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Abstract. We design and analyze a hybridized cut finite element method for elliptic interface
problems. In this method very general meshes can be coupled over internal unfitted interfaces,
through a skeletal variable, using a Nitsche type approach. We discuss how optimal error estimates
for the method are obtained using the tools of cut finite element methods and prove a condition
number estimate for the Schur complement. Finally, we present illustrating numerical examples.
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1. Introduction. The solution of heterogeneous problems, for instance, prob-
lems where some physical parameter has important variation within the computational
domain, remains a challenging problem in computational science. Indeed special care
must be taken in the design of methods to ensure that efficiency and accuracy do
not degenerate in the presence of high contrast inclusions. An additional layer of
complexity is added if the internal structure, e.g., the position of the inclusion, is one
of the problem unknowns and domain boundaries or internal interfaces must be mod-
ified during the computation. In this situation it is an advantage if remeshing of the
domain can be avoided, while the equations still are solved accurately on a variety of
configurations [39, 6]. When one interface separates two computational domains and
the problem size is moderate it is reasonable to use a monolithic solution strategy.
However, as the number of inclusions increases it becomes advantageous to resort to
domain decomposition so that the problem can be solved in parallel.

Recently there has been a surge of activity in the design and analysis of
hybridized methods, that is, nonconforming methods that have different approxi-
mating polynomials defined in the bulk of the elements and on the skeleton of the
computational mesh. The skeleton variable plays the role of a mortar variable, for
either a Neumann or a Dirichlet trace. Typically the interior degrees of freedom of
each cell can easily be eliminated using static condensation, thereby reducing the
size of the linear system. This is particularly appealing for high order approximation
methods where each volume element hosts a relatively large number of degrees of free-
dom. An important feature of hybridized methods is that they allow for fairly general
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HYBRIDIZED CutFEM FOR ELLIPTIC INTERFACE PROBLEMS A3355

element shapes and there exists an important literature on methods defined on general
polygonal/polyhedral meshes. Examples of such methods include the hybridized dis-
continuous Galerkin method [16], the virtual element method [1], and the hybridized
high order method [17]. In many cases these methods are closely related (see [15] and
references therein).

In this contribution we design a hybridized finite element method within the cut
finite element method (CutFEM) paradigm; see [7, 4]. This means that the compu-
tational mesh is independent of the geometry and internal interfaces, for example,
the computational mesh can remain completely structured. If the underlying prob-
lem has some special structure dividing the computational domain in subdomains, for
instance, defined by grains with a specific permeability or microstructure, the domain
boundaries are allowed to cut through the background mesh in a close to arbitrary
fashion. By including boundary or interface defining terms in the variational formu-
lation the method essentially eliminates the meshing problem. This is particularly
convenient in shape optimization problems [27, Chapter 6] or inverse identification
problems [5], where the position of the interfaces changes during an optimization
process. The introduction of a skeletal variable makes it possible to eliminate internal
degrees of freedom in a parallel fashion so that the linear system can be solved by
iterating on the Schur complement. Optimal stability and accuracy is obtained using
the tools developed within the CutFEM paradigm. Below we will also show that the
resulting Schur complement has a condition number that is bounded independently
of the mesh interface intersection.

Brief review of cut finite elements. CutFEMs were originally introduced by
Hansbo and Hansbo [23] as an alternative to extended finite element methods, using
Nitsche's method as mortaring over an unfitted interface. The ideas were extended
to composite meshes, Chimera-style, by Hansbo, Hansbo and Larson [24] and then to
fictitious domain problems by Burman and Hansbo [7]. In a parallel development [36],
Olshanskii, Reusken, and Grande developed a CutFEM for the discretization of PDEs
on surfaces using the trace of the (discrete) surface on a finite element bulk mesh as
the computational mesh. Additional stability can be obtained by adding suitable sta-
bilization terms [3, 8, 12, 31, 22] and the methods are then comparable to standard
finite element methods on meshed geometries, with respect to both conditioning and
accuracy. Further developments include techniques for the handling of curved inter-
faces or boundaries [32, 9], PDEs on composite surfaces [25], and transport problems
in fractured mixed dimensional domains [11]. For an overview of the ideas behind the
CutFEM paradigm see [4], and for a collection of essays giving a snapshot of the state
of the art we refer to [2].

New contributions. We develop a hybridized CutFEM for an elliptic model prob-
lem with piecewise constant coefficients defined on a partition of the domain. The
union of the boundaries of the subdomains is called the skeleton and hybridization
consists of adding a solution field representing the solution on the skeleton. In the
proposed method each subdomain of the bulk and each component of the skeleton is
equipped with its own finite element mesh and space. The mesh may be constructed
using a cut technique or a standard mesh. The hybridization leads to a convenient
formulation which also naturally facilitates elimination of the bulk degrees of freedom
using a Schur complement formulation.

We develop a stability and error analysis where we in particular show that optimal
order a priori error estimates hold for both and that the condition number of the Schur
complement is O(d - 1h - 1), where d is the diameter of the subdomain. We cover very
general choices of the subdomains and one instance of our method and analysis is a p
based discontinuous Galerkin method on polygonal elements.
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A3356 BURMAN, ELFVERSON, HANSBO, LARSON, AND LARSSON

Earlier work. Hybridized methods are commonly used and many versions have
been proposed, notably in the setting of discontinuous Galerkin methods; for an over-
view, see Cockburn, Gopalakrishnan, and Lazarov [16]. The particular version we
employ here was first proposed using meshed subdomains by Egger [18], who later
extended it to incompressible flow [20, 21] and convection-diffusion problems [19]; cf.
also K\"onn\"o and Stenberg [30], where it was employed for solving the Brinkman prob-
lem. Independently, the same approach has been proposed by Oikawa and Kikuchi
[35] and further developed by Miyashita and Saito [34].

Outline. In section 2 we formulate the hybridized CutFEM. In section 3 we derive
stability and optimal order error estimates. In section 4 we eliminate the bulk fields
using the Schur complement and we derive a bound for the condition number of the
Schur complement. In section 5 we present numerical results.

2. The hybridzed cut finite element method.

2.1. The model problem.
Domain. In hybridized methods the domain \Omega is partitioned into a set of subdo-

mains \{ \Omega i\} Ni=1 and the interfaces between the subdomains constitute a skeleton \Omega 0;
see the illustration in Figure 1. Formally we assume the following:

\bullet Let \Omega \subset \BbbR d, with d = 2 or 3, be a domain with piecewise smooth Lipschitz
boundary \partial \Omega . Recall that \partial \Omega is piecewise smooth if it is the union of a finite
number of smooth d - 1 dimensional manifolds with boundary and Lipschitz
if there is a finite set of local coordinate systems in which the boundary can
be described as a Lipschitz function.

\bullet Let \{ \Omega i\} Ni=1 be a partition of \Omega into N subdomains \Omega i with piecewise smooth
Lipschitz boundaries \partial \Omega i. For the analysis we assume that this partition is
such that the following trace inequality holds for each subdomain:

\| v\| 2\partial \Omega i
\leq C

\bigl( 
d - 1
\Omega i

\| vi\| 2\Omega i
+ d\Omega i

\| \nabla vi\| 2\Omega i

\bigr) 
,(2.1)

where d\Omega i
= diam(\Omega i).

\bullet Let \Omega 0 = \cup Ni=1\partial \Omega i \setminus \partial \Omega be the skeleton of the partition. Note that there is a
partition of \Omega 0 into smooth d - 1 manifolds with boundary

(2.2) \Omega 0 = \cup Ni,j=1\partial \Omega i \cap \partial \Omega j = \cup N0

k=1\Omega 0,k,

where N0 is the number of nonempty intersections \partial \Omega i\cap \partial \Omega j . We denote \Omega 0,k

a skeleton subdomain and for increased readability we from here on reserve
the index k = 1, . . . , N0 for identifying skeleton subdomains, whereas indices
i, j = 0, . . . , N are used to identify subdomains \Omega i,\Omega j .

Ω1

Ω2 Ω3

Ω0

Ω1

Ω3

Ω2

Ω0,1

Ω0,2

Ω0,3

Fig. 1. Schematic illustration of a partition of the domain \Omega into a set of subdomains \{ \Omega i\} Ni=1

and of the skeleton \Omega 0 with its partition into a set of skeleton subdomains \{ \Omega 0,k\} N0
k=1.
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HYBRIDIZED CutFEM FOR ELLIPTIC INTERFACE PROBLEMS A3357

Model problem. We consider the following hybridized formulation of the Poisson
problem: find u0 : \Omega 0 \rightarrow \BbbR and for i = 1, . . . , N , ui : \Omega i \rightarrow \BbbR such that

 - \nabla \cdot ai\nabla ui = fi in \Omega i,(2.3)

Jn \cdot a\nabla uK = 0 on \Omega 0,(2.4)

[u]i = 0 on \partial \Omega i \cap \Omega 0,(2.5)

ui = 0 on \partial \Omega i \cap \partial \Omega .(2.6)

Here ai, i = 1, . . . , N, are positive constants and the jumps operators are defined by

(2.7) [u]| \partial \Omega i\cap \Omega 0 = ui  - u0, Jn \cdot a\nabla uK| \partial \Omega i\cap \partial \Omega j = ni \cdot ai\nabla ui + nj \cdot aj\nabla uj ,

where ni is the exterior unit normal to \Omega i.
This problem is well posed, with exact solution u \in H1

0 (\Omega ) such that ui = u| \Omega i ,

i = 0, . . . , N . Below we will assume the additional regularity ui \in H
3
2 (\Omega i). We define

the spaces

(2.8) V0 =

N0\bigoplus 
k=1

H1(\Omega 0,k), V1,N =

N\bigoplus 
i=1

H
3
2 (\Omega i)

and the global space

(2.9) W = V0 \oplus V1,N .

We will use the notation (\cdot , \cdot )X for the L2-scalar product over X \subset \BbbR s, where either
s = d or s = d - 1. The associated norm will be denoted \| \cdot \| X . We will also use the
following weighted L2 norm, \| v\| 2\omega ,a = (av, v)\omega , for a \in L\infty (\omega ) with a > 0.

Remark 2.1. We note that solutions to certain problems of the form (2.3)--(2.6)
may have regularity arbitrarily close to H1(\Omega ); see [29], where a problem with

intersecting interfaces and discontinuous coefficients is considered. Thus ui \in H
3
2 (\Omega i)

does not hold in general. For smooth interfaces the assumption holds and, of course,
for the situation when the coefficient is globally constant. Both of these cases are
of practical importance since hybridization is used to conveniently enable elimina-
tion of the subdomain unknowns using a Schur complement procedure; see section
3. Deriving error bounds with lower regularity assumptions requires a more involved
analysis and we refer to the techniques developed in [10] for CutFEM approximations
of boundary value problems with mixed Dirichlet/Neumann boundary conditions and
minimal regularity requirements.

2.2. The method.
Finite element spaces. On each subdomain \Omega i, 1 \leq i \leq N , and on each skeleton

subdomain \Omega 0,k, 1 \leq k \leq N0, we construct a separate finite element space.

\bullet Let O \in \{ \Omega 0,k\} N0

k=1 \cup \{ \Omega i\} Ni=1, i.e., O is either one of the d dimensional bulk
subdomains \Omega i or one of the d - 1 dimensional components of the skeleton \Omega 0.

\bullet For each O there is a d dimensional domain UO such that O \subseteq UO. For each
h \in (0, hmax,O], where hmax,O > 0 is a sufficiently small parameter, there is
a d dimensional quasiuniform mesh \scrT h(UO) on UO with mesh parameter h,
i.e., \scrT h(UO) is a partition of UO into shape regular elements T with diameter
hT and hT \sim h uniformly. The active mesh is defined by

(2.10) \scrT h,O = \{ T \in \scrT h(UO) : T \cap O \not = \emptyset \} ,
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Ωi

(a) U\Omega i (b) \scrT h(U\Omega i) (c) \scrT h,\Omega i = \scrT h,i

Ω0,k

(d) U\Omega 0,k (e) \scrT h(U\Omega 0,k ) (f) \scrT h,\Omega 0,k = \scrT h,0,k

Fig. 2. Illustration of the subdomainwise construction of meshes. Note that there is no require-
ment for the meshes to match. (a)--(c) Construction on a subdomain \Omega i. (d)--(f) Construction on
a skeleton subdomain \Omega 0,k.

which covers O but is not required to perfectly match O. This construction
of the active mesh is illustrated in Figure 2.

\bullet Let Vh,O be a finite dimensional space consisting of continuous piecewise poly-
nomial functions defined on \scrT h,O such that there is an interpolation operator
\pi h : H1(\scrT h,O) \rightarrow Vh,O, which satisfy the approximation property

(2.11) \| v  - \pi hv\| Hm(\scrT h,O) \lesssim hs - m\| v\| Hs(\scrT h,O), 0 \leq m \leq s \leq p+ 1,

where p+1 is the approximation order of Vh,O. We employ the notation a \lesssim 
b\leftrightarrow a \leq Cb, with analogous notation for greater or equal \gtrsim and equivalence
\sim . The hidden constants in this notation are always independent of the
mesh size.

\bullet For O \in \{ \Omega i\} Ni=1 we use the simplified notation

(2.12) Vh,i = Vh,\Omega i
, \scrT h,i = \scrT h,\Omega i

,

and for O \in \{ \Omega 0,k\} N0

k=1,

(2.13) Vh,0,k = Vh,\Omega 0,k
, \scrT h,0,k = \scrT h,\Omega 0,k

, \scrT h,0 = \sqcup N0

k=1\scrT h,0,k.

\bullet Define the finite element spaces

(2.14) Vh,0 =

N0\bigoplus 
k=1

Vh,0,k, Vh,1,N =

N\bigoplus 
i=1

Vh,i

and

(2.15) Wh = Vh,0 \oplus Vh,1,N .
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Remark 2.2. Here we are using restrictions of d dimensional spaces to the d  - 1
dimensional skeleton in the spirit of CutFEM (see [8, 36]), where similar ideas are
used to solve the Laplace--Beltrami problem on a codimension one surface embedded
in d dimensional mesh. We may also use a standard d - 1 dimensional mesh on each
of the components \Omega 0,i of the skeleton. Note that these meshes do not need to match
on the interfaces \Omega 0,i \cap \Omega 0,j between two components of the skeleton. Our analysis
readily extends to this situation as well.

Stabilization forms. We here define a number of abstract properties, which we
assume our stabilization forms satisfy. In section 3.3 below we construct forms that
fulfill these properties. On each subdomain \Omega i, 1 \leq i \leq N , there is a symmetric
bilinear form sh,i, on Vh,i +Hp+1(\Omega i), with associated seminorm \| \cdot \| sh,i

such that
\bullet we have consistency and interpolation estimates,

\| v\| sh,i
\lesssim hs - 1| v| Hs(\Omega i),(2.16)

\| v  - \pi hv\| sh,i
\lesssim hs - 1| v| Hs(\Omega i),(2.17)

where 1 \leq s \leq p+ 1;
\bullet we have inverse estimates,

h\| \nabla v\| 2\partial \Omega i,ai \lesssim \| \nabla v\| 2\Omega i,ai + \| v\| 2sh,i
, v \in Vh,i,(2.18)

\| v\| 2\scrT h,i
\lesssim \| v\| 2\Omega i

+ \| v\| 2sh,i
, v \in Vh,i.(2.19)

On each skeleton subdomain \Omega 0,k, 1 \leq k \leq N0, there is a symmetric bilinear form
sh,0,k, on Vh,0,k +Hp+1/2(\Omega 0,k), with associated seminorm \| \cdot \| sh,0,k

such that
\bullet we have consistency and interpolation estimates,

\| v\| sh,0,k
\lesssim hs - 1| v| Hs - 1/2(\Omega 0,k),(2.20)

\| v  - \pi hv\| sh,0,k
\lesssim hs - 1| v| Hs - 1/2(\Omega 0,k),(2.21)

where 1 \leq s \leq p+ 1;
\bullet we have the inverse estimate

(2.22) h - 1\| v\| 2\scrT h,0,k
\sim \| v\| 2\Omega 0,k

+ \| v\| 2sh,0,k
, v \in Vh,0,k.

For notational convenience we define the skeleton stabilization form, respectively, the
total stabilization form,

sh,0(v0, w0) =

N0\sum 
k=1

sh,0,k(v0,k, w0,k), sh(v, w) =

N\sum 
i=0

sh,i(vi, wi),(2.23)

with their respective associated seminorms \| \cdot \| sh,0
and \| \cdot \| sh .

Derivation of the method. Multiplying (2.3) by a test function v, integrating by
parts over \Omega i, and using the convention u0 = 0 on \partial \Omega we obtain

N\sum 
i=1

(fi, vi)\Omega =

N\sum 
i=1

 - (\nabla \cdot ai\nabla ui, vi)\Omega i(2.24)

=

N\sum 
i=1

(ai\nabla ui,\nabla vi)\Omega i  - (ni \cdot ai\nabla ui, vi)\partial \Omega i(2.25)

=

N\sum 
i=1

(ai\nabla ui,\nabla vi)\Omega i  - (ni \cdot ai\nabla ui, vi)\partial \Omega i(2.26)

 - (ui  - u0, n \cdot ai\nabla vi)\partial \Omega i
+ (\beta h - 1ai(ui  - u0), vi)\partial \Omega i

(2.27)
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=

N\sum 
i=1

(ai\nabla ui,\nabla vi)\Omega i
+ sh,i(ui, vi) - (ni \cdot ai\nabla ui, vi  - v0)\partial \Omega i

(2.28)

 - (ui  - u0, ni \cdot ai\nabla vi)\partial \Omega i
+ (\beta h - 1ai(ui  - u0), (vi  - v0))\partial \Omega i

,(2.29)

where we added terms which are zero for the exact solution u with the purpose of
obtaining a stable symmetric formulation. More precisely, in (2.27) we used (2.5) to
add terms involving [u]i = ui  - u0 = 0 and in (2.28) we used (2.4) and the identity

(2.30) 0 = (Jn \cdot a\nabla uK, v0)\Omega 0 =

N\sum 
i=1

(ni \cdot ai\nabla ui, v0)\partial \Omega i

since v0 = 0 on \partial \Omega . Finally, we added the stabilization form sh,i using consistency
(2.16).

Definition of the method. Find uh \in Wh such that

(2.31) Ah(uh, v) = lh(v) \forall v \in Wh,

where Wh is defined in (2.15) and

Ah(v, w) = sh,0(v0, w0)(2.32)

+

N\sum 
i=1

\Bigl( 
(ai\nabla vi,\nabla wi)\Omega i

+ sh,i(vi, wi) + (\beta h - 1
i ai[v]i, [w]i)\partial \Omega i

(2.33)

 - (ni \cdot ai\nabla vi, [w]i)\partial \Omega i
 - ([v]i, ni \cdot ai\nabla wi)\partial \Omega i

\Bigr) 
(2.34)

lh(v) =

N\sum 
i=1

(fi, vi)\Omega i
.(2.35)

Remark 2.3. We consider the partition \{ \Omega i\} Ni=1 of \Omega as being fixed for simplicity
only. In fact we may also allow the number of subdomains N to increase during refine-
ment. We then obtain a version of the polygonal finite element method, where each
polygonal finite element is equipped with a mesh and piecewise continuous polynomi-
als of degree p, and not only polynomials of order p which in general is the case in
polygonal finite elements. In order to guarantee that coercivity holds under refinement
of the partition we essentially need the inverse inequality (2.18) to hold with a uni-
form constant for all subdomains that occur during the refinement of the partition.
Therefore we need to assume some additional shape regularity of the subdomains.
For instance, we may assume that for each \Omega i there is partition \scrS i of \Omega i into simpli-
cies S and a constant such that for all S \in \scrS i with | \partial S \cap \partial \Omega | > 0 it holds that

(2.36) hi \lesssim 
| S| 

| \partial S \cap \partial \Omega i| 
,

where the mesh parameter hi \in (0, h0,\Omega i
]. Then (2.18) holds uniformly over all parti-

tions \{ \Omega i\} Ni=1 of \Omega , with corresponding meshes \scrT h,i.
The corresponding condition for polygonal finite elements is

(2.37) diam(\Omega i) \lesssim 
| S| 

| \partial S \cap \partial \Omega i| 

(see Assumption 30, section 4.3 in [13]), and since we may always assume that
hi \lesssim diam(\Omega i) we conclude that (2.36) is weaker than (2.37) and thus more com-
plex subdomains may be employed when finer meshes are used.
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Weak Galerkin orthogonality. Let u \in W be the solution to (2.3)--(2.6) and uh \in 
Wh be the solution to (2.31). The following weak Galerkin orthogonality holds:

Ah(u - uh, v) = sh(u, v) \forall v \in Wh,(2.38)

where the right-hand side is nonzero since the stabilization forms are not consistent.

3. Error estimates. The error estimates for our methods are obtained in a
similar fashion as those proven in [18] and we will focus here on how robustness and
optimal estimates are obtained in the framework of cut elements.

3.1. Properties of \bfitA \bfith . Define the energy norm

| | | v| | | 2h = \| v0\| 2sh,0
+

N\sum 
i=1

\| \nabla vi\| 2\Omega i,ai + h\| \nabla vi\| 2\partial \Omega i,ai + h - 1\| [v]i\| 2\partial \Omega i,ai + \| vi\| 2sh,i
.(3.1)

Lemma 3.1 (continuity and coercivity). There exist positive constants such that
Ah is continuous,

(3.2) Ah(v, w) \lesssim | | | v| | | h| | | w| | | h, v, w \in W +Wh,

and for \beta large enough Ah is coercive

(3.3) | | | v| | | 2h \lesssim Ah(v, v), v \in Wh.

Proof. Continuity (3.2). This follows directly from the Cauchy--Schwarz inequality.
Coercivity (3.3). Using standard arguments and the inverse estimate (2.18) we

obtain

Ah(v, v) = sh,0(v0, v0) +

N\sum 
i=1

(ai\nabla vi,\nabla vi)\Omega i + sh,i(vi, vi) + \beta h - 1\| [v]i\| 2\partial \Omega i,ai(3.4)

 - 2(ni \cdot ai\nabla vi, [vi])\partial \Omega i
(3.5)

\gtrsim \| v0\| 2sh,0
+

N\sum 
i=1

\| \nabla vi\| 2\Omega i,ai + \| v\| 2sh,i
+ \beta h - 1\| [v]i\| 2\partial \Omega i,ai(3.6)

 - 2h1/2\| \nabla vi\| \partial \Omega i,aih
 - 1/2\| [vi]\| \partial \Omega i,ai(3.7)

\gtrsim \| v0\| 2sh,0
+

N\sum 
i=1

\Bigl( 
\| \nabla vi\| 2\Omega i,ai + \| v\| 2sh,i

 - \delta h\| \nabla vi\| 2\partial \Omega i,ai

\Bigr) 
(3.8)

+
\bigl( 
\beta  - \delta  - 1

\bigr) 
h - 1\| [v]i\| 2\partial \Omega i,ai(3.9)

\gtrsim \| v0\| 2sh,0
+

N\sum 
i=1

\bigl( 
1 - \delta C1

\bigr) \Bigl( 
\| \nabla vi\| 2\Omega i,ai + \| v\| 2sh,i

\Bigr) 
(3.10)

+
\bigl( 
\beta  - \delta  - 1

\bigr) 
h - 1\| [v]i\| 2\partial \Omega i,ai ,(3.11)

where C1 is the hidden constant in (2.18). Coercivity thereby holds if 0 < \delta < C - 1
1

and \beta > \delta  - 1.

Lemma 3.2 (Poincar\'e inequality). Let \phi be the solution to the dual problem

(3.12)  - \nabla \cdot a\nabla \phi = \psi in \Omega \phi = 0 on \partial \Omega 
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A3362 BURMAN, ELFVERSON, HANSBO, LARSON, AND LARSSON

with \psi \in L2(\Omega ), and assume that

(3.13)

N\sum 
i=1

\| \phi i\| 2H3/2(\Omega i),ai
\lesssim \| \psi \| 2\Omega .

Under the regularity assumption (3.13) the following Poincar\'e estimate holds:

\Bigl( 
min

1\leq i\leq N
d\Omega i

\Bigr) 
h - 1\| v0\| 2\scrT h,0

+

N\sum 
i=1

\| vi\| 2\scrT h,i
\lesssim | | | v| | | 2h, v \in Wh,(3.14)

where d\Omega i
is the diameter of \Omega i. This estimate in particular shows that | | | \cdot | | | h is a

norm on Wh.

Proof. Considering first the estimation of the bulk subdomain contributions, we
note that using (2.19) we have

(3.15)

N\sum 
i=1

\| v\| 2\scrT h,i
\lesssim 

N\sum 
i=1

\| v\| 2\Omega i
+ \| v\| 2sh,i

.

To estimate the term
\sum N
i=1 \| v\| 2\Omega i

we multiply the dual problem (3.12) by v \in Wh,
and using partial integration on each \Omega i we obtain

N\sum 
i=1

(vi, \psi i)\Omega i
=

N\sum 
i=1

(ai\nabla vi,\nabla \phi i)\Omega i
 - (vi, ni \cdot ai\nabla \phi i)\partial \Omega i

(3.16)

=

N\sum 
i=1

(ai\nabla vi,\nabla \phi i)\Omega i
 - ([v]i, ni \cdot ai\nabla \phi i)\partial \Omega i

 - (v0, ni \cdot ai\nabla \phi i)\partial \Omega i
(3.17)

=

N\sum 
i=1

(ai\nabla vi,\nabla \phi i)\Omega i
 - ([v]i, ni \cdot ai\nabla \phi i)\partial \Omega i

 - (v0, Jn \cdot a\nabla \phi K\underbrace{}  \underbrace{}  
=0

)\Omega 0
(3.18)

\lesssim 
N\sum 
i=1

\| \nabla vi\| \Omega i,ai\| \nabla \phi i\| \Omega i,ai + h - 1/2\| [v]i\| \partial \Omega i,aih
1/2\| \nabla \phi i\| \partial \Omega i,ai(3.19)

\lesssim | | | v| | | h
\Bigl( N\sum 
i=1

\| \nabla \phi \| 2\Omega i,ai + h\| \phi \| 2H3/2(\Omega i),ai

\Bigr) 1/2
\underbrace{}  \underbrace{}  

\lesssim \| \psi \| \Omega 

(3.20)

\lesssim | | | v| | | h\| \psi \| \Omega ,(3.21)

where in (3.17) we added and subtracted v0 in the boundary terms; in (3.18) we used
the fact that v0 = 0 on \partial \Omega ; in (3.19) we used the Cauchy--Schwarz inequality and the
fact that Jn \cdot a\nabla \phi K = 0 on \Omega 0; in (3.20) we used the definition (3.1) of the energy norm
and a trace inequality for \phi ; and finally in (3.21) we used the regularity assumption
(3.13). Thus we obtain

(3.22)

N\sum 
i=1

\| vi\| 2\scrT h,i
\lesssim | | | v| | | 2h.
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Next using the trace inequality (2.1)

\| v\| 2\partial \Omega i
\lesssim d - 1

\Omega i
\| vi\| 2\Omega i

+ d\Omega i
\| \nabla vi\| 2\Omega i

(3.23)

\leq d - 1
\Omega i

\| vi\| 2\Omega i
+ d\Omega i

\| a - 1
i \| L\infty (\Omega i)\| \nabla vi\| 

2
\Omega i,ai(3.24)

we have that

\| v0\| 2\Omega 0
\lesssim 

N\sum 
i=1

\| [v]i\| 2\partial \Omega i
+ \| vi\| 2\partial \Omega i

(3.25)

\lesssim 
N\sum 
i=1

\| [v]i\| 2\partial \Omega i
+ d - 1

\Omega i
\| vi\| 2\Omega i

+ d\Omega i
\| a - 1
i \| L\infty (\Omega i)\| \nabla vi\| 

2
\Omega i,ai(3.26)

\lesssim 
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr)  - 1

| | | v| | | 2h,(3.27)

where we in the last inequality assume that diameter of each bulk subdomain d\Omega i
\leq 

diam(\Omega ) \sim 1 is small enough for

(3.28) max
1\leq i\leq N

d - 1
\Omega i

\geq max
1\leq i\leq N

d\Omega i\| a - 1
i \| L\infty (\Omega i).

Thus by (2.22) we obtain

h - 1\| v0\| 2\scrT h,0
\lesssim \| v0\| 2\Omega 0

+ \| v0\| 2sh,0
\lesssim 
\Bigl( 
1 +

\Bigl( 
min

1\leq i\leq N
d\Omega i

\Bigr)  - 1\Bigr) 
| | | v| | | 2h,(3.29)

which concludes the proof since 1 \lesssim 
\bigl( 
min1\leq i\leq N d\Omega i

\bigr)  - 1
.

Note in particular that we have the estimate

(3.30)
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr) 
h - 1\| v0\| 2\scrT h,0

\lesssim | | | v0 + w| | | 2h

for all w \in Vh,1,N = \oplus Ni=1Vh,i.

3.2. Interpolation operator.
Definition of the interpolation operator. In order to handle both the d dimensional

components and the d  - 1 dimensional components at the same time we let O \in 
\{ \Omega 0,k\} N0

k=1\cup \{ \Omega i\} Ni=1, i.e., O is either one of the d dimensional bulk domains \Omega i or one
of the d - 1 dimensional components of the skeleton \Omega 0.

\bullet There is an extension operator EO : Hs(O) \rightarrow Hs(U\delta (O)) such that

(3.31) \| EOv\| Hs(U\delta (O)) \lesssim 

\Biggl\{ 
\delta 1/2\| v\| Hs(O), dim(O) = d - 1,

\| v\| Hs(O), dim(O) = d,

where U\delta (O) = \cup x\in OB\delta (x), with B\delta (x) denoting a d dimensional ball with
radius \delta > 0 centered in x. Thus, U\delta (O) is always a d dimensional tubular
neighborhood of O even if O itself is d - 1 dimensional. The d - 1 dimensional
case of (3.31) includes the parameter 0 < \delta < \delta 0 which for h small enough we
may take as \delta \sim h; see [37, Lemma 3.1]. In proofs below we will utilize that
the construction of the extension operator on a skeleton subdomain \Omega 0,k is
such that the function is first extended onto a smooth continuation of \Omega 0,k,
whereafter this extended function is in turn extended onto U\delta (\Omega 0,k) via the
closest point mapping. The extended function on a skeleton subdomain is
thus constant in the normal direction.
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\bullet Let \pi h,O,SZ : H1/2+\epsilon (\scrT h,O) \rightarrow Vh,O be a Scott--Zhang interpolant, without
special treatment of the boundary condition, for which the standard interpo-
lation estimate

\| v  - \pi h,O,SZv\| Hm(\scrT h,O) \lesssim hs - m\| v\| Hs(\scrT h,O)(3.32)

holds for 0 \leq m \leq s \leq p+1; see [38]. Recall that the Scott--Zhang interpolant
is a projection such that \pi h,O,SZ(\pi h,O,SZv) = \pi h,O,SZv. Using the extension
operator we define \pi h,O : Hs(O) \rightarrow Vh,O as

(3.33) \pi h,Ov = \pi h,O,SZEOv,

and finally, we let \pi h : (\oplus N0

k=1H
s - 1/2(\Omega 0,k))\oplus (\oplus Ni=1H

s(\Omega i)) \rightarrow Wh be defined
componentwise by (\pi hv)O = \pi h,Ov| O. We then have the interpolation error
estimate

\| v  - \pi hv\| Hm(O) \lesssim hs - m\| v\| Hs(O)(3.34)

for 0 \leq m \leq s \leq p + 1. For the d dimensional subdomains O = \Omega i, i =
1, . . . , N , we derive (3.34) using a standard interpolation error bound for the
Scott--Zhang interpolant followed by the stability of the extension operator

\| (I  - \pi h)v\| Hm(\Omega i) \leq \| (I  - \pi h)E\Omega i
v\| Hm(\scrT h,i)(3.35)

\lesssim hs - m\| E\Omega i
v\| Hs(\scrT h,i) \lesssim hs - m\| v\| Hs(\Omega i).(3.36)

For the d - 1 dimensional skeleton subdomains \Omega 0,k, k = 1, . . . , N0, we instead
employ the trace inequality

(3.37) \| v\| 2\Omega 0,k
\lesssim h - 1\| v\| 2\scrT h,0,k

+ h\| \nabla v\| 2\scrT h,0,k

whereafter (3.34) can be derived in the same way as in (3.35)--(3.36).

Lemma 3.3 (interpolation error estimate). The following estimate holds:

(3.38) | | | v  - \pi hv| | | 2h \lesssim h2p

\Biggl( 
N0\sum 
k=1

\| v0,k\| 2Hp+1/2(\Omega 0,k)
+

N\sum 
i=1

\| vi\| 2Hp+1(\Omega i)

\Biggr) 
.

Remark 3.4. Note that here we can easily localize h and p to the subdomains and
skeleton subdomains, but for notational clarity we keep a global mesh parameter h
and order of polynomials p.

Proof of (3.38). Let \eta = v - \pi hv be the interpolation error and using the definition
(3.1) of the energy norm we have

| | | \eta | | | 2h = \| \eta 0\| 2sh,0
+

N\sum 
i=1

\| \nabla \eta i\| 2\Omega i,ai + h\| \nabla \eta i\| 2\partial \Omega i,ai + h - 1\| [\eta ]i\| 2\partial \Omega i,ai\underbrace{}  \underbrace{}  
=\bigstar 

+\| \eta i\| 2sh,i
,

(3.39)

where the first and last terms are handled using the interpolation properties (2.21)
and (2.17) of the stabilization forms. For the remaining terms we proceed as
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\bigstar \lesssim 
N\sum 
i=1

\| \nabla \eta i\| 2\Omega i
+ h\| \nabla \eta \| 2\partial \Omega i

+ h - 1\| \eta i\| 2\partial \Omega i
+ h - 1\| \eta 0\| 2\partial \Omega i

(3.40)

\lesssim 
N\sum 
i=1

\| \nabla \eta i\| 2\Omega i
+ h\| \nabla \eta i\| 2\partial \Omega i

+ h - 1\| \eta i\| 2\partial \Omega i
+

N0\sum 
k=1

h - 1\| \eta 0,k\| 2\Omega k,0
(3.41)

\lesssim 
N\sum 
i=1

\| \nabla \eta i\| 2\Omega i
+
\bigl( 
\| \nabla \eta i\| 2\scrT h,i(\partial \Omega i)

+ h2\| \nabla 2\eta i\| 2\scrT h,i(\partial \Omega i)

\bigr) 
(3.42)

+
\bigl( 
h - 2\| \eta i\| 2\scrT h,i(\partial \Omega i)

+ \| \nabla \eta i\| 2\scrT h,i(\partial \Omega i)

\bigr) 
+

N0\sum 
k=1

h - 1\| \eta 0,k\| 2\Omega k,0
(3.43)

\lesssim 
N\sum 
i=1

h2p\| vi\| 2Hp+1(\Omega i)
+

N0\sum 
k=1

h2p\| v0,k\| 2Hp+1/2(\Omega 0,k)
,(3.44)

where we in (3.40) use lower bounds on the coefficients ai and the Cauchy--Schwarz
inequality; in (3.41) we separate the skeleton terms; in (3.42)--(3.43) we employ the
trace inequality

(3.45) \| v\| 2\partial \Omega i
\lesssim h - 1\| v\| 2\scrT h,i(\partial \Omega i)

+ h\| \nabla v\| 2\scrT h,i(\partial \Omega i)
,

where \scrT h,i(\partial \Omega i) is the set of all elements in \scrT h,i which intersect \partial \Omega i; and finally, in
(3.44) we employ the interpolation estimates (3.32) and (3.34).

3.3. Stabilization forms. Define the following stabilization forms:
\bullet For each subdomain \Omega i, 1 \leq i \leq N , define the stabilization form

sh,i(v, w) =

p\sum 
\ell =1

cd,\ell h
2\ell  - 1([D\ell 

n\pi hv], [D
\ell 
n\pi hw])\scrF h,i

,(3.46)

where cd,\ell > 0 is a parameter and \scrF h,i is the set of interior faces in \scrT h,i which
belongs to an element that intersect the boundary \partial \Omega i (see Figure 3(a)), and
D\ell 
\xi v denotes the contraction of \xi \ell and \nabla \ell v.

\bullet For each skeleton subdomain \Omega 0,k, 1 \leq k \leq N0, define the stabilization form

sh,0,k(v, w) =

p\sum 
\ell =1

cd - 1,\ell h
2\ell 
\bigl( 
(D\ell 

\nu \pi hv,D
\ell 
\nu \pi hw)\Omega 0,k

(3.47)

+ ([D\ell 
n\pi hv], [D

\ell 
n\pi hw])\scrF h,0,k

\bigr) 
,(3.48)

(a) \scrF h,i (b) \scrF h,0,k

Fig. 3. Illustration of faces within the active meshes used in the stabilization forms. These
faces are highlighted in red. (a) Faces for a subdomain \Omega i equipped with the active mesh \scrT h,i. (b)
Faces for a skeleton subdomain \Omega 0,k equipped with the active mesh \scrT h,0,k.
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where cd - 1,l > 0 is a parameter, \nu is the normal to the smooth d - 1 manifold
\Omega 0,k, and \scrF h,0,k denotes the set of interior faces in \scrT h,0,k; see Figure 3(b).

These stabilization forms satisfy the abstract properties for stabilization forms spec-
ified in section 2.2. Proofs of these or very similar properties are given in, e.g.,
[33, 26, 31], but for completeness we below include proofs of the interpolation and
consistency properties for the above forms.

Proof of interpolation properties (2.17) and (2.21). Since the definitions of the
stabilization forms include the interpolation operator \pi h, which is a projection, it
trivially holds that \| v  - \pi hv\| sh,i

= 0 and \| v  - \pi hv\| sh,0,k
= 0.

Proof of consistency property (2.16). Let v \in Hs(\Omega i), 1 \leq s \leq p + 1. On every
pair of adjoining elements T - 

F , T
+
F \in \scrT h,i separated by a face F \in \scrF h,i we define an

interpolant \pi F : H1(T - 
F \cup T+

F ) \rightarrow \scrP p(T - 
F \cup T+

F ), where \scrP p is the space of polynomials
of degree less or equal to p, satisfying the standard interpolation estimate

\| v  - \pi F v\| H1(T - 
F \cup T+

F ) \lesssim hs - 1\| v\| Hs(T - 
F \cup T+

F ).(3.49)

To prove that (3.46) satisfies the interpolation property (2.17) we begin with

sh,i(\pi hv, \pi hv) =

p\sum 
\ell =1

cd,\ell h
2\ell  - 1

\sum 
F\in \scrF h,i

\| [D\ell 
n\pi hv]\| 2F(3.50)

=

p\sum 
\ell =1

cd,\ell h
2\ell  - 1

\sum 
F\in \scrF h,i

\| [D\ell 
n(\pi hv  - \pi F v)]\| 2F ,(3.51)

where we utilize that [D\ell 
n\pi F v]| F = 0 for all F \in \scrF h,i since \pi F v is a polynomial on

each element pair. We now proceed as follows:

\| [D\ell 
n(\pi hv  - \pi F v)]\| 2F \lesssim \| D\ell 

n((\pi hv)
+  - \pi F v)\| 2F + \| D\ell 

n((\pi hv)
 -  - \pi F v)\| 2F(3.52)

\lesssim h - 1\| \pi hv  - \pi F v\| 2H\ell (T+
F \cup T - 

F )
(3.53)

\lesssim h1 - 2\ell \| \pi hv  - \pi F v\| 2H1(T+
F \cup T - 

F )
(3.54)

\lesssim h1 - 2\ell 
\Bigl( 
\| \pi hv  - v\| 2

H1(T+
F \cup T - 

F )
+ \| v  - \pi F v\| 2H1(T+

F \cup T - 
F )

\Bigr) 
(3.55)

\lesssim h2s - 1 - 2\ell \| v\| 2
Hs(T+

F \cup T - 
F )
,(3.56)

where we utilized the triangle inequality; applied inverse inequalities to move discrete
functions first from the face onto a pair elements T+

F \cup T - 
F and then down to H1(T+

F \cup 
T - 
F ) norm; added and subtracted v and applied the triangle inequality; and finally, in

() used interpolation estimates. In combination with (3.51) this concludes the proof.

Proof of consistency property (2.20). Let v \in Hs - 1/2(\Omega 0,k), 1 \leq s \leq p + 1. The
skeleton stabilization form contains two parts, normal stabilization (3.47) and face
stabilization (3.48), which we now consider separately.

Normal stabilization. Using inverse inequalities to move onto the tubular neigh-
borhood U\delta (\Omega 0,k) and a first order normal derivative we obtain
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h2\ell \| D\ell 
\nu \pi hv\| 2\Omega 0,k

\lesssim \delta  - 1h2\ell \| D\ell 
\nu \pi hv\| 2U\delta (\Omega 0,k)

(3.57)

\lesssim \delta  - 1h2\| D1
\nu \pi hv\| 2U\delta (\Omega 0,k)

(3.58)

\lesssim \delta  - 1h2\| D1
\nu (\pi h  - I)E\Omega 0,k

v\| 2U\delta (\Omega 0,k)
(3.59)

\lesssim \delta  - 1h2\| (\pi h  - I)E\Omega 0,k
v\| 2H1(U\delta (\Omega 0,k))

(3.60)

\lesssim \delta  - 1h2s - 1\| E\Omega 0,k
v\| 2
Hs - 1

2 (U\delta (\Omega 0,k))
(3.61)

\lesssim h2s - 1\| v\| 2
Hs - 1

2 (\Omega 0,k)
,(3.62)

where in (3.59) we utilize that the extension is constant in the normal direction; in
(3.61) use an interpolation estimate; and finally, in (3.31), use stability of the extension
operator.

Face stabilization. Mimicking the computation (3.52)--(3.56) with an extended
function E\Omega 0,k

v \in Hs - 1/2(U\delta (\Omega 0,k)), using the stability of the extension operator
(3.31) and choosing \delta \sim h yields the desired estimate.

3.4. Error estimates.

Theorem 3.5 (energy norm error estimate). The following estimate holds:

(3.63) | | | u - uh| | | 2h \lesssim h2p\| u0\| 2Hp+1/2(\Omega 0)
+

N\sum 
i=1

h2p\| ui\| 2Hp+1(\Omega i)
.

This result follows immediately from the coercivity; the weak Galerkin orthogonality
(2.38); continuity; consistency of the stabilization forms (2.16) and (2.20); and an
interpolation error estimate. For the reader's convenience we detail the proof.

Proof. Let eh = \pi hu - uh and \rho = \pi hu - u. Then we have

| | | eh| | | 2h \lesssim Ah(eh, eh)(3.64)

= Ah(\rho , eh) + sh(u, eh)(3.65)

\leq | | | \rho | | | h| | | eh| | | h(3.66)

\lesssim 

\Biggl( 
h2p\| u0\| 2Hp+1/2(\Omega 0)

+

N\sum 
i=1

h2p\| ui\| 2Hp+1(\Omega i)

\Biggr) 1/2

| | | eh| | | h.(3.67)

Subdomain L2 error estimates. Assuming that the solution to the dual problem

(3.68)  - \nabla \cdot a\nabla \phi = \psi in \Omega , \phi = 0 on \partial \Omega ,

has the regularity

(3.69)

N\sum 
i=1

\| \phi i\| 2Hs(\Omega i)
\lesssim \| \psi \| 2\Omega , s \in (1, 3/2],

we have the following error estimate:

(3.70)

N\sum 
i=1

\| ui  - uh,i\| 2\Omega i
\lesssim h2p+2(s - 1)\| u0\| 2Hp+1/2(\Omega 0)

+

N\sum 
i=1

h2p+2(s - 1)\| ui\| 2Hp+1(\Omega i)
.
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Skeleton L2 error estimates. In order to estimate the L2 norm of the skeleton
error we instead consider the dual problem

 - \nabla \cdot ai\nabla \phi i = 0 in \Omega i,(3.71)

Jn \cdot a\nabla \phi K = \psi on \Omega 0,(3.72)

[\phi ]i = 0 on \partial \Omega i \cap \Omega 0,(3.73)

\phi i = 0 on \partial \Omega i \cap \partial \Omega (3.74)

since \psi is in L2 on the skeleton the maximal regularity is

(3.75)

N\sum 
i=1

\| \phi i\| 2H3/2(\Omega i)
\lesssim \| \psi \| 2\Omega 0

and thus we arrive at the estimate

(3.76) \| u0  - uh,0\| 2\Omega 0
\lesssim h2p+1\| u0\| 2Hp+1/2(\Omega 0)

+

N\sum 
i=1

h2p+1\| ui\| 2Hp+1(\Omega i)
.

Observe that this shows that the error in the discrete H1/2 norm, h - 
1
2 \| u0 - uh,0\| has

similar convergence order as the energy norm error, which is optimal.

4. The Schur complement. In this section we show how the bulk fields can
be eliminated using the Schur complement and we derive a bound for the condition
number of stiffness matrix associated with the Schur complement.

4.1. Definitions.
\bullet Define the operator Th : Vh,0 \rightarrow Vh,1,N =

\bigoplus N
i=1 Vh,i such that

(4.1) Ah(v0 + Thv0, 0\oplus w) = 0 \forall w \in Vh,1,N ,

where we used the notation 0 \oplus w to indicate that the component in Vh,0 is
zero.

\bullet Define the Schur complement form on Vh,0 by

(4.2) Sh(v0, w0) = Ah(v0 + Thv0, w0 + Thw0), v0, w0 \in Vh,0.

\bullet Define the energy norm on Vh,0 associated with the Schur complement by

(4.3) | | | v0| | | Sh
= | | | v0 + Thv0| | | h.

\bullet It follows directly from the definition of the Schur complement form that Sh
is coercive and continuous on Vh,0.

4.2. Solution using the Schur complement. Note that we have the Ah-
orthogonal splitting

(4.4) Wh = (I + Th)Vh,0 \bot (\{ 0\} \oplus Vh,1,N )

and thus uh = (I + Th)uh,0 + (0\oplus uh,1,N ), where uh,0 \in Vh,0 is the solution to

(4.5) Sh(uh,0, v0) = lh((I + Th)v0) \forall v0 \in Vh,0

and uh,1,N is the solution to

(4.6) Ah(0\oplus uh,1,N , 0\oplus v) = lh(0\oplus v) \forall v \in Vh,1,N .

We note that (4.6) decouples and can be solved subdomainwise. For each subdomain
\Omega i, 1 \leq i \leq N , we get a Nitsche type formulation with homogeneous Dirichlet data
and right-hand side fi = f | \Omega i

.
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4.3. Some basic estimates. We collect the basic bounds needed to show an
estimate of the condition number of the stiffness matrix associated with the Schur
complement.

Lemma 4.1 (norm equivalence). There are constants such that

(4.7) inf
w\in Vh,1,N

| | | v0 + w| | | h \lesssim | | | v0| | | Sh
\lesssim inf
w\in Vh,1,N

| | | v0 + w| | | h.

Proof. 1. By definition

(4.8) inf
w\in Vh,1,N

| | | v0 + w| | | h \lesssim | | | v0 + Thv0| | | h = | | | v0| | | Sh
.

2. We have

| | | v0| | | 2Sh
= | | | v0 + Thv0| | | 2h(4.9)

\lesssim Ah(v0 + Thv0, v0 + Thv0)(4.10)

= Ah(v0 + Thv0, v0 + w)(4.11)

\lesssim | | | v0 + Thv0| | | h\underbrace{}  \underbrace{}  
=| | | v0| | | Sh

| | | v0 + w| | | h,(4.12)

where we used the coercivity (3.3) of Ah, the orthogonality (4.1) of Th, and the
continuity (3.2) of Ah. Thus we conclude that

(4.13) | | | v0| | | Sh
\lesssim | | | v0 + w| | | h

for all w \in Vh,1,N , and therefore

(4.14) | | | v0 + Thv0| | | h \lesssim inf
w\in Vh,1,N

| | | v0 + w| | | h.

Lemma 4.2 (skeleton Poincar\'e estimate). There is a constant such that for all
v \in Vh,0,

(4.15)
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr) 
h - 1\| v\| 2\scrT h,0

\lesssim | | | v| | | 2Sh
.

Proof. Using the Poincar\'e inequality (3.30) we have for any w \in Vh,1,N

(4.16)
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr) 
h - 1\| v\| 2\scrT h,0

\lesssim | | | v + w| | | 2h

and as a consequence

(4.17)
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr) 
h - 1\| v\| 2\scrT h,0

\lesssim | | | v + Thv| | | 2h = | | | v| | | 2Sh
.

Lemma 4.3 (skeleton inverse estimate). There is a constant such that for all v \in 
Vh,0,

(4.18) | | | v| | | 2Sh
\lesssim h - 2\| v\| \scrT h,0

.
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Proof. We have

| | | v0| | | 2Sh
\lesssim inf
w\in Vh,1,N

| | | v0 + w| | | 2h(4.19)

\lesssim | | | v0 \oplus 0| | | 2h(4.20)

=

N\sum 
i=1

h - 1\| v0\| 2\partial \Omega i
+ \| v\| 2sh,0

(4.21)

\lesssim h - 1(\| v0\| 2\Omega 0
+ \| v0\| 2sh,0

)(4.22)

\lesssim h - 2\| v0\| \scrT h,0
,(4.23)

where we choose w = 0 on Vh,1,N , use the definition of the energy norm, and finally
employ the inverse estimate (2.22).

4.4. Condition number estimate for the Schur complement.
Definitions and basic results.
\bullet Let \{ \varphi i\} Di=1 be the basis in Vh,0 and denote the expansion by

(4.24) v =

D\sum 
i=1

\widehat vi\varphi i.
Then we have the equivalence

(4.25) \| v\| 2\scrT h,0
\sim hd\| \widehat v\| 2\BbbR D .

\bullet The stiffness matrix associated with the Schur complement is defined by

(4.26) (\widehat S\widehat v, \widehat w)\BbbR D = Sh(v, w).

Then \widehat S is symmetric positive definite and thus the spectrum is real and
positive, and we have the Rayleigh quotient characterization of the largest
and smallest eigenvalues

\lambda max = max\widehat v\in \BbbR D\setminus \{ 0\} 

(\widehat S\widehat v, \widehat v)\BbbR D

\| \widehat v\| 2\BbbR D

, \lambda min = min\widehat v\in \BbbR D\setminus \{ 0\} 

(\widehat S\widehat v, \widehat v)\BbbR D

\| \widehat v\| 2\BbbR D

.(4.27)

\bullet The condition number is defined by

(4.28) \kappa =
\lambda max

\lambda min
,

where \lambda max and \lambda min denote the maximum and minimum eigenvalues of \widehat S.
In view of (4.27) we have the identity

(4.29) \kappa = max\widehat v\in \BbbR D\setminus \{ 0\} 

(\widehat S\widehat v, \widehat v)\BbbR D

\| \widehat v\| 2\BbbR D

max\widehat v\in \BbbR D\setminus \{ 0\} 

\| \widehat v\| 2\BbbR D

(\widehat S\widehat v, \widehat v)\BbbR D

.

Theorem 4.4 (condition number estimate). The condition number satisfies the
estimate

(4.30) \kappa (\widehat S) \lesssim h - 1
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr)  - 1

.
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Proof. The bound follows directly from the following two estimates:
1. We have

(\widehat S\widehat v, \widehat v)\BbbR D = Ah(v + Thv, v + Thv)(4.31)

\lesssim | | | v + Thv| | | 2h(4.32)

= | | | v| | | 2Sh
(4.33)

\lesssim h - 2\| v\| 2\scrT h,0
(4.34)

\lesssim h - 2hd\| \widehat v\| 2\BbbR D ,(4.35)

where we used the continuity (3.2) of Ah, the skeleton inverse estimate (4.18), and
the equivalence (4.25). Thus we conclude that

(4.36) \lambda max \lesssim hd - 2.

2. We have

(\widehat S\widehat v, \widehat v)\BbbR D = Ah(v + Thv, v + Thv)(4.37)

\gtrsim | | | v + Thv| | | 2h(4.38)

\gtrsim 
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr) 
h - 1\| v\| 2L2(\scrT h,0)

(4.39)

\gtrsim 
\Bigl( 

min
1\leq i\leq N

d\Omega i

\Bigr) 
h - 1hd\| \widehat v\| 2\BbbR D ,(4.40)

where we used the coercivity (3.3) of Ah, the Poincar\'e estimate (4.15), and the equiv-
alence (4.25). We conclude that

(4.41) \lambda  - 1
min \lesssim h - (d - 1)

\Bigl( 
min

1\leq i\leq N
d\Omega i

\Bigr)  - 1

.

5. Numerical results. For assessment and illustration we implemented a two-
dimensional version of the method. We first give some details on implementation
choices and then we present some illustrating examples and convergence results.

5.1. Implementation. Our implementation extend upon the implementation
detailed in [28] for problems on parametric multipatch surfaces to the hybridized
case, albeit constrained to two dimensions and without parametric mappings.

Approximation spaces. On each subdomain and skeleton subdomain we define an
approximation space by a mesh equipped with some finite elements. In all examples
below we use standard Lagrange elements of degree p which on quadrilaterals are
tensor product polynomial elements Qp and on triangles are full polynomial elements
Pp. While the mesh on each subdomain and skeleton subdomain could be constructed
completely independently of each other we here focus on two cases:

\bullet Global background grid. All meshes, i.e., subdomain meshes \{ \scrT h,i\} Ni=1 and

skeleton subdomain meshes \{ \scrT h,0,k\} N0

k=1, are extracted from the same back-
ground grid \scrT h,\Omega .

\bullet Single element interfaces. Subdomain meshes \{ \scrT h,i\} Ni=1 may be arbitrarily
constructed while each skeleton subdomain \Omega 0,k, 1 \leq k \leq N0, is equipped
with a mesh \scrT h,0,k consisting of a single, typically higher order, element in \BbbR d.

The benefit of either choice is that the implementation of the Nitsche terms, i.e., the
patch boundary terms in (2.32)--(2.34), becomes particularly straightforward as for
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A3372 BURMAN, ELFVERSON, HANSBO, LARSON, AND LARSSON

T \in \scrT h,i, \partial \Omega i \cap T \not = \emptyset , we trivially know the corresponding element in the skeleton
subdomain mesh and that \partial \Omega i\cap T is completely contained within that element. More
general cases require the construction of the union of subdomain meshes and skeleton
subdomain meshes to correctly evaluate the skeleton integrals. For curved skeletons,
parametrically mapped subdomains, or simply the case d = 3 this construction is
challenging to perform in a robust and efficient manner. An attractive feature of the
global background grid is that it readily gives an optimal order method, a feature
which we typically do not have using single element interfaces without adapting the
skeleton element order. Instead, the attractive feature of single element interfaces
is that the simple implementation also covers cases when subdomain meshes do not
match over the skeleton.

Parameter choices. For the Nitsche penalty parameter we choose \beta = 20 \cdot p2
and for the stabilization parameters we, similarily to the numerical examples in [31],

choose cd,\ell = cd - 1,\ell =
10 - 2

\ell ! . We note no particular sensitivity in the choice of values
for these parameters.

5.2. Numerical examples. For our numerical examples we consider different
partitions of the unit square [0, 1]2. We let the right-hand side be given by f = 1 and
we vary the material coefficient a in each subdomain.

Example 1: Three subdomains. For our first numerical example we partition the
unit square into three subdomains with a different constant material coefficient a \in 
\{ 1, 2, 3\} in each subdomain; see Figure 4. Thus, we in this problem have three skeleton
subdomains. We consider both of the mesh constructions described in section 5.1:

\bullet Global background grid. Here all meshes are extracted from the same back-
ground grid (see Figure 5), and we use Q2 elements on each mesh. Note
that all subdomains have cut elements and that some skeleton subdomains
are curved within elements. In this setting there are no locking effects due to
nonmatching approximation spaces when choosing the penalty parameter \beta 
large. A sample solution and the magnitude of its gradient are presented in
Figure 6.

\bullet Single element interfaces. Here the mesh on each subdomain is constructed
independently, some as quadrilateral meshes and some as triangular, and we
equip all subdomain meshes with Q2/P2 elements. On each skeleton subdo-
main we use a single Q4 element. Sample meshes in this set-up are visualized
in Figure 7 and the corresponding numerical solution is presented in Figure 8.

Example 2: Voronoi diagram. In our second example we construct a subdivision
of the unit square by generating a Voronoi diagram from 50 uniformly distributed;
random points in [0, 1]2 and taking the restriction of this diagram to the unit square;

Ω1

Ω2

Ω3

Ω0

Fig. 4. Illustrations of the model problem geometry. The unit square [0, 1]2 is divided into three
subdomains according to the figure with material coefficients a1 = 1, a2 = 2, and a3 = 3.
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(a) Subdomain meshes (b) Skeleton subdomain meshes

Fig. 5. Meshes in the three subdomains example extracted from a global background grid. (a)
Subdomain solutions are approximated using Q2 elements. (b) Skeleton subdomain solutions are
approximated in an embedding space of Q2 elements.

(a) Solution (b) Gradient magnitude

Fig. 6. Three subdomains with different material coefficients and Q2 meshes extracted from a
global background grid.

(a) Subdomain meshes (b) Skeleton subdomain meshes

Fig. 7. Meshes in the three subdomains example with skeleton subdomains embedded in a single
element. (a) Subdomain solutions are approximated using Q2 and P2 elements on quadrilateral,
respectively, triangle, meshes. (b) Each skeleton subdomain is embedded in a single Q4 element.
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(a) Solution (b) Gradient magnitude

Fig. 8. Three subdomains with different material coefficients and nonmatching meshes. Here
meshes with Q2/P2 elements are used on each subdomain. On each skeleton subdomain the solution
is approximated using a single Q4 element.

(a) Subdomain-wise coefficient a (b) Element-wise coefficient a

Fig. 9. Subdivisions of the unit square [0, 1]2 generated from Voronoi diagrams featuring varying
material coefficients. (a) Domain with material coefficient a \in [0.01, 1] which is constant within each
subdomain and chosen using a uniformly distributed random variable. (b) Domain with a randomly
oriented mesh in each subdomain and a material coefficient a which alternates between 1 and 1000
rowwise in the mesh.

see Figure 9. We again consider the two different set-ups regarding mesh construction,
although we make different choices for the material coefficient in the two cases.

\bullet Global background grid. Here we extract all meshes from the same back-
ground grid and we equip our meshes with Lagrange Q2 elements. The ma-
terial coefficient is constant on each subdomain \Omega i and is chosen as ai =
0.01 +X, where X \in [0, 1] is a uniformly distributed random variable. This
set-up is illustrated in Figure 9(a). We can easily generate background grids
of any mesh size and in Figure 10 we present results for three different mesh
sizes. In Figures 10(c)--10(d) we note that the method also works well when
the mesh size is of the same order as the subdomain sizes. The extreme
case where we only have a single element on each subdomain is presented
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(a) uh, h = 2 - 6 (b) | \nabla uh| , h = 2 - 6

(c) uh, h = 2 - 3 (d) | \nabla uh| , h = 2 - 3

(e) uh, h = 1 (f) | \nabla uh| , h = 1

Fig. 10. Numerical solution uh and gradient magnitude | \nabla uh| on a Voronoi diagram subdivision
with subdomainwise constant material coefficient; see Figure 9(a). (a)--(b) Q2 elements on meshes
generated from one fine grid. (c)--(d) Q2 elements on meshes generated from one coarse grid with a
mesh size in the same order as the subdomain sizes. (e)--(f) A single Q2 element on each subdomain
and skeleton subdomain.

in Figures 10(e)--10(f). This is much like a hybridized version of so-called
polygonal/polyhedral elements; see the overview in [14]. Note that in this
extreme case we construct the single elements such that they are as small as
possible while still containing its subdomain to avoid conditioning problems.

\bullet Single element interfaces. In the situation where we equip each skeleton sub-
domain with a single LagrangeQ4 element we choose another set-up regarding
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(a) Solution (b) Gradient magnitude

Fig. 11. Numerical solution uh and gradient magnitude | \nabla uh| on a Voronoi diagram subdivision
with a fine scale material coefficient pattern. On each subdomain a randomly oriented Q2 mesh with
a rowwise alternating material coefficient is set up; see Figure 9(b). The numerical solution on each
skeleton subdomain is instead approximated by a single Q4 element.

meshes and material coefficient in each bulk subdomain. We randomly po-
sition a fine mesh equipped with Lagrange Q2 elements on each subdomain
and we let the material coefficient alternate between 1 and 1000 rowwise in
the mesh. This set-up is illustrated in Figure 9(b) and the numerical solution
is presented in Figure 11. Note that this case is mainly an illustration of how
we conveniently can implement cases where the subdomains are defined via
mappings, in this case a rotation. Of course we here lose fine scale informa-
tion across the skeleton and we have made no special adaption to handle the
large variation in the material coefficient.

5.3. Convergence and stability.
Convergence studies. To study the convergence of the method in energy and L2

norms we let \Omega be the upper left quarter of the unit circle and partition this domain
into two parts, in polar coordinates (r, \phi ) defined \Omega 1 = \{ 0 < r < 2

3 , 0 < \phi < \pi 
2 \} and

\Omega 2 = \{ 2
3 < r < 1, 0 < \phi < \pi 

2 \} . Each of the two arcs in this domain is discretized
using 3600 linear segments. We manufacture a problem with known exact solution
from the ansatz

u =

\biggl\{ 
u0 =

22

32
sin(2\phi ) , u1 = r2 sin(2\phi ) , u2 =

23

32
\surd 
3
sin(2\pi r) sin(2\phi )

\biggr\} 
(5.1)

with coefficients a1 = 2\pi , a2 = 3
\surd 
3. The domain, exact solution and exact gradient

magnitude for this problem are displayed in Figure 12.
\bullet Global background grid. In Figure 13 we present convergence results in the
case where all meshes are extracted from the same quadrilateral background
grid using Qp elements, p = 1, 2, 3, and we achieve the expected convergence
rates of O(hp) and O(hp+1) in the energy and the L2 norm, respectively. We
attribute the loss of convergence eventually appearing for Q3 elements in the
L2 norm to the fixed geometry approximation using high resolution polygons.

\bullet Single element interfaces. In this case we instead use Q2 elements of size
h on each subdomain but only a single Lagrange Qp element, p = 2, 4, 6, onD
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Ω0

Ω1

Ω2

(a) Domain (b) Solution (c) Gradient magnitude

Fig. 12. Problem with known exact solution used in convergence studies. (a) The domain is
the upper right quarter of the unit circle partitioned at a distance 2/3 from the corner. (b) The
exact solution (5.1). (c) The gradient magnitude of the exact solution.
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(b) L2 norm

Fig. 13. Convergence studies using meshes all from the same background grid. In all meshes
the same elements are used (Q1--Q3) and we achieve what we expect to be optimal convergence rates
of (a) O(hp) in the energy norm, respectively, (b) O(hp+1) in the L2 norm. The curved geometry is
approximated as a fixed high resolution polygon, which explains why we see the L2 error eventually
leveling off for the highest order element.

each skeleton subdomain. As the skeleton subdomain meshes are not refined
with smaller h this naturally imposes a lower bound on the errors, which we
also note in the convergence results presented in Figure 14.

Condition number bound. To illustrate how the bound on the condition number
for the stiffness matrix associated with the Schur complement scales with the mesh
size, as shown in Theorem 4.4, we estimate the condition number in the case of the
model problem with three subdomains illustrated in Figure 4. The results are shown in
Figure 15, where we use global background grids with Q1, respectively, Q2, elements.
To produce a variety of cut situations for the elements in our mesh, for each mesh
size we repeat the experiment 20 times using random positions for the background
grid. As shown, there is significant variance of the condition number but with a stable
trend of O(h - 1) as implied by our bound in Theorem 4.4.
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Fig. 14. Convergence studies using nonmatching meshes for the subdomains and a single
polynomial for each skeleton subdomain. On the subdomains Q2 elements are used and on the
skeleton subdomains Q2--Q6 polynomials are used. Because there is no h refinement of the skeleton
subdomains the convergence levels out as the polynomial approximations on the skeleton become the
dominant source of error.

-5 -4.5 -4 -3.5 -3 -2.5 -2

7

8

9

10

11

12

13

14

15

16

Q
1

Q
2

Ref. h
-1

Fig. 15. Study of how the condition number for the stiffness matrix associated with the Schur
complement scales with the mesh size in the case of using a global background grid in Example 1 as
illustrated in Figure 6. For each mesh size the experiment is repeated 20 times with random position
of the background grid creating a variety of cut situations. To make sure we were in the asymptotic
regime, for this experiment we increased the skeleton stabilization parameter to cd - 1,\ell = 1

\ell !
.
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