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Abstract. We design a primal-dual stabilized finite element method for the numerical approx-
imation of a data assimilation problem subject to the acoustic wave equation. For the forward

problem, piecewise affine, continuous, finite element functions are used for the approximation in

space and backward differentiation is used in time. Stabilizing terms are added on the discrete
level. The design of these terms is driven by numerical stability and the stability of the continu-

ous problem, with the objective of minimizing the computational error. Error estimates are then

derived that are optimal with respect to the approximation properties of the numerical scheme
and the stability properties of the continuous problem. The effects of discretizing the (smooth)

domain boundary and other perturbations in data are included in the analysis.

1. Introduction

We consider a data assimilation problem for the acoustic wave equation, formulated as follows.
Let n ∈ {2, 3} and let Ω ⊂ Rn be an open, connected, bounded set with smooth boundary ∂Ω, let
T > 0, and let u be the solution of

�u := ∂2
t u−∆u = 0, on (0, T )× Ω,

u = 0, on (0, T )× ∂Ω,

u|t=0 = u0, ∂tu|t=0 = u1 on Ω.

(1.1)

The initial data u0, u1 are assumed to be a priori unknown functions, but it is assumed that we
have the following additional data:

q = u|(0,T )×ω, (1.2)

where ω ⊂ Ω is open. The data assimilation problem then reads:

(DA) Find u0 and u1 given q.

Due to the finite speed of propagation, the length of time interval T needs to be large enough in
order for (DA) to have unique solution. Assuming that

T > 2 max{dist(x, ω) |x ∈ Ω}, (1.3)

it follows from Holmgren’s unique continuation theorem that (DA) is uniquely solvable. Here
dist(x, ω) = min{dist(x, y) | y ∈ ω} and dist(x, y) is the distance function in Ω, defined as the
infimum over the lengths of continuous paths in Ω, joining x and y.
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The problem (DA) can be exponentially ill-posed under the assumption (1.3). In order to avoid
such severely ill-posed cases, we will suppose that the geometric control condition holds in the sense
of [38]. This means roughly speaking that any billiard trajectory intersects ω before time T . A
billiard trajectory leaving from a point in Ω consists of line segments that are joined together at
points on ∂Ω, with directions satisfying Snell’s law of reflection. However, the exact formulation of
the geometric control condition requires also a consideration of trajectories gliding along ∂Ω. It is
well-known that the geometric control condition characterizes the cases where the problem (DA) is
stable, and in a slightly different context, the characterization originates from [5].

We will analyse the convergence of a finite element method that gives an approximate solution
to (DA). Our method is based on piecewise affine elements in space and the use of backward finite
differences in time. The main contribution of the paper is to show that, when complemented with
a suitable stabilization, this standard, low order discretization yields a convergence that is optimal
with respect to approximation and the stability of the continuous problem. Indeed, we are solving
a linear problem and the truncation error of the time discretization used is of order O(τ), where τ
denotes the size of the time-steps. Consequently, the error estimates can not be better than O(τ),
which is what we obtain (see Theorem 4.6).

The stabilization terms that appear in our numerical scheme are carefully designed, balancing the
numerical stability, the approximation properties of the scheme and the stability of the continuous
problem. The analysis also considers the effect of discretizing the smooth domain, as well as other
perturbations of the data. The resulting scheme is of the form of a time-space primal-dual system.
The forward equation is independent of the dual. Therefore the gradient can be computed by a
forward solve, followed by a dual backward solve, for steepest descent type iterative solving.

We hope that the present paper can act as a starting point for exploration of more applied, but
also more advanced, stabilized finite element methods. Indeed although stabilization terms herein
are tailored for the low order method, the approach is general and can be extended to other finite
element methods. For instance, it might be desirable to use high order elements in space and a
more sophisticated discretization in time in order to reduce the numerical dissipation.

1.1. Previous literature. There are two extensive traditions of research that are closely related
to the problem (DA). A variation of (DA) arises as a mathematical model for the medical imaging
technique called photoacoustic tomography (PAT), and works related to PAT form one of the two
traditions. We refer to [28, 40, 53] for physical aspects of PAT, and to [32, 50] for mathematical
reviews.

The problem (DA) models wave propagation in a cavity Ω, whereas the classical PAT problem is
formulated in R3. However, the papers [1, 14, 35, 48] study the PAT problem in a cavity. All these
papers consider methods based on using iterative time reversal for the continuum wave equation, an
approach that originates from [47], and none of them consider the issues arising from discretization.

The second tradition draws from control theory, and it uses so-called Luenberger observers. The
data assimilation problem (DA) arises as the dual problem of a control problem, and analysis of
the latter is typically reduced to the analysis of (DA) by using the Hilbert uniqueness method
originating from [41].

A Luenberger observers based algorithm was first analysed in a finite dimensional ODE context
in [2]. An abstract version of the method, applicable to the problem (DA), was introduced in [45].
The two traditions have a significant overlap. For instance, as pointed out in [14], the result [35]
on the PAT problem fits in the abstract setting of [45]. In particular, the methods in both the
traditions can be formulated as Neumann series in infinite dimensional spaces.
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The paper [23] studies a discretization of a Luenberger observers based algorithm. The error
estimate in [23] depends linearly on the point of truncation of the Neumann series (see Theorem 1
there), and this ultimately leads to logarithmic convergence with respect to the mesh size. The issue
with the truncation can be avoided if a stability estimate is available on a scale of discrete spaces.
Such estimates were first derived in [27] and we refer the reader to the survey articles [54, 21], as
well as the recent paper [20] for more details. Optimal-in-space discrete estimates can be derived
from continuous estimates [43], however, spacetime optimal discrete estimates are known only for
specific situations. We refer to the monograph [19], see in particular Chapter 5 on open problems,
for a detailed discussion of the truncation issue in the context of the exact controllability problem,
dual to (DA).

The closest work to the present paper is [15]. There, two finite element methods for (DA) are
considered: one of them is stabilized while the other is not. The method without stabilization
is shown to converge only under the further assumption that certain discrete inf-sup condition
holds, see (42) there. On the other hand, the stabilized method is shown to converge to the exact
solution only under a further regularity assumption on an auxiliary Lagrangian multiplier, see λ in
Proposition 2 there. Under this assumption, it is then shown in the 1+1-dimensional case, that the
stabilized method converges with quadratic rate when the Bogner-Fox-Schmit C1-elements, with
third order polynomials, are used in spacetime rectangles.

The data assimilation problem (DA) can also be solved using the quasi-reversibility method.
This method originates from [37], and it has been applied to data assimilation problems subject to
the wave equation in [29, 30], and more recently to the PAT problem in [16]. Another interesting
application is given in the recent preprint [6]. There the authors solve an obstacle detection problem
by using a level set method together with the quasi-reversibility method applied to a variant of (DA).

The quasi-reversibility method introduces an auxiliary Tikhonov type regularization parameter.
When deriving a rate of convergence for the method, this parameter needs to be chosen as a function
of the mesh size h. In [16] the regularization parameter is called ε, and by balancing the estimates
in Theorems 3.3, 4.6 and 5.3 there, we are lead to the choice ε(h) = h2/3. This gives the convergence
rate h2/3 for the quasi-reversibility method [16].

Let us also mention that the method we propose can be seen as an instance of the well known
4DVAR algorithm for data assimilation [46, 51]. From this point of view the stabilization terms in
the finite element method can be interpreted as a Tikhonov regularization of the discrete equations,
where the analysis allows us to determine a regularization parameter that simultaneously balances
both the errors from discretization and from perturbations. For the continuous equations the
stabilization of the initial energy is indeed the natural regularization term in 4DVAR for the wave
equation. The upshot here is that the analysis in the fully discrete framework prompts a bespoke
stabilization that can not be derived from an analysis where only regularization on the continuous
level is considered. We also show in a numerical example that, in general, the regularization of the
initial energy is insufficient and that the added terms implied by the analysis improves the order of
accuracy of the approximation.

To summarize, the linear convergence rate of our method is superior to that of the Neumann
series based methods and the quasi-reversibility method. Contrary to [15], we also prove optimal
convergence rate. The convergence proof is based on using the continuum estimates, and the only
geometric assumption needed is the sharp geometric control condition. Finally, the method uses
a very simple discretization of the spacetime, and it is likely that the ideas presented here can be
adapted to various other discretizations.
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As already mentioned above, the dual problem to (DA) is the exact controllability problem for
the wave equation, and we refer to [22] for an excellent summary of early computational studies
addressing the need to regularize the dual problem. The monograph [21] provides a thorough
review of regularization via filtering of spurious high frequency modes, arising from discretization.
We mention also our work on the exact controllability problem [10], that is a follow-up of the present
work, and the recent similar studies [15, 44].

Related to the exact controllability problem there is a large body of literature on optimal control
problems. A basic example of such a problem is a regularized version of the exact controllabil-
ity problem, called the approximate controllability problem, where the regularization is viewed as
describing the cost of control. We refer to the thesis [31] for an introduction to optimal control
problems for the wave equation from the computation point of view. While most of the compu-
tational literature on optimal control problems focuses on elliptic and parabolic equations, see for
example the monograph [24], we mention [36] where domain decomposition methods for optimal
control problems for the wave equation are discussed. For recent numerical studies of problems
close to the approximate controllability problem for the wave equation see [18, 52].

Let us also mention that the method in the present paper draws from our experience on stabilized
finite element methods for the elliptic Cauchy problem [8, 9], and other types of data assimilation
problems, see [12] for elliptic and [11, 13] for parabolic cases. In [12] we considered the Helmholtz
equation. The convergence estimate there is explicit in the wave number, and exhibits a hyperbolic
character in the sense that it relies on a convexity assumption that can viewed as a particular local
version of the geometric control condition.

2. Continuum Estimates

The main aim of this section is to recall a continuum observability estimate for the wave operator
under some geometric assumptions on the observable domain O = (0, T ) × ω. In order to state
these geometric conditions we will need the following definition. We refer the reader to [38] for the
definition of compressed generalized bicharacteristics.

Definition 2.1 (See [5],[38]). We say that O ⊂M satisfies the geometric control condition in M,
if every compressed generalized bicharacteristic bγ(s) = (t(s), x(s), τ(s), ξ(s)) intersects the set O
for some s ∈ R.

With this definition in mind, we can state the continuum estimate that is used to derive a conver-
gence rate for our finite element method:

Theorem 2.2. Suppose M = (0, T ) × Ω where Ω is a domain with smooth boundary. Let ω ⊂ Ω
and assume that O = (0, T ) × ω satisfies the geometric control condition. If u ∈ L2(M) with
u(0, ·) ∈ L2(Ω), ∂tu(0, ·) ∈ H−1(Ω), u|(0,T )×∂Ω ∈ L2((0, T )× ∂Ω) and �u ∈ H−1(M), then

u ∈ C1([0, T ];H−1(Ω)) ∩ C([0, T ];L2(Ω))

and there exists a constant κ > 0 depending on the geometry, such that the following estimate holds:

sup
t∈[0,T ]

(‖u(t, ·)‖L2(Ω) + ‖∂tu(t, ·)‖H−1(Ω)) 6 κ
(
‖u‖L2(O) + ‖�u‖H−1(M) + ‖u‖L2((0,T )×∂Ω)

)
.

Theorem 2.2 is a consequence of the following homogeneous version:

Theorem 2.3 (Observability estimate). Let O satisfy the geometric control condition. There exists
a constant Cobs > 0 such that for any initial data w|t=0 = g1 ∈ L2(Ω) and ∂tw|t=0 = g2 ∈ H−1(Ω),
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the corresponding unique weak solution w to �w = 0, w|(0,T )×∂Ω = 0 with

w ∈ C((0, T );L2(Ω)) ∩ C1((0, T );H−1(Ω))

satisfies:
‖g1‖L2(Ω) + ‖g2‖H−1(Ω) 6 Cobs‖w‖L2(O).

Theorem 2.3 is a classical result that yields an interior observability estimate under the geometric
control condition. The proof of the theorem uses propagation of singularities for the wave equation
and only works for smooth geometries. The geometric control condition is essentially a necessary
and sufficient condition for obtaining the observability estimate and roughly states that all light
rays in M must intersect O taking into account reflections at the boundary [5]. We refer the
reader to [38, Proposition 1.2] for a proof of this theorem using a combination of the study of
semiclassical defect measures and propagation of singularities. One can also look at [5, Theorem
3.3] for an alternative proof using propagation of singularites. The paper [5] deals with boundary
observability but the proof can be applied to obtain interior observability as well. We omit rewriting
these proofs here as they are well known in the literature. Let us remark at this point that there
is a stronger geometric condition on the observable domain O known as the Γ− condition which is
much simpler to verify in general. We recall the Γ−condition defined as follows

Definition 2.4. For each x0 /∈ Ω, Let Γx0 := {x ∈ ∂Ω | (x − x0) · ν(x) > 0}. We say that
O = (0, T )× ω satisfies the Γ−condition if

∃x0 /∈ Ω, ∃δ > 0 such that Nδ(Γx0) ∩ Ω ⊂ ω,
T > 2 sup

x∈Ω
|x− x0|,

where Nδ(Γx0
) := {y ∈ Rn | |y − x| < δ for some x ∈ Γx0

}.

It is known that the Γ− condition implies the geometric control condition (see for example [42]). In
essence, the Γ−condition roughly requires T and ω̄∩∂Ω to be relatively large. Although not as sharp
as the geometric control condition, the advantage of the Γ− condition lies in its applicability in the
presence of non-smooth geometries and the explicit derivation of the observability constant κ in
Theorem 2.3. For an alternative proof of Theorem 2.3 in the case that O satisfies the Γ−condition,
we refer the reader to [17, Theorem 2.2]. One can also use the Carleman estimate [4, Theorem 1.1]
to derive this estimate although in this case one has to shift the Sobolev estimates.

A key ingredient in deriving the Lipschitz stability result in this paper is a corollary of the
observability estimate for the wave equation as stated in Theorem 2.2. In the remainder of this
section, we will show that Theorem 2.2 indeed follows from the observability estimate. To this end,
we will need the following lemma concerning solutions to the mixed Dirichlet-Cauchy problem for
the wave equation with weak Sobolev norms. We refer the reader to [39, Theorem 2.3] together
with Remark 2.8 in that paper for the proof.

Lemma 2.5. Let Ω be a bounded domain with smooth boundary. Suppose (u0, u1, f, h) ∈ X where
X = L2(Ω) × H−1(Ω) × H−1(M) × L2((0, T ) × ∂Ω) with the usual product topology. Then the
equation (1.1) with a source term f on the right hand side and a lateral boundary Dirichlet data h,
admits a unique solution

u ∈ Y := C1([0, T ];H−1(Ω)) ∩ C([0, T ];L2(Ω)).

Moreover, the linear mapping that maps (u0, u1, f, h) to u is continuous:

‖u‖Y 6 Ce ‖(u0, u1, f, h)‖X ,
5



where Ce > 0 is a constant depending only on the geometry M.

We are now ready to show the derivation of Theorem 2.2 from Theorem 2.3.

Proof of Theorem 2.2. Let us consider the vector valued function v := [v1 v2]T with vi ∈ L2(M)
for i ∈ {1, 2} defined as the solution to the following separable system of PDEs:

�v = [�u 0]T

v(t, x) = [u 0]T ∀x ∈ ∂Ω,∀t ∈ [0, T ]
v(0, x) = [0 u(0, ·)]T ∀x ∈ Ω

∂tv(0, x) = [0 ∂tu(0, ·)]T ∀x ∈ Ω.

Note that if w := u− (v1 + v2), then w ∈ L2(M) and w satisfies the homogeneous wave equation
�w = 0

w(t, x) = 0 ∀x ∈ ∂Ω,∀t ∈ [0, T ]
w(0, x) = 0, ∀x ∈ Ω
∂tw(0, x) = 0 ∀x ∈ Ω.

By Lemma 2.5, we have w = 0, which implies that u = v1 + v2. Since O satisfies the geometric
control condition, the observability estimate in Theorem 2.3 holds for the function v2 and together
with Lemma 2.5 we have that for all t ∈ [0, T ]:

‖v2(t, ·)‖L2(Ω) + ‖∂tv2(t, ·)‖H−1(Ω) 6 Cobs‖v2‖L2(O).

Similarly, applying Lemma 2.5 to the function v1 implies that:

‖v1(t, ·)‖L2(Ω) + ‖∂tv1(t, ·)‖H−1(Ω) 6 Ce
(
‖�u‖H−1(M) + ‖u‖L2((0,T )×∂Ω)

)
.

Finally, combining the above estimates, we deduce that:

‖u(t, ·)‖L2(Ω) + ‖∂tu(t, ·)‖H−1(Ω) 6 ‖v1(t, ·)‖L2(Ω) + ‖∂tv1(t, ·)‖H−1(Ω) + ‖v2(t, ·)‖L2(Ω) + ‖∂tv2(t, ·)‖H−1(Ω)

6 (Ce + Cobs)
(
‖�u‖H−1(M) + ‖u‖L2((0,T )×∂Ω) + ‖v2‖L2(O)

)
6 (Ce + Cobs)

(
‖�u‖H−1(M) + ‖u‖L2((0,T )×∂Ω) + ‖u− v1‖L2(O)

)
6 κ

(
‖�u‖H−1(M) + ‖u‖L2((0,T )×∂Ω) + ‖u‖L2(O)

)
.

where κ = (Ce + Cobs)(1 + T
1
2Ce). �

3. Discretization

Let us begin with a brief discussion of the overall discretization approach employed in this paper.
We consider the wave equation (1.1) and the preliminary Lagrangian functional

L(u, z) =
1

2
‖u− q‖2L2((0,T )×ω) +

∫
M

(∂2
t u) z +∇u · ∇z dxdt. (3.1)

The Euler-Lagrange equations for L can be written as follows

〈∂uL(u, z), v〉 =

∫ T

0

∫
ω

(u− q)v dtdx+

∫
M

(∂2
t v) z +∇v · ∇z dtdx = 0,

〈∂zL(u, z), w〉 =

∫
M

(∂2
t u)w +∇u · ∇w dtdx = 0

for all v, w. It is clear that if u is equal to the unique solution to (1.1)-(1.2) and z ≡ 0, then these
Euler-Lagrange equations are satisfied. This simple idea outlines the overall approach in this paper.
We will employ a discrete Lagrangian functional whose critical points will converge to the unique
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solution to the continuum problem. However, as the term
∫ T

0

∫
ω

(u− q)v dtdx does not seem to give
enough stability for the discrete problem to converge, we will add certain regularization terms in
the discrete setting. The design of these terms is driven by numerical stability and the stability
of the continuous problem, with the objective of minimizing the computational error. In the final
section of the paper we will briefly discuss the possibility of removing some of these regularization
terms.

Let us now present the discretization of (1.1)-(1.2). We will first consider a family of polyhedral
domains Ωh approximating Ω and similarly let ωh denote a family of domains approximating ω.
Let Th be a conforming triangulation of the polyhedral domain Ωh. Let hK = diam(K) be the local
mesh parameter and h = maxK∈ThhK the mesh size. We assume that the family of triangulations
Th is quasi uniform. Let Vh be the standard space of piecewise affine continuous finite elements
satisfying the zero boundary condition,

Vh = {v ∈ H1
0 (Ωh); v|K ∈ P1(K),∀K ∈ Th}.

We assume that the approximate geometries Ωh and ωh are sufficiently close to Ω and ω in the
following sense,

dist(x, ∂Ξ) 6 c h2 ∀x ∈ ∂Ξh, Ξ = Ω or Ξ = ω, (3.2)

where c > 0 is a constant that is independent of h. This is possible for domains Ω, ω with smooth
boundary (see for example [7]). We have the following lemma:

Lemma 3.1. (See [7, Lemma 2]) Let the condition (3.2) be satisfied. Then for all v ∈ H1(Ω∪Ωh)
the following estimate holds:∫

(Ω\Ωh)∪(Ωh\Ω)

|v(x)|2 dx 6 c h2

(∫
∂Ω

|v(x)|2 ds+ h2

∫
Ω

|∇v(x)|2 dx
)
,

where c > 0 does not depend on h.

Remark 1. Throughout the rest of the paper and for the sake of convenience, we use the uniform
notation c to denote a generic constant that depends only on the geometry M and is independent of
the mesh parameter h. This is useful in the proofs of lemmas and propositions where keeping track
of uniform constants is of no particular interest.

Following [13] we first discretize in space only. We may then write a semi-discrete finite element
formulation of the problem as follows. Find u ∈ C2(0, T ;Vh), subject to (1.2), such that

(∂2
t u, v)h + ah(u, v) = 0, ∀v ∈ Vh,

where

(u, v)h =

∫
Ωh

uv dx, ah(u, v) =

∫
Ωh

∇u · ∇v dx.

We also define

(u, v)Ω =

∫
Ω

uv dx, a(u, v) =

∫
Ω

∇u · ∇v dx.

Let N ∈ N and τ > 0 satisfy Nτ = T and define tn = nτ . Furthermore, define for each discrete
function u = (un)Nn=0 ∈ V N+1

h ,

∂τu
n =

un − un−1

τ
for n = 1, . . . , N ∂2

τu
n =

un − 2un−1 + un−2

τ2
for n = 2, . . . , N.
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It is natural to assume that the two discretization scales τ and h should be comparable in size. We
will therefore assume throughout the paper that τ = O(h).

To take into account the mismatch between Ωh and Ω, (and between ωh and ω), we use the
stable extension operator [49], E : Hs(M) → Hs(Mh), s ≥ 0 with Mh := (0, T ) × (Ω ∪ Ωh) and
set qe := Eq. With some slight abuse of notation, we will write q to denote the extended function
qe, where no confusion is implied. Now, consider the Lagrangian functional

L : V N+1
h × V N−1

h → R

defined by:

L(u, z) = L0(u, z) + L1(u),

L0(u, z) =
τ

2

N∑
n=1

‖un − q̃n‖2ωh
+G(u, z),

L1(u) =
1

2

(
‖h∇u1‖2h + ‖h∂τu1‖2h + ‖h∇∂τu1‖2h + ‖h∇∂τuN‖2h + τ

N∑
n=2

‖τ∇∂τun‖2h

)
,

G(u, z) = τ

N∑
n=2

((∂2
τu

n, zn)h + ah(un, zn)),

(3.3)

where

q̃n = q(tn) + δq(tn) for n = 1, . . . , N

and δq denotes some perturbation (or noise) in our observable data.

Let us make a few remarks about the discrete Lagrangian (3.3). The term L0(u, z) denotes the
discrete analogue of the continuum Lagrangian (3.1). The functional L1(u) denotes the discrete
regularization (stabilization) terms that formally converge to zero in the limit as h → 0. These
regularizing terms are designed with the goal of minimizing the errors that arise in the numerical
approximation of (1.1)-(1.2). Stabilization in the initial energy seems natural to us since this is the
piece of information that is missing when compared to a typical initial boundary value problem for
the wave equation. This and the regularization in the cross derivatives was inspired by our previous
work on a unique continuation problem for the heat equation [13]. The regularization in the cross
derivative also appears in [3]. For a further discussion on the discrete regularization terms we refer
the reader to Section 6.2.

The Euler-Lagrange equations for the Lagrangian functional L read as follows:

〈DuL, v〉+ 〈DzL, w〉 = 0, ∀(v, w) ∈ V N+1
h × V N−1

h

where DuL and DzL denote the Fréchet derivatives of the discrete Lagrangian with respect to the
variables u and z. The Euler-Lagrange equation, can be recast in the following form:

A1(u,w) = 0 and A2((u, z), v) = τ

N∑
n=1

(q̃n, vn)ωh
, (3.4)
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where the bilinear forms A1 and A2 are defined as follows:

A1(u,w) = G(u,w),

A2((u, z), v) = τ

N∑
n=1

(un, vn)ωh
+G(v, z) + (h∇u1, h∇v1)h + (h∂τu

1, h∂τv
1)h

+ (h∇∂τuN , h∇∂τvN )h + (h∇∂τu1, h∇∂τv1)h + τ

N∑
n=2

(τ∇∂τun, τ∇∂τvn)h.

(3.5)

The Euler Lagrange equations (3.4) define a system of equations with critical point(s) (uh, zh), if
they exist. Let us observe that since no regularization is applied to the Lagrange multiplier z,uh
solves the discrete wave equation as can be seen from the first equation in (3.4), while zh solves a
wave equation with a small source term that formally approaches zero as h→ 0. Also, the discrete
variables uh and zh are only weakly coupled, in the sense that A1 does not depend on z, which
allows for solution algorithms that use the classical forward-backward solving approach. In the
remainder of this section, we aim to show that the discrete system of equations (3.4) indeed admits
a unique solution (uh, zh).

3.1. Inf-sup stability estimate. We let z0 = z1 = zN+1 = zN+2 = 0 and define the following
norms and semi-norms:

|||u|||2R = τ

N∑
n=1

‖un‖2ωh
+ ‖h∇u1‖2h + ‖h∂τu1‖2h

+ ‖h∇∂τu1‖2h + ‖h∇∂τuN‖2h + τ

N∑
n=2

‖τ∇∂τun‖2h,

|||u|||2F = τ

N∑
n=2

(‖∂2
τu

n‖2h + ‖∂τun‖2h + ‖∇un‖2h) + ‖∇uN‖2h + ‖∂τuN‖2h,

|||z|||2D =
T

2
‖zN‖2h +

τ

4

N∑
n=2

‖zn‖2h +
τ

2(T + 1)2

N∑
n=2

‖∇z̃n‖2h +
1

4(T + 1)
‖∇z̃N‖2h,

|||(u, z)|||2C = |||u|||2R + τ

N∑
n=2

‖zn‖2h.

(3.6)

Here z̃n := τ
∑n
m=0(1 +mτ)zm. Note that using the Poincaré inequality we have the following:

‖∇z̃n‖h > c‖z̃n‖h n = 1, 2, . . . , N,

where c > 0 only depends on Ω. We also note that |||(·, ·)|||C is a norm on V 2N
h . Heuristically,

the norms signify the following principles. Firstly, ||| · |||R denotes the control that one naturally
expects to obtain on the data fitting term and the regularization terms. The norms |||u|||F and
|||z|||D are related to discrete energy estimates for the wave equation and in a sense measure the
stability properties of the forward problem. There is a delicate counter balance on the control of
the state variable u and the dual variable z as can be seen through the fact that ||| · |||F is analogous
to H2(M) norm while ||| · |||D is somewhat reminiscent to the H−1(0, T ;H1(Ω)) norm. Finally,
||| · |||C is just a continuity norm that will be justified in Proposition 4.3.
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Proposition 3.2. For all N ∈ N, h > 0, there exists a constant c > 0 only depending on M such
that given any (u, z) ∈ V 2N

h there exists (v, w) ∈ V 2N
h satisfying:

c (|||u|||2R + h2|||u|||2F + |||z|||2D) 6 A1(u,w) +A2((u, z), v),

c |||(v, w)|||C 6 |||u|||R + h|||u|||F + |||z|||D.

We will start by proving two lemmas that are motivated by the following estimates for the wave
operator at the continuum level:∫

M
(2T − t)∂tw�w dt dx > c

(∫
M
|w|2 dt dx+

∫
M
|∇w|2 dt dx, ∀w ∈ C∞c (M)

)
,∫

M
Ev�v dt dx > c

(∫
M
|v|2 dt dx+

∫
M
|∇Ev|2 dt dx, ∀ v ∈ C∞c (M)

)
,

where Ev(t, x) =
∫ t

0
(1 + τ)v(τ, x) dτ and c > 0 depends only on T . These estimates are both

energy estimates for the wave equation with the latter being weaker in Sobolev scales compared
to the former. This delicate counter-balance will be used to derive convergence in the Sobolev
scale C(0, T ;L2(Ω)) ∩ C1(0, T ;H−1(Ω)) for the state variable u at the expense of the dual variable
converging to zero in the weaker Sobolev scale L2(M).

Lemma 3.3. Let u ∈ V N+1
h . For n = 2, 3, . . . , N define wn := ∂2

τu
n + (2T − nτ)∂τu

n. Then:

A1(u, h2w) + |||u|||2R > ch2|||u|||2F ,

where c > 0 is independent of the parameter h.

Proof. Recall that A1(u, h2w) = h2G(u,w). Now, given the choice of the test function w we have

G(u,w) = S1 + S2 + S3 + S4,

where:

S1 = τ

N∑
n=2

‖∂2
τu

n‖2h,

S2 = τ

N∑
n=2

(∂2
τu

n, (2T − nτ)∂τu
n)h

= τ

N∑
n=2

(2T − nτ)(∂τv
n, vn)h =

N∑
n=2

(2T − nτ)
1

2
(‖vn‖2h − ‖vn−1‖2h + ‖vn − vn−1‖2h)

>
T

4
‖∂τuN‖2h +

τ

2

N∑
n=1

‖∂τun‖2h − T‖∂τu1‖2h +
T

2
τ2

N∑
n=2

‖∂2
τu

n‖2h,
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S3 = τ

N∑
n=2

ah(un, (2T − nτ)∂τu
n) =

N∑
n=2

(2T − nτ)ah(un, un − un−1)

=

N∑
n=2

(2T − nτ)
1

2
(ah(un, un)− ah(un−1, un−1) + ah(un − un−1, un − un−1))

>
T

4
‖∇uN‖2h +

τ

2

N∑
2

‖∇un‖2h − T‖∇u1‖2h +
τ2

2

N∑
n=2

‖τ∇∂τun‖2h,

S4 = τ

N∑
n=2

ah(un, ∂2
τu

n)

= −τ
N∑
n=2

(∇∂τun−1,∇∂τun)h − (∂τ∇u1,∇u1)h + (∇uN , ∂τ∇uN )h.

Hence:

|S4| 6 τ
N∑
n=1

‖∇∂τun‖2h +
1

2
‖∂τ∇u1‖2h +

1

2
‖∇u1‖2h +

δ

2
‖∇uN‖2h +

1

2δ
‖∂τ∇uN‖2h.

One can see that by combining the above estimates the claim follows immediately for δ sufficiently
small. �

Lemma 3.4. Let z ∈ V N−1
h . For n = 0, 1, ..., N define vn = τ

∑n
m=0(1 +mτ)zm := z̃n. Then:

G(v, z) > |||z|||2D.

Proof. Note that:

τ

N∑
n=2

(∂2
τv
n, zn)h = τ

N∑
n=2

(∂τ ((1 + nτ)zn), zn)h = τ

N∑
n=2

(zn, zn−1)h +

N∑
n=2

(1 + nτ)(zn − zn−1, zn)h

= τ

N∑
n=2

‖zn‖2h − τ2
n∑
n=2

(zn, ∂τz
n)h +

1

2

N∑
n=2

(1 + nτ)(‖zn‖2h − ‖zn−1‖2h + ‖zn − zn−1‖2h)

>
τ

2

N∑
n=2

‖zn‖2h +
T

2
‖zN‖2h − τ2

n∑
n=2

(zn, ∂τz
n)h +

τ2

2

N∑
n=2

‖∂τzn‖2h

>
τ

2

N∑
n=2

‖zn‖2h +
T

2
‖zN‖2h − τ2

n∑
n=2

‖zn‖2h −
τ2

4

N∑
n=2

‖∂τzn‖2h +
τ2

2

N∑
n=2

‖∂τzn‖2h

>
τ

4

N∑
n=2

‖zn‖2h +
T

2
‖zN‖2h +

τ2

4

N∑
n=2

‖∂τzn‖2h.

Similarly:

τ

N∑
n=2

ah(vn, zn) = τ

N∑
n=2

1

(1 + nτ)
ah(vn, ∂τv

n) =

N∑
n=2

1

(1 + nτ)
ah(vn, vn − vn−1)

=
1

2

N∑
n=2

1

1 + nτ
(ah(vn, vn)− ah(vn−1, vn−1) + ah(vn − vn−1, vn − vn−1))
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>
1

2

N∑
n=2

1

1 + nτ
(ah(vn, vn)− ah(vn−1, vn−1))

>
1

2

N∑
n=2

1

1 + nτ
ah(vn, vn)− 1

2

N−1∑
n=2

1

1 + nτ
ah(vn, vn)

+
τ

2

N∑
n=2

1

(1 + nτ)(1 + (n− 1)τ)
ah(vn−1, vn−1)

>
1

4(1 + T )
ah(vN , vN ) +

τ

2(1 + T )2

N∑
n=2

ah(vn, vn).

Combining the above inequalities yields the claim. �

Proof of Proposition 3.2. Let α be a sufficiently small parameter independent of h and let us define

v̂ = u+ αv, and ŵ = −z + h2αw,

where w, v are chosen as in Lemma 3.3 and Lemma 3.4 respectively. We will show that the claim
holds for this specific choice of (v̂, ŵ) ∈ V 2N

h . We start by using the identity

A1(u,−z) +A2((u, z), u) = |||u|||2R,

together with Lemma 3.3 and Lemma 3.4 to write

A1(u, ŵ) +A2((u, z), v̂) = |||u|||2R + αA1(u, h2w) + αA2((u, z), v)

> |||u|||2R + αch2|||u|||2F − α|||u|||2R + αA2((u, z), v)

>
1

2
(|||u|||2R + αch2|||u|||2F ) + αA2((u, z), v).

(3.7)

Now recalling that v0 = v1 = 0, we see that:

A2((u, z), v) = G(v, z) + τ

N∑
n=1

(un, vn)ωh
+ (h∇∂τuN , h∇∂τvN )h + τ

N∑
n=2

(τ∇∂τun, τ∇∂τvn)h

> |||z|||2D + τ

N∑
n=1

(un, vn)ωh
+ (h∇∂τuN , h∇∂τvN )h + τ

N∑
n=2

(τ∇∂τun, τ∇∂τvn)h.

We have:
N∑
n=2

(τ∇∂τun, τ∇∂τvn)h 6
N∑
n=2

(
1

2δ
‖τ∇∂τun‖2h + c

δ

2
‖∇z̃n‖2h).

Similarly using the Cauchy-Schwarz inequality we have:

|
N∑
n=1

(un, vn)ωh
| 6

N∑
n=1

(
1

2δ
‖un‖2ωh

+
δ

2
‖vn‖2h).

|(h∇∂τuN , h∇∂τvN )h| 6
1

2δ
‖h∇∂τuN‖2h + 4T 2 δ

2
‖zN‖2h.
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One can easily see that the first claimed estimate in the proposition holds for α small and δ
sufficiently smaller than α. A similar argument can be used to prove the second claimed inequality
in the statement of the proposition. Indeed we have:

|||(v̂, ŵ)|||2C 6 2(τ

N∑
n=1

(‖un‖2ωh
+ α2‖vn‖2ωh

) + ‖h∇u1‖2h + ‖h∂τu1‖2h

+ τ

N∑
n=2

(‖zn‖2h + α2h4‖wn‖2h) + τ

N∑
n=2

(‖τ∇∂τun‖2h + α2‖τ∇∂τvn‖2h)

+ ‖h∇∂τu1‖2h + ‖h∇∂τuN‖2h + α2‖h∇∂τvN‖2h).

with the following trivial estimates

τ

N∑
n=1

‖vn‖2ωh
6 c|||z|||2D, τ

N∑
n=2

h4‖wn‖2h 6 c h2|||u|||2F ,

τ

N∑
n=2

‖τ∇∂τvn‖2h 6 c|||z|||2D, ‖h∇∂τvN‖2h 6 c‖zN‖2h.

where c > 0 only depends on M. �

One can use Proposition 3.2 to show that the system of linear equations (3.4) has a unique
solution. Indeed, denote by Nh the dimension of Vh. The equations (3.4) define a square linear
system with 2Nh×N unknowns. Setting q̃n = 0, the coercivity estimate in Proposition 3.2 implies
that the kernel of this linear system is trivial and therefore there exists a unique solution for all
choices of q̃n. Henceforth, we will let (uh, zh) denote the unique solution to (3.4) subject to the
measured noisy data q̃n. Next section is concerned with proving the convergence of the discrete solu-
tion uh to the continuum solution u of (1.1)-(1.2). The dual variable zh is shown to converge to zero.

4. A Priori Error Estimates

An important feature of the error estimates below is that they include bounds of the perturbations
from the discretization of the domain. To obtain such bounds we first prove some preliminary
results.

Lemma 4.1. For all vh ∈ Vh there holds

‖vh‖∂Ω 6 ch‖∇vh‖Ωh\Ω.

Proof. First, note that using the trivial extension vh|Ω\Ωh
= 0 there holds ‖vh‖∂Ω = ‖vh‖∂Ω∩Ωh

.

Now, for x ∈ ∂Ω ∩ Ωh, we write vh(x) =
∫ x
p(x)
∇vh · nds, with n the outward pointing unit normal

of ∂Ω, and where p(x) := x + ζ(x)n(x), with ζ is the (signed) distance from ∂Ω to ∂Ωh in the n
direction. By the assumption (3.2), |ζ| 6 ch2 and there holds∫ x

p(x)

∇vh · nds 6 |ζ(x)| 12
(∫ x

p(x)

|∇vh · n|2 ds

) 1
2

6 c h

(∫ x

p(x)

|∇vh · n|2 ds

) 1
2

. (4.1)

Using the above expression for vh|∂Ω we have that

‖vh‖2∂Ω 6 ch
2

∫
∂Ω

∫ x

p(x)

|∇vh · n|2 ds dx 6 c h2‖∇vh‖2Ωh\Ω.
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First we define an H1-projection πh : H1
0 (Ω) → Vh(Ωh). Given u ∈ H1

0 (Ω), we let πhu ∈ Vh to
be the unique solution of

ah(πhu, vh) = ah(Eu, vh), ∀vh ∈ Vh (4.2)

Lemma 4.2. Let u ∈ H1
0 (Ω) and let πhu ∈ Vh be defined by (4.2). Then:

‖u− πhu‖Ω 6 c h‖u‖H1(Ω) (4.3)

and moreover

‖Eu− πhu‖H1(Ωh) 6 c h‖u‖H2(Ω) for u ∈ H1
0 (Ω) ∩H2(Ω), (4.4)

for some constant c > 0 depending only on Ω.

Proof. First consider (4.4). Let ihu ∈ Vh denote the nodal interpolant of Eu. By the Poincaré’s
inequality there holds

‖ihu− πhu‖2H1(Ωh) 6 c ah(ihu− πhu, ihu− πhu).

Using the definition of πhu, equation (4.2), we have

ah(ihu− πhu, ihu− πhu) = ah(ihu− Eu, ihu− πhu) 6 ‖ihu− Eu‖H1(Ωh)‖ihu− πhu‖H1(Ωh).

Combining the above estimate with

‖ihu− Eu‖H1(Ωh) 6 ch‖u‖H2(Ωh) 6 ch‖u‖H2(Ω)

Dividing with ‖ihu− πhu‖H1(Ωh) and using this estimate, it follows that

‖ihu− πhu‖H1(Ωh) 6 c h‖u‖H2(Ω).

The inequality (4.4) follows by the triangle inequality. For (4.3), first extend πhu to Ω by defining
πhu = 0 in Ω \ Ωh. Then define the dual problem

−∆z = u− πhu in Ω
z = 0 on ∂Ω.

By the smoothness of Ω we know that ‖z‖H2(Ω) 6 c‖u− πhu‖Ω. It follows that

‖u− πhu‖2Ω = (u− πhu,−∆z)Ω = (∇(u− πhu),∇z)Ω + (πhu,∇z · n)∂Ω∩Ωh
.

For the first term in the right hand side we have

(∇(u− πhu),∇z)Ω = (∇(u− πhu),∇Ez)Ωh
− (∇(u− πhu),∇Ez)Ωh\Ω + (∇(u− πhu),∇z)Ω\Ωh

.

Therefore, recalling that by trivial extension, πhu|Ω\Ωh
= 0,

‖u− πhu‖2Ω = (u− πhu,−∆z)Ω = (∇(u− πhu),∇(Ez − ihEz))Ωh

− (∇(u− πhu),∇Ez)Ωh\Ω + (∇(u− πhu),∇z)Ω\Ωh
+ (πhu,∇z · n)∂Ω∩Ωh

= (∇(u− πhu),∇(z − ihz))Ωh
− (∇(u− πhu),∇Ez)Ωh\Ω

+ (∇u,∇z)Ω\Ωh
+ (πhu,∇z · n)∂Ω∩Ωh

= I + II + III + IV

For the first term of the right hand side we have

I 6 c‖∇(u− πhu)‖Ωh
h‖z‖H2(Ω) 6 c‖∇(u− πhu)‖Ωh

h‖u− πhu‖Ω 6 c‖∇u‖Ωh‖u− πhu‖Ω,
where we used that by (4.2) and the stability of the extension operator there holds

‖∇πhu‖Ωh
6 ‖∇Eu‖Ωh

6 ‖∇u‖Ω. (4.5)
14



To bound the second term we recall that by Lemma 3.1, a trace inequality and the stability of the
extension and of z there holds

‖∇Ez‖Ωh\Ω 6 ch‖u− uh‖Ω.
Hence, using once again the stability (4.5)

II 6 ‖∇(u− πhu)‖Ωh\Ω‖∇Ez‖Ωh\Ω 6 c‖∇u‖Ωh‖u− πhu‖Ω.
Similarly we obtain for the third term

III 6 ‖∇u‖Ω\Ωh
‖∇z‖Ω\Ωh

6 c‖∇u‖Ωh‖u− πhu‖Ω.
To estimate the fourth term, we use the Cauchy-Schwarz inequality, Lemma 4.1 and the trace
inequality, followed by the stability estimate on z,

IV = (πhu,∇z·n)∂Ω∩Ωh
6 ‖πhu‖∂Ω∩Ωh

‖∇z‖∂Ω∩Ωh
6 ch‖∇πhu‖Ωh\Ω‖z‖H2(Ω) 6 ch‖∇u‖Ω‖u−πhu‖Ω.

Collecting the bounds for terms I-IV we conclude. �

Proposition 4.3. Suppose Ωh,Ω are as before and that u ∈ H3(M). Let (uh, zh) be the unique
solution to the Euler-Lagrange equations (3.4) with q = u|(0,T )×ω. Then:

|||uh − πhu|||R + h|||uh − πhu|||F + |||zh|||D 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))), (4.6)

where πhu is the orthogonal projection defined by equation (4.2) and c > 0 only depends on M.

Proof. First we recall that by the stability estimate of Proposition 3.2, there is (v, w) ∈ V 2N
h

satisfying:

|||uh − πhu|||2R + h2|||uh − πhu|||2F + |||zh|||2D 6 c(A1(uh − πhu,w) +A2((uh − πhu, zh), v)) (4.7)

and
|||(v, w)|||C 6 c(|||uh − πhu|||R + h|||uh − πhu|||F + |||zh|||D). (4.8)

We will now bound the two terms of the right hand side of (4.7). Note that if un = u(tn) then:

(∂2
t u

n, ψ)Ω + a(un, ψ) = 0 ∀ψ ∈ H1
0 (Ω).

Also note that for all w ∈ V N−1
h we have

A1(u,w) = τ

N∑
n=2

(
(ςnE , w)Ωh\Ω + (∂2

t u
n, w)h + ah(un, w)

)
,

where, with some abuse of notation we identify un with Eun outside Ω and ςnE := −�Eun denotes
the geometry residual term. Together with equation (3.4) and (4.2), this implies that:

A1(uh − πhu,w) = τ

N∑
n=2

(∂2
t u

n − ∂2
τu

n, wn)h + τ

N∑
n=2

((1− πh)∂2
τu

n, wn)h + τ

N∑
n=2

(ςnE , w
n)Ωh\Ω.

First we observe that by Lemma 3.1,

|(ςnE , wn)Ωh\Ω| 6 ‖ς
n
E‖Ωh\Ω‖w

n‖Ωh\Ω 6 c(‖∂
2
t u

n‖Ω + ‖un‖H2(Ω))h
2‖∇wn‖h.

Let:

I1 = τ

N∑
n=2

‖(1− πh)∂2
τu

n‖2h,

I2 = τ

N∑
n=2

‖∂2
t u

n − ∂2
τu

n‖2h,
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I3 = τ

N∑
n=2

h2(‖∂2
t u

n‖2Ω + ‖un‖2H2(Ω)) 6 ch
2(‖∂2

t u‖2H1(0,T ;L2(Ω)) + ‖u‖2H1(0,T ;H2(Ω))).

Then clearly we have:

A1(uh − πhu,w) 6 c(I1 + I2 + I3)
1
2 |||(0, w)|||C .

Here we used that since τ = O(h) and by a (discrete) Poincaré inequality

τ

N∑
n=2

h2‖∇wn‖2h 6 c(‖h∇w1‖2h + τ

N∑
n=2

‖τ∇∂τwn‖2h) 6 c|||(0, w)|||2C .

It remains to bound I1 and I2. To this end, observe that:

∂2
τu

n =
1

τ2
(

∫ tn

tn−2

(t− tn−2)∂2
t u dt− 2

∫ tn

tn−1

(t− tn−1)∂2
t u dt).

Hence:

I1 6
1

τ2

N∑
n=2

(2

∫ tn

tn−2

(t− tn−2)2‖(πh − 1)∂2
t u‖2h dt+ 8

∫ tn

tn−1

(t− tn−1)2‖(πh − 1)∂2
t u‖2h dt)

6
N∑
n=2

(2

∫ tn

tn−2

‖(πh − 1)∂2
t u‖2h dt+ 8

∫ tn

tn−1

‖(πh − 1)∂2
t u‖2h dt)

6 ch2

∫ T

0

‖∇∂2
t u‖2h dt.

Similarly we have:

∂2
τu

n − ∂2
t u

n =
1

2τ2
(−
∫ tn

tn−2

(t− tn−2)2∂3
t u dt+ 2

∫ tn

tn−1

(t− tn−1)2∂3
t u dt).

Using this identity we obtain:

I2 6
1

2τ3
(

N∑
n=2

(

∫ tn

tn−2

(t− tn−2)4 dt)(

∫ tn

tn−2

‖∂3
t u‖2h dt) + 4

N∑
n=2

(

∫ tn

tn−1

(t− tn−1)4 dt)(

∫ tn

tn−1

‖∂3
t u‖2h dt))

6 cτ2

∫ T

0

‖∂3
t u‖2hdt.

Considering now the contribution from A2, note that by definition

A2((uh−πhu, zh), v) = τ

N∑
n=1

(δqn, vn)ωh
+τ

N∑
n=1

(un−πnhun, vn)ωh
−(h∂τπhu

1, h∂τv
1)−(h∇πhu1, h∇v1)

−τ
N∑
n=2

(τ∇∂τπhun, τ∇∂τvn)− (h∂τ∇πhuN , h∂τ∇uN )− (h∂τ∇πhu1, h∂τ∇u1).

Hence:
A2((uh − πhu, zh), v) 6 c(I3 + I4 + I5 + I6 + I7 + I8 + I9)

1
2 |||(v, 0)|||C ,

where:

I3 = τ

N∑
n=1

‖δqn‖ωh
6 ‖δq‖C(0,T ;L2(ω)),
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I4 = τ

N∑
n=1

‖un − πnhun‖2ωh
6 ch2‖∇u‖2L2(0,T ;H1(Ωh)),

I5 = ‖h∂τπhu1‖2h 6 ch2‖u‖2H2(0,T ;L2(Ωh)),

I6 = ‖h∇πhu1‖2h 6 ch2‖∇u‖2H1(0,T ;L2(Ωh)),

I7 = τ

N∑
n=2

‖τ∇∂τπhun‖2h 6 cτ2

∫ T

0

‖∇∂tu‖2h dt,

I8 = ‖h∇∂τπhuN‖2h 6 ch2‖∇u‖2H2(0,T ;L2(Ωh)),

I9 = ‖h∇∂τπhu1‖2h 6 ch2‖∇u‖2H2(0,T ;L2(Ωh)).

By the stability of the extension, all the norms over Ωh can now be bounded by norms of the same
quantities over Ω. The claim follows by collecting the above bounds. �

Corollary 4.4. Under the same assumptions as in Proposition 4.3 there holds

|||uh − u|||R + h|||uh − u|||F + |||zh|||D 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))),

and

h‖∇u0
h‖+ |||u|||R + h|||uh|||F 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))).

Proof. The first inequality is immediate by adding and subtracting πhu, applying the triangle
inequality followed by Proposition 4.3 and Lemma 4.2 and similar Taylor expansion arguments as
in Proposition 4.3. In the second inequality we note that

‖∇u1
h‖2h + ‖∇u0

h‖2h 6 c(‖∇u1
h‖2h + τ2‖∇∂τu1

h‖2h).

We then add and subtract u in the right hand side of the last inequality and in |||uh|||F and proceed
as before, using the first inequality of the result to control the u− uh part and a Taylor expansion
argument for the second. �

Before presenting the main theorem of this section we need an additional definition and lemma
as follows. For each w ∈ H1

0 (M), let us introduce the time averaged function (w̄n)Nn=1 through

w̄n = τ−1

∫ tn

tn−1

w dt,

and denote by w̄ the piecewise constant function w̄|[tn−1,tn] = w̄n.

Lemma 4.5. Suppose u ∈ H3(M) is the unique solution to the continuum problem (1.1)-(1.2)
and let (uh, zh) denote the discrete solution to the Euler-Lagrange equations (3.4). The following
estimate holds:

τ |(∇u1
h,∇w̄1)h| 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(Ω)))‖w‖H1(M),

where w ∈ H1
0 (M) is arbitrary and c > 0 is independent of h and only depends on the geometry.

Proof. Note that

τ(∇u1
h,∇w̄1)h = −τ2(∇∂τu2

h,∇w̄1)h + τ(∇u2
h,∇w̄1)h. (4.9)

For the first term on the right hand side of equation (4.9), observe that:

|τ2(∇∂τu2
h,∇w̄1)h| 6 τ2‖∇∂τu2

h‖h‖∇w̄1‖h 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(Ω)))‖w‖H1(M),
17



where we are using Corollary 4.4 to bound τ
3
2 ‖∇∂τu2

h‖h 6 c(h‖u‖H3(M) +‖δq‖C(0,T ;L2(Ω))) and the

stability of w̄ for the bound ‖∇w̄1‖h 6 τ−
1
2 ‖w‖H1(M). For the second term on the right hand side

of equation (4.9) we have

τ(∇u2
h,∇w̄1)h = τ(∇u2

h,∇πhw̄1)h = −τ(∂2
τu

2
h, (πh − 1)w̄1)h − τ(∂2

τu
2
h, w̄

1)h = I + II.

We note that Theorem 4.3 implies that τ
3
2 ‖∂2

τu
2
h‖h 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))). Finally,

|I| 6 cτ‖∂2
τu

2
h‖hτ

1
2 ‖w‖H1(M) 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω)))‖w‖H1(M),

|II| 6 cτ‖∂2
τu

2
h‖h‖w̄1‖h 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω)))‖w‖H1(M),

where in the last step we are using the standing assumption that τ ∼ h and

‖w̄1‖h 6 τ−
1
2 (

∫ τ

0

‖w(t, ·)‖2h dt)
1
2 ,∫ τ

0

∫
Ω

|
∫ t

0

∂tw(t, ·) dt|2 dx dt 6
∫ τ

0

∫
Ω

τ

∫ τ

0

|∂tw(t, ·)|2 dt dx dt = τ2‖∂tw‖2L2((0,t1)×Ω).

�

We are now ready to state the main theorem as follows.

Theorem 4.6. Suppose O = (0, T )× ω satisfies the geometric control condition. Let u ∈ H3(M)
denote the unique solution to the continuum problem (1.1)-(1.2). Let (uh, zh) denote the unique
discrete solution to the Euler-Lagrange equations (3.4) subject to the noisy data q̃ = q + δq and
δq ∈ C(0, T ;L2(ω)). Extend uh to all of Ω by setting it equal to zero in Ω \Ωh. The following error
estimate holds:

sup
t∈[0,T ]

(‖u(t, ·)− ũh(t, ·)‖L2(Ω) + ‖∂tu(t, ·)− ∂tũh(t, ·)‖H−1(Ω)) 6 c
(
h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))

)
,

where c > 0 is independent of h and only depends on the geometry and ũh ∈ C(M) denotes the
linear interpolation

ũh =
1

τ
((t− tn−1)unh + (tn − t)un−1

h ) ∀t ∈ [tn−1, tn].

Remark 2. Theorem 4.6 can be used to make a number of observations. Firstly, it shows that
the discretization method is stable in the presence of the noise δq, but stagnates when error reaches
the level of the noise. This is the typical behaviour when solving a well-posed problem. Secondly,
when the noise level is known and we have an apriori bound for u, Theorem 4.6 suggests that we
should choose h to be of order ‖δq‖C(0,T ;L2(Ω)) / ‖u‖H3(M). Finally, it should be noted that when

‖δq‖C(0,T ;L2(Ω)) = O(h) then the method converges optimally corresponding to the approximation

order of the lowest order finite difference method used for time discretization.

Proof. Recall the standing assumption that τ = O(h). Let e = u − ũh and define the linear
functional

〈r, w〉 =

∫ T

0

∫
Ω

(−∂te · ∂tw +∇e · ∇w) dx dt ∀w ∈ H1
0 (M). (4.10)

Applying Theorem 2.2 we see that there holds

sup
t∈[0,T ]

(‖e(t, ·)‖L2(Ω) + ‖∂te(t, ·)‖H−1(Ω)) 6 κ
(
‖e‖L2(O) + ‖r‖H−1(M) + ‖e‖L2((0,T )×∂Ω)

)
.
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We will show that:
‖e‖L2((0,T )×∂Ω) 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))), (4.11)

‖e‖L2(O) 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω))), (4.12)

and
|〈r, w〉| 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω)))‖w‖H1

0 (M). (4.13)

Estimate (4.11) and (4.12) will basically follow once we control the L2 norm of the error function
in (0, T ) × ∂Ω and (0, T ) × ωh, but (4.13) will be more delicate as there is no immediate relation
that bounds ‖�e‖H−1(M) from above by ‖�e‖H−1((0,T )×Ωh). Let us begin with (4.11). Since

u(t) ∈ H1
0 (Ω)

‖e‖2L2((0,T )×∂Ω) = ‖ũh‖2L2((0,T )×∂Ω) 6 cτ
N∑
n=0

‖uh‖2L2((0,T )×∂Ω).

Applying Lemma 4.1 followed by Corollary 4.4 we have

τ

N∑
n=0

‖unh‖2L2((0,T )×∂Ω) 6 cτ
N∑
n=0

h2‖∇unh‖2h

6 c(h2‖∇u0
h‖2 + h2‖∇u1

h‖2 + h2|||uh|||2F ) 6 c(h2‖u‖2H3(M) + ‖δq‖2C(0,T ;L2(ω))).

Now we consider the bounds (4.12) and (4.13). Define the time discrete projection operator π0 as
follows:

π0v := v(tn) ∀t ∈ (tn−1, tn], n = 1, ..., N.

Then:
‖π0v − v‖L2(0,T ) 6 τ‖∂tv‖L2(0,T ).

We have:

‖e‖2L2((0,T )×ωh) 6 c(h
2 + τ2)‖u‖2H1(M) +

∫ T

0

‖π0πhu− ũh‖2ωh
dt,

and ∫ T

0

‖π0πhu− ũh‖2ωh
dt 6

∫ T

0

‖π0πhu− π0ũh‖2ωh
dt+

∫ T

0

‖π0ũh − ũh‖2ωh
dt

= τ

N∑
n=1

‖πhun − unh‖2ωh
+

N∑
n=1

∫ tn

tn−1

‖π0ũh − ũh‖2ωh
dt.

Here the first term is bounded by |||uh − πhu|||R and we use the identity

ũh(t) = unh + (t− tn)∂τu
n
h, t ∈ (tn−1, tn]

to estimate the second one as follows:
N∑
n=1

∫ tn

tn−1

‖π0ũh − ũh‖2ωh
dt =

N∑
n=1

∫ tn

tn−1

‖(tn − t)∂τunh‖2ωh
dt 6 τ

N∑
n=1

‖τ∂τunh‖2h

6 τ
N∑
n=1

‖τ∂τπhun‖2h + τ

N∑
n=1

‖τ∂τ (πhu
n − unh)‖2h.

The first term above is bounded by τ2‖u‖2H3(M) and as τ = O(h), the second term is bounded by

h2|||πhu− uh|||2F . Hence, using Proposition 4.3 we deduce that

‖e‖2L2((0,T )×ωh) 6 c(h
2‖u‖2H3(M) + ‖δq‖2C(0,T ;L2(ω))).
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Now, using Lemma 3.1 on the domains ωh and ω, by choosing v = u and noting that v(t) ∈ H1(Ω)
for a.e t ∈ (0, T ) we obtain that:

‖e‖2L2((0,T )×(ω\ωh)) 6 ch
2(‖e‖2L2((0,T )×∂ω) + h2‖e‖2L2((0,T );H1(ω)))

6 ch2‖e‖2L2((0,T );H1(Ω)) 6 ch
2(‖u‖2L2((0,T );H1(Ω)) + ‖ũh‖2L2((0,T );H1(Ω))). (4.14)

By the Poincaré inequality and the definition of ũh

‖ũh‖2L2((0,T );H1(Ω)) 6 cτ
N∑
n=1

(‖∇unh‖2h + ‖∇un−1
h ‖2L2(Ω)) 6 cτ

N∑
n=0

‖∇unh‖2h.

We now observe that, using the second inequality of Corollary 4.4

h2τ

N∑
n=0

‖∇unh‖2h = h2τ(‖∇u0
h‖2h + h2‖∇u1

h‖2h) + h2|||uh|||2F 6 c(h2‖u‖2H3(M) + ‖δq‖2C(0,T ;L2(ω))).

Finally, combining the preceding four inequalities yields the desired claim (4.12). We now prove
(4.13). Using the definition of e and the equation �u = 0, we see that

〈r, w〉 = −
∫ T

0

∫
Ω

(−∂tũh · ∂tw +∇ũh · ∇w) dx dt. (4.15)

Recalling that uh has been extended by zero and that by extension w|Ωh\Ω = 0, we have

〈r, w〉 = −
∫ T

0

∫
Ωh

(−∂tũh · ∂tw +∇ũh · ∇w) dx dt (4.16)

Using integration by parts and recalling that w(0, ·) = w(T, ·) = 0 we have∫ T

0

∫
Ωh

(−∂tũh · ∂tw) dx dt = τ

N−1∑
n=1

∫
Ωh

∂2
τu

n+1
h w(·, tn) dx

Now, recalling the definition of the time averaged function w̄, and considering the right hand side
of (4.16) we see that

〈r, w〉 = − τ
N−1∑
n=1

(∂2
τu

n+1
h , w(·, tn)− w̄n+1)h︸ ︷︷ ︸

I

− τ
N∑
n=2

[(∂2
τu

n
h, w̄

n)h + (∇unh,∇w̄n)h]︸ ︷︷ ︸
II

− τ(∇u1
h,∇w̄1)h︸ ︷︷ ︸
III

−
N∑
n=1

∫ tn

tn−1

(t− tn)(∇∂τunh,∇w)h dt︸ ︷︷ ︸
IV

.

We now proceed to bound the six terms I-IV of the right hand side. First, using that

‖w(·, t)− w̄n+1‖L2((tn,tn+1);L2(Ω)) 6 cτ‖∂tw‖L2((tn,tn+1);L2(Ω)),
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we have for the term I:

I =

N−1∑
n=1

(∂2
τu

n+1
h ,

∫ tn+1

tn

(

∫ t

tn

(∂sw(·, s) ds+ w(·, t)− w̄n+1) dt))h

6 cτ

(
N∑
n=2

τ‖∂2
τu

n
h‖2h

) 1
2

‖w‖H1(M) 6 cτ |||uh|||F ‖w‖H1(M).

For the term II, we use (3.4) and (4.2) to obtain

II = τ

N∑
n=2

[−(∂2
τu

n
h, w̄

n − πhw̄n)h]

6 cτ |||uh|||F ‖∇w‖L2(M) 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω)))‖w‖H1(M).

The estimate for III follows immediately from Lemma 4.5. Finally for the term IV , we use Cauchy-
Schwarz inequality and Corollary 4.4 to write

IV 6 c

(
τ

N∑
n=1

‖τ∇∂τunh‖2h

) 1
2

‖w‖H1(M) 6 c(h‖u‖H3(M) + ‖δq‖C(0,T ;L2(ω)))‖w‖H1(M).

�

5. Computational examples

The Euler-Lagrange equations (3.4) form a non-singular, symmetric system of 2NNh linear
equations, where Nh is the dimension of Vh. In this section we will describe a computational
implementation solving (3.4). Our aim is not to give a thorough computational study, but only to
demonstrate the convergence rate in two model cases.

Our computational tests indicate that introducing a constant weight factor in the data fitting
term in the Lagrangian (3.3) leads to improved performance. In the computations below we have
rescaled the term

τ

2

N∑
n=1

‖un − qn‖ωh

by the factor 10. Such a constant factor does not change the theoretical conclusions above. The
other terms in (3.3) could be rescaled as well, however, we do not study this type of parameter
tuning in the present paper.

We will consider only the case that Ω is the unit interval and take T = 1. The mesh Th is chosen
to be uniform and we will use the same number of degrees of freedom in space and in time, that is,
we choose Nh = N . The LU factorization is employed to solve (3.4). We consider

u(t, x) = cos(2πt) sin(2πx)

solving (1.1). Figure 1 summarizes the convergence of the method in two cases ω = ωj , j = 1, 2,
where

ω1 = (0, 0.2) ∪ (0.8, 1), ω2 = (0, 0.2).

The errors reported are given by

max
n=0,...,N

‖u(tn)− unh‖L2(Ω) , (5.1)
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Figure 1. Convergence of the method compared with the predicted first order rate
(log-log axes). The error on vertical axis is given by (5.1). Solid blue line gives
the errors for the method analyzed in Theorem 4.6. The dashed red line gives the
errors for the method where only the initial energy is used in regularization. The
mesh sizes are τ = 1/60, 1/70, . . . , 1/120. Left. The case ω1, convergence rates are
1.26 (blue) and 1.06 (red). Right. The case ω2, rates are 0.97 (blue) and 0.62 (red).

where (uh, zh) is the solution of (3.4). We have also included computations using a method where
the regularization L1 in (3.3) is replaced with the weaker regularization

L̃1(u) =
1

2

(
‖h∇u1‖2h + ‖h∂τu1‖2h

)
,

giving the initial energy on the discrete level.
Observe that the geometric control condition is satisfied in the case of ω1 whereas it is not

satisfied in the case of ω2. However, as ∂tu vanishes identically at t = 0, the recovery of u is still
stable, see e.g. [47]. In the case of ω1, both the methods converge with a rate that is slightly better

than that predicted by the theory. In the case of ω2, the method with the weak regularization L̃1

fails to converge with a linear rate, whereas the method analyzed above converges with the linear
rate. This is similar to our study of a data assimilation problem for the heat equation [13]. Also in
that case it was necessary to use regularization terms involving the cross derivative ∇∂τ .

We conclude that the computational implementation gives convergence rates that are in line
with the linear rate predicted by Theorem 4.6. In our numerical tests we also observed that simply
discretizing the preliminary Lagrangian (3.1) leads to a method that fails to converge if no further
regularization is present.

6. Further Remarks

We begin this section by making a remark about the choice of the time discretization employed
here, since it does not conserve any notion of a discrete energy. The numerical dissipation intro-
duced by the backward differentiation formula in time introduces a regularizing effect on the time
derivatives of the approximate solution that we use to our advantage. This a priori control is used
for the error estimate of Theorem 4.6.

It would be desirable to use an energy conservative discrete scheme, but the regularization of
time derivatives of the forward solution must then be added to the stabilizing term. This shifts the
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energy balance of Proposition 3.2 and it is unclear if the stability result can be obtained without
introducing regularization also for the dual variable z. Observe that regularization terms on the
dual variable perturb energy conservation of the forward problem, so they must be avoided if the
method is to be energy conservative. In contrast with the one-way coupling of the primal and
dual variables u and z in (3.4), dual stabilization also introduces a two-way coupling between the
systems for u and z. Therefore optimal estimates for energy conserving schemes is left as a topic
for future research together with the extension to methods of higher accuracy.

6.1. Polyhedral boundaries. Recall that the proof of the key continuum estimate in Theorem 2.2
only works for smooth boundaries. Indeed the boundary smoothness assumption imposed in this
paper is purely an artifact of the continuum estimate as the finite element method would be much
simpler to apply for polyhedral boundaries and the discrete solution (uh, zh) would also exist and
be unique. It is however possible to obtain a similar statement as in Theorem 4.6 for the case where
Ω is a convex domain with a polyhedral boundary ∂Ω. Here we present an admissibility condition
that will be in some ways an alternative formulation of the geometric control condition or the
Γ−condition for domains with polyhedral boundaries. Once this admissibility condition is satisfied
for the observable domain O, one can proceed to prove that Theorem 4.6 holds. To formulate this
condition, we assume that there exists an auxiliary exhaustion of the polyhedral domain Ω by a
sequence {Ωn}n∈N such that the following properties are satisfied:

• ∀n ∈ N Ωn ⊂ Ωn+1,
• µ(Ω \ Ωn) 6 1

n , where µ denotes the Lebesgue measure,
• ∀n ∈ N ∂Ωn ∈ C∞.
• (0, T )× (Ωn ∩ ω) satisfies the geometric control condition in (0, T )× Ωn for all n.
• The constants Cn in the observability estimates corresponding to (0, T ) × (Ωn ∩ ω) are

uniformly bounded.

For polyhedral domains Ω, we call the sets O = (0, T )×ω with the above properties to be admissible.
Note that the first three conditions will always be possible for any polyhedral domain Ω. It is
merely the last two conditions which may not be true for an arbitrary domain O. It is easy to check
that if O satisfies the Γ−condition, then the admissibility condition above holds and therefore the
implementation of the FEM in these cases works even for polyhedral boundaries Ω. It would be a
very interesting question to study how this admissibility condition can more generally be written
for Ω, ω, T without the use of the sequence Ωn.

6.2. Alternative choices of discrete regularization. Let us now return to the explicit form
of the Lagrangian functional L(u, z) in (3.3) and sketch some heuristic arguments regarding the
discrete level regularization terms and the possibility of altering or removing them. The terms
τ
2

∑N
2 ‖un−qn‖2ω +G(u, z) are absolutely necessary if we want the critical points of the Lagrangian

functional to converge to the solution of (1.1). The two regularizer terms 1
2‖h∇u

1‖2h + 1
2‖h∂τu

1‖2h
control the initial energy of the system and seem to be a natural term in the regularization. However,

the additional terms 1
2‖h∇∂τu

1‖2h + 1
2‖h∇∂τu

N‖2h + τ
2

∑N
2 ‖τ∇∂τun‖2h control a particular choice

of mixed derivatives of u. The advantage of using these additional regularizer terms is that it
yields Lipschitz stability of the FEM with the optimal rate h and it avoids the use of any dual
stabilizer terms for z in the Lagrangian. There is some freedom in the selection of these regularizers.
For example, observe that the Lagrangian can be reduced by dropping the term ‖h∂τu1‖ without
sacrificing stability since the contribution from this term is controlled by ‖h∂τ∇u1‖h by the Poincaré
inequality. This term however is kept due to its physical significance as the initial kinetic energy.
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One may be able to remove the bulk regularizer term τ
2

∑N
2 ‖τ∇∂τun‖2h and replace it with only

initial and final data regularizers such as 1
2‖h∂

2
τu

2‖2h+ 1
2‖h∇∂τu

1‖2h+ 1
2‖h∇∂τu

N‖2h and obtain the
same error estimate. This will require an alternative energy estimate (see Lemma 3.3) and as such
will require the smoothness class u ∈ H4(M).

One could also prove Theorem 4.6 using a less number of regularization terms but at the cost of
a slower rate of decay. For example, using the Lagrangian functional

L̂(u, z) =
τ

2

N∑
n=2

‖un − qn‖2ω +G(u, z) +
1

2
‖h∇u1‖2h +

1

2
‖h∂τu1‖2h +

1

2
‖h∂τ∇u1‖2h,

it is possible to prove Theorem 4.6 with a slower rate of decay of O(
√
h) for the error function.

It is also possible to obtain a linear convergence for the error function in weaker norms using the
following ’minimal’ Lagrangian functional:

L̃(u, z) =
τ

2

N∑
n=2

‖un − qn‖2ω +G(u, z) +
1

2
‖h∇u1‖2h +

1

2
‖h∂τu1‖2h,

In this case, one can still prove Lemma 3.4 in the exact same manner. A similar estimate can be
proved for u as well by choosing the test function w through:

wn := (2T − nτ)∂τu
n + τ

n∑
m=0

(1 +mτ)um.

This will give positive control of ‖τ
∑n
m=0 u

m‖2h together with τ
∑N
n=0 ‖un‖2h and τ

∑N
n=1 ‖∂τun‖2h.

Using these alternative estimates one can show that there exists a unique discrete solution (uh, zh)
to

∂uL̃(uh, zh) = 0,

∂zL̃(uh, zh) = 0.

Now let Eun = τ
∑n
m=0 u

n and set

ũh :=
1

τ
((t− tn−1)Euhn + (tn − t)Euhn−1) ∀t ∈ [tn−1, tn].

One can then prove that if e :=
∫ t

0
u− ũh, then the following weak stability estimate for the above

FEM holds as well:

‖e‖L2(M) 6 ch‖u‖H3(M) and ‖u0 − u0
h‖H−1(Ω) 6 ch‖u‖H3(M).
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