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ABSTRACT 13 

A NIR spectroscopy-based real-time monitoring system is proposed to sample and 14 

analyse agro-industrial raw materials transported in bulk in a single stage, easing and optimising 15 

the evaluation process of incoming lots at reception of agri-food plants. NIR analysis allows 16 

rapid and cost-effective analytical results to be obtained, and hence to rethink current sampling 17 

protocols. For this purpose, multistage and adaptive sampling designs were tested in this paper, 18 

which have been reported (in soil science and ecology) to be more flexible and efficient than 19 

conventional strategies to study patterns of clustering or patchiness, which can be the result of 20 

natural phenomena. The additional spatial information provided by NIR has also been exploited, 21 

using geostatistical analysis to model the spatial pattern of key analytical constituents in 22 

Processed Animal Proteins (PAPs). This study addresses the assessment of two kinds of 23 

quality/safety issues in PAP lots –moisture accumulation and cross-contamination. After a 24 

simulation study, qualitative and quantitative analyses were carried out to make a performance 25 

comparison between sampling designs. Results show that sampling densities below 10-15% 26 

demonstrated higher estimation errors, failing to represent the actual spatial patterns, while a 27 

stratified adaptive cluster sampling design achieved the best performance.  28 

 29 
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Abbreviations 33 

ACS Adaptive Cluster Sampling 

ANOVA Analysis of Variance 

Clu Cluster Sampling 

CPcs Case study testing cross-contamination 

CtrA Criterion to define critical values (10% above the mean) 

CtrB Criterion to define critical values (90th quantile) 

EU European Union 

FAO Food and Agriculture Organization of the United Nations 

ISO International Organization for Standardization 

ISTA International Seed Testing Association 

Mcs Case study testing high moisture content areas 

NIRS Near infrared Spectroscopy 

OK Ordinary Kriging 

PAP Processed Animal Proteins 

R2 Coefficient of determination 

RMSEP Root Mean Square Error of Prediction 

RPD Residual Predictive Deviation 
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SECV Standard Error of Cross-validation 

SRS Simple Random Sampling 

StrACS Stratified Adaptive Cluster Sampling 

TOS Theory of Sampling 

 34 

1 Introduction  35 

The EU General Food Law Regulation provides a regulatory framework involving all 36 

stages of the food & feed chain (European Commission, 2002). This law constitutes an 37 

overarching, strict and comprehensive policy, assuming food & feed safety and quality as a 38 

priority. In terms of regulatory compliance, a wide range of rules are enforced for issues such as 39 

trade aspects and processing or storage of raw materials. Thus, establishing management 40 

programs and surveillance schemes is vital for all stakeholders involved (from public bodies and 41 

food & feed operators to consumers). As a consequence, they need to address the 42 

implementation and strengthening of monitoring and rapid alert systems, as well as codes of 43 

good practice, which help to ensure food & feed safety and quality standards, and improve 44 

traceability. For this purpose, food & feed controls along the stages of the chain, before 45 

distribution, become a key pillar. In this regard, the EU Official Controls Regulation (European 46 

Commission, 2017) acknowledges the importance of auto-controls performed by operators, 47 

including private quality assurance systems, as a support for the official controls.  48 

Cooperation between operators and authorities is therefore of major interest (Directorate 49 

General for Health and Food Safety, 2017; FEFAC, 2016, 2018), and the agri-food industry has 50 

a crucial role to play in this context. Over the last few years, substantial efforts have been made 51 

by the scientific community and competent participants (manufacturers, laboratories, 52 

authorities, etc.) to develop methods and standards to monitor and control all production steps. 53 

Nevertheless, despite the success achieved in some stages of the process, sampling and analysis 54 

of raw materials in bulk still remain as demanding tasks. In this case, the challenge is of greater 55 

magnitude, being determined not only by the difficulty of dealing with large volume products, 56 

but also by the need to design and adapt control protocols (sampling strategies and analysis 57 

methods) to the specific requirements of each type of product and lot.   58 
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Bulk food and feed sampling is widely understood as a multistep process in which 59 

classically a set of primary increments (taken from the lot) is pooled to form a composite 60 

sample, then mass-reduced (in various steps) to ultimately get the analytical aliquot with the 61 

right size for laboratory analysis (European Commission, 2009, 2013; ISO, 2002, 2009). The 62 

importance of obtaining a representative sample as a result of this process should be 63 

emphasised. This is indeed considered an essential prerequisite, equally important as the 64 

analytical accuracy, to finally draw reliable conclusions (Esbensen, Paoletti, & Thiex, 2015; 65 

Kuiper & Paoletti, 2015). The Theory of Sampling (TOS) has emerged as an effective 66 

framework to control and minimize errors occurring at all sampling steps involved, thus 67 

providing principles for representative sampling (Esbensen, 2013; Esbensen & Mortensen, 68 

2010; Gy, 2004; Petersen, Minkkinen, & Esbensen, 2005).  69 

On the other hand, a number of international organizations such as the International 70 

Organization for Standardization (ISO), Codex Alimentarius, the Food and Agriculture 71 

Organization of the United Nations (FAO) or the International Seed Testing Association (ISTA) 72 

have also attempted to define sampling approaches and procedures for the inspection of bulk 73 

materials. Nevertheless, their appropriateness has been discussed. Paoletti and Esbensen 74 

(Paoletti & Esbensen, 2015) argue that most of them “lack of guidance on the correct 75 

prerequisite design, implementation, and operation of fit-for-purpose sampling plans and 76 

sampling procedures”. In addition, they underline that sampling plans derived from these 77 

standards rely on distributional assumptions which are often neither explicitly described nor 78 

verified, and conveniently based on an unjustified randomness assumption for the distribution of 79 

the analyte of interest.  80 

Notwithstanding the above, the patterns of a wide variety of phenomena affecting food 81 

and feed quality and safety, such as some material properties (e.g. heterogeneity) or the 82 

presence of contaminants (bacteria, fungi, etc.), show evidence of aggregation tendencies. Thus, 83 

conventional sampling designs may be inefficient to evaluate and detect issues that follow these 84 

spatial distributions. Moreover, most procedures conventionally carry out a sample plan fixed 85 

before sampling, the negative effects of under-sampling occurring are likely to increase. 86 

Consequently, there is a need for sampling strategies that may provide a viable solution in this 87 

context.  88 

Adaptive sampling designs, which have not yet been studied for food & feed control 89 

purposes, have become well-known in soil and natural sciences as a way of addressing the 90 

inherently difficult sampling situations associated with these fields (e.g. mineral exploration or 91 

epidemiological studies). An adaptive sampling design is one in which the sample selection 92 

procedure depends on the values observed while conducting the survey. On the basis of this 93 
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principle, unlike conventional sampling designs, these allow to make decisions during the 94 

survey and adaptively increase sampling intensity, so that whenever a condition of interest is 95 

satisfied by the observed value of a selected unit, neighbouring sites are then explored and 96 

added to the sample. Therefore, adaptive sampling strategies have been reported to improve 97 

significantly the effectiveness of sampling effort, as well as the precision of the estimates when 98 

trying to infer patchy distributions as well as concentration or density of the aggregation 99 

patterns (Thompson, 1990, 2012; Thompson & Seber, 1996). 100 

Besides the improvement of sampling designs, there is still much work to be done as 101 

regards the range of shortcomings that are currently linked to sampling of raw materials in bulk. 102 

Such limitations as cost, qualified manpower requirements and time constraints are determining 103 

factors that often lead to over-simplistic protocols (e.g. grab sampling). They are also 104 

characterised by low sample throughput (with a severe mass reduction, from several tonnes to a 105 

few grams), compromising the lot-sample representativity, and include too many stages in the 106 

field-to-aliquot pathway, which is detrimental to the efficiency of the evaluation process. 107 

Furthermore, the incremental samples are always aggregated before analysis and, as a 108 

consequence, all information about the distribution and the spatial structure of the characteristic 109 

of interest is lost.  110 

Bearing these constraints in mind, research was recently initiated to explore a new 111 

approach for the analysis of raw materials in bulk directly inside the transport unit (trucks, 112 

containers, etc.), before unloading (Adame-Siles et al., 2017). From an analytical standpoint, 113 

this approach is based on near-infrared (NIR) spectroscopy. Considering the benefits of this 114 

technology, it has already become a crucial asset for a large number of agri-food industries, 115 

which have integrated NIR-based quality-control systems successfully, although still mostly as 116 

at-line applications. This work, however, sought to take the analysis stage from the laboratory to 117 

the delivery point of raw materials at any agri-food production plant. In addition to the ability to 118 

perform rapid and cost-effective analysis, which makes it possible to increase significantly the 119 

sample volume, the use of NIR fibre-optic sensors was proposed to obtain an analytical 120 

determination for each sampling point. This means that not only can every sampling unit be 121 

analysed and recorded separately, but it can also preserve its spatial coordinates. The study 122 

subsequently exploited the potential of the extra spatial information obtained, performing a 123 

geostatistical analysis in order to recognise and model the spatial structure of key properties of 124 

PAPs (Processed Animal Proteins). Therefore, this methodology laid the foundation for 125 

rethinking the existing sampling approaches and the evaluation of a real-time NIR-based 126 

monitoring system of raw materials in bulk. 127 
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The main aim of this paper is to investigate some fit-for-purpose sampling protocols, 128 

based on the adoption of multistage and adaptive sampling plans, for the inspection of raw 129 

materials in bulk using the above-mentioned methodology. It also pursues a performance 130 

comparison between strategies on their ability to characterize the spatial distributions of two 131 

quality and safety issues tested in PAP lots, selected as a case study to assess the proposed 132 

method.  133 

2 Materials and Methods 134 

2.1 Lots  135 

A total of 8 lots of PAPs, directly received from the rendering plant, were involved in the 136 

experimental design of this paper. The set was selected considering the variability in species 137 

composition of the lots listed in (Adame-Siles et al., 2017). The selection consisted of the 138 

following lots: Lot 1 (100% Poultry), Lot 2 (58% Poultry, 42% Pig), Lot 3 (64% Poultry, 36% 139 

Pig), Lot 4 (100% Poultry), Lot 5 (50% Poultry, 50% Pig), Lot 7 (100% Poultry), Lot 8 (100% 140 

Poultry) and Lot 10 (23% Poultry, 60% Pig, 11% Cattle, 6% Sheep). 141 

Two types of quality and safety risks were tested simulating a variety of situations. First, 142 

the presence of high moisture content areas was evaluated as case study (henceforth referred to 143 

as Mcs), since this factor is of great importance as it may be conducive to fungal or 144 

bacteriological problems. On the other hand, the adulteration by cross-contamination by PAPs 145 

of different nature or category was also addressed as another case study (henceforth referred to 146 

as CPcs). To this end, a glass container served to house all the PAP lots for sampling and 147 

analysis (Fig. 1A). A sheet of methacrylate with a sampling grid of 14 × 10 points was used as a 148 

reference to position the sensor.  149 

Five lots (Lots 1, 2, 3, 4 and 7) were selected to form part of Mcs. The use of a different 150 

amount and distribution of water, poured one day prior to analysis, gave rise to the set of tests 151 

that constitute this case study. Most of them mainly involved water accumulation at the walls 152 

and corners of the container, which are commonly the highest risk areas in lots in bulk. On the 153 

one hand, Lot 1 was tested pouring a volume of water of 50 ml in the centre and 100 ml in every 154 

corner of the container (Fig. 1B). Secondly, 500 ml of water were added to Lot 2 and located in 155 

the centre of the container (Fig. 1C). Thirdly, two discharges of 300 ml were applied to Lot 3 in 156 

the north and south-central areas of the container (Fig. 1D). Furthermore, Lot 4 test involved the 157 

pouring of 400 ml and 250 ml of water over the north-west and south-east corners, respectively 158 

(Fig. 1E). Finally, Lot 7 was tested by pouring 500 ml of water in all corners (Fig. 1F). For 159 

these cases, measurements were taken at two different depths (layer U and L).  160 
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On the other hand, CPcs was carried out using Lots 1, 5, 8 and 10. Tests under CPcs 161 

experiment were designed in order to explore whether the methodology was able to recognise 162 

possible regions that did not follow the expected pattern of the lot being tested. For this purpose, 163 

three different mixtures were made by varying the distribution of the lots in the glass container. 164 

Two tests involved Lots 1 and 5, one of them was carried out positioning sample from Lot 1 in 165 

the north-east corner of the container and the rest of the it being sample from Lot 5 (Fig. 1G) 166 

and, the other test, locating sample from Lot 1 in the north-east and south-west corners, while 167 

the rest of the container was filled with sample from Lot 5 (Fig. 1H). Moreover, a third test 168 

involved Lot 10, which was located at the north-east and south-west corners of the container, 169 

and Lot 8 was used in the rest (Fig. 1I). In this case study, only layer U was measured.  170 

The set of experiments performed aimed at dealing with borderline cases of both kinds of 171 

adulteration, in which risk areas are highly localised, since this served as a starting point to test 172 

the limits of the methodology. 173 

2.2 Instrumentation and analysis 174 

NIR analysis was performed by measuring spectra in each test using a reflection probe 175 

(Turbido, Solvias AG, Kaiseraugst, Switzerland) interfaced to a Matrix-F FT-NIR instrument 176 

(Bruker Optics, Ettlingen, Germany) (834.2–2502.4 nm). The probe features a bundle of two 177 

optical fibres (core size of 600 µm) encased in a stainless-steel body (300 mm in length; 12 mm 178 

in diameter), whose end splits in two legs (illumination/acquisition), and its tip has a sapphire 179 

window of 1.5 mm in diameter. Two fibre-optic cables of 100 m enabled to connect the probe to 180 

the instrument.  181 

Measurements were the result of a total of 32 scans, with a resolution of 16 cm-1 and a 182 

scanner velocity of 10 kHz. A probe-specific Spectralon was used for white reference 183 

measurements, which were made after every set of 42. Within the context of a preliminary study 184 

(Adame-Siles et al., 2017), firstly, the noise level of the signal was evaluated along the spectral 185 

range by applying to the log 1/R data a first derivative pre-treatment, with a single-unit gap and 186 

five data-point smoothing. After visual examination, noisy regions were found at the beginning 187 

and at the end of the spectral range, leading to the selection of the optimum wavelength range 188 

1386-2033 nm. Subsequently, a standardisation methodology was initiated to transfer a database 189 

of 346 samples of PAPs, from which calibration equations had been developed using a different 190 

analysis mode (the same instrument was used but coupled to a detection head for contactless 191 

measurements). Finally, after a recalibration procedure, calibration equations (whose most 192 

relevant statistics are shown in Table 1) were obtained so that an analytical result could be got at 193 

every sampling unit using the NIR reflection probe. Moisture and crude protein were the 194 

constituents selected as control parameters in Msc and CPsc, respectively.  195 



   Page 8 of 24 

Spectral measurements were acquired using software OPUS v7.0 (Bruker Optics). 196 

Moreover, NIR prediction models were applied by using WinISI v.1.50 (Infrasoft International), 197 

Matlab R2018a (The MathWorks Inc.) and PLS Toolbox (Eigenvector Research).  198 

2.3 Sampling study 199 

2.3.1 Preliminary setup 200 

First of all, NIR measurements were made once at every sampling unit of the global grid 201 

(N = 140; hereinafter referred as ’100% sampling’) in all tests of both case studies. This 202 

population was designed to be used as analytical reference for the subsequent sampling study. 203 

Following this, according to the different sampling plans, samples were then obtained as a 204 

subset of N. All plans included some randomness, thus a total of S = 1000 simulation 205 

replications were computed in all cases, which enabled a performance comparison among 206 

sampling designs.  207 

2.3.2 Sampling designs 208 

2.3.2.1 Multistage sampling 209 

A two-stage sampling design (Cluster-SRS) was tried in this case, with cluster (Clu) 210 

sampling at the first stage, and simple random sampling (SRS) at the second stage. For this 211 

purpose, N was divided into 14 primary units, each composed of a total of 10 secondary units. A 212 

set of four different sampling intensities were then addressed (i = 30, 20, 10 and 5% of the N 213 

population).  214 

The approach consisted of selecting 7 clusters randomly (regardless of the sampling 215 

intensity attempted) and, at the second stage, a simple random sample of secondary units, which 216 

varies depending upon the sampling intensity to achieve: i = 30% (6 units/cluster), i = 20% (4 217 

units/cluster), i = 10% (2 units/cluster) and i = 5% (1 unit/cluster). Figure 2A shows an example 218 

of a two-stage sample (i = 5%) selected following this protocol. As noted above, this procedure 219 

was run a total of 1000 times for each i (Fig. 3A).   220 

2.3.2.2 Adaptive Cluster Sampling              221 

An adaptive cluster sampling (ACS) design generally includes the following steps: (i) an 222 

initial sample of units is selected using some probability sampling scheme; (ii) for every unit in 223 

which the observed value meets a given criterion C, additional units in some pre-defined 224 

neighbourhood of that unit will become part of the sample; and (iii) if any of these units satisfy 225 

C, their neighbourhoods are then included too, which gradually leads to obtaining what is 226 

known as a network (a group of adjacent units whose values are all greater than or equal to the 227 

critical value). In theory, this process continues until C is not met by any unit, which is usually 228 
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referred to as unrestricted adaptive sampling. Nonetheless, in order to avoid open-ended 229 

sampling designs, with the consequent effects on costs and logistics, ACS frequently requires a 230 

stopping rule to terminate the sampling process. Moreover, another limitation of the adaptive 231 

selection procedures is that they may introduce biases into conventional estimators, so that the 232 

need for design-unbiased estimators is emphasised here (such as Hansen-Hurwitz and Horvitz-233 

Thompson estimators) (Thompson, 1990, 2012).  234 

In this paper, three variants of ACS were tested, all with a preliminary sampling intensity 235 

of 5%. They differ, however, in the method for selecting the initial sample. On the one hand, the 236 

first scheme tried was a pure ACS, i.e. a simple random sample of units was obtained to begin 237 

the process (Fig. 2B). In addition, two versions of stratified sampling were examined. The first 238 

strategy (StrACS-1) divided the study area into 7 strata: north and south-central strata, 4 regions 239 

in the corners of the container and a central stratum (Fig. 2C). The within-stratum sample size 240 

of the initial sample was allocated based on proportional allocation. The second approach 241 

(StrACS-2) made a different arrangement within the study area, stratifying it into three zones 242 

with unequal probability (Fig. 2D). One stratum covered the edge of the container, the second 243 

one was contiguous, while the innermost layer constituted the third stratum. In this case, the 244 

initial sample (i = 5%, i.e. 7 sampling units) was allocated to strata in proportions, 50% (4 245 

units), 30% (2 units) and 20% (1 unit), decreasing from outer to inner strata (rounding sample 246 

size to a whole number). In the stratified protocols, the neighbourhoods were allowed to cross 247 

the boundaries of strata, as stratification was only applied to the initial sample.  248 

In order to limit the total sampling effort to a practical level, a stopping rule of level 2 249 

(the neighbourhood exploration procedure was only conducted twice) was used. There exist 250 

different possible patterns when defining a neighbourhood of units (e.g. top, bottom, left and 251 

right; northwest, southwest, northeast and southeast, etc.). In this paper, the first-order 252 

neighbourhood consisted of the initial unit itself and the 8 contiguous boundary units. 253 

Moreover, Figs. 2B, 2C and 2D show the distribution of the second-order neighbourhood 254 

defined, in which 8 more units are added to the sample. 255 

Concerning the critical value C, two different criteria were applied in this regard. The 256 

first criterion, henceforth referred to as CtrA, considered as critical those units in which the 257 

parameter is equal to or greater than 10% above the mean of initial samples. On the other hand, 258 

the second criterion, or CtrB, sets C to the 90th quantile of the sample values. Figure 3B 259 

represents the simulation procedure followed for the adaptive designs described. As previously 260 

stated, a total of 1000 simulation replications were performed in each case.   261 

The algorithms needed to perform the simulation study were developed in RStudio (v 262 

1.1.1463). 263 
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2.4 Spatial analysis  264 

The spatial patterns of the analytical constituents considered, moisture (Mcs) and crude 265 

protein (CPcs), were analysed using geostatistics. Therefore, a geostatistical study was 266 

conducted for every iteration of the simulation process, and took place in two stages: (i) 267 

structural analysis; and (ii) spatial estimation. 268 

The first phase, commonly referred to as variography, uses the semi-variogram to 269 

characterize and model the autocorrelation structure of data, thus providing a means to quantify 270 

the spatial variation of the property of interest (Chiles & Delfiner, 2012). The experimental 271 

semi-variogram displays a curve relating the distance between data pairs (lag distance, or h) 272 

with their semi-variance, a measure that averages squared differences of the variable. Both 273 

omnidirectional and directional (0, 45, 90 and 135º) variograms were calculated for each case 274 

study in this paper. Variogram modelling was addressed as a subsequent step. This task allows 275 

to fit an authorised mathematical function of the distance to the experimental variogram, 276 

providing the parametric model needed to compute a variogram value at unobserved sites and to 277 

meet the mathematical property of conditional negative definiteness (Gringarten & Deutsch, 278 

2001). 279 

The second stage refers to the use of the previously modelled spatial variance to estimate 280 

interpolated values between sampling points. For this purpose, one of the most reliable and 281 

commonly used kriging estimators, named ordinary kriging (OK), was applied for the mapping 282 

of the analytical parameters in this paper. Kriging is a robust family of generalised least squares 283 

linear regression algorithms which, based on the results of the structural analysis, achieves to 284 

accurately estimate values at unsampled locations. A more detailed description of this 285 

geostatistical approach can be found in (Adame-Siles et al., 2017), and more on OK theory and 286 

practice in (Cressie, 1991; Goovaerts, 1997a; Isaaks & Srivastava, 1989; Myers, 1991; Webster 287 

& Oliver, 2007).  288 

Variographic analysis and spatial interpolation were both implemented in the R 289 

environment (version 3.4.3). The gstat R package was used to perform all geostatistical analyses 290 

(Pebesma, 2004). 291 

2.4.1 Calculation of the estimation error 292 

The Root Mean Square Error of Prediction (RMSEP) statistic was used to evaluate the 293 

performance in each case study: 294 
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where yj,krig are the interpolations obtained by kriging and, yj,NIR, the analytical values, for 295 

the sampling unit j of the sampling grid N. It is worth noting that for some j units, the yj,krig will 296 
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In addition, one-way analysis of variance (ANOVA) was performed for every test to 300 

examine whether significant differences in log values of the RMSEP were found among the 301 

three adaptive sampling designs tried. 302 

3 Results and Discussion 303 

3.1 Data preparation 304 

As a first step, the geostatistical study addressed the variographic analysis of both case 305 

studies in order to model the spatial pattern of the constituents of interest. For variography it is 306 

recommended to have at least 100 - 150 sampling points to obtain robust results (Webster & 307 

Oliver, 2007), therefore semi-variograms were computed from the data set of N sampling points 308 

in each case, which would also allow to build a library of structural analyses of PAP lots to help 309 

future routine structural assessments based on sample data. As reported by Adame-Siles et al 310 

(Adame-Siles et al., 2017), the structural analysis for moisture and crude protein revealed 311 

several contrasts between both constituents in their spatial behaviour. Moisture variograms 312 

exhibit zero, or close to zero, nugget (the semi-variogram value at the origin), and a linear 313 

increase until they reach an asymptote, or ‘sill’ (the semivariance value at which the 314 

semivariogram levels off). Nevertheless, crude protein tests generally showed a monotonic 315 

increase with increasing lag distance and a positive intercept on the ordinate.  316 
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A model was fitted to the experimental variogram. The most common functions available 317 

for this purpose were tested and, two mathematical models, linear and spherical, were selected 318 

as they provided the best fit for the crude protein and moisture semi-variograms, respectively. 319 

The sampling study started after the variogram modelling stage and was carried out 320 

according to the procedure described in section 2.3. Then, every sampling design (Fig. 2) was 321 

performed in each test of case studies A and B following the protocol illustrated in Fig. 3. This 322 

procedure was executed a total of 1,000 times in each case.  323 

Following the structural analysis, spatial interpolation by ordinary kriging was tackled, 324 

using as an input the sample data set resulting from each iteration of the sampling study (i.e. for 325 

every sampling design and case study). As a consequence, kriging maps representing the spatial 326 

pattern of the constituent were obtained in each case. Finally, the sample sets together with the 327 

interpolated values at all 140 points were used in Eq. (1)(1) to evaluate the performance and for 328 

comparison purposes among designs. 329 

3.2 Performance assessment 330 

3.2.1 Qualitative analysis  331 

Two representative illustrations of the quality and safety risks evaluated in lots of PAPs 332 

are shown in Fig. 4 and Fig. 5. The first one depicts moisture spatial distributions associated 333 

with one test of Mcs (Lot 1 – layer L), while the second shows crude protein surfaces generated 334 

from one test belonging to CPcs (Lot1+5(2)). Both figures represent the outcome of one 335 

iteration from the set of S simulations obtained for each sampling design tested.  336 

The mapping of moisture for the ‘100% sampling’ design is shown first in Fig. 4, offering 337 

a visual reference against which to compare all other distributions resulting from the sampling 338 

designs to be evaluated. As seen in Fig. 1B, the experimental design conceived for this test 339 

included the pouring of water at the centre of the container and all four corners. Bearing this in 340 

mind, if the effect of irregular water drainage and distribution is taken into account, which 341 

varies depending on the depth of the layer under consideration, the spatial distribution in this 342 

case managed to illustrate the regions where the higher moisture accumulation took place.       343 

Regardless of the design, sampling intensity plays a crucial role, having a pronounced 344 

impact on the results. This effect can be inferred taking into account the kriged maps obtained 345 

by the multistage strategy, Cluster-SRS. In this case, four sampling intensities were tested, and a 346 

reduction in performance on the mapping of the affected areas can be observed as sample size 347 

decreases. Higher sampling intensities, i =30% and (to a lesser extent) i = 20%, generally 348 

manage to reproduce the original distribution, whereas the lowest ones (i =10% and i =5%) did 349 
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not succeed in portraying all the risk areas, demonstrating a distinct loss of information or 350 

smoothing effect compared with the preceding ones.  351 

Figure 4 also shows the spatial distributions achieved from the adaptive sampling designs 352 

tested (ACS, StrACS-1 and StrACS-2). Surfaces using CtrA (10% above mean) to determine the 353 

critical value are depicted in Figure 4.5 to 4.7, while maps based on CtrB (90th quantile) are 354 

shown in 4.8 to 4.10. On the basis of the stopping rule of level 2 used, both criteria differ in the 355 

maximum sampling density they reach in the distributions represented, with CtrA (20%) slightly 356 

surpassing to CtrB (16.4%). In terms of accuracy to characterise the actual moisture 357 

distribution, CtrA surfaces perform well especially regarding the critical areas present at the 358 

edge of the container, whereas all designs but ACS lost the central area. By contrast, CtrB maps 359 

manage to picture this risk area in the centre, but most (especially ACS) lose information on the 360 

edge. 361 

The results for the crude protein test are shown in Fig. 5. In this case, the experimental 362 

design consisted of placing two different lots in the container, in such a way that both the lower-363 

left corner and the upper-right corner belonged to Lot 1 and the rest to Lot 5 (Fig. 1H). The 364 

surface obtained from the 100% sampling design for the crude protein constituent effectively 365 

discriminates the different pattern at the corners, thus in line with the design of the test.  366 

As regard sampling intensity, the resulting maps for the Cluster-SRS sampling design 367 

show a decline in performance with lower densities, from which a similar analysis to the 368 

previously made can be derived. As was the case for the moisture test, sampling intensities of 369 

30% and 20% generally achieve more faithful crude protein surfaces than 10% and 5% do. 370 

Concerning the adaptive sampling designs, it may be seen that those linked to CtrA finally 371 

remain at the initial sampling density (i = 5%), which means that no critical units were found 372 

during the process. In fact, this is because the crude protein parameter ranges for this test from 373 

57.61% to 67.66%, averaging 63.39%, thus making that none of the units can satisfy CtrA, i.e. 374 

exceed 1.1 times the average value. Taking this into account, only StrACS-1 achieved 375 

reasonable results in comparison with the other designs. On the other hand, sampling designs 376 

following CtrB attained a sample size of 16.4%, generally accomplishing the task of illustrating 377 

the actual distribution. 378 

3.2.2 Quantitative analysis 379 

The estimation error was calculated for each test of both case studies (A and B) by the 380 

Eq. (1)(1). The RMSEP statistic was computed from the comparison between the kriging 381 

estimations and the actual NIRS analytical values at each unit of the population (N). The 382 
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average value (Eq. (2)(2)) and standard deviation (Eq. (3)(3)) of the RMSEP were also 383 

calculated for each sampling design from the 1000 simulations performed. 384 

The estimation error values for the multistage sampling design tested in this paper 385 

(Cluster-SRS) are shown in Error! Reference source not found.Table 2. In quantitative terms, 386 

they support the previous qualitative analysis regarding the effect of the sampling density on the 387 

results. Thus, it can be seen that there exists a negative correlation between the sample size and 388 

the estimation error. A determining factor contributing to this effect is the declining availability 389 

of information with lower sampling intensities, which inevitably leads to bigger errors.  390 

The estimation errors associated to the adaptive sampling designs performed under CtrA 391 

are reported in Table Table 3 (ACS, StrACS-1, StrACS-2), while those carried out under CtrB 392 

are shown in Table Table 4 (ACS, StrACS-1, StrACS-2). Moreover, in order to facilitate 393 

assessment and comparison, Figure 6 graphically displays the average values (from the 1000 394 

simulations) of the RMSEP statistic for all the sampling designs tested. Cluster-SRS was 395 

included in this figure for i=5%, which corresponds to the initial sampling density for the 396 

adaptive designs (the average sampling intensity, for the S=1000 simulations, reached by each 397 

adaptive design is also expressed). The results are grouped by test (only layer U is shown for 398 

those belonging to Mcs). 399 

If the methods used to determine the critical value are compared, the criterion based on 400 

the 90th quantile (CtrB) accomplished better results in all cases than the approach considering 401 

critical values above 10% over the mean (CtrA). The performance gap between both criteria 402 

may be the result of several factors. On the one hand, the efficiency of the current industrial 403 

manufacturing process of PAPs regularly allows to achieve homogeneous products, which 404 

might show as a result a low chemical variability. Additionally, the higher critical value set by 405 

CtrA may have caused a lack of units meeting this criterion which, in turn, leads to a smaller 406 

sample size (with the previously discussed consequences when applying kriging). This has 407 

made that in many cases the adaptive sampling designs under CtrA remain just as the initial 408 

sampling probability scheme used. 409 

It can be noted that the sampling design with the lowest estimation error in all cases is 410 

StrACS-1 (Table Table 3 and Table Table 4). This strategy prevailed regardless of the criterion 411 

used for determining the critical value or the case study considered (moisture and crude protein 412 

tests), which suggests that, based on the strata distribution defined by this design, it achieveds a 413 

more effective sample allocation than the rest in the tests performed. On the other hand, when 414 

compared ACS and StrACS-2, their estimation error values remained close (both under criteria 415 

CtrA and CtrB), so that the former sometimes outperformed the latter or vice versa, thus no 416 

clear evidence was found to help decide between them in this study. For instance, considering 417 
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CtrA, the (mean) error of StrACS-1 for the moisture test involving Lot 1 (layer L) is 0.366, 418 

however, the estimation errors of ACS and StrACS-2 in this case are 0.379 and 0.374, 419 

respectively. If the protein test using Lot 1+5(2) is considered, it can be observed a similar 420 

result, StrACS-1 achieves an error value of 2.119, whereas for ACS is 2.171 and for StrACS-2 421 

is 2.165. Taking CtrB into account, once again StrACS-1 reaches the lowest errors (0.370 -for 422 

Lot 1 (layer L)- and 1.973 -for Lot 1+5(2)), while ACS and StrACS-2 errors are equal for Lot 1 423 

(layer L) (both are 0.377), and ACS (2.012) outperforms StrACS-2 (2.038) in the protein test of 424 

Lot 1+5(2). The ANOVA results (Table 5) show that there was significant variation in RMSEP 425 

values among the three adaptive sampling designs in all cases (P<0.05), except for Lot 3 (layer 426 

U, CtrA). 427 

Adaptive sampling designs have shown that they can be more efficient, flexible and 428 

practical in reality than conventional sampling designs under certain circumstances. They also 429 

have, however, some practical limitations as can be seen from the results obtained. The 430 

selection of a suitable critical value must rely on prior knowledge about the population 431 

distribution, otherwise it may not be a trivial task. It is therefore difficult to give a “rule of 432 

thumb” for the choice of an optimal criterion, as a high critical value may result in a too low 433 

sampling density, while a low critical value might lead to the problem of indefinite sampling. 434 

For this reason, a stopping rule is typically required in order to terminate the sampling process 435 

when using adaptive sampling.  436 

This study suggests that the minimisation of the RMSEP involves several factors. As 437 

discussed earlier, sampling density plays a key role in the subsequent geostatistical analysis and 438 

estimation by kriging. In addition, constraints of sampling designs should be taken into 439 

consideration too when trying to characterize the spatial structure and possible sources of 440 

quality/safety issues. Then, it should be highlighted the importance of optimising the sampling 441 

intensity/sampling design relationship within the context of the methodology described in this 442 

paper. For this purpose, it is the goal of future studies to explore options that may improve this 443 

combination, which would lead to better performance and more faithful representations of the 444 

spatial surfaces. In this regard, short-term steps may include: (i) the use of a larger initial sample 445 

size (when using adaptive designs) to avoid the negative effect of under-sampling; (ii) test other 446 

thresholds and methods to set the critical value from the analysis of a robust database of PAP 447 

lots; and (iii) test a new set of types of neighbourhood and stopping rules. Moreover, further 448 

research should also be conducted as regards the kriging-based approach, so as to improve 449 

aspects such as the smoothing effect. The optimization of this process might be explored by 450 

replacing kriging with stochastic simulation techniques. Unlike kriging, which provides the 451 

‘best’ local estimates of the variable of interest (without regard to the resulting statistics of those 452 

estimates), stochastic simulation aims at reproducing the global statistics and maintaining the 453 
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texture of the variation, and these take precedence over local accuracy  (Goovaerts, 1997b, 454 

2001; Webster & Oliver, 2007). Therefore, depending on the purpose of the control, stochastic 455 

simulation may also help to infer the spatial distribution of the characteristic under study.   456 

4 Conclusions 457 

This study provides a methodology, based on NIR spectroscopy in combination with 458 

geostatistical inferential methods, for performing real-time sampling and analysis of raw 459 

materials in bulk (as a single operation). This approach makes it possible to explore the 460 

evaluation of new sampling protocols that can be more efficient than current strategies.  461 

The results suggest that sampling density plays a major role in the geostatistical process. 462 

Overall, results indicate that sampling intensities below 10 - 15% showed poorer performance, 463 

failing to reproduce the actual spatial patterns. Furthermore, the sampling design is also key to 464 

characterize the spatial structure. In this case, the Stratified Adaptive Cluster Sampling design 465 

(StrACS-1) performed better than the rest of protocols tested. 466 

The implementation of the methodology proposed requires an optimal balance between 467 

the sampling design, the intensity and the criterion used to determine the critical value in order 468 

to minimize the estimation error and ensure reliable results. In this regard, our research group is 469 

currently exploring the potential of automating the sampling-analysis process using this 470 

methodology by developing a robot unit. First, this could solve some of the existing limitations 471 

by significantly increasing the sampling intensity without cost and time implications. In 472 

addition, if implemented, this could provide with a rapid and cost-effective monitoring system, 473 

which would bring transparency to the supplier-purchaser relationship and benefit both 474 

efficiency and the decision-making process.  475 
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 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

Tables 581 

Table 1. Calibration statistics for predicting moisture and crude protein content (%) in PAP lots. 582 

Constituent Pre-processing Mean SECV R2 RPD 

Moisture 1,5,5,1 3.78 0.36 0.77 2.1 

Crude Protein 1,5,5,1 57.7 2.45 0.86 2.7 

SECV: standard error of cross-validation (%); R2: coefficient of determination; RPD: Residual 583 

Predictive Deviation.  584 

 585 

 586 

 587 

 588 

Table 2. RMSEP (Mean and Standard Deviation) for Moisture (M) and Crude Protein (CP) 589 

tests. Cluster then Simple Random Sampling (CluSRS). 590 

 CluSRS 

Sampling 

Intensity  

(%) 

Lot 1 (M) Lot 2 (M) Lot 3 (M) Lot 4 (M) Lot 7 (M) Lot 1+5 (CP) 

Lot 1+5(2) 

(CP) 

Lot 8+10 

(CP) 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Layer U 

30 0.161 0.010 0.114 0.009 0.116 0.008 0.137 0.006 0.287 0.016 1.483 0.118 1.578 0.086 1.540 0.050 

20 0.169 0.018 0.105 0.006 0.136 0.007 0.141 0.009 0.250 0.015 1.588 0.058 1.769 0.086 1.626 0.055 

10 0.218 0.020 0.127 0.014 0.158 0.016 0.157 0.011 0.293 0.026 1.777 0.103 2.044 0.135 1.817 0.111 

5 0.275 0.030 0.148 0.018 0.173 0.018 0.173 0.011 0.384 0.072 1.826 0.100 2.038 0.156 1.961 0.127 

Layer L 
30 0.298 0.009 0.103 0.005 0.100 0.005 0.105 0.007 0.337 0.024 

            20 0.297 0.024 0.104 0.008 0.197 0.012 0.123 0.005 0.401 0.015 



   Page 21 of 24 

10 0.379 0.031 0.119 0.009 0.139 0.025 0.125 0.010 0.329 0.035 

5 0.411 0.034 0.127 0.016 0.149 0.009 0.140 0.009 0.439 0.031 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

Table 3. RMSEP (Mean and Standard Deviation) for Moisture (M) and Crude Protein (CP) 599 

tests. Adaptive Sampling designs (Criterion A). 600 

  
Layer 

Lot 1 (M) Lot 2 (M) Lot 3 (M) Lot 4 (M) 

Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std 

ACS 
U 7.9 0.259 0.049 5.0 0.143 0.017 5.7 0.176 0.023 5.0 0.172 0.016 

L 11.4 0.379 0.061 5.0 0.131 0.015 5.0 0.167 0.026 5.0 0.144 0.015 

StrACS-1 
U 8.6 0.235 0.043 5.0 0.138 0.016 5.7 0.169 0.019 5.0 0.171 0.016 

L 12.1 0.366 0.056 5.0 0.127 0.015 5.0 0.152 0.015 5.0 0.142 0.012 

StrACS-2 
U 8.6 0.249 0.048 5.0 0.146 0.019 5.7 0.173 0.027 5.0 0.172 0.017 

L 11.4 0.374 0.051 5.0 0.137 0.016 5.0 0.166 0.031 5.0 0.143 0.013 

  
Layer 

Lot 7 (M) Lot 1+5 (CP) Lot 1+5(2) (CP) Lot 8+10 (CP) 

Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std 

ACS 
U 11.4 0.334 0.074 5.0 1.986 0.245 5.0 2.171 0.218 5.0 1.948 0.160 

L 10.7 0.395 0.065                   

StrACS-1 
U 12.9 0.304 0.055 5.0 1.943 0.187 5.0 2.119 0.204 5.0 1.920 0.150 

L 10.7 0.371 0.069                   

StrACS-2 
U 10.7 0.340 0.064 5.0 2.009 0.267 5.0 2.165 0.231 5.0 1.952 0.168 

L 10.7 0.384 0.053                   

*Intensity (%): average sampling intensity reached calculated from the S=1000 simulations 601 

performed. 602 

 603 

 604 

 605 

 606 
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 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

Table 4. RMSEP (Mean and Standard Deviation) for Moisture (M) and Crude Protein (CP) 616 

tests. Adaptive Sampling designs (Criterion B). 617 

  
Layer 

Lot 1 (M) Lot 2 (M) Lot 3 (M) Lot 4 (M) 

Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std 

ACS 
U 12.9 0.242 0.048 15.0 0.123 0.016 13.6 0.162 0.019 12.9 0.159 0.015 

L 12.1 0.377 0.044 15.0 0.114 0.015 14.3 0.150 0.025 13.6 0.131 0.012 

StrACS-1 
U 12.9 0.214 0.035 15.7 0.118 0.013 13.6 0.153 0.012 13.6 0.156 0.014 

L 12.1 0.370 0.044 15.7 0.111 0.012 14.3 0.137 0.015 13.6 0.129 0.011 

StrACS-2 
U 11.4 0.238 0.048 14.3 0.128 0.021 12.9 0.158 0.020 12.1 0.158 0.015 

L 11.4 0.377 0.040 14.3 0.122 0.019 12.9 0.151 0.029 12.1 0.134 0.013 

  
Layer 

Lot 7 (M) Lot 1+5 (CP) Lot 1+5(2) (CP) Lot 8+10 (CP) 

Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std Intensity (%) Mean Std 

ACS 
U 12.9 0.328 0.059 14.3 1.834 0.192 14.3 2.012 0.187 14.3 1.790 0.117 

L 12.1 0.374 0.054                   

StrACS-1 
U 12.9 0.301 0.039 14.3 1.794 0.157 14.3 1.973 0.165 15.0 1.782 0.111 

L 12.1 0.356 0.052                   

StrACS-2 
U 11.4 0.338 0.057 12.9 1.857 0.205 12.9 2.038 0.200 13.6 1.824 0.144 

L 11.4 0.384 0.051                   

*Intensity (%): average sampling intensity reached calculated from the S=1000 simulations 618 

performed. 619 

 620 

 621 

 622 

 623 
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 625 

 626 

Table 5. One-way ANOVA results (P values) for the three adaptive sampling designs tested 627 

(ACS, StrACS-1, StrACS-2) in Moisture (M) and Crude Protein (CP) tests. 628 

Criterion Layer 
Lot 1 (M) Lot 2 (M) Lot 3 (M) Lot 4 (M) 

A 
U 0 0 0.38 7.03x10-10 

L 3.1x10-7 0 0.002 0 

B 
U 0 0 3.39x10-7 0 

L 8.3x10-6 0 0 0 

  
Layer 

Lot 7 (M) Lot 1+5 (CP) Lot 1+5(2) (CP) Lot 8+10 (CP) 

A 
U 0 1.63x10-9 1.28x10-8 3.16x10-6 

L 0    

B 
U 0 3.08x10-13 3.55x10-14 3.31x10-14 

L 0    

 629 

 630 

 631 

 632 

Figures 633 

Fig. 1. Experimental design: (A) Glass container. (B) Lot 1. (C) Lot 2. (D) Lot 3. (E) 634 

Lot 4. (F) Lot 7. (G) Lot 1+5. (H) Lot 1+5(2). (I) Lot 8+10. 635 

Fig. 2. Sampling designs: (A) Cluster then SRS, i=5% example. (B) Adaptive Cluster 636 

Sampling (ACS). (C) Stratified ACS-1. (D) Stratified ACS-2. 637 

Fig. 3. Strategy for the simulation study. (A) Multistage design. (B) Adaptive designs. 638 

Fig. 4. Spatial surfaces (Lot 1L; Moisture): 100% sampling; Cluster then SRS, 639 

intensities: (1) 30% (2) 20% (3) 10% (4) 5%; ACS (CtrA), intensity 20% (5); StrACS-1 640 

(CtrA), intensity 20% (6); StrACS-2 (CtrA), intensity 20% (7); ACS (CtrB), intensity 641 

16.4% (8); StrACS-1 (CtrB), intensity 16.4% (9); StrACS-2 (CtrB), intensity 16.4% 642 

(10). 643 
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Fig. 5. Spatial surfaces (Lot 1+5(2); Crude Protein): 100% sampling; Cluster then SRS, 644 

intensities: (1) 30% (2) 20% (3) 10% (4) 5%; ACS (CtrA), intensity 5% (5); StrACS-1 645 

(CtrA), intensity 5% (6); StrACS-2 (CtrA), intensity 5% (7); ACS (CtrB), intensity 646 

16.4% (8); StrACS-1 (CtrB), intensity 16.4% (9); StrACS-2 (CtrB), intensity 16.4% 647 

(10). 648 

Fig. 6. Estimation error values (RMSEP) and average Sampling Intensity (%) reached 649 

by each design for Moisture (M) and Crude Protein (CP) tests. Sampling designs: 650 

Cluster then SRS (CluSRS); Adaptive Cluster Sampling – CtrA (ACS-A); Stratified 651 

Adaptive Cluster Sampling-1 – CtrA (StrACS-1-A); Stratified Adaptive Cluster 652 

Sampling-2 – CtrA (StrACS-2-A); Adaptive Cluster Sampling – CtrB (ACS-B); 653 

Stratified Adaptive Cluster Sampling-1 – CtrB (StrACS-1-B); Stratified Adaptive 654 

Cluster Sampling-2 – CtrB (StrACS-2-B). 655 

 656 


