field.

The three methods were applied to realistic simulations of the DES SV shear data, for

which an underlying true convergence is known. Using these simulations we are also able to

tune the Kaiser-Squires smoothing scale, σsmooth, and the GLIMPSE sparsity regularisation
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parameter, λ .

With these simulations we measure the Pearson correlation coefficient, r, between the

truth and the reconstruction with different methods. Compared to the Kaiser-Squires recon-

structions we find a 12 per cent improvement in Pearson correlation with both the Wiener

filter and GLIMPSE. The tuning parameters of σsmooth = 10 arcmin for Kaiser-Squires and

λ = 3 for GLIMPSE maximise the Pearson correlation. We also measure the variance of

the 1-point distribution of the reconstructed convergence. The Wiener filter suppresses the

variance to 6.3 per cent of the truth, Kaiser-Squires to 37 per cent and GLIMPSE to 50 per

cent of the truth. The tunable parameters here were those which maximised the Pearson

correlation with the truth.

A large motivation for creating these maps is to reconstruct the convergence while still

retaining the non-Gaussian information (which cannot be accessed with 2-point statistics

such as the power spectrum). As such, we test the reconstruction of the harmonic phases,

which is averaged out in the power spectrum, and the signal-to-noise of a peak statistic data

vector, which is a popular probe of non-Gaussian information. The phase residuals between

the truth and the reconstruction have the highest von Mises concentration with the Wiener

filter (ĈMLE = 0.591), with the GLIMPSE reconstruction performing comparably (ĈMLE =

0.584). Both methods outperformed the Kaiser-Squires reconstruction (ĈMLE = 0.501).

With realistic data vectors for peak statistics generated from simulations, the maximum

signal-to-noise value was increased by a factor of 3.5 for the Wiener filter and by a factor

of 9 for GLIMPSE, compared to Kaiser-Squires. The signal-to-noise of the peak statistic

data vector (n∆(κ)) is shown in figure 2.9, where GLIMPSE has significant signal-to-noise

with high convergence peaks, where non-linearities in the underlying density field are high-

est. We predict these high value peaks are most useful for constraining cosmology beyond

Gaussianity. In order to constrain cosmology with these different reconstruction methods,

realistic simulations with different cosmological parameters or models must be used and the

same reconstruction method should be applied to the simulations and data. As seen from

our results, different reconstruction methods can produce convergence maps with different

properties.

Finally, we switched from using simulations to instead using real observations (DES

SV data). Here we measured the correlation between the reconstructed maps and the effec-

tive richness of the foreground redMaPPer clusters (this is the cluster richness as “seen” by
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the lensing effect). Table 2.3 shows the results. Compared with Kaiser-Squires, the Wiener

filter shows a 18 per cent increase and GLIMPSE shows a 32 per cent increase in correla-

tion. This demonstrates with independent, cosmological data the ability of the methods to

reconstruct non-linear structures.

The metrics we have used for comparing the three reconstruction methods are generic,

and they have been inspired by recent applications of weak lensing mass maps to cosmolog-

ical studies (e.g. Chang et al. 2016, Kacprzak et al. 2016). These metrics may not be optimal

for evaluating every application of mass maps. Future studies can compare the efficiency

of the three and other methods in end-to-end analyses; for example, with the estimation of

cosmological parameters or identification of galaxy clusters.

Applying the Wiener filter and GLIMPSE methods to the DES Year 1 (Y1) shear cata-

logue would require extensions of the methods to account for the curved sky at large angular

scales. The Y1 data covers ≈ 1500 deg2 and contains ≈ 34,800,000 galaxies, so is a large

increase in data volume from DES SV. This modification has already been done with an ex-

tension of Kaiser-Squires to the sphere by Chang et al. (2017) for the Y1 DES data. These

extensions would also be useful for the upcoming ≈ 5000 deg2 DES Y3 shear catalogue.

Of future interest would be to use the Wiener filter or GLIMPSE convergence maps

for scientific results, as we have shown that they reconstruct the convergence better than

Kaiser-Squires according to many different metrics.

We have made our map reconstructions (as shown in figure 2.3) available at des.

ncsa.illinois.edu/releases/sva1.

2.6 Supplementary material: indicator function
We define the indicator function iC (as used in equation 2.29) of a set C as

iC (x) =


0 if x ∈ C

+∞ otherwise .

(2.45)

des.ncsa.illinois.edu/releases/sva1
des.ncsa.illinois.edu/releases/sva1
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We use Dataflow Engines (DFE) to construct an efficient Wiener filter of noisy and

incomplete image data, and to quickly draw probabilistic samples of the compatible true

underlying images from the Wiener posterior. Dataflow computing is a powerful approach

using reconfigurable hardware, which can be deeply pipelined and is intrinsically parallel.

The unique Wiener-filtered image is the minimum-variance linear estimate of the true im-

age (if the signal and noise covariances are known) and the most probable true image (if

the signal and noise are Gaussian distributed). However, many images are compatible with

the data with different probabilities, given by the analytic posterior probability distribution

referred to as the Wiener posterior. The DFE code also draws large numbers of samples

of true images from this posterior, which allows for further statistical analysis. Naive com-

putation of the Wiener-filtered image is impractical for large datasets, as it scales as n3,

where n is the number of pixels. We use a messenger field algorithm, which is well suited

to a DFE implementation, to draw samples from the Wiener posterior, that is, with the cor-

rect probability we draw samples of noiseless images that are compatible with the observed

noisy image. The Wiener-filtered image can be obtained by a trivial modification of the

algorithm. We demonstrate a lower bound on the speed-up, from drawing 105 samples of a

1282 image, of 11.3± 0.8 with 8 DFEs in a 1U MPC-X box when compared with a 1U server

presenting 32 CPU threads. We also discuss a potential application in astronomy, to provide

better dark matter maps and improved determination of the parameters of the Universe.
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3.1 Introduction

Dataflow computing has recently aided the significant acceleration of many computationally-

intensive and data-intensive problems. This Chapter discusses the use of Dataflow Engines

(DFEs) for sampling realisations of noise-free images from the Wiener posterior distri-

bution given noisy and incomplete data, with particular applicability to astronomy and

cosmology.

The Wiener filter (Wiener, 1949) is a useful statistical tool in many image analyses, as

it is a minimum variance linear filter, and moreover the filtered data are also the maximum

a posteriori (MAP) values if the data have Gaussian signal and noise. To be more specific,

if the covariance matrices of the noise and signal are known, then the Wiener filtered image

has the smallest variance of any linear-filtered image. Mathematically it is straightforward

to write down the expression for the Wiener-filtered image, and the covariance of compatible

images, but evaluation is problematic as it involves the inversion of large matrices that are

in general non-diagonal. As image datasets become larger, naive Wiener methods become

unfeasible (requiring approximations such as re-binning to larger pixels or assuming white

noise).

By using messenger field algorithms (described in section 3.2.2) the Wiener image

and posterior can be computed feasibly, with no need to simplify the existing algorithms.

Furthermore, the repeated operations inherent in drawing samples from the Wiener posterior

lend themselves to efficient computation on DFEs, and we demonstrate that by a comparison

with an implementation on multiple CPUs.

3.1.1 Data model

Although the typical applications of Wiener filters involve 2D image data, the formalism is

general. In any case, we arrange the 2D pixel data as a list, and thus describe it by a data

vector d, and the true image is similarly described by a vector s.

Our linear data model assumes that data d and true signal s are related by

d = As+n . (3.1)

where n is random noise, and there is a known linear operator matrix A, which in the

simplest case is just the identity matrix.

The Wiener filter W (Wiener 1949, Zaroubi et al. 1995) is given by
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W = SA†(ASA† +N
)−1

, (3.2)

and the Wiener filtered solution, which is the minimum-variance linearly-obtained solution

for the true image, is

sW = Wd . (3.3)

In these equations, S = 〈ss†〉 and N = 〈nn†〉 are the signal and noise covariance matrices

respectively, which are assumed to be known, and we have assumed that 〈s〉 = 〈n〉 = 0 for

simplicity (this can easily be relaxed). The angle brackets indicate the expectation value,

equal to the average over infinitely many realisations of the signal for ergodic fields. If,

as we will assume, the pixel noise is uncorrelated, then N is diagonal in pixel space. In

addition to pixel noise, missing data in a given pixel can be incorporated into the Wiener

filter by setting the pixel noise variance to infinity.

As mentioned in section 3.2, the Wiener filter reconstruction, sW , is the linear minimum

variance filter for a given S and N regardless of the statistical properties of either the signal

or the noise. Note that the Wiener filtered image variance is biased low; e.g. high intensity

pixels are suppressed. For Gaussian signal and noise, the Wiener filter additionally becomes

the MAP estimate. In addition to computing the MAP estimate, for statistical purposes it is

often useful to draw samples of maps, that are compatible with the data, with the appropriate

probability. These can be used for subsequent statistical analysis of the true image, such as

determining the uncertainty in a given pixel. This is discussed further in section 3.2.1.

Calculation of the Wiener filter is challenging due to the inversion of covariance ma-

trices, which may not be diagonal, and can become prohibitively time consuming for large

images, especially when one notes that for an N×N image, the matrices are N2×N2 in

size.

In some applications the signal is statistically homogeneous, leading to a diagonal

signal covariance in the Fourier/harmonic domain, which leads to a route to a solution that

does not involve the inversion of large non-diagonal matrices (Elsner and Wandelt, 2013).

This is not trivial, since although independent noise has a diagonal covariance matrix in

pixel space, it is not diagonal in harmonic space if the dataset has varying noise variance

and is thus heteroscedastic. This situation automatically arises if there are missing data,
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but not only in this case. Therefore, in general there is no natural basis in which both

the signal and noise covariance matrices are sparse. It is possible to take advantage of the

bases in which the covariance matrices are sparse by using algorithms that employ so-called

“messenger fields” (Elsner and Wandelt, 2013) to convey information between harmonic

and pixel space.

The messenger field class of algorithms is highly suited to a Dataflow implementation.

Using reconfigurable hardware accelerators rather than CPUs helps to deal iteratively with

large volumes of data. DFEs have recently been successfully applied to a wide range of

scientific problems, including geoscience (Gan et al., 2017), fluid-dynamics (Düben et al.,

2015), artificial neural networks (Liang et al., 2018), quantum chemistry (Cooper et al.,

2017), and genomics (Arram et al., 2015).

In section 3.2, we describe the Wiener filter in a Bayesian framework, and show how

messenger fields are used to draw samples from the Wiener posterior probability distribu-

tion. In section 3.3, we describe Dataflow computing and present our implementation of

the Wiener sampler. We present the results in section 3.4. In section 3.5, we describe our

motivation for this work as an application to upcoming large cosmology surveys.

3.2 Theoretical Background

3.2.1 Wiener Posterior

For the linear model of equation 3.1, the Wiener filter, with W given by equation 3.2, is a

linear operator which minimises the variance

V = 〈(Wd− s)†(Wd− s)〉 . (3.4)

From a different starting point, for the Wiener posterior, we begin by assuming a Gaus-

sian likelihood for the pixel noise1 (Jasche and Lavaux, 2015):

Pr(d|s,N) =
1√

(det2πN)
exp
[
− 1

2
(d−As)†N−1(d−As)

]
. (3.5)

Assuming that the prior on the signal is that of a Gaussian random field,

Pr(s|S) = 1√
(det2πS)

exp
[
− 1

2
s†S−1s

]
, (3.6)

1We can also argue that if only the covariance and the mean is known, the Gaussian distribution is most
appropriate to assume, as it is the maximum entropy distribution.
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then using Bayes’ theorem and the fact that Pr(d|S,s,N) = Pr(d|s,N), the full Wiener

posterior can be found:

Pr(s|S,N,d) =
Pr(d|s,N)Pr(s|S,N)

Pr(d|N)

=
1√

(det2πS)
1√

(det2πN)
exp
[
− 1

2
s†S−1s− 1

2
(d−As)†N−1(d−As)

]
∝ exp

[
− 1

2
(s−Wd)†(S−1 +A†N−1A)(s−Wd)

]
.

(3.7)

Here we see that the maximum a posteriori (MAP) solution is indeed that of the Wiener

reconstruction, s = Wd.

If we can handle the large matrices, realisations of the true underlying signal image

s can be drawn from the posterior distribution Pr(s|S,d). The expected mean of these

samples is the Wiener-filtered image. Drawing samples from the Wiener posterior clearly

also suffers from the need to invert large matrices with no natural sparse basis.

Progress can be made for signal images with statistical properties that are independent

of pixel position x (i.e. statistically homogeneous signals), for in this case, the discrete

Fourier transform of the image sx,

s̃k = ∑
x

sxe−ik·x (3.8)

has a diagonal covariance matrix,

〈s̃ks̃∗k′〉= P(k)δkk′ (3.9)

and δkk′ is a Kronecker delta for the discrete 2D wavenumbers k and k′, and P(k) is the

power spectrum, which depends only on the magnitude k ≡ |k|. The covariance matrix S

for the signal is diagonal, with entries given by the appropriate P(k).

3.2.2 Messenger Fields

The messenger field approach splits the problem into two, performing some operations in

harmonic space and some in pixel space, transferring the information using an extra field, t,

called the messenger field, whose covariance matrix is diagonal in both spaces. The method

takes advantage of the diagonal signal covariance matrix in harmonic space and the diagonal
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noise covariance matrix in pixel space, such that no matrices need to be inverted in a basis

in which they are dense.

This field is defined to have zero mean and a covariance matrix proportional to the

identity matrix, 〈tt†〉∝ I, which will always be diagonal in both harmonic and pixel spaces.

The Markov Chain Monte Carlo (MCMC) algorithm used in Jasche and Lavaux (2015)

is a method which uses the messenger field to draw samples from the Wiener posterior,

without inversion of non-diagonal covariance matrices, requiring instead repeated Fourier

transforms and inverse Fourier transforms. The algorithm is presented in Algorithm 1. In

the limit of large numbers of iterations, this unconditionally converges to drawing samples

from the desired distribution.

A sufficient number of samples from the Wiener posterior probability distribution can

characterize the statistical properties of the underlying signal given some data.

Algorithm 1 Messenger Field Wiener Sampler: an iterative method to draw sample signal
images from a Wiener posterior distribution using messenger fields (Jasche and Lavaux,
2015)

1: procedure SAMPLER

2: for ti in t:
3: ti = µ t

i +
√

(σ t
i )

2 G(0,1)
4: t̂ = F2D(t)
5: for ŝk in ŝ:
6: ŝk = µs

k +
√
(σ ŝ

k)
2 G(0,1)

7: s = F−1
2D (ŝ)

8: Return s
9: GOTO line 2

10: end procedure
Definitions:

• µ t
i =

Ti
TiA2

i +N̄i
Aidi +

N̄i
TiA2

i +N̄i
si if A2

i > 0

• (σ t
i )

2 = TiN̄i
TiA2

i +N̄i
if A2

i > 0

• µ ŝ
k =

Ŝk
Ŝk+T̂k

t̂k

• (σ t̂
k)

2 = ŜkT̂k
Ŝk+T̂k

• T = min
(
(A−1)†N(A−1)

)
I

• N̄ = N−A†TA
• G(0,1) is a zero-mean Gaussian random variate with unit variance.
• F2D is the 2D Fourier transform and F−1

2D its inverse.

By replacing the random variates in Algorithm 1 with zero (G(0,1)→ 0), the iteration
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outputs converge to the (unsampled) Wiener filter reconstruction (equation 3.2). This was

first described by Elsner and Wandelt (2013) in the first use of messenger fields. With

this small change the code provides Wiener-filtered images, rather than samples from the

Wiener posterior.

For each calculation of a Wiener filter or sample drawn from the Wiener posterior,

O(n3) operations are required for a length n data vector using a naive approach. Using the

messenger field algorithm, this reduces to O(n logn) for covariance matrices that are diago-

nal in their respective domains. The naive approach is bottlenecked by the matrix inversion

and the messenger field approach is bottlenecked by the harmonic/Fourier transform.

3.3 DFE Implementation

3.3.1 DFE System

The standard computing paradigm in the present day still follows the outline of the von

Neumann model, often called Control Flow. In a standard setup a Central Processing Unit

(CPU) carries out computational operations with data and instructions provided by mem-

ory, usually Random Access Memory (RAM). Data and instructions are iteratively passed

between memory and CPU.

Dataflow Engines (DFEs) use reconfigurable hardware rather than CPUs to represent

a static description of an algorithm with deep hardware pipelines consisting of a series of

standard arithmetic and logic operations. DFEs do not need to continually get new instruc-

tions from the memory (Pell et al., 2013). They are therefore intrinsically parallel. The

Wiener sampling problem described above has a high volume of data with highly determin-

istic computation (few “if” statements), so is well suited to DFEs.

Unlike standard CPU-based High Performance Computing (HPC) platforms, DFEs

can be reconfigured on occasion to the need of a given algorithm or dataset. For the cost

of an initial build time (O(hours)), the speed and efficiency at runtime is improved. These

systems allow greater flexibility with memory, data type, and clock frequency.

For example, higher clock frequencies can lead to shorter run time of the compute ker-

nels instantiated on the DFE. This can yield faster execution if the algorithm is compute

bound. However, for higher clock frequencies it becomes more difficult to build the recon-

figuration bitstream, so the clock frequency can be chosen optimally for a given algorithm.

The CPU code for managing a DFE can be written in C or C++ and runs on a host (a

traditional control flow machine). For the DFE, the software is written in Java-like code,



3.3. DFE Implementation 125

which is compiled into the reconfiguration file for the hardware chip. This turns the DFE

into a problem-specific hardware accelerator.

Once reconfigured, the DFE accepts data streaming and compute action calls launched

by the host CPU code. A single DFE is a PCIe card that can either be available locally on

a CPU server or be mounted in a Maxeler MPC-X: a CPU-free 1U server appliance hosting

up to 8 DFEs, which is connected to host CPU servers by an infiniband network. Each

DFE carries a chip with large amount of reconfigurable logic and on-chip resources (e.g.

a Field-Programmable Gate Array, FPGA) with up to 96 GB of on-board DRAM storage.

The MAX4 generation cards available to the authors are MAX4 Maia DFEs with Altera

Stratix V FPGA and 48 GB of DRAM. Integration of CPU and DFE codes is done by the

dedicated compiler as described in Kos et al. (2015).

Dataflow Engines allow user-friendly control over the features of the underlying hard-

ware, so the hardware description can be optimally designed and built for the algorithm

at hand. This can lead to large speed-ups at runtime compared to the same algorithm’s

implementation on a comparative CPU platform.

Time to complete a task is also only one metric of performance among other met-

rics. Lower clock frequencies mean that DFEs use less power than conventional CPU

machines (Gan et al., 2017). Usually FPGAs use an order of magnitude less power than

CPUs (Liang et al., 2018). In many applications, it is therefore more cost efficient to use

DFEs as it allows more science per Watt.

Another commonly used and increasingly popular alternative to CPU hardware are

graphics processing units (GPU), which gain acceleration for vectorized problems using

“single instruction, multiple data” (SIMD) architectures and high-clock frequency (Liang

et al., 2018). However, they are disadvantaged by their high energy cost. CPUs are more

efficient than GPUs, and, as discussed, FPGAs are in turn more efficient than CPUs. GPUs

additionally do not benefit from the flexibility that allows reconfigurable DFEs to tailor to a

specific algorithm. Their hardware cannot be optimally designed for a given problem.

3.3.2 Implementation

We show the steps taken to generate a typical simulated dataset with the desired properties

in figure 3.2. To simulate underlying signals s, we generate realisations of square, two-

dimensional images, which are in this case real, zero-mean, Gaussian random fields with

known power spectra. The real and imaginary parts of sk are each drawn randomly from
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Gaussian distributions with variance P(k)/2, and reality of the signal is enforced by s∗k =

s−k. We simulate square signal maps with 1282 pixels.

The image, and therefore the vectors k and x, are two dimensional, so the transforms

employs a 2D DFT. In practice the fast Fourier transform (FFT) algorithm (Cooley and

Tukey, 1965) is used to evaluate the coefficients.

The datasets are generated according to the linear model of equation 3.1. For simplic-

ity, we do not apply the linear operator (setting A = I), though this could be included for a

given application. The first panel of figure 3.2 shows an initial power spectrum, P(k), from

which we generate our real, Gaussian field as the signal map.

The noise is independent between pixels and is drawn from a Gaussian distribution

where the noise variance varies across the data. We assume that the noise variance is known.

We mask some of the pixels to represent missing data. The Wiener filter and the Wiener

posterior treat the missing data as a special case of infinite noise. Infinite noise variance, in

the region of the missing data, is set to be 108, as an effective infinity.

On both CPU and DFE, we implement the messenger field algorithm (Algorithm 1) to

draw samples of signal from the Wiener posterior (equation 3.7), using 5 different datasets

at each iteration. This reflects Alsing et al. (2017), where multiple chains were run in

parallel to test convergence. In figure 3.1, the value of the same pixel in 5 independent

chains with different initial values can be shown to converge after a sufficient number of

iterations. The period during which the chains have not converged is known as burn-in, and

using these samples reduces the influence of the initial starting point. Subsequent points

are not converged immediately, therefore it is essential to have multiple chains, to check

convergence and improve statistics.
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Figure 3.1: The absolute value of the same pixel at each iteration in 5 independent MCMC chains
of the messenger field algorithm. The initial value of each pixel is different, to show
convergence after a sufficient number of iterations.

On DFEs it is possible to instantiate fixed point and IEEE-like floating point arithmetic

units of an arbitrarily chosen bitwidth, with greater flexibility beyond the standard options

of single- or double-precision floating-point. Reducing the bitwidth of the number repre-

sentation results in less reconfigurable logic spent on single arithmetic operations. This

allows the user to instantiate more arithmetic units to fit the budget of reconfigurable space

available on the chip, which may be used to implement more complex logic, or to replicate

the computational pipeline; the latter reduces time to solution due to increased parallelism,

but at the cost of reduced precision. In the implementation presented in this Chapter, we use

single-precision floating point format on both the DFE and on the CPU, to compare more

easily the results.

The CPU code, written in C, uses a Box-Muller transformation to generate pairs of

normally-distributed random variates for use in the algorithm. This custom-written imple-

mentation was shown to be consistently faster than the std C++ Gaussian random number

generator in unit tests. Our implementation is slightly faster as we only ever generate one

pair of zero mean and unit variance Gaussian random numbers at each iteration. The DFE

uses the Gaussian random number generator from a dedicated dataflow library2. This small

difference changes the overall time measurement little, as the fraction of time spent gener-

2 MaxPower (maxeler.com/mymaxeler requires Maxeler account)

maxeler.com/mymaxeler
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ating random numbers is small in this algorithm.

The 2D FFT from the FFTW3 package (Frigo and Johnson, 2005) was used for the CPU

code, optimised with Advanced Vector Extensions (AVX2) available on the CPU hardware

(see section 3.4.2). A dedicated dataflow FFT library was used for the DFE.
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Figure 3.2: This figure shows our data model, and gives an example realisation of a simulated
dataset. We begin with a Signal Power Spectrum, P(k), from which we generate a
real, Gaussian random field as a Signal Map. We then take a Noise Variance Map,
whose values vary across the data, from which we generate a Noise Map of Gaussian,
independent pixel noise. The noise is added to the signal to generate the Data No Mask.
We mask pixels representing missing data in Data with Mask.
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3.4 Results

3.4.1 Wiener posterior properties

As described in section 3.2.2, samples from the Wiener posterior sampling algorithm with-

out the random variates converge to the Wiener filter solution (equation 3.2). In the left

panel of figure 3.3 the Wiener filter reconstruction from this method is shown for the data

generated in figure 3.2. By doing this we tested that the CPU and DFE outputs are identical

up to computational precision.

A second test also provided the DFE with a vector of random Gaussian variates, shared

with the CPU, where the output samples from the Wiener posterior were shown to be the

same within computational precision.

In the centre panel of figure 3.3, the mean of the 105 samples from the Wiener posterior

can be seen. By comparing to the Wiener filtered image in the left panel, one can see that the

Wiener filtered solution is indistinguishable from the mean of the samples from the Wiener

posterior, as expected. Due to sample variance, the mean of samples from Wiener posterior

is not exactly equal to the Wiener filter, though for an infinitely large number of samples it

would be.

In figure 3.3, the variance of the same 105 samples can be seen in the right panel. The

variance in the region of missing data is high, as expected, but constrained by the signal

covariance. The structure of the variance of the samples matches the structure of the noise

variance map (see figure 3.2) as expected.

By drawing sufficient samples from the full posterior probability distribution, the code

can characterise it very well, not just providing its mean and covariance.
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Figure 3.3: The input data, signal power spectrum and noise variance are shown in figure 3.2. Left
panel: the left panel is the Wiener filter solution, where the random variates are not
included in Algorithm 1. Centre panel: Mean of 105 samples from the Wiener posterior
distribution evaluated using Algorithm 1. Right panel: Variance of the same set of
samples.
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3.4.2 CPU vs. DFE, Speed

We compare the speed of the CPU+DFE implementation of the Wiener sampler (Algo-

rithm 1) to the pure CPU implementation. Both were run on an Intel(R) Xeon(R) E5−2650 v2 @ 2.60GHz

server (2 sockets, 8 dual-thread cores per socket) presenting 32 CPU threads, which is

connected to a MPC-X node at the STFC Hartree Centre. A single MPC-X box contains

8 MAX4 (Maia) DFEs. The clock frequency for the DFE implementation was chosen to be

200 MHz.
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Figure 3.4: Time taken to run the sampling algorithm for a given number of iterations, where each
iteration returns a sample from each of the 5 chains. Each data point is the mean of
10 runs (with the DFE data overhead removed), and 1σ error bars with Akima (1970)
interpolation for the error envelope. 32 CPU threads vs 8 DFEs, run in parallel on MPC-X.

The sampler was timed for increasing number of iterations on both the CPU and the

DFE, up to 105 iterations. Samples of 5 images are returned at each iteration. The time

was measured from the CPU from the start to the end of the algorithm’s execution. At each

number of iterations, the algorithm was repeated 10 times and the measured times averaged.

Figure 3.4 shows the time to perform the algorithm for a 1U MPC-X with 8 DFEs against

a 1U server presenting 32 CPU threads. The time as a function of number of iterations is

linear for both CPU and DFE. The DFE has an initial overhead (with an average of 4.0

seconds) as the data is loaded onto the hardware, which is removed from the DFE time.

Errors are obtained from 10 runs of the code. For the low run times, the DFE times have

larger error-bars than the CPU, due to larger variance in the DFE data loading time; the

relative effect of this decreases with longer running times.
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In order to parallelise the problem, we run independent MCMC chains. We measure

the time to generate a given number of samples by running the MCMC on 32 memory

independent CPU threads for the CPU-only code. For the CPU+DFE code, we measure the

time to generate a given number of samples on 8 DFEs by splitting the work across 8 CPU

threads.

In this work we have one CPU thread orchestrating one DFE. In future work we need to

support an N:1 ratio of N CPU threads served by a single DFE. This will help to utilise all the

CPU computational capacity as well as all DFEs. Therefore, the speed-up of the CPU+DFE

implementation in this work is a lower bound — here there is scope for considerable further

acceleration.

From each independent MCMC chain some number of initial samples are unusable

due to burn-in and are discarded. As each MCMC chain (run in parallel CPU threads) must

discard the same number of initial samples, running 32 chains gives 32 times more unusable

samples than a single chains with the same number of iterations. The 32 parallel CPUs will

therefore have to discard four times more samples than 8 parallel DFE-accelerated CPU

threads due to burn-in. This is also a reason why the time measurement from this MPC-X box

parallel test should be interpreted as a lower bound on the potential speed up from DFEs.

We measure the lower bound on the parallel DFE speed-up to be 11.3± 0.8, where we

have again used 10 time measurements to estimate the error.

3.5 Potential Applications to Cosmology

In this section we discuss some potential use cases in cosmology, although the algorithm

and implementation are general and could be used in a number of contexts.

3.5.1 Power Spectrum Inference

A common problem is to extract information from the power spectrum, P(k), of an underly-

ing field, s, as defined in equation 3.9, and an extension of the DFE code can allow this. For

a zero-mean Gaussian random field, the power spectrum contains all the statistical informa-

tion that defines the field. The specific aim for power spectrum inference is to calculate the

posterior probability distribution of the power spectrum given a set of data.

The standard model of cosmology predicts that the density field of the early universe

will be a Gaussian random field, which persists for large cosmological scales in the late

universe. Estimating the power spectrum is therefore a standard tool in many cosmological
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analyses with different datasets, including the early universe through Cosmic Microwave

Background (CMB) radiation data (Planck Collaboration et al., 2016). A posterior proba-

bility distribution of the power spectrum of the density field in turn leads to posterior prob-

ability distributions for the cosmological parameters. These usually include, but are not

limited to: the matter density Ωm, the Dark Energy density ΩΛ, the Dark Energy equation

of state parameter w, and the Hubble parameter H0.

The Bayesian hierarchical inference models described by Jasche and Lavaux (2015),

Alsing et al. (2016b), and Alsing et al. (2017) to infer the posterior distributions of either

the power spectrum or cosmological parameters in addition to samples from the field; see

Fig.3.5. With Gibbs sampling, samples of both the power spectrum and the image are

drawn, keeping the other temporarily fixed. For a given power spectrum, large numbers of

samples from the posterior probability distribution of the underlying signal s can be drawn

efficiently using Dataflow Engines, leading to better constraints on the power spectrum and

hence on cosmological parameters.

3.5.2 Cosmological Mass Mapping

As discussed in Chapter 2, due to the local curvature of spacetime by the matter, images of

distant galaxies are deformed by the inhomogeneous matter distribution along the line of

sight. This is called gravitational lensing. Any matter can contribute to the lensing effect,

making it a direct probe of non-visible dark matter (Kaiser and Squires, 1993). Recon-

structing this density field facilitates the study of the dark matter physics, its relationship

with visible matter, and can provide novel approaches to extract additional cosmological

information.

The model describing this process when in the linear regime, known as weak gravita-

tional lensing, is fully described by our linear model in equation 3.1. The data d are images

where the pixel values are the mean of galaxy shapes within that pixel. The signal s is a

weighted, projected density field3 in the foreground of the observed galaxies. The pixel

noise, due to the intrinsic random galaxy shapes, is approximately Gaussian. The density

field in the late universe on large cosmological scales is also approximately Gaussian.

From data with these properties, the large-scale density field from weak lensing shape

measurements can be principally recovered with a Wiener filter. As shown in Chapter 2

the messenger field Wiener filter algorithm is applied to Dark Energy Survey gravitational

3The weighted, projected density field in mass mapping is called convergence and is denoted by κ .
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Pr(P (k)) P (k) Pr(s|P (k)) s

T

Pr(t|s,T) t

N̄

Pr(d|t, N̄) d

1

Figure 3.5: The Bayesian hierarchical forward model as described by Alsing et al. (2017) for sig-
nal image, s, and power spectrum, P(k), inference using the messenger field, t. The
work described in this Chapter uses Dataflow Engines can focus on the nodes of this
network that do not include the power spectrum: the power spectrum is assumed and
kept constant, and samples of the signal image are drawn.

lensing data to generate a mass map image of the underlying density field. The Wiener filter

method has also long been an established tool for reconstructing the underlying density field

using only galaxy positions (Lahav et al., 1994), rather than using lensing data. Obtaining a

large number of samples of the Wiener distribution, as is described in this work, then gives

a posterior probability distribution of the density field in each pixel.

3.5.3 Future Data Requirements for Cosmology

With current cosmic shear data4, Alsing et al. (2017) were able to use CPUs to generate

samples from the posterior probability distributions of the underlying cosmic shear signal

images and the power spectrum, using the Bayesian hierarchical model shown in Fig. 3.5.

10 chains were run in parallel to a length of 105 samples.

Current and future cosmic shear surveys DES (DES Collaboration et al., 2017a),

LSST (LSST Dark Energy Science Collaboration, 2012), and Euclid (Amendola et al.,

2018)) expect orders of magnitude of increase in data volume. The European Space Agency

project Euclid expects to observe over 109 galaxies usable for cosmic shear, compared to

∼ 3× 106 with the CFHTLenS data used by Alsing et al. (2017). This leap in data size

requires novel computational approaches to previously tractable problems. Here, Dataflow

Engines can provide a solution.

3.6 Discussion

We have demonstrated a speed-up of at least 11.3 ± 0.8 for generating 105 samples of

the Wiener posterior of possible images compatible with an observed noisy image of 1282

pixels, using 8 DFEs in a 1U MPC-X box and comparing with a 1U server presenting 32 CPU

4Cosmic shear is the spin-2 complex field manifested as the coherent distortion of galaxy shapes due to
gravitational lensing. It is a function of a linear projection into 2D of the 3D density field.
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threads.

Future extensions could be to include the full Bayesian hierarchical model shown in

figure 3.5, to further exploit the increased speed afforded to us by the Dataflow approach.

This would lead to better constraints on the inferred cosmological parameters through sam-

ples of the power spectrum.

For data requirements of future cosmological surveys it would be useful to Wiener

filter and draw samples of the Wiener posterior from data which have more than of 1282

pixels per image. The image size in this work is constrained by the size of an FFT problem

that fits within the fast FMEM on-chip memory (∼6MB). We expect that future versions of

the dataflow FFT library will provide the option to use off-chip memory (48GB) as an FFT

buffer. We could then expect to be able to Fourier transform images of size 215×215. This

would increase the scientific applicability of a single DFE dramatically.

Implementing large scale Bayesian methods for cosmological parameter estimation

on Dataflow Engines is a promising solution to the problem of increasingly large datasets

from future surveys. This implementation of a Wiener sampler has broad application for

inference or de-noising from any images or dataset with similar properties to those described

here.





Chapter 4

Inference with theoretical predictions from

noisy simulations

This Chapter is based on Jeffrey & Abdalla 2019: Parameter inference and model compar-

ison using theoretical predictions from noisy simulations. accepted Monthly Notices of the

Royal Astronomical Society, doi.org/10.1093/mnras/stz2930
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When inferring unknown parameters or comparing different models, data must be com-

pared to underlying theory. Even if a model has no closed-form solution to derive summary

statistics, it is often still possible to simulate mock data in order to generate theoretical pre-

dictions. For realistic simulations of noisy data, this is identical to drawing realisations of

the data from a likelihood distribution. Though the estimated summary statistic from simu-

lated data vectors may be unbiased, the estimator has variance which should be accounted

for. We show how to correct the likelihood in the presence of an estimated summary statistic

by marginalising over the true summary statistic in the framework of a Bayesian hierarchical

model. For Gaussian likelihoods where the covariance must also be estimated from simula-

tions, we present an alteration to the Sellentin-Heavens corrected likelihood. We show that

excluding the proposed correction leads to an incorrect estimate of the Bayesian evidence

with JLA data. The correction is highly relevant for cosmological inference that relies on

simulated data for theory (e.g. weak lensing peak statistics and simulated power spectra)

and can reduce the number of simulations required.
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4.1 Introduction

It is increasingly common, especially in cosmological surveys, to attempt to make infer-

ences from data d using theory summary statistics µ that can be obtained only from simu-

lations.

One example, currently popular in cosmology, is weak lensing peak statistics (Dietrich

and Hartlap 2010; Kacprzak et al. 2016; Peel et al. 2017; Shan et al. 2017; Martinet et al.

2017). Peak statistics broadly aim to use the number of density peaks in the cosmological

matter distribution to constrain cosmological parameters and models. The number of peaks

in the density field (or weak lensing signal) is the result of highly non-linear structure for-

mation and large-volume dark matter simulation are often needed to generate the theoretical

number. The number of peaks in a given simulation is stochastic due to cosmic variance

and then further sources of noise are added to simulate realistic observed data.

The data d are not the raw maps or catalogues, but the observed/derived summary

statistics. For example, d would be the observed number of peaks in a weak lensing mass

map reconstruction (see Kacprzak et al. 2016, or Chapter 2).

It was recently noted by Sellentin and Heavens (2016) that the common practice of de-

biasing a covariance matrix estimated from simulations of mock data (Hartlap et al., 2007)

is insufficient. The sampling distribution of this estimated covariance should be incorpo-

rated into the likelihood distribution and, therefore, into the posterior distributions of the

inferred parameters. Failure to do so leads to biased and overly-optimistic inferences.

In this work we note that, as with the estimated covariance described by Sellentin and

Heavens (2016), an unbiased estimated summary statistic µ̂ is nevertheless itself a random

variable, drawn from a sampling distribution with associated variance. If unaccounted for,

this will lead to inaccurate parameter inference and misleading model comparison results.

In a Bayesian hierarchical framework, we present how to derive the posterior distribu-

tion of parameters by using a corrected likelihood distribution which takes into account that

the theoretical predictions are based on noisy simulations.

An alternative to our presented hierarchical approach is to use likelihood-free inference

(LFI) methods (e.g. Alsing et al. 2018, Leclercq 2018). In general LFI methods assume

that the likelihood is unknown, and simulations are used to estimate the resulting posterior

distribution conditional on data. However, if simulations are expensive and we believe
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we know the naive likelihood1 then LFI methods would be unnecessary and require more

simulations, due to the increased number of degrees of freedom in the model. Instead, we

show how to directly construct a Bayesian hierarchical model containing the free parameters

of the known naive likelihood.

In section 4.2 we show how to marginalise over possible summary statistics µ to derive

the likelihood P(d | µ̂), the probability of the data d conditional on the estimated summary

statistic µ̂ . In section 4.3, we consider the case in which the naive likelihood is Gaussian,

and derive the corrected likelihood distribution in the presence of both known and unknown

(estimated) covariance matrices. In section 4.4, we use a one-dimensional toy model to

demonstrate the effect of estimated summary statistics; we show that the corrected likeli-

hood distribution matches samples generated from the toy model. In section 4.5, we use

the public JLA supernovae data to show the effect of estimating summary statistics from

simulations, using draws from the known likelihood as mock simulations.

4.2 Likelihood-based inference with simulations

4.2.1 Posterior and likelihood

Using the example of weak lensing peak statistics, we would wish to evaluate the posterior

distribution of parameters of interest θ (e.g. Ωm, σ8 etc.) conditional on our observed data

d (the number of peaks in a weak lensing map), which is given by Bayes’ theorem:

P(θ |d) = P(d|θ) P(θ)
P(d)

. (4.1)

If we were able to directly model the summary statistic µ(θ) (that is, if we could calculate

the number of weak lensing peaks for given parameters θ ), then we could substitute µ(θ)

into the likelihood:

P(d|θ) = P( d | µ(θ) ) . (4.2)

Of course, this is not possible in many cases. We must rely on estimates µ̂i of the true, but

unattainable, summary statistic, with simulations run at position i in parameter space with

parameters θi.

The correct representation of Bayes’ theorem for the posterior distribution is

1Assuming we could condition on the true summary statistics which can be calculated P(d|µ(θ)).
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Figure 4.1: Probabilistic graphical representation in plate notation of Bayesian hierarchical models
from sections 4.2.2 & 4.3.1 (left panel) and section 4.3.2. (right panel). Shaded nodes
are “observed’, either from experimental data (d) or from simulations (µ̂ and Σ̂). Each
plate (rectangular box) includes the amount of data associated with the variable, for
example each µ̂i (run at position i in parameter space) comes from Mi simulations.

P(θ |d,{µ̂i}) =
P(d|{µ̂i},θ) P(θ)

P(d)
, (4.3)

or equivalently

P(θ |d,{µ̂i}) =
P(d,{µ̂i}|θ) P(θ)

P({µ̂i}) P(d)
, (4.4)

keeping in mind that, as observed quantities, the observed summary statistic d and the

statistics from the simulations {µ̂i} are independent and, therefore, separable. The brackets

{} represent the set of simulations run over the positions i in parameter space.

The factors P({µ̂i}) and P(d) are both Bayesian evidence terms for the observed data

and observed simulations. As constants, they can be largely ignored.

4.2.2 Likelihood correction

At position i in parameter space a set of M simulated data are generated. As it is not possible

to calculate2 the summary statistic µ , we estimate it from M simulated data realisations dsim.

The estimate is often the mean

2that is, µ(θ) cannot be calculated for a given θ (e.g. peak statistics)
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µ̂(θi) =
1
M

M−1

∑
j=0

dsim, j(θi) , (4.5)

where each jth data realisation is independent. In some cases, the summary statistic may not

be the expectation of the likelihood P(d|µ), so the estimator µ̂ would be another function

of the simulated data (not the mean).

Even if µ̂ is an unbiased estimate (that is, 〈µ̂〉= µ), it is often mistakenly assumed that

P( d | µ̂i ) = P( d | µ(θi) ) , (4.6)

which is not generally correct.

The correct likelihood to be used for parameter inference is with the estimated {µ̂i}
from simulations as used in equation 4.3 or equation 4.4. This can be rewritten as a

marginalisation over the unknown true summary statistic

P(d | {µ̂i}, θ) =
∫

P(d , µ | {µ̂i}, θ) dµ

=
∫

P(d |µ, θ) P(µ | {µ̂i}, θ) dµ

=
1

P({µ̂i})
∫

P(d |µ, θ) P({µ̂i}| µ, θ) P(µ|θ) dµ .

(4.7)

or alternatively

P(d,{µ̂i}| θ) =
∫

P(d |µ, θ) P({µ̂i}| µ, θ) P(µ|θ) dµ , (4.8)

which is the same up to a constant evidence factor P({µ̂i}, as would be expected from

equations 4.3 and 4.4. Which of the previous two distributions one wishes to think of as the

traditional likelihood is somewhat academic, as once they are included into Bayes’ theorem

(equation 4.3 or 4.4), the posterior is the same.

Adding the corrected likelihood into equation 4.3 gives the posterior distribution for

the parameters of interest

P(θ |d,{µ̂i}) =
P(θ)

P(d) P({µ̂i})
∫

P(d |µ) P({µ̂i}| µ) P(µ|θ) dµ . (4.9)

Here and in what follows, we drop explicit dependence on θ in terms like P({µ̂i}| µ, θ), and
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distributions will only condition on the previous layer in the hierarchical model (figure 4.1),

as is a common practice (e.g. Leistedt et al. 2018). One can nevertheless keep in mind that

probability distributions with µ is also conditioned on θ .

Equation 4.9 is the most general form, but each factor in the final integral can be

evaluated for certain forms of the naive likelihood (P(d | µ)) and chosen priors:

• The first factor is the naive likelihood that would be used if the summary statistic µ

could be calculated.

• The second factor is a sampling distribution of µ̂ . If our simulated datasets dsim, j for

a given set of parameters θi are independent and realistic, then each is an independent

and identically distributed (i.i.d.) draw from the naive likelihood distribution. As-

suming we know the naive likelihood, it is usually possible to evaluate the sampling

distribution P(µ̂ | µ).

• The final factor of equation 4.7 is the prior on the summary statistic µ conditional on

position in parameter space. This is not assigning prior probabilities to the values of

the parameters themselves but on to possible forms of the summary statistic.

If we believe, for example, that µ should vary smoothly in parameters space, this

could be enforced through a smoothness prior P(µ|θ). This can be compared to em-

ulation methods (e.g. Heitmann et al. 2009, Bird et al. 2019, Jennings et al. 2019),

where µ is estimated from simulations using a smoothing prior, either explicitly

(Gaussian processes) or implicitly (machine learning). However, the uncertainties

are not generally included in the final posterior distribution in a principled hierarchi-

cal way as described here.

Conversely, if we claim to know nothing (or very little) about µ a priori, then we

might consider a uniform prior (section 4.3.1).

4.2.3 Bayesian Hierarchical Model

The model described in the previous section is hierarchical and has a network of parameters

related by conditional probabilities. Specific probability distributions of interest, such as

the posterior probability distribution of the parameters, are evaluated by appropriate use of

Bayes’ theorem and marginalisation.

The left panel of figure 4.1 shows the probabilistic graphical representation of the

hierarchical model pertaining to equation 4.9. This graphical representation may make the
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logical steps of the previous section clearer, especially allowing us to see where conditions

can be dropped (e.g. P(d |µ, θ) = P(d |µ)).

4.3 Gaussian Naive Likelihood

For many cosmological analyses, the data d are assumed to have Gaussian noise and are,

therefore, drawn from a Gaussian likelihood. In this section we derive the corrected likeli-

hood for the case with known covariance (section 4.3.1) and unknown (estimated) covari-

ance (section 4.3.2).

A Gaussian likelihood is usually an approximation, as there are likely to be some

sources of non-Gaussian noise. It may be a very good approximation however. By the

central limit theorem it may be the correct distribution in some limit of large numbers.

For example, in a survey to measure the matter power spectrum P(k), if the galaxies are

a Poisson process, then for modes that average many galaxies (high k) the likelihood is

approximately Gaussian. Similarly, if weak lensing peaks are Poissonian, the binned counts

of peaks will be approximately Gaussian for large numbers of observed peaks.

For cases where the naive likelihood is non-Gaussian and one wishes to calculate the

corrected likelihood (conditional on an estimated summary statistic µ̂), one should evaluate

equation 4.7 analytically or numerically.

4.3.1 Known Covariance

Consider the case where the naive likelihood (the first factor in the integral of equation 4.9)

is a Gaussian/normal distribution, such that

P(d | µ(θ) ) = N (d, µ, Σ) , (4.10)

and the covariance Σ is assumed known.

In this case, the sampling distribution (the second factor in the integral of equation 4.9)

is

P(µ̂i | µi, Σ) = N (µ̂i, µi,
1
M

Σ) , (4.11)

at position i in parameter space.

If we do not wish to enforce any prior knowledge about µ , it seems reasonable to use

the Jeffreys’ prior (Jeffreys 1946, Jeffreys 1998) as an objective prior distribution for µ ,
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which, for our Gaussian likelihood (equation 4.10), is uniform

P(µ|θ) = P(µ) ∝ 1 . (4.12)

This flat prior on µ , if unbounded, is formally improper. However, the resulting (posterior-

like) distribution, P(µi | µ̂i, Σ), is Gaussian and therefore a true probability distribution.

With these distributions (equation 4.10-4.12) for a Gaussian naive likelihood, we per-

form the marginalisation integration (equation 4.7),

P(d | µ̂i, Σ) =
1

P({µ̂i})
∫

N (d, µ, Σ) N (µ̂i, µ,
1
M

Σ) dµ

∝

∫
N (d, µ̂i,

(M+1
M

)
Σ) N (µ, x, X) dµ ,

(4.13)

where x is a certain function of {d, µ̂ , Σ, M} (but not µ) and X is a certain function of {Σ,

M}3. The first factor can be brought outside the integral. The integration over µ of the sec-

ond factor, which is a normal distribution, evaluates to one, which removes the dependence

on x. Normalising the resulting distribution with respect to d gives the corrected likelihood:

P(d | µ̂i, Σ) = N (d, µ̂i,
(M+1

M

)
Σ) . (4.14)

For summary statistics (µ̂i = µ̂(θi)) estimated from simulations (run with θi parameters),

where the likelihood distribution for data d conditional on the true (but unknown) µi is

Gaussian with known covariance Σ, and with an objective Jeffreys’ prior on µ , then equa-

tion 4.14 is the corrected form of the likelihood. It is this corrected likelihood that should

be used for parameter inference.

In this case, the corrected likelihood has the same Gaussian form as the naive like-

lihood, but with a scaled covariance. At first glance, this scaling could be mistaken for

Bessel’s correction for an unbiased estimate of the sample variance; however, here we ac-

tually know the covariance Σ and the added scaling comes from uncertainty in our estimate

µ̂ .

3This can be shown by completing the square, and is listed in Bromiley (2003) and Petersen and Pedersen
(2012)
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4.3.2 Unknown Covariance

In the previous section, we assumed that the summary statistic µ was estimated from simu-

lations, but the covariance Σ was known. This situation is unlikely and it is foreseeable that

both the summary statistic and covariance would also be estimated from simulated data.

The estimate of the covariance from N independent data simulations is given by

Ŝ =
1

N−1

N−1

∑
i=0

(dsim,i− d̄sim)(dsim,i− d̄sim)
† , (4.15)

where † is the conjugate transpose, and d̄sim = 1
N ∑

N−1
i=0 dsim,i is the just the estimated sum-

mary statistic µ̂ as given by equation 4.5 (but with N simulations, not M).

For the case where the summary statistic µ is not estimated from simulations, Sellentin

and Heavens (2016) calculate the corrected likelihood

P(d |µ, Ŝ, N) ∝

∫
P(d | µ, Σ)P(Ŝ | Σ)P(Σ) dΣ . (4.16)

For a Gaussian naive likelihood P(d | µ, Σ) the distribution of the estimated covariance

P(Ŝ | Σ) is Wishart. With these distributions and a Jeffreys’ prior for Σ, the resulting

Sellentin-Heavens corrected likelihood is given by

P(d | µ, Ŝ) =

Γ
(N

2

)
|Ŝ|−1/2

Γ
(N−p

2

)[
π(N−1)

] p
2

[
1+

(d−µ)†Ŝ−1(d−µ)

N−1

]−N
2

.
(4.17)

where p is the number of elements in the data vector d (i.e. the dimensionality). This has

the form of a multivariate t-distribution.

In the case considered in this work, represented by the right panel of figure 4.1 we are

assuming that the summary statistic µ cannot be calculated, and that we must estimate µ̂

from simulations. The integral in equation 4.16 must then be replaced by

P(d |{µ̂i}, {Σ̂i}, θ) =
1

P({µ̂i})P({Σ̂i})
×∫∫

P(d|µ,Σ)P({Ŝi}|Σ)P({µ̂i}|µ,Σ)P(Σ|θ)P(µ|θ) dµ dΣ .

(4.18)
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This integral is the (corrected) likelihood in the posterior distribution of θ for the model

shown in the right-hand panel of figure 4.1.

We note that a given sample mean µ̂i and sample covariance Ŝi are independent, even if

the simulated data used to estimate them are the same (Anderson, 2003), so that P(µ̂, Ŝ) =

P(µ̂) P(Ŝ). If the simulated data used to evaluate µ̂ and Ŝ are the same, one can set N = M

in what follows. If, as is often the case in cosmological analyses, the covariance is assumed

not to vary with respect to the parameters of interest and is instead estimated once with more

simulated data realisations, then N is fixed and the i indices on the estimated covariance are

dropped.

Using the same distributions as described so far in section 4.3, marginalising over the

unknown true summary statistic µ and covariance Σ (equation 4.18) and renormalising gives

the new corrected likelihood (details in section 4.7):

P(d | µ̂i, Ŝi) =

Γ
(N

2

)√ M
M+1 |Ŝi|−1/2

Γ
(N−p

2

)[
π(N−1)

] p
2

[
1+

M
(M+1)(N−1)

(d−µi)
†Ŝ−1

i (d−µi)

]−N
2

.

(4.19)

This corrected likelihood gives the probability of observing the data d conditional on an es-

timated mean summary statistic µ̂i = µ̂(θi) from M simulations and an estimated covariance

matrix Σ̂i = Σ̂(θi) from N simulations, where we have assumed that the naive likelihood is

Gaussian and have used Jeffrey’s priors on µ and Σ.

4.4 Toy Model Demonstration

As a verification and demonstration of the result given in equation 4.14, where µ̂ is esti-

mated from simulated data and Σ is known, we construct a toy model. This toy model also

relies on the assumed flat prior on µ and the fact that the sampling distribution is symmetric

with respect to µ and µ̂ .

Let us assume that in different realisations of an experiment, different experimenters

randomly and independently generate M simulations, from which µ̂ is estimated accord-

ing to equation 4.5. The underlying likelihood distribution for the data with known µ is

Gaussian and therefore the simulated data are themselves i.i.d. draws from the Gaussian

distribution (equation 4.10). Each experimenter then draws a realisation of the data d from
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distributed according to the corrected likelihood distribution (equation 4.14), whereas
the naive likelihood distribution has reduced variance.

10−2 10−1 100

z (redshift)

14

16

18

20

22

24

26

m
B

Data

0 200 400 600

0

100

200

300

400

500

600

700

Covariance

−0.02

−0.01

0.00

0.01

0.02

Figure 4.3: Left panel: The observed magnitude mB data for 740 SN Ia. The error bars are taken as
the square-root of the diagonal elements of the covariance. Right panel: The covariance
matrix as described in section 4.5.1.

the naive Gaussian likelihood distribution with the known variance and the mean given by

their estimated µ̂ .

Though each experimenter draws their data realisation d from a Gaussian likelihood

with the known variance Σ, the data realisations from all the experimenters will be dis-

tributed according to the corrected likelihood (equation 4.14) with variance M+1
M Σ.
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In figure 4.2 we take a one-dimensional case where µ = 42, Σ = π ≈ 3.14, and M = 2.

We see that the data samples from 105 different experiments match the corrected likelihood

distribution (equation 4.14), whereas the naive likelihood distribution underestimates the

variance, as expected.

4.5 JLA Supernovae Demonstration

In this section, we use public type Ia supernova (SN Ia) data4 from the SDSS-II/SNLS3

Joint Light-Curve Analysis (JLA) (Betoule et al., 2014) as a demonstration of the corrected

likelihoods described in the previous sections.

This is, of course, only a demonstration, as the summary statistic µ(θ) (SN Ia appar-

ent magnitudes) can actually be calculated for the model considered. We generate simulated

data by drawing realisations from the known likelihood5, and estimate µ̂ . We can then con-

strain cosmological parameters using a likelihood distribution conditional on our estimated

µ̂ .

4.5.1 Data and Model

The data are observed B-band peak apparent magnitudes d = (mB,obs,1,mB,obs,2, ...) for 740

SN Ia over a range of redshifts up to z = 1.3. The supernovae also have associated light-

curve stretch X1, colour at maximum-brightness C and host stellar mass Mstellar, which are

included in the model and covariance. The data and associated covariance are shown in

figure 4.3.

We use the model from Betoule et al. (2014) where the SN Ia are standardizable candles

with expected apparent magnitude

mB = 5log10

( DL

1Mpc

)
+25

+MB +∆MΘ(Mstellar−1010M�)

−αX1 +βC ,

(4.20)

where α and β are nuisance parameters for the stretch and colour respectively. MB is the

absolute magnitude of the host with a correction term ∆M depending on Mstellar (where Θ is

the Heaviside function). We take a flat wCDM Universe, with luminosity distance

4supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
5Alsing et al. (2018) and Leclercq (2018) take a similar approach to demonstrate likelihood-free methods.

supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
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DL =
c(1+ z)

H0

∫ z

0

dz′√
Ωm(1+ z′)3 +(1−Ωm)(1+ z′)3(w+1)

, (4.21)

where c is the speed-of-light in a vacuum, H0 is the Hubble parameter, Ωm is the matter

density parameter, and w is the equation of state for dark energy.

In our demonstration, the parameters of interest θ = (Ωm,w,MB) are allowed to vary.

For simplicity, we fix the other parameters: H0 = 70.0 km s−1 Mpc−1, ∆M = −0.05, α =

0.1256, β = 2.6342. The covariance is calculated according to Betoule et al. (2014) and is

also fixed.

4.5.2 Likelihood and Priors

We assume a Gaussian likelihood, where the log-likelihood is given by:

lnP(d|µ,Σ) =−1
2

ln
[
det
(
2πΣ

)]
− 1

2
(d−µ)†

Σ
−1(d−µ) , (4.22)

where the data and covariance are those described in section 4.5.1 (and shown in Fig. 4.3),

and our summary statistic µ is given in equation 4.20.

For simplicity we take uniform priors in the ranges: 0.05 ≤ Ωm ≤ 0.6, −1.5 ≤ w ≤
−0.3, −19.15≤MB ≤−18.95.

Simulations for this demonstration are run on a regular grid of shape [12,13,11] (for

Ωm, w, MB) spanning the prior range. The regular grid is a particularly poor choice to sample

the posterior distribution when simulations are expensive. However, this is a demonstration,

and for real-world analysis many better sampling schemes are available (including latin

hypercubes and grid transformations to better sample the expected posterior distribution).

Once the posterior is evaluated at these grid positions, the parameter space is upsam-

pled to a [48,52,44] grid. The new grid positions are evaluated by interpolating the posterior

distribution from the original grid using a radial basis function ‘thin plate’ spline (Duchon

1976; Bookstein 1989; Jones et al. 2001). This spline interpolation worked particularly

well in avoiding edge effects or artefacts around points when we compared their results

with those of more poorly-performing simple polynomial splines.

4.5.3 Results

First, let us imagine three different experimenters, who, despite having access to the same

data (described above), run their own independent simulations to estimate the summary

statistics µ̂(θ) on the grid in parameter space. This results in different µ̂i for i =1, 2, 3.
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Figure 4.4: JLA posterior distribution for Ωm, w, and MB (described in section 4.5.2) using three
independent estimates µ̂ with M = 2 simulations per position in parameter space.
This uses the naive Gaussian distribution (equation 4.10) without the correction (equa-
tion 4.14), and the contours are therefore optimistically reduced.

Evaluating the posterior distribution using the naive Gaussian likelihood set-up de-

scribed in section 4.5.2, and using M = 2 simulations per parameter grid position, results in

the three posterior distributions in figure 4.4. The three different experimenters have three

different posterior distributions due to their different µ̂i.

Having different individual posterior distributions is in itself is not a problem. If dif-

ferent experiments have different data but the same underlying parameters, their resulting

posterior distributions will look different, and will quantify their own individual uncertainty

in the parameters. However, this variance of the data has been taken into account, and will

be reflected in each posterior distribution. In the case of different µ̂i in figure 4.4, the fact

that µ̂ was a random draw from a distribution (just like the data) has not been taken into ac-

count. As they have ignored the resulting correction to their likelihood, each experimenter

will be overly optimistic about their own inferences.

In figure 4.5, the posterior distribution has been calculated using the likelihood cor-
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Figure 4.5: JLA posterior distribution for Ωm, w, and MB (described in section 4.5.3) using the cor-
rected likelihood (equation 4.14) with M = 2 (we set µ̂ = µ in this example for clarity).
The contours are broader than in figure 4.4 (25 per cent increase in the parameter co-
variance determinant) as this likelihood takes into account that the estimated summary
statistic is a draw from a sampling distribution.

rection (equation 4.14), which takes into account the variance in µ̂i (using the µ summary

statistic for clarity). Using ChainConsumer (Hinton, 2016), we measure a 25 per cent in-

crease in the determinant of the parameter covariance with the corrected likelihood. The

resulting posterior distribution is slightly broader, reflecting the added uncertainty in the

inference.

4.5.4 Model Comparison

The comparison of different theoretical models using the data in a Bayesian framework is

usually done by calculating the Bayesian evidence:

P(d|Model) = Z =
∫

P(d|θ , Model) P(θ |Model) dθ . (4.23)

Two models can be compared by evaluating the Bayes factor:
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K =
Z1

Z2
=

P(d|Model1)
P(d|Model2)

=
P(Model1|d)
P(Model2|d)

P(Model2)
P(Model1)

. (4.24)

If one has no reason to believe a given model more than another a priori, then the second

factor (the ratio of the prior distributions) equals one. In this case, the Bayes factor becomes

a ratio of the model probabilities (conditional on the data).

We evaluate the Bayesian evidence (equation 4.23) for the three parameter case for the

JLA analysis described in section 4.5.2 with the uncorrected naive Gaussian likelihood and

the corrected likelihood (equation 4.14) with M = 2. Calculating the Bayes factor gives

lnKµ̂1 = 46

lnKµ̂2 = 31

lnKµ̂3 = 30 ,

(4.25)

for µ̂1, µ̂2, and µ̂3 respectively, where

lnK = lnZcorrected− lnZuncorrected (4.26)

using the corrected likelihood to evaluate the evidence Zcorrected and the naive, uncorrected

likelihood for Zuncorrected.

As a check, after increasing the number of evaluated grid points by a factor of 4 we still

calculate the same K values. Additionally, we calculate lnK using a different cosmological

parametrisation, sampling scheme and data (section 4.8) and get similar results.

For all three, the corrected likelihood is more than a factor of exp[30] more probable

than the uncorrected. This is further validation of the corrected likelihood; the model (i.e.

the corrected likelihood) shows a better goodness-of-fit. Furthermore, if one were using an

estimated summary statistic, but not using the corrected likelihood, one’s belief in a model

would be incorrect by this factor.

This effect would be particularly harmful if comparing two models, where it is possible

to calculate µ for the first, but µ̂ is estimated from simulations for the second. Using the

same Gaussian likelihood for both, without the correction for the second, would lead one to

incorrectly favour the first model.

In figure 4.6, the log Bayes factors lnK (equation 4.25) are shown for the three esti-
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Figure 4.6: The log Bayes factor lnK as a function of the number of simulations M for the three esti-
mated summary statistics µ̂i (using cubic spline interpolation between evaluated points).

mated summary statistics µ̂i as a function of the number of simulations M. As the number of

simulations increase, the error incurred by using the uncorrected likelihood decreases. The

value asymptotes to, but will never reach, lnK = 0. For even a large number of simulations

(large M), the error is not negligible. For many analyses, rather than running 102 expensive

simulations, it would be better to use the corrected likelihood and avoid this error.

4.6 Discussion & Conclusions

In this work, we have shown how to take the sampling distribution of estimated summary

statistics, µ̂ , into account for parameter inference in a cosmological context. For situations

where the naive likelihood is Gaussian, we have evaluated this correction (by marginalising

over the unknown µ) for the case with known covariance (equation 4.14) and estimated

covariance (equation 4.19).

We have validated the corrected likelihood with a toy model (section 4.4). Using JLA

SN Ia data, we have demonstrated the effect of the corrected likelihood on cosmological

parameter inference. For model selection, in our simple three-parameter inference demon-

stration, we show that the log Bayesian evidence lnK will be incorrect by a factor of over

30 if the uncorrected likelihood is not used.

In the era of DES (DES Collaboration et al., 2017b), LSST (LSST Science Collab-

oration et al., 2009) and Euclid (Amendola et al., 2016), cosmological analyses will have

access to large cosmological datasets. Sole reliance on 2-point statistics in the linear regime
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will be tantamount to wasting data which is rich in cosmological information. However,

many summary statistics (µ) that access information beyond these 2-point statistics in the

linear regime cannot be calculated analytically and need realistic simulations to be run to

estimate µ̂ .

A typical approach has been to run an excessive number of simulations at each position

in parameter space, such that the variance of µ̂ in negligible. This approach has diminish-

ing returns, as variance asymptotically tends to zero as 1
M . This effectively aims to increase

the number of simulations M until the sampling distribution P(µ̂ | µ) can be effectively

viewed as Dirac delta function (a limit it will, of course, never reach). Accepting a small in-

crease in the resulting parameter constraints and correcting the likelihood for this sampling

distribution means that fewer simulations have to be run.

If one does not wish to take the sampling distribution into account, one might use

“cheap” simulations where it is possible to run enough that one effectively reaches the

Dirac delta function limit. This has two potential pitfalls: firstly, the limit is never truly

reached, which may affect the inferred parameters or model comparison results; secondly,

cheap simulations are likely to be less realistic. It is far better to have slightly broader

posterior distributions and to have used reliable simulations, than to have tighter constrains

on parameters that are biased due to unreliable simulations.

The approach taken in this Chapter requires the acceptance that simulations are not

“free”. Simulations are increasingly an essential part of analyses. Like data, reliable simu-

lations are often expensive in terms of time and resources and are, therefore, an acceptable

contribution to the uncertainty of inferred parameters.

4.7 Supplementary material: full derivation

Here the full derivation leading to equation 4.19 is given, starting from the integration equa-

tion 4.18,

P(d|{µ̂i}, {Ŝi}) ∝∫∫
P(d|µ,Σ)P({Ŝi}|Σ)P({µ̂i}|µ,Σ)P(Σ|θ)P(µ|θ) dΣ dµ∫ [∫

P(d|µ,Σ)P({µ̂i}|µ,Σ)P(µ|θ) dµ

]
P({Ŝi}|Σ)P(Σ|θ)dΣ .

(4.27)
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The first factor in the integral, P(d|µ,Σ), is the Gaussian naive likelihood, given by equa-

tion 4.10. The final factor in the first integral is a uniform prior, P(µ) ∝ 1, as described in

section 4.3.1. The second line uses the fact that µ̂ and Ŝ are independent (Anderson, 2003).

We can first perform the integration over µ , which, using the result from section 4.3.1, gives

P(d |µ̂i, Ŝi) ∝

∫
N (d, µ̂i,

(M+1
M

)
Σ)P(Ŝi|Σ)P(Σ|θ)dΣ . (4.28)

The second factor is the Wishart distribution

P(Ŝi|Σ,N) = W (Ŝi|Σ/(N−1),N−1)

=
|Ŝi|

N−p−2
2 exp

[
−N−1

2 Tr
[
Σ
−1Ŝi

]]
2

p(N−1)
2 |Σ/(N−1)|N−1

2 Γp
(N−1

2

) ,
(4.29)

and the third factor is the Jeffreys prior for Σ

P(Σ) ∝ |Σ|− p+1
2 , (4.30)

as described by Sellentin and Heavens (2016).

With these factors, we can rewrite equation 4.28, to give

P(d |µ̂i, Ŝi)

∝

∫
dΣ |Σ|−N+p+1

2 exp
[
− 1

2
Tr
(
Σ
−1

φi
)]

∝ |φi|−N/2 ,

(4.31)

where

φi = (N−1) Ŝi +viv†
i , (4.32)

and

vi = (d− µ̂i)

√
M

M+1
. (4.33)

Using the identity |A+ vv†| = |A||1+ v†A−1v| and normalising gives the new corrected

likelihood in equation 4.19. The result is discussed in section 4.3.2.
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4.8 Supplementary material: Pantheon
In section 4.5.4, the Bayes factors were calculated by evaluating the integral (equation 4.23)

numerically on the parameter grid described in section 4.5.2. This resulted in values of

lnK > 30 for the corrected vs. uncorrected likelihood using the JLA data with the parame-

ters described. Here we briefly describe how we verified the magnitude of this effect using

1048 Pantheon SN Ia (Scolnic et al., 2018) with a different set of parameters and a different

method to evaluate the Bayesian evidence.

We allow four parameters to vary: q0 (deceleration), j0 (jerk), MB, and h =

H0/[100.0 km s−1 Mpc−1]. Deceleration and jerk are the parametrisation of a third or-

der Taylor expansion of the scale factor a(t) (Visser, 2004). The priors are uniform in the

ranges: −1 < q0 < 1, −2 < j0 < 2, −20 < MB < −18, and 0.4 < h < 1.2. To evaluate

the posterior distribution and Bayesian evidence we use PLINY (Rollins, 2015), which is

a nested sampler (Skilling, 2004), and has been shown to be accurate when compared with

known closed-form Bayesian evidence results.

The Bayes factor K is also differently defined here, as we set µ = µ̂ , inverting the

result. The evaluated value lnK ≈ 1
43 , validates our results from section 4.5.4.





Chapter 5

Deep learning dark matter map

reconstructions

This Chapter is based on Jeffrey et al. Deep learning dark matter map reconstructions from

DES SV weak lensing data. submitted to MRNAS Letters, arXiv:1908.00543
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We present the first reconstruction of dark matter maps from weak lensing observa-

tional data using deep learning. We train a convolution neural network (CNN) with a Unet

based architecture on over 3.6× 105 simulated data realisations with non-Gaussian shape

noise and with cosmological parameters varying over a broad prior distribution. We inter-

pret our newly created DES SV map as an approximation of the posterior mean P(κ|γ) of

the convergence given observed shear. Our DeepMass1 method is substantially more accu-

rate than existing mass-mapping methods. With a validation set of 8000 simulated DES SV

data realisations, compared to Wiener filtering with a fixed power spectrum, the DeepMass

method improved the mean-square-error (MSE) by 11 per cent. With N-body simulated

MICE mock data, we show that Wiener filtering with the optimal known power spectrum

still gives a worse MSE than our generalised method with no input cosmological parame-

ters; we show that the improvement is driven by the non-linear structures in the convergence.

With higher galaxy density in future weak lensing data unveiling more non-linear scales, it

is likely that deep learning will be a leading approach for mass mapping with Euclid and

LSST.

1github.com/NiallJeffrey/DeepMass

https://github.com/NiallJeffrey/DeepMass
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5.1 Introduction

The evolving cosmological density field is rich in information about the cosmological model

of the Universe, its unknown parameters, and cosmic web-dependent astrophysics. Though

the largest fraction of the density is invisible dark matter, the gravitational lensing effect

of galaxies can be used to infer fluctuations in the total foreground matter distribution.

Accurate “mass maps” will be essential for the science goals of the upcoming LSST survey

and the ESA Euclid mission.

The maps considered in this Chapter are of the two-dimensional convergence, κ , a

weighted projection of the matter density field in the foreground of the observed galaxies.

Recovering the convergence from the measured galaxy shapes, known as observed shear

γobs in the weak lensing regime, is an ill-posed inverse problem, troubled by survey masks

(missing data) and galaxy “shape noise”.

A typical principled approach to reconstructing more accurate mass maps in the pres-

ence of noisy, masked shear data is to use physically motivated priors. In Chapter 2, it was

shown that using either Gaussian priors or “halo model” sparsity priors for κ improved the

accuracy of the reconstructions with Dark Energy Survey Science Verification (DES SV)

data. Implemented methods include using log-normal (Böhm et al., 2017) priors or E-mode

priors (Mawdsley et al., 2019).

However, all of these priors take functional forms that only approximate the true object

of interest, the prior on the convergence field P(κ|M ) (with model assumptions M ). These

approximations are necessary because we cannot represent the probability distribution of the

non-linear density field in closed form. For example, we cannot characterise it uniquely in

terms of its moments (Carron and Szapudi, 2017). Even if the true, unapproximated prior

were available, evaluation via direct calculation would likely be intractable.

Fortunately we can still draw realisations of convergence maps from the prior distri-

bution P(κ) in the form of simulations, which provides opportunity to a new generation

of methods based on deep learning. Such an approach has been simultaneously proposed

by Shirasaki et al. (2018), where a conditional adversarial network was used to learn a

mapping from noisy convergence maps to an estimate of the noise-free convergence.

In this work, we propose a deep learning method to estimate the posterior mean of

the convergence map from observed weak lensing shear measurements. In section 5.4 we

demonstrate our method on simulations and DES SV data.
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5.2 Weak gravitational lensing

5.2.1 Shear and convergence

Given a distribution of source galaxies n in radial comoving distance ω , the convergence at

position
#»
φ on the sky is given by a weighted integral of the density

κ(
#»
φ ) =

3H2
0 Ωm

2

∫
∞

0

[∫ ω

0
dω
′ω
′(ω−ω ′)

ω

δ (
#»
φ ,ω ′)

a(ω ′)

]
n(ω)dω , (5.1)

where H0 is the present value of the Hubble parameter, a is the cosmological scale factor,

Ωm is the matter density parameter, and δ is the overdensity.

We express the linear data model in matrix notation,

γ = Aκ +n , (5.2)

where n is a vector of noise per pixel. The matrix operator acting on the convergence

Aκ is the shear contribution due to lensing (Bartelmann and Schneider, 2001). In this

formulation, the elements γ are the complex shear measurements binned into angular pixels

in a two-dimensional image format.

We do not take into account the second order effects of reduced shear (Schneider and

Seitz, 1995b), flexion (Bacon et al., 2006) or intrinsic alignments (Kirk et al., 2015). How-

ever, the deep learning approach taken in this Chapter is extremely flexible; as long as an

effect can be modelled and included in the training data, it will be taken into account in the

mass map reconstruction. This is not generally true of other methods. For example, flex-

ion requires reformulations of methods (e.g. Lanusse et al. 2016). Additionally, noise per

pixel is invariably approximated as Gaussian, which we do not assume in our deep learning

approach.

5.2.2 Previous mapping approaches

The original mass mapping approach by Kaiser and Squires (1993) was a direct deconvolu-

tion. In practice Kaiser-Squires (KS) inverts the matrix A in Fourier space, where the matrix

is diagonal. As this deconvolution is across a finite space, the edges of the data and internal

masks introduce artefacts. KS is further troubled by the noise term in equation 5.2, which

it does not take into account.

In a Bayesian framework we may wish to consider the posterior distribution of the

convergence κ conditional on the observed shear γ
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P(κ|γ,M ) =
P(γ|κ,M ) P(κ|M )

P(γ|M )
, (5.3)

The denominator P(γ) is a Bayesian evidence term conditional on model M . The first

factor of the numerator is the likelihood P(γ|κ,M ), which encodes our noise model. The

second term is the prior P(κ|M ), a possible selection of which was discussed in section 5.1.

If we believe a realisation of the convergence κ is a realisation of Gaussian random

field, then the form of P(κ) would be Gaussian. If the noise per pixel is Gaussian then the

likelihood is also Gaussian, which results in a posterior distribution with both the mean and

maximum given by the Wiener filter:

κ̂w = Wγ = SκA†[ASκA† +N
]−1

γ , (5.4)

where Sκ = 〈κκ†〉 and N = 〈nn†〉 are the signal and noise covariance matrices respectively

(see Chapters 2 and 3 for implementation). The signal covariance in harmonic space is

diagonal for isotropic fields. On the sphere, its elements are given by the κ power spectrum,

Cκ(`).

This Gaussian distribution is only approximately true for large scales where Gaus-

sianity persists from the early Universe. On smaller scales, non-Gaussianity grows due to

non-linear structure formation, which results in the cosmic web of the late Universe.

5.3 Deep learning maps

5.3.1 Convolution neural networks

We take a standard deep learning approach. We seek an approximation FΘ to the function

that maps the pixelised shear to the convergence map

κ̂ = FΘ(γ) , (5.5)

where the parameters of the function Θ are to be learned (Goodfellow et al., 2016). We

learn these parameters by minimising a mean-square-error (MSE) cost function

J(Θ) = ||FΘ(γ)−κtrue||22 , (5.6)

evaluated on a set of training data which consists of pairs of realistic shear and “truth”

(noise-free) convergence maps. If the training data “truth” maps are drawn from a prior dis-
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tribution P(κ), and the corresponding noisy shear map is drawn from the likelihood P(γ|κ),
this MSE cost function corresponds to FΘ(γ) being a mean2 posterior estimate (Jaynes,

2003), such that κ̂ is approximating:

κ̂ = FΘ(γ) =
∫

κ P(κ|γ) dκ . (5.7)

We use a deep convolution neural network (CNN) to approximate the function FΘ, where

the parameters Θ are primarily elements of learned filters in convolutional layers. CNNs

are particularly suited for two-dimensional image or one-dimensional time series data with

translation invariant features in the underlying signal.

The CNN is a series of iteratively computed layers. At a given layer j the signal x j

is computed from the previous layer x j = ρM jx j−1, with linear operator (e.g. convolution)

M j and nonlinear activation function ρ (LeCun et al. 1990, Mallat 2016). The output of a

layer is sometimes called a feature map.

Due to their additional layers, deep architectures are often able to learn features with

greater complexity than shallow architectures and therefore can better approximate the tar-

get function. For a general overview of deep learning and neural networks we recom-

mend Goodfellow et al. (2016).

5.3.2 DeepMass architecture

Our DeepMass architecture is based on the Unet (Ronneberger et al., 2015), which has

a so-called expanding path and contracting path. The DeepMass contracting path differs

from the original Unet: usually convolutions and activation are followed by a max pooling

operation to downsample the images, whereas we use average pooling (Géron, 2017). With

each downsampling operation, the images decrease in resolution, but the 3×3 filters cover

more angular size of the image. The convolution after a pooling operation therefore has a

receptive field that covers larger physical features in the convergence κ map.

There are similarities between Unet architectures and sparse recovery methods. These

consider representations where the solution is sparse and employ transforms which are fixed

(e.g. Fourier, wavelets) or learned from data, and optimisation is solved using proximal

theory (Starck et al., 2015). The Unet expanding and contracting path are very similar to

synthesis and analysis concepts in sparse representations. This has motivated the use of

wavelets to implement the Unet average pooling and the expanding path (Ye et al., 2018;

2The mean posterior is not generally the maximum a posteriori



5.3. Deep learning maps 165

Ωm = 0.32+0.21
−0.18

0.
15

0.
30

0.
45

0.
60

0.
75

Ωm

0.
6

0.
9

1.
2

1.
5

σ
8

σ8 = 0.70+0.32
−0.29

Figure 5.1: Prior range of cosmological parameters Ωm and σ8 of the training data. Simulations
were run at the marked points.

Han and Ye, 2018). There are nevertheless significant differences: Unets can learn rich sets

of features (corresponding to sparse dictionaries) from large training datasets, and the CNN

implementation of non-linearity.

We differ from the original Unet by not using padding in the convolutional layers, as

the edge of our data mask is already many pixels away from the edge of the square image.

This choice means that output of a convolution has the same image dimensions as the input.

The full architecture and code can be seen online (DeepMass†), and a graphical model

of the architecture can be seen in section 5.6. We have added Batch Normalization lay-

ers (Ioffe and Szegedy, 2015) after each convolutional layer; without this, training often

became stuck in local minima of the cost function with respect to the parameters Θ. For all

layers, except for the final, we use the rectified linear unit (ReLU) activation. In the final

layer we use a sigmoid function, which forces the output to be between 0 and 1 (inputs and

outputs are correspondingly rescaled).

For simplicity and memory efficiency, we aimed to work with real (32-bit) numbers,

thus necessitating an initial operation acting on the complex shear γ . The best results came

from using a fixed Wiener filter operation before the first convolution (rather than KS, as

https://github.com/NiallJeffrey/DeepMass
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Figure 5.2: Convergence κ reconstruction from DES SV observational data with: KS, Wiener fil-
tering, and DeepMass.
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Figure 5.3: Example L-PICOLA validation simulation ( left) and the corresponding Wiener ( centre)
and DeepMass ( right) reconstructions.

might be expected). This is equivalent to the first layer having M j=0 = W and ρ = 1, with

no free parameters. We could also interpret the Unet after the initial Wiener operation as

GΘ where FΘ(γ) = GΘ(W (γ)). The Wiener filter used a power spectrum with cosmological

parameters σ8 and Ωm fixed at the mean of the marginal posterior distributions from DES

Y1 analysis (Abbott et al., 2018). The flat sky power spectrum was an average of 102 power

spectra of projected patches.

5.3.3 Training data

5.3.3.1 L-PICOLA simulations

The training data is derived from 74 independent dark matter simulations, with each simula-

tion covering an octant of the sky. The simulations used a standard flat ΛCDM cosmological

model with H0 = 70 km Mpc−1s−1. The scalar spectral index and baryon density were fixed

at ns = 0.95 and Ωb = 0.044 respectively. The values of Ωm and the amplitude parameter



5.3. Deep learning maps 167

σ8 are distributed on a non-Euclidean grid with distances between points giving a density

according to our prior P(σ8, Ωm) as shown in figure 5.1. Weak lensing constraints are

most sensitive to combinations of this pair of parameters, so we avoid overfitting to a single

cosmology by varying them in the training data.

To generate a convergence map from a simulation, the matter particles were binned

using the HEALPix (Górski et al., 2005) pixelisation of the sphere with NSIDE=2048 in

comoving radial shells of 50 Mpc/h. The density ρ map in a given redshift was converted

into an overdensity δ = ρ/ρ̄−1 using the average density in the shell ρ̄ . The convergence

was calculated per pixel using equation 5.1. We wish to have the n(z) in the lensing kernel

match the DES SV data (section 5.4.1), which we approximate by summing the individual

posterior redshift distributions per galaxy from the BPZ photometric redshift code (Coe

et al., 2006). The convergence maps were downgraded to NSIDE=1024.

The dark matter simulations are generated using the L-PICOLA code (Howlett et al.,

2015), which is based on the COLA (Tassev et al., 2013) algorithm. This uses a combination

of second-order Lagrangian perturbation theory (2LPT) and a Particle-Mesh (PM) which

requires fewer time steps than “full” N-body (e.g. Gadget Springel 2005) and therefore

can generate simulations more quickly. This allows more training data to be generated in a

given amount of compute time.

We used a 1250 Mpc/h comoving simulation box, 7683 particles, and a 15363 grid. A

z < 1.6 lightcone was generated with up to four box replicates, using 30 time steps from

z = 20. The initial conditions used Eisenstein and Hu 1999 for the linear matter power

spectrum.

The drawback of this approach is the accuracy of the dark matter distribution. The

finite spatial resolution and fewer timesteps used by the COLA method particularly affects

small distance scales. Our experiments have shown a suppression of the L-PICOLA power

spectrum at scales of ` > 700 of order 10 per cent (relative to NICAEA3 (Kilbinger et al.,

2009) theory), as is expected with COLA methods. We correct the power of the L-PICOLA

convergence by estimating the smooth part of the Cκ(`) using a polynomial order 1 Savgol

filter with window size 91 for each convergence map and reweighting spherical harmonics.

Using the ratio of NICAEA and only the smooth part of the measured simulation power

spectrum ensures that the natural fluctuations inherent in Cκ(`) for a given realisation are

3nicaea.readthedocs.io
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preserved.

5.3.3.2 Training images

From the 74 independent HEALPix convergence maps over an octant of the sky, we generate

376,684 DES SV mock data realisations. A given realisation is generated from the HEALPix

convergence map by randomly choosing a position on the sphere, applying a uniform ran-

dom rotation between 0 and 360 deg, and extracting a square patch using a gnomonic pro-

jection with 2562 pixels of size 4.52 arcmin2. If the generated image has pixels outside the

octant, it is rejected. The rotation step is not to make the reconstruction rotation invari-

ant, which happens naturally as P(κ) is isotropic by the cosmological principle, but it is to

augment the training data and learn FΘ better.

From the projected square κ convergence map, the complex noise-free shear map is

generated using the A matrix from equation 5.2. The mask is applied and a random shape

noise map is added. The noise map is generated by randomly shuffling the positions of

galaxies in the original catalogue; this keeps the density of galaxies the same, but destroys

the coherent lensing signal. This way we forward model the non-Gaussian noise inherent in

the data (something that other methods do not do).

5.4 Results

5.4.1 Dark Energy Survey SV data

DES is a ground based photometric galaxy survey, observing in the southern sky from the

4m Blanco telescope in Chile with five photometric filters (Flaugher et al., 2015). The SV

(A1) data4 come from an initial run of 139 deg2, but with depth of approximately that of the

full 6 year survey (Chang et al., 2015). We make a redshift cut of 0.6 < zmean < 1.2, where

zmean is the mean of the z posterior per galaxy. Data selection choices match Chapter 2,

though some maps appear different due to changes in pixel size and flat-sky projection.

In figure 5.2 we apply KS, Wiener filtering, and the trained DeepMass CNN. Kaiser-

Squires uses a 10 arcmin Gaussian smoothing as in Chapter 2. The Wiener filtering uses a

power spectrum with Ωm and σ8 at the mean of their respective marginal posterior distribu-

tions from the Year 1 DES cosmology result (Abbott et al., 2018). The DeepMass CNN was

trained using the Adam optimiser with a learning rate = 1×10−5 for 20 epochs (retraining

4http://des.ncsa.illinois.edu
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over the full training set). The final Wiener and DeepMass maps were smoothed with a

Gaussian of σ = 2.25 arc min (half pixel size) to remove very small scale artefacts arising

from the HEALPix projection.

The DeepMass reconstruction clearly shows more non-linear structure than the Wiener

filter. Individual peaks, which are suppressed by Wiener filtering, are resolved by Deep-

Mass.

5.4.2 Validation on simulations

Out of the original generated training images (section 5.3.3), 8000 were kept and not used

for training to be used as validation. One such example can be seen in figure 5.3, with the

corresponding Wiener filter and DeepMass reconstructions. As with the reconstruction from

observational data, DeepMass can be seen to recover the non-linear (cosmic-web) structure

better than Wiener filtering. Compared to Wiener filtering, the MSE over all 8000 maps is

improved using DeepMass by 11 per cent.

In the work of Chapter 2, using a “halo-model” sparsity prior did not outperform

Wiener filtering in terms of MSE, so we expect DeepMass MSE to outperform GLIMPSE.

However, MSE minimisation relates just to the posterior mean, so alternative metrics (e.g.

constraints from peak statistics) remain to be explored.

Using 18 non-overlapping mock DES SV data from the MICE (Fosalba et al., 2015)

simulations we apply a Wiener filter with an optimal power spectrum calculated using the

known cosmological parameters (not available in real data applications). Nevertheless,

without using the known cosmological parameters as input, DeepMass still recovers maps

with an average of 2 per cent better MSE.

Furthermore, the MICE cosmological parameters lead to a relatively low power and

fewer high variance structures above the signal-to-noise level. The largest improvement

over Wiener filtering comes when there are more non-linear (non-Gaussian) structures. With

the same MICE simulations, restricting ourselves to pixels where the truth is greater than

two standard deviations from the mean κ > 2σ , compared to Wiener filtering, DeepMass

improves the MSE by 8 per cent. As is to be expected, therefore, DeepMass improves over

Wiener filtering due to its ability to reconstruct the non-linear structures in the cosmological

signal.
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5.5 Conclusion
With DeepMass, we have presented a deep learning method to reconstruct convergence κ

maps from shear measurements. With DES SV, we have shown the mass map reconstruction

with deep learning from observational data.

By training with simulations over a broad prior distribution of cosmological parame-

ters, we have a generalised method which needs no input cosmological parameters. This

method has shown substantial improvement over Wiener filtering both qualitatively (by

eye) and quantitatively (11 per cent MSE reduction on the validation data). The flexible

approach also takes into account non-Gaussian noise in the weak lensing data. As our sim-

ulated training data are samples drawn from the prior P(κ), the approach has a principled

Bayesian interpretation, without the need for evaluation of closed-form priors.

The quality of the reconstruction with these initial experiments, and its flexibility,

makes the deep learning approach a preeminent candidate for mass mapping with future

weak lensing surveys.

5.6 Supplementary material: DeepMass architecture
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input_1: InputLayer
input:
output:

(None, 256, 256, 1)
(None, 256, 256, 1)

conv2d: Conv2D
input:
output:

(None, 256, 256, 1)
(None, 256, 256, 16)

batch_normalization: BatchNormalization
input:

output:
(None, 256, 256, 16)
(None, 256, 256, 16)

average_pooling2d: AveragePooling2D
input:

output:
(None, 256, 256, 16)
(None, 128, 128, 16)

concatenate_3: Concatenate
input:
output:

[(None, 256, 256, 16), (None, 256, 256, 32)]
(None, 256, 256, 48)

conv2d_1: Conv2D
input:
output:

(None, 128, 128, 16)
(None, 128, 128, 32)

batch_normalization_1: BatchNormalization
input:

output:
(None, 128, 128, 32)
(None, 128, 128, 32)

average_pooling2d_1: AveragePooling2D
input:

output:
(None, 128, 128, 32)

(None, 64, 64, 32)

concatenate_2: Concatenate
input:
output:

[(None, 128, 128, 32), (None, 128, 128, 64)]
(None, 128, 128, 96)

conv2d_2: Conv2D
input:

output:
(None, 64, 64, 32)
(None, 64, 64, 64)

batch_normalization_2: BatchNormalization
input:
output:

(None, 64, 64, 64)
(None, 64, 64, 64)

average_pooling2d_2: AveragePooling2D
input:

output:
(None, 64, 64, 64)
(None, 32, 32, 64)

concatenate_1: Concatenate
input:

output:
[(None, 64, 64, 64), (None, 64, 64, 64)]

(None, 64, 64, 128)

conv2d_3: Conv2D
input:

output:
(None, 32, 32, 64)
(None, 32, 32, 64)

batch_normalization_3: BatchNormalization
input:

output:
(None, 32, 32, 64)
(None, 32, 32, 64)

average_pooling2d_3: AveragePooling2D
input:

output:
(None, 32, 32, 64)
(None, 16, 16, 64)

concatenate: Concatenate
input:

output:
[(None, 32, 32, 64), (None, 32, 32, 64)]

(None, 32, 32, 128)

conv2d_4: Conv2D
input:
output:

(None, 16, 16, 64)
(None, 16, 16, 64)

batch_normalization_4: BatchNormalization
input:

output:
(None, 16, 16, 64)
(None, 16, 16, 64)

up_sampling2d: UpSampling2D
input:
output:

(None, 16, 16, 64)
(None, 32, 32, 64)

conv2d_5: Conv2D
input:

output:
(None, 32, 32, 128)
(None, 32, 32, 64)

batch_normalization_5: BatchNormalization
input:

output:
(None, 32, 32, 64)
(None, 32, 32, 64)

up_sampling2d_1: UpSampling2D
input:

output:
(None, 32, 32, 64)
(None, 64, 64, 64)

batch_normalization_6: BatchNormalization
input:
output:

(None, 64, 64, 128)
(None, 64, 64, 128)

conv2d_6: Conv2D
input:

output:
(None, 64, 64, 128)
(None, 64, 64, 64)

up_sampling2d_2: UpSampling2D
input:
output:

(None, 64, 64, 64)
(None, 128, 128, 64)

batch_normalization_7: BatchNormalization
input:

output:
(None, 128, 128, 96)
(None, 128, 128, 96)

conv2d_7: Conv2D
input:

output:
(None, 128, 128, 96)
(None, 128, 128, 32)

up_sampling2d_3: UpSampling2D
input:

output:
(None, 128, 128, 32)
(None, 256, 256, 32)

batch_normalization_8: BatchNormalization
input:
output:

(None, 256, 256, 48)
(None, 256, 256, 48)

conv2d_8: Conv2D
input:

output:
(None, 256, 256, 48)
(None, 256, 256, 16)

conv2d_9: Conv2D
input:

output:
(None, 256, 256, 16)
(None, 256, 256, 1)

Figure 5.4: The final, full DeepMass architecture for 256× 256 images.
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6.1 Thesis summary

In this section, I will summarise the work described in Chapters 2 to 5. In section 6.2 I will

outline some future research that could follow from the work in the previous chapters and

its relationship with other concurrent results from the field.

In Chapter 2, I compared three mass mapping methods with closed-form priors using

DES SV data and simulations. The Wiener filter and GLIMPSE offered substantial improve-

ments over smoothed KS with a range of metric.

Both the Wiener filter and GLIMPSE convergence reconstructions show a 12 per cent

improvement in Pearson correlation with the underlying truth from simulations. To compare

the mapping methods’ abilities to find mass peaks, I measured the difference between peak

counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a

standard data vector when inferring cosmology from peak statistics); the maximum signal-

to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9

for GLIMPSE. With simulations I measured the reconstruction of the harmonic phases; the

phase residuals’ concentration is improved 17 per cent by GLIMPSE and 18 per cent by the

Wiener filter. The correlation between reconstructions from data and foreground redMaPPer

clusters is increased 18 per cent by the Wiener filter and 32 per cent by GLIMPSE.

In Chapter 3, I demonstrated how the Wiener filter (one of the above methods) compu-

tation can be sped up by an order of magnitude using Dataflow Engines (DFE), which are

FPGA-based reconfigurable hardware. I demonstrated a lower bound on the speed-up, from

drawing 105 samples of a 1282 image, of 11.3 ± 0.8 with 8 DFEs in a 1U MPC-X box when

compared with a 1U server presenting 32 CPU threads.

In Chapter 4, I presented a Bayesian hierarchical model which takes into account added

uncertainty introduced when noisy simulations are used to generate theoretical predictions.

The correction achieved with this model is highly relevant for cosmological inference that

relies on simulated data for theory (e.g. weak lensing peak statistics and simulated power

spectra) and can reduce the number of simulations required. The results of this work have

been implemented by independent groups in the cosmology community working with dif-

ferent datasets.

In Chapter 5, I demonstrated how mass map reconstructions can be improved using

deep learning techniques trained on simulations. Compared with Wiener filtering, the (pub-

licly available) DeepMass method was shown to improve mean-square-error by over 10 per
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cent. I presented an interpretation of our newly created DES SV map as an approximation

of the posterior mean P(κ|γ) of the convergence given observed shear. The quality of the

reconstruction with these initial experiments, and its flexibility, makes the deep learning

approach a preeminent candidate for mass mapping with future weak lensing surveys.

Many of the techniques described in this thesis, which have often been demonstrated

using DES data and simulations, will be applied to the next generation of surveys, Euclid

and LSST, over a much larger sky area and with billions of galaxies.

6.2 Further work: likelihood-free inference with dark matter

maps

In this section I will briefly outline some of the steps that would follow from the work in the

previous chapters and which I plan to take in the near future. This will also provide some

connections to developments in the field that have occurred simultaneously to the research

presented in this thesis.

6.2.1 Motivation

In Chapter 4, I provided a framework to evaluate marginal posterior distributions of un-

known cosmological parameters using noisy simulations to model the theory predictions.

This relies on knowing the forms of the conditional probabilities, P(d|µ) (e.g. the likeli-

hood of measuring a power spectrum given a theoretically predicted power spectrum). In

many cases these are not actually known, and forms are used which are approximate under

certain conditions (e.g. C` is Gaussian for large `).

The example of peak statistics was used as a situation in which we cannot predict the

summary statistics from direct theoretical calculation, so we must rely on simulations. The

corrected likelihood was calculated in Chapter 4 for the case of a flat prior and Gaussian

naive likelihood. As previously discussed, these distributions can be changed depending on

the statistical model, which may necessitate sampling or approximate inference methods.

Whatever the method used to calculate the eventual result, we still need to question why

we can assume that the naive likelihood for peak statistics is Gaussian (e.g. Kacprzak et al.

2016).

One common justification might be as follows. We could model the peak counts as

Poissonian, as we did in Chapter 2. We could then use a standard result of the central limit

theorem (see Sivia and Skilling 2006), which states that for large expected values X̄ , the
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Poisson distributed variables X can be approximated as being Gaussian distributed. This

justification presents three potential problems:

• If we have only a few peaks in a ∆κ bin, which will be the case for high κ , this

approximation breaks down; a symmetric Gaussian will assign non-zero probability

to negative counts.

• The variance of a Poissonian must vary with the mean, so we would need to calculate

the covariance at every evaluated position in parameter space. This will require many

more simulations than the approach where we assume the covariance matrix to be

fixed.

• The original justification of the Poisson distribution is itself only an approximation.

The final problem is perhaps the worst. If an observable is the result of non-linear physics

for which no closed-form expression exists, it is unlikely that its stochastic properties will

be known either. However, if data simulations are realistic, they should include these prop-

erties, which we may hope to learn.

6.2.2 Compression and likelihood-free inference

Let us assume a data vector with a single element d0 and a single unknown parameter θ0. We

can additionally assume that we do not know the likelihood, but can still simulate realistic

noisy realisations dsim,0 (as we could in Chapter 4). If the simulations are run at points in

parameters space that are distributed according to a prior P(θ0), then the density of points

in the dsim,0 - θ0 plane corresponds to the joint distribution P(dsim,0,θ0).

The pyDELFI1 (Alsing et al., 2018) method uses deep neural networks to estimate

the probability density of the posterior P(θ0|dobs,0) evaluated from the cloud of points in

{dsim,0,θ0} space in the presence of the observed data dobs,0 (see Lueckmann et al. 2018, Pa-

pamakarios et al. 2018, Alsing et al. 2019).

The joint or conditional densities can in principle be estimated in arbitrarily high di-

mension, though that would require more training data (simulations). If the dimension of

the problem is reduced by compressing the data vector, the number of simulations required

for an accurate estimate of the posterior distribution is also reduced.

Consider some likelihood L = P(d|θ). We can saturate the information inequality

(equivalent to preserving the Fisher information) with

1Density Estimation Likelihood-Free Inference
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Figure 6.1: Posterior distribution for Ωm and σ8 from DES SV peak count data estimated using
the simulations described in Chapter 5 with PYDELFI. This preliminary work is an
illustrative example of likelihood-free inference using simulated training data.

t = ∇θ L
∣∣∣
θ∗

, (6.1)

where t is our compressed data vector and where the gradient is evaluated at a fiducial

point in parameter space that corresponds to the maximum likelihood estimate (Alsing and

Wandelt, 2018).

For a Gaussian with mean µ and fixed covariance Σ (following notation from Chap-

ter 4), the compression evaluates to

t = (∇θ µ)†
Σ
−1d . (6.2)

This is equivalent to the MOPED2 compression method, as proposed by Tegmark et al.

(1997) and Heavens et al. (2000).

As a brief, but illustrative, example of this approach, figure 6.1 shows preliminary

constraints for Ωm and σ8 from DES SV data in a single tomographic bin. This poste-

rior distribution was estimated using PYDELFI with 1332 independent data realisations

derived from the L-PICOLA simulations described in Chapter 5. The peak statistic data was

2Massively Optimised Parameter Estimation and Data compression
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compressed using MOPED from 10 elements (κ bins between 0 and 0.028) to 2 elements

(corresponding to the dimension of θ ). The covariance matrix was calculated from 230 data

realisations from around the fiducial point (S8 = 0.76, Ωm = 0.26).

As would be expected from a single tomographic redshift bin (where I used the same

selections as Chapter 5) of DES SV data, the parameter constraints are not particularly

good3. As the convergence is non-Gaussian, by combining peaks and power spectrum data,

we would hope to improve our constraints.

Figure 6.2 shows the individual constraints from power spectrum data, peaks count

data and their combination. Unfortunately, the constraints from the joint dataset does not

seem to improve very much over the individual datasets. In part, this is because the DES SV

data is not very constraining, but I have also found (with tests using an assumed likelihood)

that the MOPED compression is not lossless in this case. The joint compressed summary

statistic has lost relevant information compared to the uncompressed joint summary statistic.

To improve over MOPED, we could solve equation 6.1, still assuming a fiducial Gaus-

sian L , but taking into account the ∇θ Σ terms. This non-linear compression would account

for the covariance being a function of the underlying parameters, but would transform Gaus-

sian distributed noise to non-Gaussian. If we were assuming a Gaussian form for the like-

lihood, this would introduce errors into our inference, but is perfectly allowed as we are

learning the distribution directly using PYDELFI.

To implement this non-linear compression, we would again take a fiducial position in

parameter space around which we would estimate the gradient of the covariance ∇θ Σ. The

gradient of the covariance requires many more simulations than the point-estimate of just

the gradient. The number of simulations used for the linear MOPED compression may be

insufficient for the next-order non-linear compression (i.e. it would introduce numerical

errors). Even if this were numerically stable, we do not know a priori if the posterior

distribution we are estimating can be characterised with a single well-defined peak about

which we can expand (Graff et al., 2011).

However, given we are permitting non-linear data compression, which likelihood-free

inference methods can easily deal with, using a deep learning compression approach is also

permitted. To be able to estimate posterior distributions with likelihood-free methods, we

require large training sets with simulated realistic data vectors. These can also be used to

3One can constrast with Kacprzak et al. (2016).



6.2. Further work: likelihood-free inference with dark matter maps 179

0.
2

0.
4

0.
6

0.
8

Ωm

0.
4

0.
8

1.
2

1.
6

σ
8

joint
peaks

power spectrum

Figure 6.2: Posterior distribution for Ωm and σ8 from DES SV joint power spectrum and peak count
data estimated using the simulations described in Chapter 5 with PYDELFI. This pre-
liminary work demonstrates how combining peaks and power spectrum using MOPED
does not significantly improve the constraints.

find a compressor function that performs better than equation 6.1, as no fiducial likelihood

function needs to be assumed (e.g. Charnock et al. 2018). With this approach, we also do

not need to ensure the training data for the compression step is independent, so we can take

advantage of data augmentation (as described in Chapter 5).

We are therefore able to use deep learning regression to generate an estimate θ̂ of an

unknown parameter and then use the same training data with likelihood-free inference to

estimate a posterior distribution for that parameter with the compressed data d = θ̂ . This is

quite an exciting prospect: representing uncertainties in predictions from machine learning

in a principled Bayesian way.

The natural next step would be to consider using the deep learning techniques of Chap-

ter 5 to extract a compressed statistic directly from the maps. In a recent paper, Fluri et al.

(2019) use the KiDS-450 tomographic weak lensing dataset to constrain cosmological pa-

rameters using compressed statistic t derived from a CNN trained on simulated shear maps.

Fluri et al. (2019) take advantage of the corrected likelihood that I presented in Chap-

ter 4. This implicitly assumes that their compressed statistic, if it could be modelled from

theory, would have a Gaussian likelihood distribution. Given the series of non-linear oper-

ations applied to the data fed into the CNN, it might be difficult to justify this assumption

of Gaussian noise. However, using mock data derived from the same simulations that were
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used to train the CNN compressor, it would be possible to estimate the posterior distribution

directly with likelihood-free inference techniques.

A greater challenge, which I will discuss in the next section, can be encapsulated in

the question: “How do you know what the CNN is learning?”

6.2.3 Simulations and interpretability

In Chapter 5, I described how the convergence maps derived from the L-PICOLA simula-

tion were rescaled in harmonic space to account for lack of power at small scales. Fig-

ure 6.3 shows, for one particular cosmology4, that the power from L-PICOLA is suppressed

in comparison to the theoretical prediction. The shaded bands represent 1 and 2σ standard

deviation due to cosmic variance across the whole sky.

For the full-sky case the L-PICOLA simulation shows significant (2σ ) deviation from

the theoretical prediction for ` > 500. This is not a particularly high multipole; in future

work the resolution of the simulations can be improved to reduce the angular scale where

deviations occur, but this would not guarantee that other statistics of the map are correct.

We could say that the minimum requirement for our training data used in deep learn-

ing map reconstruction (Chapter 5) would be to have convergence maps that were more

realistic than a Gaussian random field. By having the L-PICOLA cosmic-web simulations

as described in Chapter 5, with the corrected angular power, we more than fulfilled this

requirement.

If we went on and used these simulations to construct a CNN compressed statistic, we

would have to be more certain in the properties of the simulation. With the trained CNN, it

is difficult to understand what the learned features correspond to.

We can imagine, as is likely, that the training maps had the incorrect 3-point statistics,

〈κ3〉. If a map-based CNN learned to include bispectrum information in the compressed

statistic, as is also likely, then the final inference step would give an incorrect posterior

distribution. Furthermore, even if the CNN only incorporated 2-point information 〈κ2〉 in

the compressed statistic (which is unlikely), then the final posterior distribution would still

be incorrect as PYDELFI would implicitly use higher-order statistics 〈κn〉 to constrain the

form of the posterior.

This presents some interesting future challenges: quantifying the accuracy of simula-

tions and interpreting what a deep learning method is really learning from the data.

4i.e. one set of cosmological parameters in ΛCDM.



6.3. Disciplines and disciples 181

102 103

`

10−10

10−9

10−8

10−7

C
κ
(`

)

theory (cosmosis)

l-picola

102 103

`

0.8

1.0

1.2

ra
ti

o
(t

h
eo

ry
/p

ic
o
l
a
)

Figure 6.3: Angular power spectrum of convergence Cκ(`) with multipole ` from theory (NICAEA)
and L-PICOLA simuation. The shaded 1 and 2σ regions correspond to full-sky due to
cosmic variance.

These challenges may seem difficult, but by tackling them we may be able to use dark

matter maps to answer cosmological questions that traditional methods cannot answer. In

the era of Euclid and LSST, this will allow us to improve cosmological parameter constraints

and challenge the standard model in new ways.

6.3 Disciplines and disciples

A researcher working in cosmology, who has never spoken to a particle physicist, does

not really understand the good nor the bad of the cosmologists’ approach. This is an old

problem, and an old example. Cosmologists and particle physicists often do, in fact, take

time to discuss their respective approaches.

The often discussed (argued about) frequentist approach in particle physics, employed

in Higgs particle analysis for example, is probably the result of history, philosophy, and

lack of necessity. When faced with a problem of statistical interest, a particle physicist is

afforded the luxury of rerunning the experiment, whereas a cosmologist struggles to rerun

the Universe.

There are, of course, Bayesian particle physicists and many astronomers who would

not identify as either Bayesian or frequentist. The point is to note that with a large exper-

iment, once a course has been decided, it is difficult to change. Analysis choices becomes

frozen in. The ever-present risk of stagnation in observational cosmology is probably greater

for the titanic communities in high energy physics.
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It is a worry that in our focussed discussions of covariance matrices and tensions, we

may miss new approaches that would make covariance matrices a thing of history. We

are lucky to be working during what is often called an Artificial Intelligence revolution.

With large amounts of observed and simulated data, one might hope that a weak lensing

experiment in the decades to come will not rely on what DES are currently doing.

Looking for the next brilliant step in computer learning that would revolutionise cos-

mology is difficult. It requires paying attention outside the field, putting effort into incom-

plete ideas, and comes with the risk of wasted time if nothing is found. The alternative, to

keep within one’s own scientific community, is more comfortable. In an inflating Universe

of new ideas, an observer’s horizon can easily shrink.

“And what should they know of England[,] who only England know?”

Rudyard Kipling, The English Flag, 1891
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Armstrong, R., Benoit-Lévy, A., Bernstein, G. M., Bernstein, R. A., Bertin, E., Brooks,

D., Burke, D. L., Rosell, A. C., Carrasco Kind, M., Crocce, M., Cunha, C. E., D’Andrea,

C. B., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Eifler, T. F., Evrard, A. E.,

Flaugher, B., Fosalba, P., Frieman, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gutier-

rez, G., Honscheid, K., James, D. J., Kent, S., Kuehn, K., Kuropatkin, N., Lima, M., Mel-

chior, P., Miquel, R., Nord, B., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E.,

Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta,

E., Swanson, M. E. C., Tarle, G., and Walker, A. R. (2017). Testing the lognormality of

the galaxy and weak lensing convergence distributions from Dark Energy Survey maps.

MNRAS, 466:1444–1461.



196 BIBLIOGRAPHY

Clifton, T., Ferreira, P. G., Padilla, A., and Skordis, C. (2012). Modified gravity and cos-

mology. Phys. Rep., 513(1):1–189.

Coe, D., Benı́tez, N., Sánchez, S. F., Jee, M., Bouwens, R., and Ford, H. (2006). Galaxies in

the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts,

and Morphology. AJ, 132:926–959.

Collister, A. A. and Lahav, O. (2004). ANNz: Estimating Photometric Redshifts Using

Artificial Neural Networks. PASP, 116(818):345–351.

Connolly, A. J., Szalay, A. S., Bershady, M. A., Kinney, A. L., and Calzetti, D. (1995).

Spectral Classification of Galaxies: an Orthogonal Approach. AJ, 110:1071.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex

fourier series. Mathematics of computation, 19(90):297–301.

Cooper, B., Girdlestone, S., Burovskiy, P., Gaydadjiev, G., Averbukh, V., Knowles, P. J.,

and Luk, W. (2017). Quantum chemistry in dataflow: Density-fitting mp2. Journal of

Chemical Theory and Computation, 13(11):5265–5272. PMID: 29019679.

Cooray, A. and Hu, W. (2001). Weak Gravitational Lensing Bispectrum. ApJ, 548:7–18.

Cox, R. T. (1946). Probability, Frequency and Reasonable Expectation. American Journal

of Physics, 14:1–13.

Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., Aleksić, J., Allam, S., Amara,
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Fosalba, P., Gaztañaga, E., Castander, F. J., and Crocce, M. (2015). The MICE Grand

Challenge light-cone simulation - III. Galaxy lensing mocks from all-sky lensing maps.

MNRAS, 447:1319–1332.

Frigo, M. and Johnson, S. G. (2005). The design and implementation of FFTW3. Proceed-

ings of the IEEE, 93(2):216–231. Special issue on “Program Generation, Optimization,

and Platform Adaptation”.

Fry, J. N. (1996). The Evolution of Bias. ApJ, 461:L65.

Gan, L., Fu, H., Mencer, O., Luk, W., and Yang, G. (2017). Data flow computing in

geoscience applications. Advances in Computers Creativity in Computing and DataFlow

SuperComputing, page 125158.

Gaztanaga, E. (1992). N-Point Correlation Functions in the CfA and SSRS Redshift Distri-

bution of Galaxies. The Astrophysical Journal, 398:L17.

Gelman, A. et al. (2006). Prior distributions for variance parameters in hierarchical models

(comment on article by browne and draper). Bayesian analysis, 1(3):515–534.
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Rubiño-Martı́n, J. A., Rusholme, B., Said, N., Salvatelli, V., Salvati, L., Sandri, M., San-

tos, D., Savelainen, M., Savini, G., Scott, D., Seiffert, M. D., Serra, P., Shellard, E. P. S.,

Spencer, L. D., Spinelli, M., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sut-

ton, D., Suur-Uski, A. S., Sygnet, J. F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi,

M., Tristram, M., Trombetti, T., Tucci, M., Tuovinen, J., Türler, M., Umana, G., Valen-

ziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D.,

Wehus, I. K., White, M., White, S. D. M., Wilkinson, A., Yvon, D., Zacchei, A., and

Zonca, A. (2016). Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13.

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi,

C., Ballardini, M., Banday, A. J., Barreiro, R. B., and Bartolo, N. (2018a). Planck 2018

results. VI. Cosmological parameters. arXiv e-prints, page arXiv:1807.06209.

Planck Collaboration, Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C.,



214 BIBLIOGRAPHY

Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battye, R., Ben-

abed, K., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill,

J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana, C., Butler, R. C., Calabrese,

E., Cardoso, J. F., Carron, J., Casaponsa, B., Challinor, A., Chiang, H. C., Colombo,

L. P. L., Combet, C., Contreras, D., Crill, B. P., Cuttaia, F., de Bernardis, P., de Zotti,

G., Delabrouille, J., Delouis, J. M., Désert, F. X., Di Valentino, E., Dickinson, C., Diego,
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