1 Multistage and adaptive sampling protocols combined with NIR 2 sensors for automated monitoring of raw materials in bulk

J.A. Adame-Siles^{*1}, J.E. Guerrero-Ginel¹, T. Fearn², A. Garrido-Varo¹, D. PérezMarín¹

5 ¹Department of Animal Production, Non-Destructive Spectral Sensor Unit, Faculty of

6 Agricultural and Forestry Engineering, University of Córdoba, Agrifood Campus of

- 7 International Excellence (ceiA3). Campus Rabanales, N-IV, km 396, Córdoba 14014, Spain.
- ²Department of Statistical Science, University College London. Gower Street, London WC1E
 6BT, United Kingdom.
- *Corresponding author at: Campus Rabanales, N-IV, km 396, Córdoba 14014, Spain. Tel. +34
 957 21 85 55. E-mail address: g42adsij@uco.es
- 12

13 ABSTRACT

14 A NIR spectroscopy-based real-time monitoring system is proposed to sample and 15 analyse agro-industrial raw materials transported in bulk in a single stage, easing and optimising 16 the evaluation process of incoming lots at reception of agri-food plants. NIR analysis allows 17 rapid and cost-effective analytical results to be obtained, and hence to rethink current sampling 18 protocols. For this purpose, multistage and adaptive sampling designs were tested in this paper, 19 which have been reported (in soil science and ecology) to be more flexible and efficient than 20 conventional strategies to study patterns of clustering or patchiness, which can be the result of 21 natural phenomena. The additional spatial information provided by NIR has also been exploited, 22 using geostatistical analysis to model the spatial pattern of key analytical constituents in 23 Processed Animal Proteins (PAPs). This study addresses the assessment of two kinds of 24 quality/safety issues in PAP lots -moisture accumulation and cross-contamination. After a 25 simulation study, qualitative and quantitative analyses were carried out to make a performance 26 comparison between sampling designs. Results show that sampling densities below 10-15% 27 demonstrated higher estimation errors, failing to represent the actual spatial patterns, while a 28 stratified adaptive cluster sampling design achieved the best performance.

29

30 Keywords: Near infrared spectroscopy, Geostatistics, Kriging, adaptive cluster sampling,

- 31 automatic control system, real-time surveillance
- 32

33 Abbreviations

ACS	Adaptive Cluster Sampling
ANOVA	Analysis of Variance
Clu	Cluster Sampling
CPcs	Case study testing cross-contamination
CtrA	Criterion to define critical values (10% above the mean)
CtrB	Criterion to define critical values (90 th quantile)
EU	European Union
FAO	Food and Agriculture Organization of the United Nations
ISO	International Organization for Standardization
ISTA	International Seed Testing Association
Mcs	Case study testing high moisture content areas
NIRS	Near infrared Spectroscopy
OK	Ordinary Kriging
РАР	Processed Animal Proteins
R2	Coefficient of determination
RMSEP	Root Mean Square Error of Prediction
RPD	Residual Predictive Deviation

SECVStandard Error of Cross-validationSRSSimple Random SamplingStrACSStratified Adaptive Cluster SamplingTOSTheory of Sampling

34

35 1 Introduction

36 The EU General Food Law Regulation provides a regulatory framework involving all 37 stages of the food & feed chain (European Commission, 2002). This law constitutes an 38 overarching, strict and comprehensive policy, assuming food & feed safety and quality as a 39 priority. In terms of regulatory compliance, a wide range of rules are enforced for issues such as 40 trade aspects and processing or storage of raw materials. Thus, establishing management 41 programs and surveillance schemes is vital for all stakeholders involved (from public bodies and 42 food & feed operators to consumers). As a consequence, they need to address the 43 implementation and strengthening of monitoring and rapid alert systems, as well as codes of 44 good practice, which help to ensure food & feed safety and quality standards, and improve 45 traceability. For this purpose, food & feed controls along the stages of the chain, before 46 distribution, become a key pillar. In this regard, the EU Official Controls Regulation (European 47 Commission, 2017) acknowledges the importance of auto-controls performed by operators, 48 including private quality assurance systems, as a support for the official controls.

49 Cooperation between operators and authorities is therefore of major interest (Directorate 50 General for Health and Food Safety, 2017; FEFAC, 2016, 2018), and the agri-food industry has 51 a crucial role to play in this context. Over the last few years, substantial efforts have been made 52 by the scientific community and competent participants (manufacturers, laboratories, 53 authorities, etc.) to develop methods and standards to monitor and control all production steps. 54 Nevertheless, despite the success achieved in some stages of the process, sampling and analysis 55 of raw materials in bulk still remain as demanding tasks. In this case, the challenge is of greater 56 magnitude, being determined not only by the difficulty of dealing with large volume products, 57 but also by the need to design and adapt control protocols (sampling strategies and analysis 58 methods) to the specific requirements of each type of product and lot.

Bulk food and feed sampling is widely understood as a multistep process in which 59 60 classically a set of primary increments (taken from the lot) is pooled to form a composite 61 sample, then mass-reduced (in various steps) to ultimately get the analytical aliquot with the 62 right size for laboratory analysis (European Commission, 2009, 2013; ISO, 2002, 2009). The 63 importance of obtaining a representative sample as a result of this process should be 64 emphasised. This is indeed considered an essential prerequisite, equally important as the 65 analytical accuracy, to finally draw reliable conclusions (Esbensen, Paoletti, & Thiex, 2015; Kuiper & Paoletti, 2015). The Theory of Sampling (TOS) has emerged as an effective 66 67 framework to control and minimize errors occurring at all sampling steps involved, thus 68 providing principles for representative sampling (Esbensen, 2013; Esbensen & Mortensen, 69 2010; Gy, 2004; Petersen, Minkkinen, & Esbensen, 2005).

70 On the other hand, a number of international organizations such as the International 71 Organization for Standardization (ISO), Codex Alimentarius, the Food and Agriculture 72 Organization of the United Nations (FAO) or the International Seed Testing Association (ISTA) 73 have also attempted to define sampling approaches and procedures for the inspection of bulk 74 materials. Nevertheless, their appropriateness has been discussed. Paoletti and Esbensen 75 (Paoletti & Esbensen, 2015) argue that most of them "lack of guidance on the correct 76 prerequisite design, implementation, and operation of fit-for-purpose sampling plans and 77 sampling procedures". In addition, they underline that sampling plans derived from these 78 standards rely on distributional assumptions which are often neither explicitly described nor 79 verified, and conveniently based on an unjustified randomness assumption for the distribution of 80 the analyte of interest.

81 Notwithstanding the above, the patterns of a wide variety of phenomena affecting food 82 and feed quality and safety, such as some material properties (e.g. heterogeneity) or the 83 presence of contaminants (bacteria, fungi, etc.), show evidence of aggregation tendencies. Thus, 84 conventional sampling designs may be inefficient to evaluate and detect issues that follow these 85 spatial distributions. Moreover, most procedures conventionally carry out a sample plan fixed 86 before sampling, the negative effects of under-sampling occurring are likely to increase. 87 Consequently, there is a need for sampling strategies that may provide a viable solution in this 88 context.

Adaptive sampling designs, which have not yet been studied for food & feed control purposes, have become well-known in soil and natural sciences as a way of addressing the inherently difficult sampling situations associated with these fields (e.g. mineral exploration or epidemiological studies). An adaptive sampling design is one in which the sample selection procedure depends on the values observed while conducting the survey. On the basis of this 94 principle, unlike conventional sampling designs, these allow to make decisions during the

- 95 survey and adaptively increase sampling intensity, so that whenever a condition of interest is
- satisfied by the observed value of a selected unit, neighbouring sites are then explored and
- 97 added to the sample. Therefore, adaptive sampling strategies have been reported to improve
- 98 significantly the effectiveness of sampling effort, as well as the precision of the estimates when
- 99 trying to infer patchy distributions as well as concentration or density of the aggregation
- 100 patterns (Thompson, 1990, 2012; Thompson & Seber, 1996).

101 Besides the improvement of sampling designs, there is still much work to be done as 102 regards the range of shortcomings that are currently linked to sampling of raw materials in bulk. 103 Such limitations as cost, qualified manpower requirements and time constraints are determining 104 factors that often lead to over-simplistic protocols (e.g. grab sampling). They are also 105 characterised by low sample throughput (with a severe mass reduction, from several tonnes to a 106 few grams), compromising the lot-sample representativity, and include too many stages in the 107 field-to-aliquot pathway, which is detrimental to the efficiency of the evaluation process. 108 Furthermore, the incremental samples are always aggregated before analysis and, as a 109 consequence, all information about the distribution and the spatial structure of the characteristic 110 of interest is lost.

111 Bearing these constraints in mind, research was recently initiated to explore a new 112 approach for the analysis of raw materials in bulk directly inside the transport unit (trucks, 113 containers, etc.), before unloading (Adame-Siles et al., 2017). From an analytical standpoint, 114 this approach is based on near-infrared (NIR) spectroscopy. Considering the benefits of this 115 technology, it has already become a crucial asset for a large number of agri-food industries, 116 which have integrated NIR-based quality-control systems successfully, although still mostly as 117 at-line applications. This work, however, sought to take the analysis stage from the laboratory to 118 the delivery point of raw materials at any agri-food production plant. In addition to the ability to 119 perform rapid and cost-effective analysis, which makes it possible to increase significantly the 120 sample volume, the use of NIR fibre-optic sensors was proposed to obtain an analytical 121 determination for each sampling point. This means that not only can every sampling unit be 122 analysed and recorded separately, but it can also preserve its spatial coordinates. The study 123 subsequently exploited the potential of the extra spatial information obtained, performing a 124 geostatistical analysis in order to recognise and model the spatial structure of key properties of 125 PAPs (Processed Animal Proteins). Therefore, this methodology laid the foundation for 126 rethinking the existing sampling approaches and the evaluation of a real-time NIR-based 127 monitoring system of raw materials in bulk.

The main aim of this paper is to investigate some fit-for-purpose sampling protocols, based on the adoption of multistage and adaptive sampling plans, for the inspection of raw materials in bulk using the above-mentioned methodology. It also pursues a performance comparison between strategies on their ability to characterize the spatial distributions of two quality and safety issues tested in PAP lots, selected as a case study to assess the proposed method.

134 2 Materials and Methods

135 2.1 Lots

A total of 8 lots of PAPs, directly received from the rendering plant, were involved in the experimental design of this paper. The set was selected considering the variability in species composition of the lots listed in (Adame-Siles et al., 2017). The selection consisted of the following lots: Lot 1 (100% Poultry), Lot 2 (58% Poultry, 42% Pig), Lot 3 (64% Poultry, 36% Pig), Lot 4 (100% Poultry), Lot 5 (50% Poultry, 50% Pig), Lot 7 (100% Poultry), Lot 8 (100% Poultry) and Lot 10 (23% Poultry, 60% Pig, 11% Cattle, 6% Sheep).

142 Two types of quality and safety risks were tested simulating a variety of situations. First, 143 the presence of high moisture content areas was evaluated as case study (henceforth referred to 144 as Mcs), since this factor is of great importance as it may be conducive to fungal or 145 bacteriological problems. On the other hand, the adulteration by cross-contamination by PAPs 146 of different nature or category was also addressed as another case study (henceforth referred to 147 as CPcs). To this end, a glass container served to house all the PAP lots for sampling and 148 analysis (Fig. 1A). A sheet of methacrylate with a sampling grid of 14×10 points was used as a 149 reference to position the sensor.

150 Five lots (Lots 1, 2, 3, 4 and 7) were selected to form part of Mcs. The use of a different 151 amount and distribution of water, poured one day prior to analysis, gave rise to the set of tests 152 that constitute this case study. Most of them mainly involved water accumulation at the walls 153 and corners of the container, which are commonly the highest risk areas in lots in bulk. On the 154 one hand, Lot 1 was tested pouring a volume of water of 50 ml in the centre and 100 ml in every 155 corner of the container (Fig. 1B). Secondly, 500 ml of water were added to Lot 2 and located in 156 the centre of the container (Fig. 1C). Thirdly, two discharges of 300 ml were applied to Lot 3 in 157 the north and south-central areas of the container (Fig. 1D). Furthermore, Lot 4 test involved the 158 pouring of 400 ml and 250 ml of water over the north-west and south-east corners, respectively 159 (Fig. 1E). Finally, Lot 7 was tested by pouring 500 ml of water in all corners (Fig. 1F). For 160 these cases, measurements were taken at two different depths (layer U and L).

161 On the other hand, CPcs was carried out using Lots 1, 5, 8 and 10. Tests under CPcs 162 experiment were designed in order to explore whether the methodology was able to recognise 163 possible regions that did not follow the expected pattern of the lot being tested. For this purpose, 164 three different mixtures were made by varying the distribution of the lots in the glass container. 165 Two tests involved Lots 1 and 5, one of them was carried out positioning sample from Lot 1 in 166 the north-east corner of the container and the rest of the it being sample from Lot 5 (Fig. 1G) 167 and, the other test, locating sample from Lot 1 in the north-east and south-west corners, while 168 the rest of the container was filled with sample from Lot 5 (Fig. 1H). Moreover, a third test 169 involved Lot 10, which was located at the north-east and south-west corners of the container, 170 and Lot 8 was used in the rest (Fig. 11). In this case study, only layer U was measured.

The set of experiments performed aimed at dealing with borderline cases of both kinds of
adulteration, in which risk areas are highly localised, since this served as a starting point to test
the limits of the methodology.

174 2.2 Instrumentation and analysis

175 NIR analysis was performed by measuring spectra in each test using a reflection probe 176 (Turbido, Solvias AG, Kaiseraugst, Switzerland) interfaced to a Matrix-F FT-NIR instrument 177 (Bruker Optics, Ettlingen, Germany) (834.2-2502.4 nm). The probe features a bundle of two 178 optical fibres (core size of 600 µm) encased in a stainless-steel body (300 mm in length; 12 mm 179 in diameter), whose end splits in two legs (illumination/acquisition), and its tip has a sapphire 180 window of 1.5 mm in diameter. Two fibre-optic cables of 100 m enabled to connect the probe to 181 the instrument.

182 Measurements were the result of a total of 32 scans, with a resolution of 16 cm⁻¹ and a 183 scanner velocity of 10 kHz. A probe-specific Spectralon was used for white reference 184 measurements, which were made after every set of 42. Within the context of a preliminary study 185 (Adame-Siles et al., 2017), firstly, the noise level of the signal was evaluated along the spectral 186 range by applying to the $\log 1/R$ data a first derivative pre-treatment, with a single-unit gap and 187 five data-point smoothing. After visual examination, noisy regions were found at the beginning 188 and at the end of the spectral range, leading to the selection of the optimum wavelength range 189 1386-2033 nm. Subsequently, a standardisation methodology was initiated to transfer a database 190 of 346 samples of PAPs, from which calibration equations had been developed using a different 191 analysis mode (the same instrument was used but coupled to a detection head for contactless 192 measurements). Finally, after a recalibration procedure, calibration equations (whose most 193 relevant statistics are shown in Table 1) were obtained so that an analytical result could be got at 194 every sampling unit using the NIR reflection probe. Moisture and crude protein were the 195 constituents selected as control parameters in Msc and CPsc, respectively.

- 196 Spectral measurements were acquired using software OPUS v7.0 (Bruker Optics).
- 197 Moreover, NIR prediction models were applied by using WinISI v.1.50 (Infrasoft International),

198 Matlab R2018a (The MathWorks Inc.) and PLS Toolbox (Eigenvector Research).

199 **2.3** Sampling study

200 2.3.1 Preliminary setup

First of all, NIR measurements were made once at every sampling unit of the global grid (N = 140; hereinafter referred as '100% sampling') in all tests of both case studies. This population was designed to be used as analytical reference for the subsequent sampling study. Following this, according to the different sampling plans, samples were then obtained as a subset of N. All plans included some randomness, thus a total of S = 1000 simulation replications were computed in all cases, which enabled a performance comparison among sampling designs.

208 2.3.2 Sampling designs

209 2.3.2.1 Multistage sampling

A two-stage sampling design (Cluster-SRS) was tried in this case, with cluster (Clu) sampling at the first stage, and simple random sampling (SRS) at the second stage. For this purpose, N was divided into 14 primary units, each composed of a total of 10 secondary units. A set of four different sampling intensities were then addressed (i = 30, 20, 10 and 5% of the N population).

The approach consisted of selecting 7 clusters randomly (regardless of the sampling intensity attempted) and, at the second stage, a simple random sample of secondary units, which varies depending upon the sampling intensity to achieve: i = 30% (6 units/cluster), i = 20% (4 units/cluster), i = 10% (2 units/cluster) and i = 5% (1 unit/cluster). Figure 2A shows an example of a two-stage sample (i = 5%) selected following this protocol. As noted above, this procedure was run a total of 1000 times for each *i* (Fig. 3A).

221 2.3.2.2 Adaptive Cluster Sampling

An adaptive cluster sampling (ACS) design generally includes the following steps: (i) an initial sample of units is selected using some probability sampling scheme; (ii) for every unit in which the observed value meets a given criterion *C*, additional units in some pre-defined neighbourhood of that unit will become part of the sample; and (iii) if any of these units satisfy *C*, their neighbourhoods are then included too, which gradually leads to obtaining what is known as a *network* (a group of adjacent units whose values are all greater than or equal to the critical value). In theory, this process continues until *C* is not met by any unit, which is usually referred to as *unrestricted adaptive sampling*. Nonetheless, in order to avoid open-ended sampling designs, with the consequent effects on costs and logistics, ACS frequently requires a stopping rule to terminate the sampling process. Moreover, another limitation of the adaptive selection procedures is that they may introduce biases into conventional estimators, so that the need for design-unbiased estimators is emphasised here (such as Hansen-Hurwitz and Horvitz-Thompson estimators) (Thompson, 1990, 2012).

235 In this paper, three variants of ACS were tested, all with a preliminary sampling intensity 236 of 5%. They differ, however, in the method for selecting the initial sample. On the one hand, the 237 first scheme tried was a pure ACS, i.e. a simple random sample of units was obtained to begin 238 the process (Fig. 2B). In addition, two versions of stratified sampling were examined. The first 239 strategy (StrACS-1) divided the study area into 7 strata: north and south-central strata, 4 regions 240 in the corners of the container and a central stratum (Fig. 2C). The within-stratum sample size 241 of the initial sample was allocated based on proportional allocation. The second approach 242 (StrACS-2) made a different arrangement within the study area, stratifying it into three zones 243 with unequal probability (Fig. 2D). One stratum covered the edge of the container, the second 244 one was contiguous, while the innermost layer constituted the third stratum. In this case, the 245 initial sample (i = 5%, i.e. 7 sampling units) was allocated to strata in proportions, 50% (4) 246 units), 30% (2 units) and 20% (1 unit), decreasing from outer to inner strata (rounding sample 247 size to a whole number). In the stratified protocols, the neighbourhoods were allowed to cross 248 the boundaries of strata, as stratification was only applied to the initial sample.

In order to limit the total sampling effort to a practical level, a stopping rule of level 2 (the neighbourhood exploration procedure was only conducted twice) was used. There exist different possible patterns when defining a neighbourhood of units (e.g. top, bottom, left and right; northwest, southwest, northeast and southeast, etc.). In this paper, the first-order neighbourhood consisted of the initial unit itself and the 8 contiguous boundary units. Moreover, Figs. 2B, 2C and 2D show the distribution of the second-order neighbourhood defined, in which 8 more units are added to the sample.

256 Concerning the critical value *C*, two different criteria were applied in this regard. The 257 first criterion, henceforth referred to as *CtrA*, considered as critical those units in which the 258 parameter is equal to or greater than 10% above the mean of initial samples. On the other hand, 259 the second criterion, or *CtrB*, sets *C* to the 90th quantile of the sample values. Figure 3B 260 represents the simulation procedure followed for the adaptive designs described. As previously 261 stated, a total of 1000 simulation replications were performed in each case.

262 The algorithms needed to perform the simulation study were developed in RStudio (v263 1.1.1463).

264 **2.4** Spatial analysis

The spatial patterns of the analytical constituents considered, moisture (Mcs) and crude protein (CPcs), were analysed using geostatistics. Therefore, a geostatistical study was conducted for every iteration of the simulation process, and took place in two stages: (i) structural analysis; and (ii) spatial estimation.

269 The first phase, commonly referred to as variography, uses the semi-variogram to 270 characterize and model the autocorrelation structure of data, thus providing a means to quantify 271 the spatial variation of the property of interest (Chiles & Delfiner, 2012). The experimental 272 semi-variogram displays a curve relating the distance between data pairs (lag distance, or h) 273 with their semi-variance, a measure that averages squared differences of the variable. Both 274 omnidirectional and directional (0, 45, 90 and 135°) variograms were calculated for each case 275 study in this paper. Variogram modelling was addressed as a subsequent step. This task allows 276 to fit an authorised mathematical function of the distance to the experimental variogram, 277 providing the parametric model needed to compute a variogram value at unobserved sites and to 278 meet the mathematical property of conditional negative definiteness (Gringarten & Deutsch, 279 2001).

280 The second stage refers to the use of the previously modelled spatial variance to estimate 281 interpolated values between sampling points. For this purpose, one of the most reliable and 282 commonly used kriging estimators, named ordinary kriging (OK), was applied for the mapping 283 of the analytical parameters in this paper. Kriging is a robust family of generalised least squares 284 linear regression algorithms which, based on the results of the structural analysis, achieves to 285 accurately estimate values at unsampled locations. A more detailed description of this 286 geostatistical approach can be found in (Adame-Siles et al., 2017), and more on OK theory and 287 practice in (Cressie, 1991; Goovaerts, 1997a; Isaaks & Srivastava, 1989; Myers, 1991; Webster 288 & Oliver, 2007).

Variographic analysis and spatial interpolation were both implemented in the R
environment (version 3.4.3). The gstat R package was used to perform all geostatistical analyses
(Pebesma, 2004).

292 2.4.1 Calculation of the estimation error

293The Root Mean Square Error of Prediction (RMSEP) statistic was used to evaluate the294performance in each case study:

RMSEP =
$$\sqrt{\frac{\sum_{j=1}^{N} (y_{j,krig} - y_{j,NIR})^2}{N}}$$
 (1)

where $y_{j,krig}$ are the interpolations obtained by kriging and, $y_{j,NIR}$, the analytical values, for the sampling unit *j* of the sampling grid *N*. It is worth noting that for some *j* units, the $y_{j,krig}$ will be the actual measurement, so the derived errors will be zero in these cases.

298 Moreover, the mean and the standard deviation of the RMSEP were also calculated for 299 the S=1000 simulations performed:

$$\mu = \frac{1}{S} \sum_{i=1}^{S} \text{RMSEP}_i$$
(2)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{S} (RMSEP_i - \mu)^2}{S - 1}}$$
(3)

In addition, one-way analysis of variance (ANOVA) was performed for every test to
 examine whether significant differences in log values of the RMSEP were found among the
 three adaptive sampling designs tried.

303 **3 Results and Discussion**

304 3.1 Data preparation

305 As a first step, the geostatistical study addressed the variographic analysis of both case 306 studies in order to model the spatial pattern of the constituents of interest. For variography it is 307 recommended to have at least 100 - 150 sampling points to obtain robust results (Webster & 308 Oliver, 2007), therefore semi-variograms were computed from the data set of N sampling points 309 in each case, which would also allow to build a library of structural analyses of PAP lots to help 310 future routine structural assessments based on sample data. As reported by Adame-Siles et al 311 (Adame-Siles et al., 2017), the structural analysis for moisture and crude protein revealed 312 several contrasts between both constituents in their spatial behaviour. Moisture variograms 313 exhibit zero, or close to zero, nugget (the semi-variogram value at the origin), and a linear 314 increase until they reach an asymptote, or 'sill' (the semivariance value at which the 315 semivariogram levels off). Nevertheless, crude protein tests generally showed a monotonic 316 increase with increasing lag distance and a positive intercept on the ordinate.

317 A model was fitted to the experimental variogram. The most common functions available 318 for this purpose were tested and, two mathematical models, linear and spherical, were selected 319 as they provided the best fit for the crude protein and moisture semi-variograms, respectively.

The sampling study started after the variogram modelling stage and was carried out according to the procedure described in section 2.3. Then, every sampling design (Fig. 2) was performed in each test of case studies A and B following the protocol illustrated in Fig. 3. This procedure was executed a total of 1,000 times in each case.

Following the structural analysis, spatial interpolation by ordinary kriging was tackled, using as an input the sample data set resulting from each iteration of the sampling study (i.e. for every sampling design and case study). As a consequence, kriging maps representing the spatial pattern of the constituent were obtained in each case. Finally, the sample sets together with the interpolated values at all 140 points were used in Eq. (1)(1) to evaluate the performance and for comparison purposes among designs.

330 **3.2** Performance assessment

331 3.2.1 Qualitative analysis

332 Two representative illustrations of the quality and safety risks evaluated in lots of PAPs 333 are shown in Fig. 4 and Fig. 5. The first one depicts moisture spatial distributions associated 334 with one test of Mcs (Lot 1 -layer L), while the second shows crude protein surfaces generated 335 from one test belonging to CPcs (Lot1+5(2)). Both figures represent the outcome of one 336 iteration from the set of S simulations obtained for each sampling design tested.

The mapping of moisture for the '100% sampling' design is shown first in Fig. 4, offering a visual reference against which to compare all other distributions resulting from the sampling designs to be evaluated. As seen in Fig. 1B, the experimental design conceived for this test included the pouring of water at the centre of the container and all four corners. Bearing this in mind, if the effect of irregular water drainage and distribution is taken into account, which varies depending on the depth of the layer under consideration, the spatial distribution in this case managed to illustrate the regions where the higher moisture accumulation took place.

Regardless of the design, sampling intensity plays a crucial role, having a pronounced impact on the results. This effect can be inferred taking into account the kriged maps obtained by the multistage strategy, Cluster-SRS. In this case, four sampling intensities were tested, and a reduction in performance on the mapping of the affected areas can be observed as sample size decreases. Higher sampling intensities, i = 30% and (to a lesser extent) i = 20%, generally manage to reproduce the original distribution, whereas the lowest ones (i = 10% and i = 5%) did not succeed in portraying all the risk areas, demonstrating a distinct loss of information orsmoothing effect compared with the preceding ones.

352 Figure 4 also shows the spatial distributions achieved from the adaptive sampling designs 353 tested (ACS, StrACS-1 and StrACS-2). Surfaces using CtrA (10% above mean) to determine the 354 critical value are depicted in Figure 4.5 to 4.7, while maps based on CtrB (90th quantile) are 355 shown in 4.8 to 4.10. On the basis of the stopping rule of level 2 used, both criteria differ in the 356 maximum sampling density they reach in the distributions represented, with CtrA (20%) slightly 357 surpassing to CtrB (16.4%). In terms of accuracy to characterise the actual moisture 358 distribution, CtrA surfaces perform well especially regarding the critical areas present at the 359 edge of the container, whereas all designs but ACS lost the central area. By contrast, CtrB maps 360 manage to picture this risk area in the centre, but most (especially ACS) lose information on the 361 edge.

The results for the crude protein test are shown in Fig. 5. In this case, the experimental design consisted of placing two different lots in the container, in such a way that both the lowerleft corner and the upper-right corner belonged to Lot 1 and the rest to Lot 5 (Fig. 1H). The surface obtained from the 100% sampling design for the crude protein constituent effectively discriminates the different pattern at the corners, thus in line with the design of the test.

367 As regard sampling intensity, the resulting maps for the Cluster-SRS sampling design 368 show a decline in performance with lower densities, from which a similar analysis to the 369 previously made can be derived. As was the case for the moisture test, sampling intensities of 370 30% and 20% generally achieve more faithful crude protein surfaces than 10% and 5% do. 371 Concerning the adaptive sampling designs, it may be seen that those linked to *CtrA* finally 372 remain at the initial sampling density (i = 5%), which means that no critical units were found 373 during the process. In fact, this is because the crude protein parameter ranges for this test from 374 57.61% to 67.66%, averaging 63.39%, thus making that none of the units can satisfy CtrA, i.e. 375 exceed 1.1 times the average value. Taking this into account, only StrACS-1 achieved 376 reasonable results in comparison with the other designs. On the other hand, sampling designs 377 following CtrB attained a sample size of 16.4%, generally accomplishing the task of illustrating 378 the actual distribution.

379 3.2.2 Quantitative analysis

The estimation error was calculated for each test of both case studies (A and B) by the
Eq. (1)(1). The RMSEP statistic was computed from the comparison between the kriging
estimations and the actual NIRS analytical values at each unit of the population (N). The

383average value (Eq. (2)(2)) and standard deviation (Eq. (3)(3)) of the RMSEP were also384calculated for each sampling design from the 1000 simulations performed.

The estimation error values for the multistage sampling design tested in this paper (Cluster-SRS) are shown in <u>Error! Reference source not found.Table 2</u>. In quantitative terms, they support the previous qualitative analysis regarding the effect of the sampling density on the results. Thus, it can be seen that there exists a negative correlation between the sample size and the estimation error. A determining factor contributing to this effect is the declining availability of information with lower sampling intensities, which inevitably leads to bigger errors.

391 The estimation errors associated to the adaptive sampling designs performed under CtrA 392 are reported in Table Table 3 (ACS, StrACS-1, StrACS-2), while those carried out under CtrB 393 are shown in Table Table 4 (ACS, StrACS-1, StrACS-2). Moreover, in order to facilitate 394 assessment and comparison, Figure 6 graphically displays the average values (from the 1000 395 simulations) of the RMSEP statistic for all the sampling designs tested. Cluster-SRS was 396 included in this figure for i=5%, which corresponds to the initial sampling density for the 397 adaptive designs (the average sampling intensity, for the S=1000 simulations, reached by each 398 adaptive design is also expressed). The results are grouped by test (only layer U is shown for 399 those belonging to Mcs).

400 If the methods used to determine the critical value are compared, the criterion based on 401 the 90th quantile (*CtrB*) accomplished better results in all cases than the approach considering 402 critical values above 10% over the mean (*CtrA*). The performance gap between both criteria 403 may be the result of several factors. On the one hand, the efficiency of the current industrial 404 manufacturing process of PAPs regularly allows to achieve homogeneous products, which 405 might show as a result a low chemical variability. Additionally, the higher critical value set by 406 CtrA may have caused a lack of units meeting this criterion which, in turn, leads to a smaller 407 sample size (with the previously discussed consequences when applying kriging). This has 408 made that in many cases the adaptive sampling designs under CtrA remain just as the initial 409 sampling probability scheme used.

410 It can be noted that the sampling design with the lowest estimation error in all cases is 411 StrACS-1 (Table Table 3 and Table Table 4). This strategy prevailed regardless of the criterion 412 used for determining the critical value or the case study considered (moisture and crude protein 413 tests), which suggests that, based on the strata distribution defined by this design, it achieveds a 414 more effective sample allocation than the rest in the tests performed. On the other hand, when 415 compared ACS and StrACS-2, their estimation error values remained close (both under criteria 416 *CtrA* and *CtrB*), so that the former sometimes outperformed the latter or vice versa, thus no 417 clear evidence was found to help decide between them in this study. For instance, considering

- 418 *CtrA*, the (mean) error of StrACS-1 for the moisture test involving Lot 1 (layer L) is 0.366,
- 419 however, the estimation errors of ACS and StrACS-2 in this case are 0.379 and 0.374,
- 420 respectively. If the protein test using Lot 1+5(2) is considered, it can be observed a similar
- 421 result, StrACS-1 achieves an error value of 2.119, whereas for ACS is 2.171 and for StrACS-2
- 422 is 2.165. Taking *CtrB* into account, once again StrACS-1 reaches the lowest errors (0.370 -for
- 423 Lot 1 (layer L)- and 1.973 -for Lot 1+5(2)), while ACS and StrACS-2 errors are equal for Lot 1
- 424 (layer L) (both are 0.377), and ACS (2.012) outperforms StrACS-2 (2.038) in the protein test of
- Lot 1+5(2). The ANOVA results (Table 5) show that there was significant variation in RMSEP
- values among the three adaptive sampling designs in all cases (P<0.05), except for Lot 3 (layerU, CtrA).
- 428 Adaptive sampling designs have shown that they can be more efficient, flexible and 429 practical in reality than conventional sampling designs under certain circumstances. They also 430 have, however, some practical limitations as can be seen from the results obtained. The 431 selection of a suitable critical value must rely on prior knowledge about the population 432 distribution, otherwise it may not be a trivial task. It is therefore difficult to give a "rule of 433 thumb" for the choice of an optimal criterion, as a high critical value may result in a too low 434 sampling density, while a low critical value might lead to the problem of indefinite sampling. 435 For this reason, a stopping rule is typically required in order to terminate the sampling process 436 when using adaptive sampling.
- 437 This study suggests that the minimisation of the RMSEP involves several factors. As 438 discussed earlier, sampling density plays a key role in the subsequent geostatistical analysis and 439 estimation by kriging. In addition, constraints of sampling designs should be taken into 440 consideration too when trying to characterize the spatial structure and possible sources of 441 quality/safety issues. Then, it should be highlighted the importance of optimising the sampling 442 intensity/sampling design relationship within the context of the methodology described in this 443 paper. For this purpose, it is the goal of future studies to explore options that may improve this 444 combination, which would lead to better performance and more faithful representations of the 445 spatial surfaces. In this regard, short-term steps may include: (i) the use of a larger initial sample 446 size (when using adaptive designs) to avoid the negative effect of under-sampling; (ii) test other 447 thresholds and methods to set the critical value from the analysis of a robust database of PAP lots; and (iii) test a new set of types of neighbourhood and stopping rules. Moreover, further 448 449 research should also be conducted as regards the kriging-based approach, so as to improve 450 aspects such as the smoothing effect. The optimization of this process might be explored by 451 replacing kriging with stochastic simulation techniques. Unlike kriging, which provides the 452 'best' local estimates of the variable of interest (without regard to the resulting statistics of those 453 estimates), stochastic simulation aims at reproducing the global statistics and maintaining the

454 texture of the variation, and these take precedence over local accuracy (Goovaerts, 1997b,

- 455 2001; Webster & Oliver, 2007). Therefore, depending on the purpose of the control, stochastic
- 456 simulation may also help to infer the spatial distribution of the characteristic under study.

457 **4** Conclusions

This study provides a methodology, based on NIR spectroscopy in combination with geostatistical inferential methods, for performing real-time sampling and analysis of raw materials in bulk (as a single operation). This approach makes it possible to explore the evaluation of new sampling protocols that can be more efficient than current strategies.

The results suggest that sampling density plays a major role in the geostatistical process. Overall, results indicate that sampling intensities below 10 - 15% showed poorer performance, failing to reproduce the actual spatial patterns. Furthermore, the sampling design is also key to characterize the spatial structure. In this case, the Stratified Adaptive Cluster Sampling design (StrACS-1) performed better than the rest of protocols tested.

467 The implementation of the methodology proposed requires an optimal balance between 468 the sampling design, the intensity and the criterion used to determine the critical value in order 469 to minimize the estimation error and ensure reliable results. In this regard, our research group is 470 currently exploring the potential of automating the sampling-analysis process using this 471 methodology by developing a robot unit. First, this could solve some of the existing limitations 472 by significantly increasing the sampling intensity without cost and time implications. In 473 addition, if implemented, this could provide with a rapid and cost-effective monitoring system, 474 which would bring transparency to the supplier-purchaser relationship and benefit both 475 efficiency and the decision-making process.

476

477 Acknowledgements

478 This research was carried out within the framework of the Excellence Project AGR-6033 479 "On-site incorporation of NIRS technology for the control of products and processes in the 480 animal feed industry" financed by the Andalusian Regional Government, and Project RTA2012-481 00063-C02-02 "Latest-generation portable NIRS instruments for on-site analysis in the 482 rendering industry", financed by the INIA and European Regional Development Fund (ERDF). 483 The authors are grateful to Kaura Coproducts, S.L. (Spain) for providing the samples for this 484 research. They are also grateful to Ms. Mª Carmen Fernández and Mr. Antonio López for their 485 help in handling and analysing samples.

487 **References**

- 488 Adame-Siles, J. A., Fearn, T., Guerrero-Ginel, J. E., Garrido-Varo, A., Maroto-Molina, F., &
- 489 Pérez-Marín, D. (2017). Near-Infrared Spectroscopy and Geostatistical Analysis for
- 490 Modeling Spatial Distribution of Analytical Constituents in Bulk Animal By-Product
- 491 Protein Meals. *Applied Spectroscopy*, 71(3), 520–532.
- 492 https://doi.org/10.1177/0003702816683958
- 493 Chiles, J.-P., & Delfiner, P. (2012). *Geostatistics. Modeling Spatial Uncertainty*. New Jersey:
 494 John Wiley & Sons, Inc.
- 495 Cressie, N. (1991). Statistics for Spatial Data. New York (USA): Wiley.
- 496 Directorate General for Health and Food Safety. (2017). *Interim Overview Report Audits of* 497 *Official Controls in EU-Member States*. https://doi.org/10.2875/202803
- 498 Esbensen, K. H. (2013). DS 3077. Representative Sampling Horizontal Standard. Danish
 499 Standards. Retrieved from www.ds.dk
- 500 Esbensen, K. H., & Mortensen, P. (2010). Process Sampling (Theory of Sampling, TOS)-the
 501 Missing Link in Process Analytical Technology. In *Process Analytical Technology* (2nd
 502 Ed, pp. 37–80). Wiley.
- 503 Esbensen, K. H., Paoletti, C., & Thiex, N. (2015). Representative Sampling for Food and Feed
 504 Materials: A Critical Need for Food/Feed Safety. *Journal of AOAC International*, 98(2),
- 505 249–251. https://doi.org/http://dx.doi.org/10.5740/jaoacint.SGE_Esbensen_intro
- European Commission. (2002). Regulation (EC) No 178/2002 laying down the general
 principles and requirements of food law, establishing the European Food Safety Authority
 and laying down procedures in matters of food safety. *Official Journal of the European Union, L 31*(January), 1–24.
- European Commission. (2009). Commission Regulation (EC) No 152/2009 laying down the
 methods of sampling and analysis for the official control of feed. *Official Journal of the European Union*, *L* 54(January), 1–130.
- European Commission. (2013). Commission Regulation (EC) No 691/2013 of 19 July 2013
 amending Regulation (EC) No 152/2009 as regards methods of sampling and analysis. *Official Journal of the European Union, L 197*(July), 1–12.

516	European Commission. (2017). Regulation (EU) 2017/625 on official controls and other official
517	activities performed to ensure the application of food and feed law, rules on animal health
518	and welfare, plant health and plant protection products. Official Journal of the European
519	Union, 95(1), 1–142.
520	FEFAC. (2016). FEFAC vision on Feed Safety Management. Brussels. Retrieved from
521	https://www.fefac.eu/files/67549.pdf
522	FEFAC. (2018). Annual Report 2017-2018. Brussels. Retrieved from
523	https://www.fefac.eu/files/83625.pdf
524	Goovaerts, P. (1997a). Geostatistics for Natural Resources Evaluation. Oxford: Oxford
525	University Press.
526	Goovaerts, P. (1997b). Kriging vs Stochastic Simulation for Risk Analysis in Soil
527	Contamination. In R. E. Soares, A., Gomez-Hernandez, J., Froidevaux (Ed.), GeoENVI-
528	Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol
529	9. (pp. 247–258). https://doi.org/10.1007/978-94-017-1675-8
530	Goovaerts, P. (2001). Geostatistical modelling of uncertainty in soil science. Geoderma, 103(1-
531	2), 3-26. https://doi.org/10.1016/S0016-7061(01)00067-2
532	Gringarten, E., & Deutsch, C. V. (2001). Teacher's Aide Variogram Interpretation and
533	Modeling 1. <i>Mathematical Geology</i> , 33(4).
534	Gy, P. (2004). Sampling of discrete materials—a new introduction to the theory of sampling: I.
535	Qualitative approach. Chemometrics and Intelligent Laboratory Systems, 74(1), 7–24.
536	https://doi.org/http://dx.doi.org/10.1016/j.chemolab.2004.05.012
537	Isaaks, E. H., & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. New York:
538	Oxford University Press.
539	ISO. (2002). ISO 6497. Animal Feeding Stuffs - Sampling. Geneva, Switzerland: International
540	Organization for Standardization.
541	ISO. (2009). ISO 24333. Cereals and cereal products - Sampling. Geneva, Switzerland:
542	International Organization for Standardization.
543	Kuiper, H. a., & Paoletti, C. (2015). Food and Feed Safety Assessment: The Importance of
544	Proper Sampling. Journal of AOAC International, 98(2), 252-258.
545	https://doi.org/10.5740/jaoacint.15-007

- Myers, D. E. (1991). Interpolation and estimation with spatially located data. *Chemometrics and Intelligent Laboratory Systems*, *11*(3), 209–228. https://doi.org/10.1016/01697439(91)85001-6
- Paoletti, C., & Esbensen, K. H. (2015). Distributional Assumptions in Food and Feed
 Commodities—Development of Fit-For-Purpose Sampling Protocols. *Journal of AOAC International*, 98(2), 295–300. https://doi.org/10.5740/jaoacint.14-250
- Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. *Computers & Geosciences*, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012
- Petersen, L., Minkkinen, P., & Esbensen, K. H. (2005). Representative sampling for reliable
 data analysis: Theory of Sampling. *Chemometrics and Intelligent Laboratory Systems*,
 77(1–2), 261–277. https://doi.org/10.1016/j.chemolab.2004.09.013
- Thompson, S. K. (1990). Adaptive Cluster Sampling. *Journal of the American Statistical Association*, 85(412), 1050–1059.
- 559 Thompson, S. K. (2012). *Sampling* (Third Ed.). John Wiley & Sons.
- 560 Thompson, S. K., & Seber, G. A. F. (1996). Adaptive sampling. John Wiley & Sons, Inc.
- Webster, R., & Oliver, M. (2007). *Geostatistics for Environmental Scientists* (2nd ed).
 Chichester: John Wiley & Sons, Inc.
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- _

581 Tables

582 Table 1. Calibration statistics for predicting moisture and crude protein content (%) in PAP lots.

Constituent	Pre-processing	Mean	SECV	R ²	RPD
Moisture	1,5,5,1	3.78	0.36	0.77	2.1
Crude Protein	1,5,5,1	57.7	2.45	0.86	2.7

- 583 SECV: standard error of cross-validation (%); R²: coefficient of determination; RPD: Residual
- 584 Predictive Deviation.

Table 2. RMSEP (Mean and Standard Deviation) for Moisture (M) and Crude Protein (CP)
tests. Cluster then Simple Random Sampling (CluSRS).

CluSRS	Sampling Intensity	Lot 1 (M)		Lot 2 (M)		Lot 3 (M)		Lot 4 (M)		Lot 7 (M)		Lot 1+5 (CP)		Lot 1+5(2) (CP)		Lot 8+10 (CP)	
	(%)	Mean	Std	Mean	Std	Mean	Std	Mean	Std								
	30	0.161	0.010	0.114	0.009	0.116	0.008	0.137	0.006	0.287	0.016	1.483	0.118	1.578	0.086	1.540	0.050
Lover U	20	0.169	0.018	0.105	0.006	0.136	0.007	0.141	0.009	0.250	0.015	1.588	0.058	1.769	0.086	1.626	0.055
Layer U	10	0.218	0.020	0.127	0.014	0.158	0.016	0.157	0.011	0.293	0.026	1.777	0.103	2.044	0.135	1.817	0.111
	5	0.275	0.030	0.148	0.018	0.173	0.018	0.173	0.011	0.384	0.072	1.826	0.100	2.038	0.156	1.961	0.127
LoverI	30	0.298	0.009	0.103	0.005	0.100	0.005	0.105	0.007	0.337	0.024						
Layer L	20	0.297	0.024	0.104	0.008	0.197	0.012	0.123	0.005	0.401	0.015						

599Table 3. RMSEP (Mean and Standard Deviation) for Moisture (M) and Crude Protein (CP)600tests. Adaptive Sampling designs (Criterion A).

	Lavan	Lot 1 (M)			Lot 2 (M)			Lot 3	(M)	Lot 4 (M)			
	Layer	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std
ACS	U	7.9	0.259	0.049	5.0	0.143	0.017	5.7	0.176	0.023	5.0	0.172	0.016
ACS	L	11.4	0.379	0.061	5.0	0.131	0.015	5.0	0.167	0.026	5.0	0.144	0.015
Stat CS 1	U	8.6	0.235	0.043	5.0	0.138	0.016	5.7	0.169	0.019	5.0	0.171	0.016
SUACS-1	L	12.1	0.366	0.056	5.0	0.127	0.015	5.0	0.152	0.015	5.0	0.142	0.012
States 2	U	8.6	0.249	0.048	5.0	0.146	0.019	5.7	0.173	0.027	5.0	0.172	0.017
SUACS-2	L	11.4	0.374	0.051	5.0	0.137	0.016	5.0	0.166	0.031	5.0	0.143	0.013
	Lavan	Lot 7 (M)			Lot 1+5 (CP)			Lot 1+5(2) (CP)			Lot 8+10 (CP)		
	Layer	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std
ACS	U	11.4	0.334	0.074	5.0	1.986	0.245	5.0	2.171	0.218	5.0	1.948	0.160
ACS	L	10.7	0.395	0.065									
			0.070	0.000									
State CE 1	U	12.9	0.304	0.055	5.0	1.943	0.187	5.0	2.119	0.204	5.0	1.920	0.150
StrACS-1	U L	12.9 10.7	0.304	0.055	5.0	1.943	0.187	5.0	2.119	0.204	5.0	1.920	0.150
StrACS-1	U L U	12.9 10.7 10.7	0.304 0.371 0.340	0.055 0.069 0.064	5.0	1.943 2.009	0.187	5.0	2.119 2.165	0.204	5.0	1.920 1.952	0.150

601 *Intensity (%): average sampling intensity reached calculated from the S=1000 simulations

602 performed.

603

604

605

606

616Table 4. RMSEP (Mean and Standard Deviation) for Moisture (M) and Crude Protein (CP)617tests. Adaptive Sampling designs (Criterion B).

	Lour Lot 1 (M)		Lot 2	Lot 2 (M)			(M)	Lot 4 (M)					
	Layer	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std
ACS	U	12.9	0.242	0.048	15.0	0.123	0.016	13.6	0.162	0.019	12.9	0.159	0.015
ACS	L	12.1	0.377	0.044	15.0	0.114	0.015	14.3	0.150	0.025	13.6	0.131	0.012
State C 1	U	12.9	0.214	0.035	15.7	0.118	0.013	13.6	0.153	0.012	13.6	0.156	0.014
SIIACS-1	L	12.1	0.370	0.044	15.7	0.111	0.012	14.3	0.137	0.015	13.6	0.129	0.011
StrACS 2	U	11.4	0.238	0.048	14.3	0.128	0.021	12.9	0.158	0.020	12.1	0.158	0.015
SuACS-2	L	11.4	0.377	0.040	14.3	0.122	0.019	12.9	0.151	0.029	12.1	0.134	0.013
	Lover	Lot 7	(M)		Lot 1+5 (CP)			Lot 1+5(2) (CP)			Lot 8+10 (CP)		
	Layer	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std	Intensity (%)	Mean	Std
ACS	U	12.9	0.328	0.059	14.3	1.834	0.192	14.3	2.012	0.187	14.3	1.790	0.117
ACS	L	12.1	0.374	0.054									
State C 1	U	12.9	0.301	0.039	14.3	1.794	0.157	14.3	1.973	0.165	15.0	1.782	0.111
SUACS-1	L	12.1	0.356	0.052									
StrACS 2	U	11.4	0.338	0.057	12.9	1.857	0.205	12.9	2.038	0.200	13.6	1.824	0.144
SUACS-2	L	11.4	0.384	0.051									

618 *Intensity (%): average sampling intensity reached calculated from the S=1000 simulations

- 619 performed.

- 624
- 625

627Table 5. One-way ANOVA results (P values) for the three adaptive sampling designs tested628(ACS, StrACS-1, StrACS-2) in Moisture (M) and Crude Protein (CP) tests.

Criterion	Layer	Lot 1 (M)	Lot 2 (M)	Lot 3 (M)	Lot 4 (M)
٨	U	0	0	0.38	7.03x10 ⁻¹⁰
А	L	3.1x10 ⁻⁷	0	0.002	0
В	U	0	0	3.39x10 ⁻⁷	0
Б	L	8.3x10 ⁻⁶	0	0	0
	Layer	Lot 7 (M)	Lot 1+5 (CP)	Lot 1+5(2) (CP)	Lot 8+10 (CP)
٨	U	0	1.63x10 ⁻⁹	1.28x10 ⁻⁸	3.16x10 ⁻⁶
A	L	0			
n	U	0	3.08x10 ⁻¹³	3.55x10 ⁻¹⁴	3.31x10 ⁻¹⁴
d	L	0			

629

630

631

632

633 Figures

Fig. 1. Experimental design: (A) Glass container. (B) Lot 1. (C) Lot 2. (D) Lot 3. (E)

635 Lot 4. (F) Lot 7. (G) Lot 1+5. (H) Lot 1+5(2). (I) Lot 8+10.

- 636 Fig. 2. Sampling designs: (A) Cluster then SRS, i=5% example. (B) Adaptive Cluster
- 637 Sampling (ACS). (C) Stratified ACS-1. (D) Stratified ACS-2.

638 Fig. 3. Strategy for the simulation study. (A) Multistage design. (B) Adaptive designs.

- 639 Fig. 4. Spatial surfaces (Lot 1L; Moisture): 100% sampling; Cluster then SRS,
- 640 intensities: (1) 30% (2) 20% (3) 10% (4) 5%; ACS (CtrA), intensity 20% (5); StrACS-1
- 641 (CtrA), intensity 20% (6); StrACS-2 (CtrA), intensity 20% (7); ACS (CtrB), intensity
- 642 16.4% (8); StrACS-1 (CtrB), intensity 16.4% (9); StrACS-2 (CtrB), intensity 16.4%
- 643 (10).

- Fig. 5. Spatial surfaces (Lot 1+5(2); Crude Protein): 100% sampling; Cluster then SRS,
- 645 intensities: (1) 30% (2) 20% (3) 10% (4) 5%; ACS (CtrA), intensity 5% (5); StrACS-1
- 646 (CtrA), intensity 5% (6); StrACS-2 (CtrA), intensity 5% (7); ACS (CtrB), intensity
- 647 16.4% (8); StrACS-1 (CtrB), intensity 16.4% (9); StrACS-2 (CtrB), intensity 16.4%
- 648 (10).
- 649 Fig. 6. Estimation error values (RMSEP) and average Sampling Intensity (%) reached
- 650 by each design for Moisture (M) and Crude Protein (CP) tests. Sampling designs:
- 651 Cluster then SRS (CluSRS); Adaptive Cluster Sampling CtrA (ACS-A); Stratified
- 652 Adaptive Cluster Sampling-1 CtrA (StrACS-1-A); Stratified Adaptive Cluster
- 653 Sampling-2 CtrA (StrACS-2-A); Adaptive Cluster Sampling CtrB (ACS-B);
- 654 Stratified Adaptive Cluster Sampling-1 CtrB (StrACS-1-B); Stratified Adaptive
- 655 Cluster Sampling-2 CtrB (StrACS-2-B).