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Abstract

Planning for water supply infrastructure includes identifying interventions that

cost-effectively secure an acceptably reliable water supply. In investigating a range

of feasible interventions, water planners are challenged by two main factors. First,

uncertainty is inherent in the predictions of future demands and supplies due for

example to hydrological variability and climate change. This makes fixed invest-

ment plans brittle as they are likely to fail if future conditions turn out to be

different than assumed. Therefore, adaptability to changing future conditions is

increasingly viewed as a valuable strategy of water planning. However, there is a

lack of approaches that explicitly seek to enhance the adaptivity of water resource

system developments. Second, water resource system development typically af-

fects multiple societal groups with at times competing interests. The diversity

of objectives in water resource systems mean that considering trade-offs between

competing objectives implied by the highest performing interventions is useful.

Nonetheless, few multi-objective applications have aimed at adaptive scheduling

of interventions in long-term water resource planning.

This thesis introduces two novel decision-making approaches that address these

two challenges in turn. Both approaches apply principles of real option analysis

via two different formulations (1) a multistage stochastic mathematical programme

and (2) a multi-objective evolutionary algorithm coupled to a river basin simula-

tion. In both cases, a generalised scenario tree construction algorithm is used to

efficiently approximate the probabilistic uncertainty. The tree consists of possible

investment paths with multiple decision stages to allow for frequent and regu-

lar modifications to the investment strategies. Novel decision-relevant metrics of

adaptivity and flexibility are introduced, evolving their definition in the context

of water resources planning.

The approaches are applied to London’s urban water resources planning problem.

Results from this thesis demonstrate that there is value in adopting adaptive and

flexible plans suggesting that flexibility in activating, delaying and replacing en-

gineering projects should be considered in water supply intervention scheduling.

To evaluate the implementation of Real Option Analysis (ROA), the use of two
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metrics is proposed: the Value of the Stochastic Solution (VSS) and the Expected

Value of Perfect Information (EVPI) that quantify the value of adopting adaptive

and flexible plans respectively. The investment decisions results are a mixture

of ‘long-term’ and ‘contingency schemes’ that are optimally chosen considering

different futures. The VSS shows that by considering uncertainty, adaptive invest-

ment decisions avoid £100 million NPV cost, 15% of the total NPV. The EVPI

demonstrates that optimal delay and early decisions have £50 million NPV, 6%

of total NPV.

Additionally, a comparison study of alternative optimisation approaches to water

supply capacity expansion problem demonstrate that there is benefit in waiting

to allow for improvements around supply uncertainty in the case of London’s

urban water resources planning problem. The results from the case study suggest

that the proposed adaptive planning approach achieves substantial improvement

in performance compared to alternative optimisation approaches with fixed plans

saving more than £377 million, reducing NPV cost by 35%.

Using a multi-objective multi-stage real-options formulation of the water planning

problem, the trade-offs between a long-term water management plan’s resilience

and its financial costs under supply and demand uncertainty are explored. The

set of trade-off solutions consist of different investment plans that are adaptive to

demand growth, approximated by a scenario tree, while robust to the effects of

climate change supply uncertainty, represented by an ensemble of supply (hydro-

logical) scenarios. Results show that, by being adaptive to demand uncertainty,

the total NPV of the most resilient plans is lowered by 58.7%. The value in de-

laying investments by waiting for more accurate supply and demand estimates is

28.9% of total NPV.

It should be noted that the results from the case study are indicative and should

not be considered prescriptively as they are based in a simplified representation of

London’s water supply system and should be further tested with the more detailed

simulation model employed by the water utility which includes the latest proposed

option designs, includes requirements to supply neighbouring water utilities, and

considers more objectives.



Impact Statement

This work contributes to the advancement of adaptive water resources planning

by proposing new decision-making approaches that explicitly enable adaptivity to

future uncertainty. The research impact of this study is twofold.

First, this study has economic and societal impact. The results of this study may

ultimately be used by water utilities to support the development of their long-

term investment plans. The proposed approaches respond to decision-makers’

needs in terms of understanding how alternative investments impact on associated

objectives. Therefore, given the large socioeconomic and environmental impacts

of investments in new supply or demand interventions, this study is a contribution

towards reducing undesirable impacts.

Second, this study has academic impact since it presents significant advances in the

development, understanding and application of adaptive water resources planning

approaches. This work goes beyond the state-of-the-art methods and has resulted

in one published journal paper with another two under review.

vii





Publications

The work presented in Chapters 3 to 5 has appeared or has been submitted to the

following peer-reviewed journals:

1. Erfani, T., Pachos, K. and Harou, J., 2018. Real-options water supply plan-

ning: Multistage scenario trees for adaptive and flexible capacity expansion

under probabilistic climate change uncertainty, Water Resources Research.

2. Pachos, K., Erfani, T. and Harou, J., 2019. Comparison of alternative

approaches in water supply capacity expansion under uncertainty, Water

Resources Research. (under review).

3. Pachos, K., Erfani, T., Huskova, I., Matrosov, E. and Harou, J., 2019.

Trade-off informed adaptive water resources planning under uncertainty ,

Earth’s Future. (under review).

ix





Acknowledgements

This scientific work is a result of a four-year intellectual journey. First and fore-

most, I want to thank my supervisor Dr Tohid Erfani for inspiring my work over

the past years and supporting my growth as a researcher. Tohid was always gen-

erous with his time and energy and I highly benefitted from his knowledge and

experience.

Thanks to my second supervisor Prof Julien Harou for his support and interest in

my work and for organising the group meetings where I had the chance to be part

of a research group with shared interests.

Thanks to Anna and Tony for trusting me with this project and for providing the

financial support from Thames Water that made this research possible.

Thanks to Evgenii for his unwavering friendship and generous guidance. Thanks

to Ivana for her ideas in Chapter 5 and for supporting me with the multi-objective

optimisation modelling.

Thanks to Maggie, Xenia and Alexandra for making this journey more fun.

Thanks to Sarah for solving all sorts of practical things and her genuine interest.

I would also like to thank the CEGE IT support team, Cerine and Simon for their

friendly help.

Thanks to Anna and everyone at studio AMV for providing me with an supportive

and fun working environment away from home.

Thanks to Maria, Manola and Tzef for being both argumentative and open-

minded.

I am incredibly grateful for the love and support of my family — my parents Tasos

and Esperanza and my amazing siblings, Iason and Ariadne. Finally, tremendous

thanks go to Michail, my best supporter, whose love has made all the difference.

xi





Contents

Abstract v

Impact Statement vii

Publications ix

Acknowledgements xi

List of Figures xvii

List of Tables xx

Abbreviations xxiii

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope and aims of research . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature review 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Water resource planning under uncertainty . . . . . . . . . . . . . 9

2.2.1 Types of uncertainty . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Traditional decision-making approaches . . . . . . . . . . . . . . . 11

2.3.1 Cost-benefit analysis and net present value . . . . . . . . . 12

2.3.2 Deterministic mathematical programming . . . . . . . . . . 13

xiii



Contents xiv

2.4 Advanced decision-making approaches . . . . . . . . . . . . . . . . 17

2.4.1 Robust decision making . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Dynamic adaptive policy pathways . . . . . . . . . . . . . . 21

2.4.3 Real options analysis . . . . . . . . . . . . . . . . . . . . . 23

2.5 Stochastic optimisation methods . . . . . . . . . . . . . . . . . . . 30

2.5.1 Chance constraints . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Two-stage stochastic program . . . . . . . . . . . . . . . . . 32

2.5.3 Multi-stage stochastic program . . . . . . . . . . . . . . . . 34

2.5.4 Multi objective evolutionary algorithms coupled with simu-

lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Real-options water supply planning: Multistage scenario trees

for adaptive and flexible capacity expansion under probabilistic

climate change uncertainty 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Adaptive and flexible formulation for ROA implementation . . . . . 40

3.2.1 Scenario tree approximation . . . . . . . . . . . . . . . . . . 40

3.2.2 Details for scenario tree construction algorithm . . . . . . . 43

3.2.3 Staged mathematical model . . . . . . . . . . . . . . . . . . 44

3.2.4 Real options principles: a synthetic example . . . . . . . . . 46

3.3 Application to infrastructure investment planning . . . . . . . . . . 48

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Solving the water resource planning problem at multiple

stages over time . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Computational insight on the metrics used to evaluate the

implementation of ROA . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Metrics for flexibility and adaptivity assessment . . . . . . . 62

3.4.4 Sensitivity to scenario tree . . . . . . . . . . . . . . . . . . 63

3.4.5 Limitations of the approach . . . . . . . . . . . . . . . . . . 64

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Application and comparison of alternative approaches to capacity

expansion planning problem 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Contents xv

4.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Deterministic approach . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Robust optimisation approach . . . . . . . . . . . . . . . . 73

4.2.4 Two-stage stochastic approach . . . . . . . . . . . . . . . . . 74

4.2.5 Multi-stage stochastic approach . . . . . . . . . . . . . . . . 76

4.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 London urban water supply system . . . . . . . . . . . . . . 78

4.3.2 Modelling for comparison . . . . . . . . . . . . . . . . . . . 79

4.3.3 Water security . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Comparing the performance of alternative optimisation ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.2 Water security assessment . . . . . . . . . . . . . . . . . . . 88

4.4.3 Deliverability assessment . . . . . . . . . . . . . . . . . . . 90

4.4.4 Limitations of comparison . . . . . . . . . . . . . . . . . . . 92

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Trade-off informed adaptive water resources planning under un-

certainty 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Adaptive and flexible multi-objective formulation . . . . . . . . . . 99

5.2.1 A hybrid approach to representing supply and demand un-

certainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.2 Scenario tree approximation of demand uncertainty . . . . . 100

5.2.3 Simulation based optimisation . . . . . . . . . . . . . . . . 102

5.2.4 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Considering uncertainty in climate projections . . . . . . . . 110

5.3.3 Computational experiment . . . . . . . . . . . . . . . . . . . 111

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Solving the multi-objective water resource planning problem 113

5.4.2 Metrics for flexibility and adaptivity assessment . . . . . . . 124



Contents xvi

5.4.3 Computational insight on the metrics used to evaluate the

multi-staged MOEA . . . . . . . . . . . . . . . . . . . . . . 126

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions 131

6.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Limitations and future research . . . . . . . . . . . . . . . . . . . . 135

A Details for the interventions considered in the London case stud-

ies 139

References 143



List of Figures

2.1 A two-step binomial model. . . . . . . . . . . . . . . . . . . . . . . 26

3.1 (a) A simple scenario tree structure with 14 nodes represented with
letters A-N. si are the scenarios and pi are the transition probabil-
ities for each outcome branch; for each pair of branches the sum of
the probabilities adds to 1. A path is defined from root node to
leaf node at the end of the planning horizon. (b) An illustration
of a simple water resource problem solved with the proposed real
options formulation. The supply-demand gap and the activated in-
tervention are provided above and below each tree node respectively. 42

3.2 Definition of the scenario interval. . . . . . . . . . . . . . . . . . . . 51

3.3 London deterministic demand and supply side uncertainty for five-
yearly predicted levels during the planning period. . . . . . . . . . . 52

3.4 Clustering of solutions optimised for the 9 nodes in planning deci-
sion period 2020-2024 into six sets of interventions . . . . . . . . . . 53

3.5 Utilisation of interventions based on levels of existing supply in
planning decision period 2020-2024. . . . . . . . . . . . . . . . . . . 57

3.6 Set of interventions in planning decision period 2020-2024 for each
decision path using supply threshold values. . . . . . . . . . . . . . 59

3.7 Frequency of activation of interventions in supply scenarios (nodes)
at each time step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Activation frequency of interventions in planning decision period
2020-2024 using 30 scenario trees. . . . . . . . . . . . . . . . . . . . 64

3.9 Activation frequency of interventions in planning decision period
2020-2024 using 30 subsets of the full set of scenarios. . . . . . . . . 65

4.1 (a) A single path structure with 4 decision nodes (represented with
letters A-D) defining a planning period consisting of four time steps.
(b) A simple scenario tree structure with 14 decision nodes (repre-
sented with letters A-N) defining a planning period consisting of
four time steps. The parameters si are the scenarios and gi are the
supply-demand gap values that show which path to follow. . . . . . 72

4.2 Flowchart of methodolody to compare cost and unused capacity
between alternative optimisation approaches. . . . . . . . . . . . . . 81

xvii



List of Figures xviii

4.3 Overlap among the selection of interventions as suggested by al-
ternative optimisation approaches for the planning decision period
2020–2024. The activated interventions across all six investment
paths (S1 - S6 from Table 4.3)) are shown as suggested by the Real
Options approach. See Table A.1 in Appendix A for a full definition
of these interventions. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Comparison of cost and unused capacity between alternative opti-
misation approaches based on interventions selected over the entire
50-year planning period. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Levels of average unused capacity across scenarios for deterministic
(UnC-D), robust optimisation (UnC-RO), two-stage (UnC-TS) and
real options (UnC-ROA) approaches and surplus required to avoid
drought under severe (SRS) and extreme (SRE) conditions. . . . . . 89

4.6 Deliverability risk (DR) assessment showing the confidence that the
programme suggested by each approach will deliver on time the
volume of water that it is expected to. . . . . . . . . . . . . . . . . 91

5.1 Original demand uncertainty approximated using a scenario tree. . 101

5.2 Scenario tree extracted from demand uncertainty. . . . . . . . . . . 102

5.3 Methodology flow chart for optimising the decision tree using Ge-
netic Algorithm and simulation. . . . . . . . . . . . . . . . . . . . . 104

5.4 (a) Plot of the epsilon-nondominated Pareto optimal set. Each
Adaptive Plan corresponds to a 50-year plan. The objective func-
tion values for cost and resilience reduction are shown. The di-
rection of preference (minimisation) is downward. The ε value for
resilience allows to generate 5 adaptive plans. (b) Average cost and
resilience values at each iteration (c) Variance-based stopping cri-
terion check, η, over generations. The algorithm terminates when
η ≤ ηstop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Resulting investment trajectories for three selected optimal Adap-
tive Plans for the short-term period (next 15 years). At each stage,
a decision to activate a portfolio of supply demand interventions
(A1-A4) or delay investment (D) is made. Each portfolio consists
of a combination of interventions and is Pareto optimal if a demand
scenario occurs. The demand threshold values in Ml/d on each arc
show which path to follow out of the 21 demand scenarios (Scenario
1 - Scenario 21). Results do not incorporate all data from TWUL’s
latest plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Investment trajectories for interventions Demand Management 1
(DM1) and (b) Demand Management 2 (DM2) for three selected
optimal Adaptive Plans for the short-term period (next 15 years).
At each stage, a decision to activate (A) or delay (D) a set of supply
demand interventions is made. The demand threshold values in
Ml/d on each arc show which path to follow. . . . . . . . . . . . . . 120



List of Figures xix

5.7 Activation frequency of interventions across the 21 demand scenar-
ios for the long-term plan. Activated interventions include supply
option 2 (SP2), supply option 4 (SP4), supply option 8 (SP8), sup-
ply option 9 (SP9), Demand Management 1 (DM1), Demand Man-
agement 2 (DM2), Demand Management 4 (DM4). Results do not
incorporate all data from TWUL’s latest plan. . . . . . . . . . . . . 123

5.8 VSS and EVPI values as percentage of the total cost for three se-
lected optimal Adaptive Plans. . . . . . . . . . . . . . . . . . . . . 125





List of Tables

2.1 Sources of uncertainty in water supply/demand as modified by UK-
WIR (2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Cost, capacity and design of a reservoir for the illustrative example 48

3.2 Number of nodes in each time step of scenario tree representing a
planning decision period (PDP) . . . . . . . . . . . . . . . . . . . . 54

3.3 List of available London water resource supply intervention types
considered in the appraisal process. The 47 interventions consid-
ered in the London case study are mapped to their type. Option
information used in this chapter may not be consistent with the
most recent data available (TWUL, 2018). . . . . . . . . . . . . . . 54

3.4 Six alternative sets of interventions (S1 - S6) for planning decision
period 2020-2024, new capacity in planning decision period 2020-
2024 (ML/d), planned capacity (ML/d) and percentage of supply-
demand scenarios where each set of interventions is activated . . . . 56

4.1 Levels of drought (severe and extreme), frequency and surplus re-
quired to meet demand. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Three alternative sets of interventions for Planning Decision Pe-
riod 2020–2024 (ML/d), new capacity in Planning Decision Period
2020–2024 (ML/d) and planned capacity (ML/d) for deterministic,
two-stage and robust methods. . . . . . . . . . . . . . . . . . . . . . 84

4.3 Six alternative sets of interventions (S1 - S6) as suggested by the
Real Options approach for planning decision period 2020–2024, new
capacity in planning decision period 2020–2024 (ML/d), planned
capacity (ML/d) and percentage of supply-demand scenarios where
each set of interventions is activated . . . . . . . . . . . . . . . . . . 85

4.4 Summary of costs, average unused capacity (UnC) and average
deficit (Def) across the 100 scenarios for the alternative optimisa-
tion approaches, based on the interventions selected in each 50-year
plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Water security scores for each optimization approach calculated
based on the probability of Level 4 failure under severe (PS) and
extreme (PE) droughts. A water security score value closer to one
indicates that a plan is more to a severe or extreme drought. . . . . 88

xxi



List of Tables xxii

4.6 Scores (on a 0-4 scale) for risk around lead time and supply contri-
bution for each intervention selected across the four methods. LTR:
Lead time risk, YR: Yield Risk . . . . . . . . . . . . . . . . . . . . 90

5.1 Supply and demand management interventions considered in the
London case study. RE: release or reduction to average annual
demand in ML/d, EXP: release in ML/d for expanded capacity of
modular reservoir, CP: construction period in years, DL: design life
in years, ME: mutual exclusivity. . . . . . . . . . . . . . . . . . . . 108

5.2 Algorithm parameters and objective ε values for the London case
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 List of available water resource interventions to supply London con-
sidered in the appraisal process. EY: Estimated yield (capacity) in
Ml/day. CAP: Capital costs in £m, OP: Operational costs in £m . 139



Abbreviations

ALC Active Leakage Control

BRS Beckton Reuse Scheme

BRSn Beckton Reuse Scheme non reverse osmosis

CP Construction Period

DAPP Dynamic Adaptive Policy Pathways

DL Design Life

DRS Deephams Reuse Scheme

DRSn Deephams Reuse Scheme non reverse osmosis

EA Evolutionary Algorithm

EBSD Economics of Balancing Supply and Demand

EFF Enhanced Efficiency

EVPI Expected Value of Perfect Information

ESD Estuary South Desalination

EXP Expanded capacity of modular option

LRD Long Reach Desalination

LTR Lead Time Risk

MAINS Mains repair campaign

ME Mutually Exclusive

MET Metering

MILP Mixed Integer Linear Programming

MOEA Multi Objective Evolutionary Algorithm

NPV Net Present Value

OCT Oxford Canal Transfer

xxiii



Abbreviations xxiv

PDF Probability Density Function

PDP Planning Decision Period

PE Probability of failure under Extreme conditions

PS Probability of failure under Severe conditions

RE Release or reduction to average annual demand in ML/d

RDM Robust Decision Making

RO Robust Optimisation

ROA Real Options Analysis

RST River Severn Transfer

SLARS South London Artificial Recharge Scheme

SRE Surplus Required to avoid a drought under Extreme conditions

SRS Surplus Required to avoid a drought under Severe conditions

TWUL Thames Water Utilities Limited

UnC-D Unused Capacity for Deterministic optimisation

UnC-RO Unused Capacity for RObust optimisation

UnC-ROA Unused Capacity for Real Option Analysis

UnC-TS Unused Capacity for Two Staged optimisation

UTR Uupper Thames Reservoir

UTRm Uupper Thames Reservoir modular

VSS Value of Stochastic Solution

WRMP Water Resources Management Plan

WRZ Water Resource Zone

YR Yield Risk



Chapter 1

Introduction

1.1 Background and motivation

Planning for the future of water resources is facing unprecedented challenges due

to rising concern about the impact of climate change, socioeconomic growth and

increased urbanisation (Milly et al., 2008; Brekke et al., 2009; Fant et al., 2016).

The performance of a water resource service is largely dependent on the uncertain

nature of the long-term water supply and demand. Forecasted growth of water

demands and amplified hydrologic variability increase the risks of water supply

failures (Kundzewicz et al., 2007). This complex management problem motivates

the need for innovative water resource management techniques for strategic long-

term planning in order to deliver reliable water to customers.

Water agencies around the world are tasked with designing appropriate water

supply plans capable of maintaining supply-demand balance. A water resource

management plan contains a set of supply augmentation or demand reduction

interventions scheduled to be delivered over a time horizon. Despite cost min-

imisation being usually an important objective in water resource planning, wider

objectives should be considered, often including economic, environmental and so-

cial impacts. Therefore water planners need to address many competing interests
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when designing a river basin or infrastructure development plan.

Climate change is likely to cause a reduction in water supply (Barnett et al., 2005)

while demand for water will vary with population growth, urbanisation, climate,

people’s standards of living, land use as well as technological changes (Taylor et al.,

2013; Wada et al., 2013). The existing water infrastructures potentially cannot

cope with future pressures to accommodate changes in surface and groundwater

availability or population increases which may be greater than previously antici-

pated. This poses a challenge to asset managers who are required to make crucial

investment decisions in the present accounting for the needs of a future which is

largely unknown.

In the context of uncertainty, the definition of adaptivity involves quantifying the

cost of ignoring uncertainty that can be avoided by adaptive plans to changing

future conditions. The definition of flexibility involves quantifying the value of

information in planning under uncertainty, that is, how valuable it is to know the

future before making a decision.

To support water planners and managers in this complex process of identifying

and evaluating plans under uncertainty, a variety of modelling approaches have

been developed. Common water resource planning decision-making tools can be

classified as either of the following:

• aggregated method where supply and demand are described as single values

or probability functions for each year of the forecast (UKWIR, 2012). That

is, the aggregated method requires that the water supply problem be sim-

plified, comparing a single value of annual supply with an annual demand.

This allows the problem to be solved with the use of mathematical program-

ming optimisation models. The planning framework is termed Economics

of Balancing Supply and Demand (EBSD) and has been used by the water

industry since 2002 in England.
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• system simulation method where a model of the resource system is used

to evaluate metrics around performance indicators such as resilience and

investment costs. Simulation models of water resource systems allow to

account for non-linearities, such as “if-then” style rules which is not possible

in linear programming applications (Maier et al., 2014) where important

non-linear interactions are ignored (Matrosov et al., 2013).

This thesis evaluates and address the key issues of alternative methods used in

water resources planning and proposes new approaches that allow for integration

of flexibility and adaptivity into water investment plans as a way to address uncer-

tainty arising from changes in climate, technological, socio-economic and political

situations. By deriving flexibility and adaptivity metrics, the methods presented

in this thesis quantify the value of adopting adaptive and flexible plans. These

metrics are used to give a definition to flexibility and adaptivity. As the awareness

of large uncertainties increases, especially those associated with climate change,

the importance of flexibility (i.e. the ability to switch or change a decision de-

pending on what outcomes materialise) in informing water investment planning is

increasingly recognised (Groves et al., 2014; Haasnoot et al., 2013; Hino and Hall,

2017; Jeuland and Whittington, 2014; Kwakkel et al., 2015; Zeff et al., 2016). De-

spite the recognised benefits of adaptive planning, in practice many water resource

planners still use conventional non-adaptive optimisation methods. For instance,

in 2019, the benchmark least-cost approach used by water utilities in England for

deriving their water resources management plans produce a single set of interven-

tions as a programme of investment (UKWIR, 2016). The application of adaptive

methods on real systems is considered state-of-the-art.

Water investment decisions that do not capture the value of flexibility increase

the likelihood that plans perform poorly and are maladaptive to changing con-

ditions. In response to this limitation, this thesis introduces two adaptive and

flexible approaches to water management decision-making. In the first proposed
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approach, a decision-making framework of the aggregated method type is devel-

oped to introduce flexible and adaptivity to least-cost capacity expansion schedul-

ing via multistage stochastic mathematical programming. In the second approach,

a system simulation method coupled with Evolutionary Algorithm (EA) is used

to identify flexible and adaptive water management plans considering multiple ob-

jectives. The methods proposed in this thesis go significantly beyond the existing

practice, by proposing a number of alternative schedules and branches, along with

a reference metric that allow asset planners decide which interventions should be

activated under the which conditions at any given time of the long-term planning

horizon, for both aggregated and system simulation methods.

As presented in detail in Chapter 2, sophisticated methods for decision-making

under uncertainty are being developed and example methodologies include Real

Options Analysis (ROA), Dynamic Adaptive Policy Pathways (DAPP) and Robust

Decision Making (RDM). The approaches introduced in this thesis use principles

of ROA as this allowed to illustrate how the evolution of different futures may

trigger different options selection in a multi-stage framework. ROA was found to

be relevant when asset managers in water utilities have concerns about the level of

uncertainty in supply-demand forecasts and focus on choosing short-term actions

that can anticipate responding to the resolution of uncertainty.

1.2 Scope and aims of research

The aim of this research project is to introduce new methods for water resources

decision-making under uncertainty with the ability to value flexibility and adap-

tivity and to explore how the proposed approaches can be used to identify flexible

sequences of water supply portfolio investments to close the uncertain future sup-

ply deficit. In particular, building on two water resource planning decision-making

tools commonly used by water companies for investment appraisal, this thesis ex-

pands an aggregate supply demand modelling method and system simulation based
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planning method to enable adaptation to new conditions.

In order to achieve this aim, the following objectives were identified:

(i) Propose a methodology to approximate the stochastic supply and demand

representing an ensemble of plausible futures in order to facilitate adaptive and

flexible decision making to changing future conditions;

(ii) Develop new methodologies that explicitly allow for any possible value in

postponing investments until more is learnt about whether they are needed;

(iii) Evaluate the strengths and weaknesses of alternative strategic planning and

investment appraisal methodologies for water management and illustrate with spe-

cific case studies to aid justification of recommendations.

The proposed planning methods are validated by applying them to a real-world

case study, the London urban water supply system which is managed by Thames

Water Utilities Limited (TWUL). The London supply area has a significant supply-

demand deficit throughout the planning period which requires investment to main-

tain security of supply (UKWIR, 2016). TWUL have identified a need to deliver

a new large water resource option around the mid to late 2020s to secure reliable

water supply to their customers. There are four different large water resource

types of options available: wastewater reuse, desalination, a new large reservoir

in the Upper Thames catchment and a Severn-Thames Transfer. Due to the wide

range of different supply and demand scenarios, it is impossible to predict the

exact timing and magnitude of the supply deficit. This uncertainty makes the

selection of the most valuable option a challenging task.

The conditions for implementing flexible and adaptive plans exist: (i) The eco-

nomic regulator of the natural monopoly water utilities requires they produce

long-term supply demand plans (25 years or more) to justify short-term invest-

ment actions (next 5 or 10 years). That is, asset planners must select short-term

interventions for the next Asset Management Period (AMP) and be able to demon-

strate how they fit within a strategic long-term plan. A flexible position is possible
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and allows asset managers to review the plan in the distinct decision points (every

5 years) and respond by taking advantage of the observed changes to the main

uncertainty drivers (e.g., water supply, demand, capital and operational cost of

options); (ii) Some new large water resource schemes can be built in phases, that

is, they can be expanded at a future stage if required by paying a relevant ex-

pansion cost. The flexibility to build resources in incremental stages allows for

improved supply estimates before committing to larger schemes.

1.3 Thesis outline

Chapter 2 discusses the literature review on the methods used in decision-making

under uncertainty with an emphasis on their application to water resource system

planning practices. In this chapter, traditional followed by advanced decision-

making approaches are presented and their suitability in addressing the inherent

uncertainty and multi-criteria nature of the water resource planning problem is

described.

Chapter 3 introduces a quantitative approach for extending a least-cost scheduling

approach for water infrastructure planning used currently at a national scale in

England to explicitly enable flexibility and adaptivity given future supply uncer-

tainty. This is established by applying the ROA concept using scenario trees over

a predefined planning horizon with distinct decision points to allow rebalancing of

the supply-demand system at intermediate stages. This chapter offers a compu-

tationally efficient framework to generate a compact scenario tree to approximate

the stochastic supply representing an ensemble of plausible futures.

Chapter 4 performs a comparison of the ROA approach presented in Chapter 3

with alternative techniques that consider uncertainty through the use of multiple

scenarios to examine the impact on the performances of the proposed plans by each

approach in terms of efficient use of network capacity and levels of investment.
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Although the aggregate multi-scenario optimisation approaches in Chapter 3 and

in Chapter 4 identified plans that can handle future supply demand uncertainty,

the default single objective is that of least cost. Constraints are used to repre-

sent some objectives, for example the objective of keeping supply above demand.

However, alternative objectives cannot be included directly in the optimisation ap-

proaches. To overcome this limitation, Chapter 5 introduces a system simulation

method in which multiple planning objectives can be considered, including system

resilience metrics as well as costs. The output of this approach is the set of port-

folios that best satisfy the chosen objectives. This high performing set of adaptive

plans, which can be referred as Pareto-optimal, contains the set of interventions

where any further increase in performance in one metric will simultaneously de-

crease performance in one or more other. Each adaptive plan on the trade-off

surface represents a unique combination of supply augmentation and demand re-

duction interventions where early investments are selected to enable flexibility in

selecting later interventions as information on future supply-demand balance is

gradually revealed.

Finally, Chapter 6 gives the main conclusions of this study and identifies future

research directions.

The chapters of this thesis are developed to be largely self-contained because

they are published as individual journal articles. Because of this, there is some

repetition in introductions and background material.





Chapter 2

Literature review

2.1 Introduction

This chapter provides a review of the current literature regarding decision-making

approaches under uncertainty and their application in water resources planning.

The chapter is organised as follows: Section 2.2 discusses the types of uncertainty

found in water infrastructure investment decision-making. Section 2.3 provides

an overview of the traditional decision-making approaches in investment appraisal

and their limitations while Section 2.4 discusses how advanced decision-making

approaches are used to more efficiently reduce the impact of uncertainty. Finally,

Section 2.5 presents stochastic optimisation tools used to solve water resource

management problems and discusses the ones used in the formulations of the

adaptive and flexible approaches introduced in this thesis.

2.2 Water resource planning under uncertainty

Investing in the right amount of new water supply infrastructure at the right time

is the way to cost-effectively meet future water demands. However, developing

9
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plans that do not under or over-invest is difficult as future conditions such as cli-

mate change impacts or population growth are uncertain. Several decision-making

approaches exist that schedule the implementation of interventions to maintain the

supply-demand balance with consideration of uncertainties associated with future

conditions.

The benefits and limitations of these decision-making approaches for investment

appraisal are described below focusing on their applicability in the context of

water demand and climate change uncertainty. Before reviewing the analytical

approaches, it is important to first recognise the types of uncertainty that need to

be addressed.

2.2.1 Types of uncertainty

Uncertainty refers to the limited available knowledge about certain future events.

Accounting for uncertainty is crucial when planning refurbishment or expansion of

a water resource network as the actual outcomes of an investment may differ from

that which was expected when the decision was taken. Different types of uncer-

tainties can be found in the literature according to the degree that the unknown

future conditions can be managed.

The first distinction between risk and uncertainty was introduced by Knight in

1921 (Watkins and Knight, 1922). According to Knight, risk indicates the fore-

seeable and thus manageable part of what is unknown. The incalculable and

uncontrollable part of what is unknown, consist the uncertain. Decision-making

under risk and decision-making under uncertainty have been linked to whether or

not probabilities can be used to account for future predictions. Uncertainties that

cannot be treated probabilistically, known as Knightian uncertainties, include sit-

uations where experts cannot agree upon the probabilities and thus the statistical

distributions of future conditions are unknown or cannot be trusted.
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Uncertainty around the effects of climate change is considered to be of this type

as until now there has not been a methodology to assess them. Although climate

change is expected to have an impact on water supplies, there is still significant

uncertainty in the timing, magnitude, and the sometimes even the direction of

change (Walsh et al., 2014). Since climate change is a new process for which we

have no historical equivalent, probabilities cannot be calculated based on the past.

These types of uncertainties are the most difficult to handle and are referred to as

deep uncertainty (Lempert, 2003) or severe uncertainty (Ben-Haim, 2006). Such

uncertainty is characterised as a condition where decision makers cannot agree

upon a model that effectively describes cause and effect or its key parameters

(Walker et al., 2013). This leads to a situation where it is not possible to say with

confidence whether one future state of the world is more plausible than another.

Another type of uncertainty that can be found in the literature is called dynamic

uncertainty where uncertainty is assumed to resolve to a degree with the passage

of time due to increasing knowledge on the impacts of the uncertain parameter

such as climate change (Dittrich et al., 2016). According to Ford et al. (2002),

project planners can use flexible strategies to exploit project value that is hidden in

dynamic uncertainty. Flexible approaches, as explained in more detail in Section

2.4, allow for learning over time enabling plans to be cost-effectively adjusted as

additional information becomes available.

2.3 Traditional decision-making approaches

Cost-benefit analysis and least-cost optimisation are widely used decision-making

approaches in policy analysis when appraising projects. In this section, tradi-

tional decision-making approaches to appraise investment are described and the

difficulties of applying these methods in the context of climate uncertainty are

explained.
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2.3.1 Cost-benefit analysis and net present value

Cost-benefit analysis attempts to maximise the benefits for society based on poten-

tial Pareto efficiency. It assesses whether it is worthwhile to implement a project

by comparing all its monetised costs and benefits expressed over a defined time

span to obtain its Net Present Value (NPV) as in Equation 2.1

NPV (i, N) =
N∑
T=0

Rt

(1 + r)t
(2.1)

where N is the total number of periods, r the discount rate, t is time and Rt is

the net benefits (benefits minus cost) at time t.

The benefits and costs over time are discounted to present values, and a NPV is

calculated by subtracting the net costs from the net benefits. A project should

generally proceed when the NPV is positive as this indicates that the investment

is economically desirable (Boardman et al., 2006). Provided that reliable data on

costs and benefits are available, cost-benefit analysis can be carried out with lim-

ited technical resources and the results are accessible to a non-technical audience.

Cost-benefit analysis has been tested and successfully applied to many projects

and policies (application examples include (Willenbockel, 2011) and (Kull et al.,

2013)). However, water resource planners face considerable challenges when ap-

plying such decision-making approaches in an area of uncertainty such as climate

change adaptation. The main reason is that the benefits of adaptation are hard

to define, as these require knowledge about expected impacts of climate change

and responses to them, which are hard to predict (Dessai and Sluijs, 2007). More-

over, analysing alternatives using NPV analysis take static perspectives of projects

and alternatives producing strategies with fixed combinations of conditions and

decisions (Ford et al., 2002).

Several studies in various domains have demonstrated that there are potential

benefits of waiting for uncertainty to (partially) resolve before making important
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development decisions. As discussed in more detail in section 2.4.3, examples of

such flexible applications can be found in automobile systems (Ward et al., 1995),

car parking problems (De Neufville et al., 2006), risk management in petroleum

development investments (Chorn and Shokhor, 2006a), renewable energy policy

evaluation (Lee and Shih, 2010), multi-energy generation system expansion plan-

ning (Ceseña et al., 2016) to name a few. Hence, the application of Cost-benefit

analysis and NPV in its basic formulation may be undervaluing projects as it does

not exploit the potential benefits of flexible planning.

2.3.2 Deterministic mathematical programming

Deterministic approaches for balancing annual supply and demand have existed in

the water industry for more than half a century and still form the basis of the exist-

ing Water Resources Management Plan (WRMP) framework (Padula et al., 2013a)

required by the English statutory process. The main strength of the approach re-

lies on its simplicity which makes it easy to explain facilitating the communication

among stakeholders on getting the plans reviewed and agreed (Hall et al., 2012).

Ability to communicate results is crucial as plans are produced in consultation

with government regulators and are subject to public consultation which requires

the results to be readily understood.

Mathematical programs minimise or maximise an objective which is a function

of the decisions (Bazaraa et al., 1990). Decisions are represented by variables

of different types. In water resources management, utilisation is modelled using

non-negative continuous variables while binary variables are used to represent ac-

tivation of options. Possible decisions are constrained by minimum requirements

(e.g. demand has to exceed supply), limit in resources (capacity of options) etc.

Objectives and constraints are functions of the variables as well as problem pa-

rameters, including capital and operational costs, supply demand forecasts and

capacities of options. In deterministic mathematical programming models, all
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problem parameters are assumed to take fixed, known values. These values are

estimated via forecasting methods.

The deterministic approach is formulated as Mixed Integer Linear Programming

(MILP) optimisation problem as follows:

min z =
∑
t,i

p

(1 + r)t
[Ci(dSt,i − dSt−1,i) (2.2)

+ Fi × dSi + Vi × St,i]

s.t.
∑
i

St,i + eSi,t ≥ Dt + ht ∀t (2.3)

St,i ≤ dSt,i × cSt,i ∀t, i (2.4)

dSt,i ≤ dSt+1,i ∀t, i (2.5)

St,i ≥ 0 (2.6)

dSt,i ∈ 0, 1. (2.7)

The binary variable dSt,i denotes the activation of an optional supply source and

the real variables Si,t and eSi,t indicate the extent of annual use of optional and

existing supply sources respectively. The single objective is the minimisation of

discounted capital, fixed (Fi) and variable (Vi) costs (equation 2.2) subject to

constraints. The mass balance constraint 2.3 ensures that demand for water is

met in every year of the planning period. A buffer ht is added to demand Dt

to account for the uncertainty around supply and demand (see section 2.3.2.1 for

how this amount is calculated). Constraint 2.4 ensures that utilisation of supply

options is up to its capacity while constraint 2.5 keeps an option on after its

activation.

Applications of deterministic approaches in the water industry include a regional

study in South East of England (Critchley and Marshallsay, 2013; Padula et al.,
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2013a) identifying and sharing water investment opportunities for the water com-

panies operating in the region. While deterministic methods can be used as infor-

mative tools for decision-making, since water resource and infrastructure develop-

ment have major financial environmental and social impacts, crucial investment

decisions which have to be made in the present need to account for the needs of a

future which is largely unknown. Therefore, deterministic modelling that assumes

the known future results in sub-optimal plans and water supply deficits if future

is less favourable than assumed (Chung et al., 2009).

2.3.2.1 Incorporating uncertainty in the deterministic approach

The planning framework known as Economics of Balancing Supply and Demand

(EBSD) which has been used by the water industry since 2002 in England (UK-

WIR, 2012) uses deterministic modelling to identify a least-cost sequence of options

that meet deficits under a given scenario. However, given a broad range of plausi-

ble future supply-demand conditions, a deterministic solution may not be optimal

or feasible. To cater for specified uncertainties around supply and demand, a safety

factor called ‘headroom’, h, is added to demand (Environment Agency, 2008). The

calculation of ‘headroom’ aggregates nine supply-related and four demand-related

sources of uncertainty (listed in table 2.1) into an annual estimate for each Water

Resource Zone (WRZ) (UKWIR, 2002b). Hence, ‘headroom’ in a WRZ is defined

as the difference between water available for use (which is deployable output plus

bulk supply imports, minus bulk supply exports and minus reductions made for

outage allowance and operational losses) and demand.

The Probability density function (PDF) for uncertainty in supply, fS(q), and de-

mand, fD(q) (where q is a water supply or demand for water expressed in terms of

ML/d) are calculated as the sums of all their different components of uncertainty.

These are computed using Monte Carlo simulation which is a sampling technique

in which a simulation process is repeated multiple times, at each time randomly

selecting a particular instance of the unknown headroom component. Monte Carlo
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Table 2.1: Sources of uncertainty in water supply/demand as modified by
UKWIR (2002)

Supply side uncertainties
Vulnerable surface water licences data
Vulnerable groundwater
Time-limited licences climate change on demand
Bulk imports
Gradual pollution of sources (causing a reduction in abstraction)
Accuracy of supply-side data
Single source dominance
Uncertainty of impact of climate change on source yields
Uncertain output from new resource developments
Demand side uncertainties
Accuracy of subcomponent
Demand forecast variation
Uncertainty of impact of licences
Uncertain outcome from demand management measures

is a widely used technique in the probabilistic analysis of engineering systems with

numerous applications, including the work of (Prudhomme et al., 2003) who use

Monte Carlo simulation to calculate the uncertain impact of climate change in the

flood regime in Northern England and Scotland.

The PDF of the combined headroom uncertainty, f(h), which is the difference

between the distribution of supply and the distribution of demand, is computed

as the convolution of the two PDFs:

f(h) =

∫ qm

0

fs(q − h)fd(q)dq (2.8)

where qm is the upper bound on the support for the distribution functions fS(q)

and fD(q). The distributions of supply and demand are standardised by their mean

values mS and mD, respectively. Hence, the headroom uncertainty pdf fu(h) is

given by:

fu(h) = f(h− µs + µd) (2.9)
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The water company in its WRMP should provide a deterministic quantity hT (P )

called ‘target headroom’. It is back-calculated from equation 2.9, by identifying

an acceptable probability implying the ‘Level of Risk’, P, at which the distribution

f(h) may become negative:

hT (P ) = −F−(P )
u (2.10)

where −F−(P )
u is the inverse cumulative distribution function of fu(h) (equation

2.9) at probability P . The headroom calculation is repeated for every year of

the planning period to identify how and when a range of management options is

expected to yield a surplus or deficit compared with the target headroom.

While target headroom adds a probabilistic element to deterministic modelling,

the approach is not explicitly risk-based and also not suitable for appraisal of

adaptive management strategies (Hall et al., 2012). Headroom uncertainty cannot

be directly interpreted in terms of the frequency of droughts. Conversely, a risk-

based approach would make explicit the probabilities of a range of plausible future

outcomes.

2.4 Advanced decision-making approaches

Since climate change uncertainties cannot be reduced by gathering further in-

formation (Walker et al., 2013; Werners et al., 2013), more advanced planning

approaches are required to efficiently to reduce the impact of uncertainty (Abun-

nasr et al., 2015; Berke and Lyles, 2013; Quay, 2010). Multiple tools have been

developed that are designed to be less sensitive to future uncertainties. This is

achieved by considering multiple scenarios instead of optimising for one specific

scenario, selecting strategies that provide benefits across a number of potential

futures. This way, optimisation is obtained across a wide range of scenarios using

different mechanisms to capture the uncertainty on future conditions.
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Decision-making approaches that use multiple plausible futures have focused on

two goals: achieving insensitivity (i.e. robustness) to changing conditions as well

as making adaptive intervention strategies that respond to uncertainty over time

(Maier et al., 2016). Pro-actively accounting for uncertainty can create plans that

remain relevant longer by allowing for corrective actions and avoiding maladaptive

outcomes (Walker et al., 2013). These tools have been applied largely in major

infrastructure projects in multiple settings including water supply management,

flood risk management, energy production, transportation development (Kwakkel,

Walker and Haasnoot, 2016; Lawrence et al., 2013; Lourenço et al., 2014) and are

reviewed in more detail below.

2.4.1 Robust decision making

RDM is an attempt to identify plans that perform well under a wide range of plau-

sible future conditions (Lempert et al., 2006). That is, investment plans should

aim to be insensitive to the most significant uncertainties (Lempert et al., 2006;

Ray and Brown, 2015; Hall et al., 2012; Huskova et al., 2016). One commonly

used definition of a robust system is one that performs satisfactorily well com-

pared to other alternatives over a wide range of plausible future conditions rather

than optimally under one (Lempert et al., 2006). To account for deep uncertainty,

decision-making methods that seek robustness generally use a wide range of sce-

narios to produce plans that perform well across a variety of futures. Hence, the

investment plan derived from this approach is insensitive to the most significant

uncertainties (Lempert et al., 2006; Ray and Brown, 2015). Choosing plans that

are optimal under certain conditions is often sacrificed to improve robustness i.e.

a plan that is robust to many future scenarios will likely not be optimal in any

(Lempert and Collins, 2007). Therefore, robust plans trade optimality with the

ability to perform acceptably well in a wide range of future scenarios. Robust

strategies that seek to ensure satisfactory performance over a wide range of fu-

tures are attractive to risk-averse decision makers as the risk of poor performance
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is reduced.

Many classes of optimisation problems, including linear programs, conic-quadratic

programs and mixed-integer linear programs, allow for robust formulations. Ro-

bust optimisation problems optimises a deterministic objective and at the same

time satisfies a constraint set for every possibly realisation of the uncertain param-

eters. In other words, it seeks to identify a solution under the worst-case scenario,

where the worst case is evaluated with respect to all possible scenarios (Georghiou

et al., 2011). A robust general formulation of a mixed-integer linear program is as

follows:

min z =
∑
t,i

1

(1 + r)t
[Ci(dSt,i − dSt−1,i) (2.11)

+ Fi × dSt,i + Vi × St,i]

s.t.
∑
i

St,i + eSt,i ≥ Dw
t ∀t, w (2.12)

St,i ≤ dSt,i × cSt,i ∀t, i (2.13)

dSt,i ≤ dSt+1,i ∀t, i ∈ Ir (2.14)

St,i ≥ 0 (2.15)

dSt,i ∈ 0, 1. (2.16)

The binary variable dSi denotes the selection of a scheme and the real variables Si,t

and eSt,i indicate the extent of use of optional and existing schemes respectively.

Ci, Fi and Vi denote the undiscounted capital cost, undiscounted fixed operational

cost and undiscounted variable operational cost of intervention i, Dw
t is demand

in time t in scenario w, cSt,i is the maximum capacity of intervention i in time t.

The single objective is the minimisation of discounted capital, fixed and variable

costs (equation 2.11) subject to constraints. To make the solution robust even

under the worst-case scenario, the mass balance constraint 2.12 is met in every
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plausible future scenario w. Constraint 2.13 ensures that utilisation of schemes is

up to its capacity while constraint 2.14 keeps a scheme on after its activation.

In water resource systems planning, RDM was originally introduced by (Matalas

and Fiering, 1977) as a decision-making tool for situations with poorly-characterised

uncertainty and since then has been increasingly explored in the literature. RDM

has been applied in a range of water resource planning contexts, such as England

(Matrosov et al., 2013), in Australia (Mortazavi-Naeini et al., 2015), and Southern

California (Tingstad et al., 2013).

While robust methodologies take into account a wide range of possible future

conditions (i.e. mild to dire), the statistics used to quantify the performance of

the system over the range of possible scenarios may result in over investment

(Herman et al., 2015). That is, the main weakness of robust approaches is that it

could be too conservative resulting to unnecessary extra capacity (Shapiro, 2012).

In addition, different metrics to define robustness within an optimisation problem

results in alternative robust decision methods that often reaches different results

(Mortazavi-Naeini et al., 2015).

The RDM process determines the least vulnerable strategy without guidance on

how to address the identified vulnerabilities in the re-design of a strategy. The

lack of explicit guidance on how to address vulnerabilities might create the im-

pression that RDM results in static strategies (Walker et al., 2013). A more

thorough review of the RDM literature suggests that RDM can be used to identify

adaptive strategies in response to how the future unfolds (Bloom, 2014; Groves

et al., 2014). A signpost and trigger system is used to enable adaptive planning,

where a strategy is modified in a pre-specified way in response to a pre-specified

trigger. However, robust methods are still relatively novel in the academic and

policy agenda for adaptation while the specification of these triggers need further

clarification (Kwakkel, Haasnoot and Walker, 2016).
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2.4.2 Dynamic adaptive policy pathways

Adaptive approaches are based on considering the uncertain future and respond-

ing to future conditions by adjusting intervention schedules as the future manifests

(Maestu and Gómez, 2012). Adaptability enables a system to change pro-actively

to environments, markets, regulations, and technology (De Neufville and Scholtes,

2011a). DAPP (Haasnoot et al., 2013) and ROA are amongst the decision-making

processes that differently identify adaptive strategies under uncertain future (Ray

and Brown, 2015). While DAPP appears in the literature to be implemented in

situations with absence of information on likelihood of the multiple plausible fu-

tures (Haasnoot et al., 2013; Kwakkel et al., 2015; Kwakkel, Haasnoot and Walker,

2016), ROA typically makes use of probability information (Dixit and Pindyck,

1994; Ray and Brown, 2015) to treat future uncertainty.

DAPP is an amalgamation of two approaches, Adaptive Policy Making and Adap-

tation Pathways. The former is a structured approach for designing dynamic

robust plans (Walker et al., 2001; Dessai and Sluijs, 2007; Kwakkel et al., 2010)

and the latter approach uses adaptation tipping points to specify the conditions

under which a given plan will fail as it no longer meets the specified objectives

(Kwadijk et al., 2010). DAPP includes transient scenarios representing multiple

uncertainties used to analyse the vulnerabilities and opportunities of policy actions

and how they develop gradually over time. Alternative types of actions are then

identified to address these potential vulnerabilities and opportunities, specifying a

dynamic adaptive plan (Hamarat et al., 2014; Kwakkel et al., 2015; Herman et al.,

2015).

In a water resource management context, adaptation tipping points could be a

certain climate change trigger indicating that the current plan must change as

new actions are needed to ensure water supply security. The challenge of this

approach for water resource management applications is to identify good triggers

for water management due to high natural variability as well as a monitoring

framework for short time period of measurements (Diermanse et al., 2010).
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Applications of integrated DAPP approach in long-term water management in-

clude the work of (Haasnoot et al., 2013) in the Rhine Delta in the Netherlands

producing adaptive plans that are able to deal with unforeseen conditions due to

uncertainties in future climate change as well as other social, political, techno-

logical and economic uncertainties. In an extension of this work, (Kwakkel et al.,

2015) use a multi-objective evolutionary algorithm for robust optimisation to iden-

tify the most promising pathways under climate change uncertainties. A simple

rule-based system is used to govern the activation of the next action on a pathway.

Every five years, the results of the system in terms of causalities and economic

damages are evaluated and classified into no event, small event, large event, and

extreme event. A new action is activated if, in the previous five years, an event of

the pre-specified level occurs.

The DAPP formulation using robust optimisation is as follows:

min F (lp,r) = (fcost, fcasualties, fdamage) (2.17)

s.t.cdamage : ỹdamage ≤MaxFlodDamages (2.18)

ccasualties : ỹcasualties ≤Maxcasualties. (2.19)

lp,r = [p1, p2, p3, r1, r2]∀p ∈ P ; ∀r ∈ R (2.20)

where lp,r denotes a policy pathway, pm is a policy action, P is the set of policy

actions, rn is a rule, R is the set of rules

fi(yi) = ỹi(IQR(yi) + 1) (2.21)

i ∈ [costs, casualties, damages]
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yi is the set of outcomes for outcome i across a set of scenarios, ỹ is the median

value for yi, and IQR is the interquartile range for yi. Hence, each of the three out-

comes of interest (costs, casualties, and damages) is defined as the median value

multiplied by the interquartile distance plus one to simultaneously minimise the

median outcome as well as the dispersion around the median. The minimisation

problem is subject to two constraints: constraint 2.18 ensures that the sum total

of flood damage over the planning horizon does not exceed MaxFlodDamages; con-

straint 2.19 ensures the median value for the sum total of casualties over 100 years

does not exceed the Maxcasualties.

2.4.3 Real options analysis

Real options analysis is a probabilistic decision process with the ability to value the

flexibility and adaptability in future decision-making when irreversibility and un-

certainty are key characteristics of the decision problem (Dixit and Pindyck, 1994).

While it can be used as part of the evaluation and design of DAPP (Buurman and

Babovic, 2016), it is mainly used to enable planners to examine the implications

of future uncertainties. Within ROA, flexibility is valued since it allows delaying

commitment to large costly and irreversible decisions while either exercising dif-

ferent interventions or incrementally implementing interventions with high regret

cost and long construction times until more information is available. Adaptation is

enabled because ROA provides an optimal sequence of future investment decisions

that respond to changes in uncertainty over time.

ROA originates from financial economics (Cox et al., 1979; Dixit and Pindyck,

1994; Merton, 1973) and extends the principles of cost–benefit analysis (see Sec-

tion 2.3.1) to allow for learning based on an uncertain underlying parameter.

Cost–benefit analysis and the NPV rule is not adequate in that they cannot prop-

erly capture management’s flexibility to adapt and revise later decisions in response

to new information (Trigeorgis, 1993).
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Traditional ROA methods are based on financial theory, such as the Black-Scholes

equation (Black and Scholes, 1973) or expected value decision tree analysis (Dixit

and Pindyck, 1994). Black and Scholes (1973) and Merton (1973) defined and

solved the financial option valuing problem. Inspired by them, Myers (1977) who

first identified many corporate economic assets as call or put ‘real’ options, sug-

gested the concept of a ROA. The next section provides a review of the commonly

used option-pricing methods found in the literature.

2.4.3.1 Review of option-pricing theory

In financial options analysis, there are multiple methodologies and approaches

used to calculate an option’s value. Options, in finance, give an investor the right,

but not the obligation, to buy or sell a security according to predetermined terms

during some period. Stock option contracts can be of two categories: calls and

puts. A call option gives the holder the right to purchase stock at a fixed exercise

price at or before a specific date. A put option gives the holder the right to sell

stock at a fixed exercise price at or before a specific date. Call and put options

contracts are written on all sorts of assets and variables (such as bonds, interest

rates, exchange rates, and commodities) and can be used to make a leveraged bet

on future returns.

The Black-Scholes option-pricing model, developed in the early 1970s, is considered

a classic result in the Finance industry. Black and Scholes (1973) demonstrated

that an option over a stock has an economic value depending on the market price

of the stock x and t the time elapsed since the option was written, by introducing

the following equations:

Let V (x, t) be the value at time t value of some option contract defined over an

asset with current value x. V (x, t) satisfies the Black-Scholes Partial Differen-

tial Equation (PDE) on the domain D = (x, t)|x > 0, 0 < t < T , subject to the

terminal boundary condition V (x, t) = f(x):
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∂V

∂t
+ (r − y)× x× ∂V

∂x
+

1

2
× σ2 × x2 × ∂2V

∂x2
− r × V = 0 (2.22)

The parameters (r, y, σ, t) represent the risk free interest rate, the dividend yield,

the volatility of the asset and the time to option maturity respectively. A European

call of strike K has payoff f(x) = max(x−K, 0) and satisfies V (0, t) = 0, namely

the option value is zero if the asset becomes worthless. The solution subject to

the relevant boundary conditions for a European call is:

C(x,K, r, y, σ, t) = x× e−y×t ×N(d1)−K × e−r×t ×N(d2) (2.23)

where

[d1, d2] =
1

σ ×
√
t
× [ln (

x

K
) + (r − y ± 1

2
× σ2)× t] (2.24)

Several analytical methods exist for option-pricing, most remarkably Monte Carlo

simulation (Boyle, 1977) and the binomial method developed by Cox et al. (1979).

The binomial method use discrete time dynamics as opposed to the Black-Scholes

model which applies continuous time dynamics. The stock price is assumed to

follow a multiplicative binomial process over discrete periods. The time period

between today and expiry of the option is sliced into many small time periods,

marked by nodes.

Figure 2.1 shows a two-step binomial model, as adapted from Cox et al. (1979).

Over the first period of time in the two-step model, the asset price may move

either up to Su with probability p or down to Sd with probability 1− p. Over the

second period, if the price moved up to Su in the first period then the price may

move to either Suu or Sud. However, if the price moved down in the first period to

Sd then in the second period it may move to either Sdu or Sdd.

The notation used is (S0, p, u, d) for the stock price today, the probability of a
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Figure 2.1: A two-step binomial model.

price rise, the factor by which the price rises and the factor by which the price falls

respectively. This way, a tree of potential future asset prices is calculated. The

tree contains potential future asset prices for each time period from today through

to expiry. It is worth noting that as the Binomial Lattice is geared with smaller

and smaller time increments, the option price will converge to the Black-Scholes

value.

2.4.3.2 Real options in physical systems

Wang and De Neufville (2005b) identify two categories of ROA: Real Options ‘on’

systems and Real Options ‘in’ systems. Real Options ‘on’ systems focus on the

external factors of a system and benefit from the use of financial valuation tools.

These systems are mostly concerned with the valuation of investment opportuni-

ties. Some well-known cases of Real Options ‘on’ projects are on valuation of oil

fields and pharmaceutical research projects where the key question is to value such

projects and decide if investing in the project is financially sensible.

Contrarily, Real Options ‘in’ projects are the latest extension of real options the-

ory into physical systems design are mostly concerned with design of flexibility

(De Neufville and Scholtes, 2011a). A simple example of a Real Option ‘in’ a sys-

tem is a spare tire on a car: it gives the driver the ‘right, but not the obligation’
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to change a tire at any time, but this right will only rationally be used when the

car has a flat.

Real options ‘in’ projects are of special interest to the study of engineering systems

due to their features. As characterised by Roos et al. (2004), large-scale engineering

projects last a long time meaning they need to be designed with the demands of

a distant future in mind. They often exhibit economies of scale, which motivates

particularly large construction. Yet have highly uncertain future requirements,

since forecasts of the distant future are typically wrong. Under this context, there

is a need of creating designs that can be easily adjusted over time to meet the

actual needs as they develop. Real options can help engineers address the intrinsic

uncertainties facing large-scale engineering systems allow them to manage the

uncertainties pro-actively (De Neufville and Scholtes, 2011a).

The value of Real Options when used in large engineering projects can be found

in a number of studies. Zhao and Tseng (2003) showed a successful application

of flexibility in a car park design. The flexibility was embedded at the beginning

of a car park construction, which provided options for future expansion. The

extra construction cost can be viewed as an option in which a premium has to be

paid first and the option can be exercised later. Trinomial lattice and stochastic

dynamic programming were used to model the demand and optimal expansion

process. The flexibility value was calculated by comparison on the expected profit

between a baseline design and flexible design.

De Neufville et al. (2006) presented a multi-stage stochastic model for decision-

making in highway development, operation, expansion, and rehabilitation. The

model used real options as flexibility sources in both development and operation

phases of a highway and Monte Carlo simulation to account for the evolution of

uncertainties. This approach achieves decision-making optimality by maximising

the expected profit.

Applications of ROA can also be found in communications satellite constellations

(De Weck et al., 2004a), petroleum investments (Chorn and Shokhor, 2006b),
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mining operations (Cardin et al., 2008; Zhang and Kleit, 2016), energy generation

system expansion (Martinez Cesena et al., 2015) and aircraft acquisition (Hu and

Zhang, 2015) to name a few. These successful applications in other fields demon-

strate that flexibility has value for uncertain future circumstances and should be

implemented in system design. However, its use in water resource infrastructure

expansion is still in its infancy and there is a gap in the literature, which requires

further investigation.

2.4.3.3 Real options in water resources planning

There are three necessary conditions for real options analysis to be of value: there

must be uncertainty, there must be learning meaning that the state of uncertainty

must change over time and lastly there must be flexibility to act on the new

information that becomes available (NERA, 2012). All three conditions are present

in a water resources management context. Major uncertainties exist with respect

to future rainfall levels as well as water demand. ROA relies on the assumption

that uncertainty is dynamic i.e. uncertainty is assumed to resolve to a degree with

the passage of time due to increasing knowledge on uncertain parameters such as

climate change impacts (Dittrich et al., 2016). Hence, learning is achieved simply

by allowing the passage of time which allow for better water supply and demand

estimates. Flexibility exists in that construction of options can be deferred or

accelerated according to how the future unfolds. Also, large interventions can be

modular meaning that they can be built in phases. Given that there is sufficient

flexibility, uncertainty and learning, ROA can bring benefits into forming long-

term WRMP plans (NERA, 2012).

ROA is implemented through different techniques. These include decision trees,

lattices, and Monte Carlo analysis (Trigeorgis, 1996; Lander and Pinches, 1998;

Chow and Regan, 2011; De Neufville and Scholtes, 2011b) as well as multi-stage

stochastic optimisation programs (Zhao et al., 2004; De Weck et al., 2004b; Wang

and De Neufville, 2005a,b). Combination of staged decision-making (Hobbs, 1997;
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Kracman et al., 2006; Ray et al., 2011; Kang and Lansey, 2012b; Beh et al., 2014;

Cai et al., 2015; Vieira and Cunha, 2016) and ROA (Jeuland and Whittington,

2014; Steinschneider and Brown, 2012; Woodward et al., 2014a) can be found in

the water and flood management literature. The number of decision stages in

these multi-stage problems defines the frequency that intervention strategies can

be modified in the planning horizon. For example, Ray et al. (2011)’s long-term

water supply planning under climate change uncertainties extends 75 years into

the future and the decision stages are made in years 2035, 2060, and 2085. In an-

other work, Woodward et al. (2014a)’s model stages flood risk interventions every

50-year time step over a 100 year time horizon. There has been significant effort

by using different decomposition methods (Escudero, 2009; Rockafellar and Wets,

1991; Mulvey and Ruszczyński, 1995), and/or uncertainty reduction and cluster-

ing techniques (Gröwe-Kuska et al., 2003; Dupačová et al., 2003; Gülpınar et al.,

2004; Latorre et al., 2007; Heitsch and Römisch, 2005; Šutienė et al., 2010; Housh

et al., 2013) to represent long term future uncertainty in stages using a scenario

tree. Nevertheless, applying ROA in water resource planning is still challenging for

three reasons. First, ROA is sensitive to the structure of the scenario tree so the

parameterisation of its design must be defensible. This includes deciding the num-

ber of nodes over the planning horizon and choosing the branching between states.

Secondly, the probability assignment to scenario branches and nodes affects the

optimised investment decisions. This can become intractable for a relatively com-

plex problem. Lastly, as the number of scenarios used grows, the problem becomes

more complex, often without increasing the quality of the solution (Lander and

Pinches, 1998; Wang and De Neufville, 2005a). To account for the above, a gen-

eralised uncertainty sampling and optimised scenario tree construction approach

for multi-stage investment planning is proposed in Chapter 3.



Chapter 2 30

2.5 Stochastic optimisation methods

Stochastic programs are mathematical programs where some of the problem pa-

rameters incorporated into the objective or constraints are uncertain. Uncertain

problem parameters are modelled as random variables with known probability

distributions. Stochastic programming problems can be used in both static and

dynamic model constructions. Static models, or single-stage, are used when deci-

sion is taken only once in time. In contrast, dynamic models can be formulated

as recourse problems where decisions are taken subsequently allowing for correc-

tive actions. Applications of stochastic programming is wide and can be found in

power scheduling (Nürnberg and Römisch, 2002), transportation problems (Bar-

barosoglu and Arda, 2004; Liu et al., 2009) and production planning (Fleten and

Kristoffersen, 2008).

Recourse stochastic programming methods are a prevalent way to implement ROA

in infrastructure investment planning (Zhao et al., 2004). ROA encourages staged

decision-making with the intention to delay expensive and irreversible investment

options until more information is available. Stochastic programming models allow

for flexibility to be exercised through corrective decisions which can be postponed

until more accurate data is available (Birge and Louveaux, 2011). This can be

used to identify flexible water supply portfolios of infrastructure options which are

adaptable to future changes. The next sections present a summary of the most

commonly used stochastic optimisation approaches together with their formula-

tions.

2.5.1 Chance constraints

A chance-constrained problem is a stochastic programming optimisation problem

that uses random variables to find a decision which ensures that a set of constraints

will hold with a minimum given probability i.e. they seek to safeguard a solution
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obtained against undesirable outcomes. The decision is to be made here and now

and the models do not account for any corrective actions.

The general formulation of a chance (probabilistic) constraint, as introduced by

Charnes et al. (1958), has the following form:

Prob{G(x, ξ) > t} ≤ α (2.25)

where G(x, ξ) is a real valued function of the decision vector x and random data

vector ξ, and τ ∈ R and α ∈ (0, 1) are chosen constants.

In a simple water mass balance problem, there are only two possible options in-

creasing water capacity by x1, x2 respectively. The size of each option (i.e. option

capacity) is a variable. If ξ1 is the uncertain water demand, the supply-demand

balance will be met if and only if x1 + x2 ≥ ξ1. Since demand ξ1 is a random

variable, the fulfilment of this inequality can be guaranteed only on a probability

level α.

If c(x1, x2) is the building cost function of the two supply options, then the stochas-

tic programming problem is:

min c(x1, x2) (2.26)

s.t.prob{x1 + x2 − ξ1 > 0} ≥ α (2.27)

0 ≤ x1 ≤ V1 (2.28)

0 ≤ x2 ≤ V2. (2.29)

where V1, V2 are upper bounds of the option capacities. The total cost is minimised

in equation 2.26 ensuring that the probability of supply deficit being greater than

zero remains less than α (constraint 2.27).
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This class of static stochastic programming models, where decision is taken only

once in time, were introduced by (Charnes et al., 1958) dating back to 1958.

Despite being around for a long time, chance constraints have not found wide

applicability as computing the optimal solution for chance-constrained problems

is extremely difficult (Erdoğan and Iyengar, 2006). Evaluating ProbG(x, ξ) > t

involves a multidimensional integral that becomes difficult to handle as the num-

ber of parameters grows, both numerically and from the modelling point of view

(Shapiro, 2008).

2.5.2 Two-stage stochastic program

The other type of stochastic programming models is dynamic in that decisions

are taken subsequently in such a way that between two subsequent decisions an

observation of a random variable occurs. One of the basic recourse models is the

two-stage recourse problem.

According to Dantzig (1955), the decision variables in a standard two-stage stochas-

tic programme are divided into first stage and second stage sets. The first stage

decision variables are made before the realisation of uncertainty. In the second

stage where more information becomes available after the realisation of uncer-

tainty, decisions are adjusted to the outcome using the second stage variables.

Based on Dantzig (1955), two-stage stochastic programming problem can be for-

mulated as
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min z =
∑
t,i

1

(1 + r)t
[Ci(dSt,i − dSt−1,i) (2.30)

+ Fi × dSt,i + Vi × St,i +
∑
w

pwBw
t ]

s.t.
∑
i

St,i + ESt,i +Bw
t ≥ Dw

t ∀t, w (2.31)

St,i ≤ dSt,icSt,i ∀t, i (2.32)

dSt,i ≤ dSt+1,i ∀t, i ∈ Ir (2.33)

St,i ≥ 0 (2.34)

Bw
t ≥ 0 (2.35)

dSt,i ∈ 0, 1. (2.36)

The objective of the two-stage stochastic programme (equation 2.30) is to min-

imise the sum of the first stage costs and the expected value of the random second

stage costs where recourse (second-stage) decisions are made after observing the

random output. The first stage decision variables are the binary supply interven-

tion activation dSt,i variable and the utilisation variable St,i denoting the amount

of water supplied from an intervention. They correspond to investment and oper-

ation decisions over the planning horizon.

The second stage wait-and-see recourse action variable Bw
t is linked to the ex-

pected deficit costs and is delayed until more information is available as scenarios

unfold. The consequences of potential supply shortage due to variations in water

availability are being penalised by a user defined scarcity cost Bw
t . The scarcity

cost variable is scenario-dependent and must be replicated for each scenario w.

Constraint 2.32 sets the available supply and constraint 2.33 forces an intervention

once activated to remain active at later stages. Intervention activation constraints

are non-anticipative stating that the first-stage decision should not depend on the

scenario which will prevail in the second stage. In this case, dSt,i does not depend
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on each scenario w and is effectively determined before any information regarding

the uncertain data has been obtained. On the other hand, Bw
t , the second-stage

variable, is determined after observations regarding scenario w have been obtained.

In essence, the goal of a two-stage model is to identify a first-stage solution that

is well positioned against all possible observations of scenarios w.

2.5.3 Multi-stage stochastic program

Multi-stage stochastic programming problems are an extension of two-stage pro-

gramming models capable to deal with problems where decisions should be made

sequentially at certain periods of time based on information available at each time

period.

Multi-stage stochastic programming models are a sequential decision-making method

where corrective decisions can be made at several stages as more data becomes

available. After the realisation of uncertainty (i.e., after a probabilistic event), an

additional corrective (or recourse) decision is made defining which action should

be taken in response to each random outcome. The decision at the next decision

point considers the effects of further uncertainty to minimise the cost of each stage

subject to the model constraints (Birge et al., 1996).

Multistage stochastic programmes are generally challenging to solve because of the

exponential growth in decisions trees when multiple actions are possible and mul-

tiple uncertain events should be considered. Significant progress has been made

recently to improve performance (Dyer and Stougie, 2006). This includes decom-

position methods to define smaller and thus more efficient to solve equivalent sub-

problems (Escudero, 2009; Rockafellar and Wets, 1991; Mulvey and Ruszczyński,

1995), scenario-reduction techniques to optimally reduce the number of scenarios

and hence to construct a computationally tractable scenario tree (Gröwe-Kuska

et al., 2003; Dupačová et al., 2003; Gülpınar et al., 2004; Latorre et al., 2007;

Heitsch and Römisch, 2005; Šutienė et al., 2010) and decision clustering to achieve
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a good approximation of the multi-stage stochastic solution while keeping the sce-

nario tree intact (Housh et al., 2013). The proposed flexible and adaptive approach

introduced in Chapter 3 uses principles of ROA applied to least-cost capacity ex-

pansion scheduling via multistage stochastic mathematical programming.

2.5.4 Multi objective evolutionary algorithms coupled with

simulation

The interaction of multiple objectives in the context of investment planning has

been long discussed in various active research fields (Brill Jr et al., 1982) including

water resources engineering (Maass et al., 1962). Optimisation tools such as math-

ematical programming have for decades been used to solve water resource system

capacity expansion problems (Loucks et al., 1981). Despite their success, they have

been know to have difficulty in their potential to incorporate multiple objectives

and to represent water system non-linearities without requiring simplification of

performance measures (Woodruff et al., 2013).

To better capture stakeholder values, water resources management can be strength-

ened by multi-criteria approaches which help reconcile multiple and often compet-

ing water interests. Performance measures of interest, when evaluating water in-

tervention options include ones that describe economic, social and environmental

impacts as well as water supply security metrics such as reliability and resilience.

The development of multi-objective optimisation approaches, identifying plans

that represent the optimal (‘best achievable’) trade-offs between objectives (Kol-

lat and Reed, 2007a), has made this approach practicable for real system design

problems (Matrosov et al., 2015).

Multi-objective evolutionary algorithms (MOEAs) imitate the process of natural

evolution and have found a wide range of applications in water resources planning

under uncertainty (Reed et al., 2013; Maier et al., 2014). Evolutionary algorithms
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are heuristic search algorithms that mimic the biological process of natural selec-

tion to produce an approximation of the Pareto optimal solution space. The search

is an iterative process that begins with randomly generated initial population of

solutions whose performance is then evaluated. Better performing solutions sur-

vive into the next generation. The algorithms use the evolutionary principles of

selection to promote survival and reproduction of better solutions in preference to

less optimal solutions. The genetic operations of crossover and mutation are then

applied to introduce variation into the surviving population to promote fitness of

solutions. A detailed review of evolutionary algorithms can be found in Coello

et al. (2007).

MOEAs link with simulation models of real water resource systems, allowing to

account for non-linearities, such as “if-then” style rules, which is not possible

in mathematical programming applications (Maier et al., 2014) where non-linear

interactions are ignored or simplified (Matrosov et al., 2013). Water resource

system simulators are able to incorporate non-linearities and explicitly calculate

system performance using multiple criteria without the need to translate non- com-

mensurable metrics into a single monetary metric. In combined multi-objective

evolutionary optimisation and simulation, a water resource simulator acts as the

objective function whose solution is the performance output of the model. MOEA

coupled with simulation is used as the optimisation method of the proposed multi-

objective multi-stage approach introduced in Chapter 5.
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Real-options water supply

planning: Multistage scenario

trees for adaptive and flexible

capacity expansion under

probabilistic climate change

uncertainty

3.1 Introduction

Water utilities aim to maintain an efficient and reliable water supply service by

optimally combining the scheduling of supply augmentation projects and demand

reduction policies (Mortazavi-Naeini et al., 2014). Water planners investigate a

range of feasible interventions including both the supply-side (e.g., wastewater

reuse, desalination, reservoirs) and demand-side interventions (e.g., demand re-

duction, leakage reduction). In its simplest form, the capacity expansion problem

37
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refers to finding the optimum timing and scale of predefined projects. Determin-

istic supply-demand optimisation aims to meet service levels commitments under

historically dire conditions and identifies a fixed least-cost schedule of system up-

grades (Padula et al., 2013a). However, fixed investment plans are brittle, i.e.,

if future conditions turn out to be different than assumed, the plan is likely to

fail (Chung et al., 2009). The antidote to brittleness is robustness (defined as a

decision that performs acceptably well over a range of conditions) and flexibility

(defined as the ability to switch a decision depending on outcomes that material-

ize) (Maier et al., 2016). Methods that use an ensemble of plausible scenarios to

seek robustness and flexibility are discussed below.

Robust decision-making is an attempt to identify plans that perform well under

a wide range of plausible future conditions (Lempert et al., 2006). That is, in-

vestment plans should aim to be insensitive to the most significant uncertainties

(Lempert et al., 2006; Ray and Brown, 2015; Huskova et al., 2016). Adaptive

approaches are based on considering the uncertain future and responding to fu-

ture conditions by adjusting intervention schedules as the future manifests (Maestu

and Gómez, 2012). Adaptivity enables a system to change pro-actively to environ-

ments, markets, regulations, and technology (De Neufville and Scholtes, 2011a).

Dynamic Adaptive Policy Pathways (DAPP) and Real Options Analysis (ROA)

are amongst the decision-making processes that differently identify adaptive strate-

gies under uncertain future (Ray and Brown, 2015). While DAPP appears in the

literature to be implemented in situations with absence of information on like-

lihood of the multiple plausible futures (Haasnoot et al., 2013; Kwakkel et al.,

2015; Kwakkel, Haasnoot and Walker, 2016), ROA typically makes use of proba-

bility information (Dixit and Pindyck, 1994; Ray and Brown, 2015) to treat future

uncertainty.

The decision-making process presented in this chapter aims to explicitly seek

adaptivity and flexibility in least-cost supply-demand infrastructure investment

planning. The value of adaptivity and flexibility is estimated under conditions

of probabilistic uncertainty where probabilities are assigned to future states of
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supply. This is different to decision-making under deep uncertainty approaches

(Lempert et al., 2006) where key criteria for evaluating alternative decisions such

as robustness, adaptivity and trading off conflicting objectives are addressed with-

out requiring probabilities (Lempert et al., 2006; Kasprzyk et al., 2012).

To account for the above, this chapter proposes a generalized uncertainty sampling

and optimised scenario tree construction approach for multi-stage investment plan-

ning. A scenario tree is optimally built with multiple decision stages to allow for

frequent and regular modifications to the investment strategies. The decision tree

presented in this chapter uses a range of supply scenarios to represent uncertainties

of future climate change effects from mild to dire. The range of possible climate

change futures was defined by the UKCP09 weather generator, that provides prob-

abilistic projections of precipitation, temperature and other variables for the UK

using perturbed physics ensemble simulations (Murphy, Sexton, Jenkins, Boor-

man, Booth, Brown, Clark, Collins, Harris, Kendon et al., 2009). The analysis

has used UKCP09 data assuming that the impacts are for a medium emissions sce-

nario, as reported in Thames Water (2014). The scenario tree is incorporated into

a multi-stage stochastic optimisation formulation that applies ROA for enabling

flexible and adaptive water resource investment decisions. Frequent corrective de-

cisions allow the model to compensate for insufficient or excessive investment made

in initial decision stages. The recommendations of the proposed method depend

on the probabilities assigned to the supply scenarios; errors in those probabilities

will lead to errors in the model’s recommendations. To measure the adaptivity

and flexibility enabled by the ROA implementation, two metrics are used and dis-

cussed. The model is applied to a water supply infrastructure planning problem

in England over 50 years with a 5-year decision-making time-step.

The proposed approach is described in Section 3.2 and the results of its application

to Thames Water’s London supply zone are presented and discussed in Section 3.3

and Section 3.4. Two metrics to evaluate the implementation of ROA are proposed

in Section 3.4.3. Sensitivity of results to the use of different scenario trees and

the characteristics of the uncertainty set used to create the trees are in Section
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3.4.4. Section 3.4.5 discusses the limitation of the proposed method and Section

3.5 concludes the chapter.

3.2 Adaptive and flexible formulation for ROA

implementation

Two steps are taken in formulating a multi-stage stochastic program for ROA

implementation. In the first step, a scenario tree (see definition in section 3.2.1)

is generated to approximate the stochastic supply representing an ensemble of

plausible futures. In the second step, a multi-stage mathematical programming

formulation is solved on the scenario tree to obtain the future plan under plausi-

ble future scenarios. The section concludes with an illustration of a utility that

practices real options investment decision-making provided by the proposed for-

mulation (section 3.2.4).

3.2.1 Scenario tree approximation

A discrete time horizon T is considered in which decisions are made at each stage

t ∈ T . To facilitate adaptive decision-making to changing future condition, and

to represent the multistage planning for flexible decision-making, a set of paths is

built to represent the evolution of an uncertain future. The paths, or trajectories,

correspond to a particular state of the uncertain parameter in time. These paths

are approximated using a tree structure which is refer to as a scenario tree. The

scenario tree, schematized in Figure 3.1 (a), is built by creating the root node at

time stage 1 associated with the first stage deterministic decision. The successor

nodes to the root depict the possible outcomes of the next decision point at time

index 2. This process is repeated until the end of the planning horizon resulting

in a tree structure. A single scenario is then defined as a unique path from the

root node to the terminal node defined by a leaf showing one realization of the



Chapter 3 41

future. The probability of scenario occurrence is defined by multiplying all state

transition probabilities of the scenario path starting from root leading to the leaf.

The scenario tree is an approximation of the stochastic process and is suitable for

multi-period decision-making as until a given point on the tree, the past is shared

amongst a set of scenarios while a future event is yet to manifest. In Figure

3.1 (a), an example scenario tree structure is presented. Tree nodes F and G

share a common point C and all decisions that come before it. Non-anticipativity

enforces that investment decisions at time t only utilise any information that is

available up to this stage. Hence, this dictates that all decisions made for scenario

2 and 3 should be the same on node A and C. The path indicates that the possible

outcomes from C in the next stage is transition to either F with probability p5 or G

with probability p6, subject to p5 + p6 = 1. The number of leaf nodes corresponds

to the number of distinct scenarios and their probabilities are calculated as the

multiplication of associated transition probabilities starting from root leading to

the leaf node. For instance, the probability for supply scenario s3 to occur, from

root to the end of the planning horizon is p2 × p6 × p11.

Manually generating the above scenario tree and deciding on the number of nodes,

leafs, and probability information on each node for practical purposes requires

complex calculation and sufficient judgment (Lander and Pinches, 1998). This is

especially a major deterrent to ROA implementation in complex decision prob-

lems as scenario trees can quickly grow large. To account for this, the scenario

tree is automatically constructed by implementing the fast-forward iterative greedy

algorithm which aims to minimise a so-called probability distance between the un-

certainty sets (Gröwe-Kuska et al., 2003). The algorithm optimally creates a most

informative scenario tree based on the original stochastic process by successively

bundling the tree nodes into separate sets to be later represented by a new node

while maintaining the probability information of the constructed uncertain pro-

cess as close as possible to the original stochastic process. By bundling similar

scenarios and reducing the number of nodes this not only produces a valuable and

smaller computationally accessible multi-stage decision model but also reduces the
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Figure 3.1: (a) A simple scenario tree structure with 14 nodes represented
with letters A-N. si are the scenarios and pi are the transition probabilities for
each outcome branch; for each pair of branches the sum of the probabilities adds
to 1. A path is defined from root node to leaf node at the end of the planning
horizon. (b) An illustration of a simple water resource problem solved with the
proposed real options formulation. The supply-demand gap and the activated

intervention are provided above and below each tree node respectively.

burden of manually representing the uncertainty through scenario tree generation

for multi-stage stochastic ROA implementation.

The next section gives details of the construction algorithm where the quality

of the constructed tree is controlled by a metric that calculates the percentage

of information lost known as ‘relative probability distance’ (Heitsch and Römisch,

2011). The lower the metric value is, the less information is lost and hence the more

accurate the constructed tree becomes. This is set to 5% in this study as this is

assumed to be an acceptable loss of information based on the work of Gröwe-Kuska

et al. (2003). The tolerance indicates the relative probability distance between the

constructed tree and the original stochastic process and consequently determines

the number of scenarios preserved in the scenario tree.
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3.2.2 Details for scenario tree construction algorithm

The scenario tree construction uses the supply scenarios of the original stochas-

tic process (as defined in section 3.2) to build a tree with probabilistic weights

assigned to each nodes used in the optimisation model. The tree construction is

an optimisation method based on Kantorovich transport functional (developed by

Gröwe-Kuska et al. (2003)) as follows, where

ξ, ξ̃ is n-dimensional stochastic processes, ξi, ξ̃j is scenarios (sample path of ξ),

pi,qj is scenario probabilities, probability distribution of the processes ξ and ξ̃

respectively, S is number of scenarios in the initial scenario set, J is index set of

deleted scenarios, cJ is cardinality of the index set J; i.e., the number of deleted

scenarios, s = S - cJ is number of preserved scenarios, ε is tolerance for the relative

probability distance, ct(ξ
i, ξj) is distance between scenario ξi,ξj.

Let P be the set of original scenarios, which contains the set of scenarios that will

be deleted as well as the ones that will be preserved. Scenario set Q based on the

scenarios having minimal Kantorovich DK distance to P is computed in equation

3.1,

DK(P,Q) =
∑
i∈J

pi min
j /∈J

cT (ξi, ξj). (3.1)

The probability qj of the preserved scenarios is given by the rule,

qj := pj +
∑
i∈J(j)

pi, (3.2)

where

J(j) := {i ∈ J : j = j(i)}, j(i) ∈ arg min
j /∈J

cT (ξi, ξj), ∀i ∈ J.
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That is, Kantorovich transport functional make sure that the scenario sample is

the best possible approximation of the stochastic process. By bundling similar

scenarios and reducing the number of nodes, this produces a smaller, computa-

tionally accessible multi-stage scenario tree that is the solution of the following

optimal problem,

min{
∑
i∈J

pi min
j∈J

cT (ξi, ξj) : J ⊂ {1, ..., S}, cJ = S − s}, (3.3)

where s = S - cJ is the number of preserved scenarios. The maximal reduction

strategy is deduced to determine a reduced probability distribution Q of ξ such

that the maximum number of scenarios are deleted subject to,

DK(P,Q) < ε. (3.4)

3.2.3 Staged mathematical model

With a scenario tree constructed, a mathematical program is formulated to repre-

sent the staged decision process for obtaining an optimal decision for each node of

the scenario tree. This provides adaptive optimal solutions which propose actions

to be implemented at each decision-making time interval and for each estimate of

the uncertain future. A binary decision variable dS is introduced, representing the

activation of an intervention at each node of the tree where the decision at each

stage only depends on the information available up to that point. The following

formulation defines the staged mathematical program for sequential capacity in-

vestment decision-making over time. Let N be the set of nodes on a scenario tree

and Nt be the set of nodes belonging to stage t. For a node n ∈ N , n−1 and n+1

denote respectively, the predecessor and successor nodes on the scenario and with

pn the probability that node n is realised. For a node n ∈ N and scenario s ∈ Ω,
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Ωn is the set of nodes belong to scenario s.

min z =
∑

n∈Nt,i∈I

pn
(1 + r)t

[cCi × (dSn,i − dSn−1,i) + fCi × dSn,i + vCi × Sn,i],

(3.5)

s.t.∑
i∈I

Sn,i + eSn ≥
∑
t∈T

Dt, ∀n ∈ Nt, (3.6)

Sn,i ≤ aSl,t,i, ∀t ∈ T, n ∈ Nt, i ∈ I, l ∈ Ωn, (3.7)

aSl,t+λi,i ≤ dSn,i × cSi, ∀t ∈ T, n ∈ Nt, i ∈ I, l ∈ Ωn, (3.8)

aSl,t,i = 0, ∀i ∈ I, t ∈ T ∧ t ≤ λi, n ∈ Nt, l ∈ Ωn, (3.9)

dSn,i ≤ dSn+1,i, ∀n ∈ N, i ∈ I, (3.10)∑
i∈Im

dSn,i,≤ 1 ∀n ∈ N, (3.11)

dSn,i ≤ dSn−1,j, ∀n ∈ N, i ∈ Id, j ∈ Ip, (3.12)

Sn,i ≥ 0, ∀n ∈ Nt, i ∈ I, (3.13)

dSn,i ∈ {0, 1}, ∀n ∈ Nt, i ∈ I, (3.14)

where n is a node, t denotes time (stages), i is an intervention, pn is the probability

that node n is realised, r is the discount rate, eSn,i denotes levels of existing supply

from intervention i, cCi is the undiscounted capital cost of intervention i, cFi is

the undiscounted fixed operational cost of intervention i, cVi is the undiscounted

variable operational cost of intervention i, Dt is demand in time t, cSn,i is the

maximum capacity of intervention i in node n, λi is the construction time period for

intervention i, dSn,i is the activation of intervention i for node n, Sn,i is the supply

from intervention i for node n, aSn,t,i is the associate supply on the intervention i

to supply on node n in time t.

The optimisation model minimises the expected cost of investments discounted

back to the present. Constraint 3.6 makes sure the supply balances the demand

in each node of the tree. Constraints 3.7 - 3.9 allow an intervention to be utilised

up to its capacity considering its construction period, λi, before its activation;
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constraint 3.7 sets an earliest year for the yield, constraint 3.8 sets the available

supply to associate with construction period and constraint 3.9 prevents yield from

being used during the construction period. Constraint 3.10 forces an intervention

once activated to remain active at later nodes of the tree. Activation of two

interventions that are mutually exclusive is avoided by introducing constraint 3.11

over the set of mutually exclusive interventions, Im. Constraint 3.12 ensures that

modular interventions can be further expanded as long as the previous phase has

been completed. Id denotes the set of dependent interventions and Ip denotes

the set of pre-requisite interventions. The proposed problem structure follows a

node based formulation related to the multi-stage stochastic program. Intervention

activation constraints, due to path-dependency are non-anticipative. For instance,

although scenario si and sj end up in different terminal nodes, they can be passing

through the same node in time t. In that case, the intervention activation decision

variables at time stage t in scenario si equals that of other scenario sj. This

means that the multistage stochastic program will determine an optimal decision

for each node of the scenario tree, given the information up to time stage t. Given

that there are multiple succeeding nodes, the optimal decisions will not exploit

hindsight, but they should anticipate future events. The mathematical model

above allows non-anticipativity to be incorporated implicitly through its scenario

tree formulation. Constraint 3.14 makes sure that an intervention can only be

activated at most once in any scenario. The problem was modeled in GAMS

(General Algebraic Modeling System Rosenthal (2012)), which is commercial tool

for general optimization purposes that has been used in previous water resource

planning studies Padula et al. (2013b) and solved with CPLEX.

3.2.4 Real options principles: a synthetic example

Figure 3.1 (b) illustrates a simplified manually constructed scenario tree for the

purpose of demonstrating the ROA implementation. A utility is considered that
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wants to cost-effectively balance future supply-demand by investing in a new reser-

voir with three possible capacities (50, 100 or 150 ML/d). The 50 ML/d reservoir

can be built with a fixed or modular capacity. As shown in Table 3.1, if the utility

builds a 50 ML/d fixed capacity reservoir with 1,000 £m cost, they cannot expand

it later. Alternatively if they pay a higher initial capex cost (1,100 £m) for a

modular 50 ML/d reservoir design, they are able to expand later to 100 ML/d or

further to 150 ML/d by paying the relevant expansion cost (Table 3.1). The 100

£m premium is an upfront cost the utility pays to reserve the right for expansion

in later stages if required. This premium allows the utility to delay investment for

the sake of acquiring information. The mathematical formulation in Section 3.2.3

finds the minimum discounted expected investment cost of capacity expansion over

a four-stage planning horizon. The supply-demand gap is shown in each node of

the tree. In t2 node B, a fixed reservoir of 50 ML/d capacity is activated (50 ML/d

fx) since its capacity is sufficient to balance the supply-demand gap till the end

of the planning horizon. In t2 node C, however, a 50 ML/d modular capacity is

the most cost effective intervention that gives the ability to respond to uncertain

supply-demand level in the future. If s2 happens, it avoids further investment till

the end of planning horizon, while under s3, it requires the planner to expand

capacity by an extra 50 ML/d at t4 to balance the larger supply-demand gap. In

t2 node D, the 50 ML/d modular reservoir is again picked by the mathematical

model, incrementally increasing capacity by an extra 50Ml/d and 100 ML/d un-

der s4 and s5, respectively, till the end of planning horizon. This example shows

how the ROA implementation is used to assess under different future scenarios the

suitability of paying a premium to postpone capacity expansion.
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Table 3.1: Cost, capacity and design of a reservoir for the illustrative example

Intervention Capex/Expansion
(£millions)

Capacity Modularity

50 ML/d fx 1,000 50 ML/d No ability to expand
100 ML/d fx 1,200 100 ML/d No ability to expand
150 ML/d fx 1,400 150 ML/d No ability to expand
50 ML/d mod 1 1,100 50 ML/d Ability to expand to 100 ML/d
100 ML/d mod 2 140 100 ML/d Ability to expand to 150 ML/d
150 ML/d mod 3 160 150 ML/d No ability to expand

3.3 Application to infrastructure investment plan-

ning

England offers an interesting context to apply adaptive and flexible multi-stage

investment planning because every 5 years, the economic regulator requires the

water utilities to produce a plan demonstrating that the supply-demand balance

is satisfied throughout their operating area over a long-term planning period. A

plan is an optimal combination of new supply and demand management interven-

tions, scheduled to meet estimated water supply zone demand plus an uncertainty

allowance at least cost and is periodically updated. That is, company asset plan-

ners must select short-term (5 years) interventions for the next planning decision

period and be able to demonstrate how they fit within a strategic long-term plan

(25 years or more). Current water capacity expansion scheduling approaches used

by water companies in England are based on deterministic annual supply-demand

balance (Padula et al., 2013a). However, present investment decisions need to

account for significant uncertainty.

Climate change projections for the United Kingdom in 2009 (UKCP09) is usu-

ally used to define the climate states in relevant studies of water asset planning in

England (Murphy, Sexton, Jenkins, Booth, Brown, Clark, Collins, Harris, Kendon,

Betts et al., 2009). Borgomeo et al. (2014, 2016) use daily time series of precip-

itation and temperature derived from the UKCP09 projections coupled with a

transient stochastic weather generator produced by Glenis et al. (2015). They use
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a rainfall runoff model to generate daily flow time series to simulate the Thames

water resource system. The output from each simulation is a record of the annual

frequency of water shortages of different levels of severity (Borgomeo et al., 2016).

The baseline supply uncertainty presented in this chapter has several sources of

uncertainty including vulnerable surface and groundwater licenses, the impact of

climate change on source yields, the gradual pollution of sources causing a reduc-

tion in abstraction as well as accuracy of supply side data which depends on the

nature of the intervention (pumping, aquifer, etc) (Thames Water, 2014). Supply

uncertainty is calculated using the UKCP09 for the current annual supply-demand

planning framework, termed Economics of Balancing Supply and Demand (EBSD)

(Padula et al., 2013a), where annual central estimates of supply are compared to

central estimates of demand (see Thames Water (2014) for details). Multi-model

ensembles of General Circulation Models (GCMs) can be used by water planners

to derive probability distributions of climate change impacts (Dessai and Hulme,

2007; Fowler et al., 2007). The resulting scenarios define the domain of plausible

outcomes under climate change.

The term ‘deployable output’ is used which is the volume of water that can be

supplied from a water company’s sources (surface water, groundwater, etc.) or

bulk supply, constrained by environment, licensing, hydrological or hydrogeolog-

ical factors, water quality and works capacity. In England, deployable output is

estimated using prescribed methodologies as outlined in Water Resources Planning

Tools (UKWIR, 2012), commonly through system simulation of long historical or

plausible future hydrological time-series.

The proposed multi-stage modelling is applied to the London urban water supply

area which is located in the Thames basin, south-east England. This basin has

been classified as water stressed and is facing high population growth (Environ-

ment Agency, 2013) making it a suitable case study to investigate the use of the

proposed flexible approach as without investment security of supply cannot be

achieved. Water supply is managed by Thames Water, a privately owned water
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utility, serving 15 million customers across London and the Thames Valley. Fi-

nancial costs include the net present value of capital expenditures incurred when

selecting an intervention and operational expenditures, using a discount rate of

4.5% (Thames Water, 2014).

In this case study, a scenario tree is constructed to approximate the continuous

distribution of the underlying London water supply (the annual yield or deployable

output) provided by London’s water utility (Thames Water). The supply’s Cu-

mulative Distribution Function (CDF) is used and the CDF is evenly partitioned

into 100 regions. Each region’s highest percentile value is picked up as the sample

point. The probability of a scenario occurring is equal to the probability that

supply falls within that region (supply range of each scenario interval is defined

by the upper and lower percentile values). For instance, the scenario interval for

scenario 2 is defined by (X1, X2) and its probability P(S2) is calculated by,

P (S2) = P (X1 < X ≤ X2) = P (X ≤ X2)− P (X ≤ X1). (3.15)

Given the evenly partitioned CDF using the percentile values, the probability of

occurrence of each scenario is 1%. This is shown in Figure 3.2. This set is used to

efficiently construct the scenario tree where the probability of each node and the

threshold value for branching from one node to the other is calculated optimally.

By applying the scenario reduction technique, the new probability of a preserved

scenario will be equal to the sum of its former probability and of all probabilities

of deleted scenarios that it represents (as per equation 3.2). The constructed op-

timal scenario tree is used for multi-stage stochastic programming model for ROA

implementation where the values of the preserved scenarios are used to calculate

the supply-demand gap thresholds that indicate which interventions should be

activated under the given conditions.

Uncertainty around demand growth rate is not considered and it is assumed that

the demand for water is expected to increase at a known rate. Figure 3.3 shows the
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Figure 3.2: Definition of the scenario interval.

supply uncertainty range for London as well as the deterministic demand values.

The problem is structured so as to allow asset managers to review the plan in the

distinct decision points (every 5 years) and respond through selecting additional

interventions or expanding existing ones, by taking advantage of the observed

changes to the main uncertainty drivers (e.g., water supply, demand, capital and

operational cost of intervention). Deployable outputs are assumed to remain con-

stant during the five-year planning decision periods. Large water resource schemes

can be built in phases. The flexibility to build resources in incremental stages al-

lows for improved supply estimates before committing to larger schemes. Final

plans are submitted in the year before the first planning decision period covered

and in practice, the proposed approach would allow planners to decide on their

investment plans depending on the supply-demand gap a year ahead of the 5-year

period end. Although the plans should demonstrate security of supply over the en-

tire fifty-year planning period, the main focus of asset managers is to decide which

interventions should be implemented in the short-term i.e. the optimal investment

portfolios for planning decision period 2020-2024.
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Figure 3.3: London deterministic demand and supply side uncertainty for
five-yearly predicted levels during the planning period.

The scenario tree to approximate the stochastic London water supply-demand

balance (due to supply uncertainty) is optimally produced as described in Section

3.2.1 using the uncertainty over the deployable outputs. The input data on sup-

ply and demand was provided by Thames Water. Each of the 100 unique paths

denotes a plausible supply scenario (a set of deployable output values for each

source). Each path starts from the unique root node at the first period and is

linked to a supply scenario at each distinct time period (see Figure 3.4). The

fifty-year planning period was divided in five-year time steps forming ten discrete

time periods t. Asset managers can rebalance their infrastructure portfolios at the

beginning of each planning decision period. Submission of final Water Resource

Management Plans occurs one year before the plan is due to come into action

following a consultation period. At each time step, the scenario tree branches into

nodes that belong to the next period.

As seen in the simplified scenario tree in Figure 3.1 (a), in t2 node C has a de-

cision which leads to nodes F and G in next period representing different levels

of supply-demand balance. The branching continues up to the nodes of the final
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Figure 3.4: Clustering of solutions optimised for the 9 nodes in planning
decision period 2020-2024 into six sets of interventions

period whose number corresponds to the number of supply scenarios. See Table

3.2 for the number of nodes used at each time step. It is noted that the sce-

nario tree approximation method is independent from the staged mathematical

model presented earlier and allows consideration of other sources of uncertainty

through the use of joint probability distributions of random variables. This can be

achieved if the uncertainty set is more than one dimensional, for instance, if it has

both supply and demand distributions. The joint probability density function of

supply-demand gap which represents the stochastic component is used to derive

the scenario tree. Section 3.2.2 gives details of deriving the scenario tree when the

uncertainty has more than one dimension.

In the appraisal process, 47 alternative supply interventions are considered listed

in Table A.1 in Appendix A. Some interventions have been developed as long-term

water resource interventions and are expected to be operated at high utilisation

given their capacity (for instance intervention i28), while others are being con-

sidered by Thames Water as contingency interventions (for instance intervention

i21), expected to be operated at low utilisation to avoid excessive operational costs.

The type and capacity ranges of the interventions are given in Table 3.3 and are
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Table 3.2: Number of nodes in each time step of scenario tree representing a
planning decision period (PDP)

PDP First year Period Nodes
PDP15 2015 2015-2019 1
PDP20 2020 2020-2024 9
PDP25 2025 2025-2029 11
PDP30 2030 2030-2034 15
PDP35 2035 2035-2039 30
PDP40 2040 2040-2044 40
PDP45 2045 2045-2049 50
PDP50 2050 2050-2054 60
PDP55 2055 2055-2059 60
PDP60 2060 2060-2064 100

Table 3.3: List of available London water resource supply intervention types
considered in the appraisal process. The 47 interventions considered in the
London case study are mapped to their type. Option information used in this
chapter may not be consistent with the most recent data available (TWUL,

2018).

Resource Type Capacity
range in
ML/d

Construction
period range
in years

Premium
for modular
design

Intervention
code

Aquifer Recharge 2 - 8 2 - 3 - i1 - i4
Desalination 50 - 150 4 - 7 8% i5 - i12
Effluent Reuse 50 - 150 3 - 6 16% i13 - i35
Groundwater 1.5 - 9 1 - 3 - i36, i37
Reservoir 75 - 150 8 - 12 12% i38 - i45
Transfer 158 - 242 7 - i46, i47

provided by Thames Water. Large interventions of 50 ML/d or greater (such as

effluent reuse schemes, desalination plants and reservoirs) can also be built with

a modular capacity that allows expanding later on. This ability for future expan-

sion comes at a price. For each type of intervention, the premium for modular

capacity is expressed as a percentage. The percentage value expresses how much

larger the initial capital investment cost of the intervention with modular capacity

is compared to the fixed (unexpandable) one.
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3.4 Results and discussion

3.4.1 Solving the water resource planning problem at mul-

tiple stages over time

Figure 3.4 shows the nine supply scenarios in planning decision period 2020-2024,

at t2 magnified from the scenario tree. The solutions in 2020 are clustered into

six sets of optimal interventions, by identifying the common sets of interventions

across the 9 nodes. Decision paths are formed using supply-demand gap thresh-

old values. Each threshold value designates which set of interventions is optimal

for the given forecasted deficit and leads to different amounts of water capacity

increase for the planning decision period 2020-2024. The added water supply ca-

pacity is optimal for each scenario if it occurs. The scenario tree within the ROA

incorporates uncertainty about how the evolution of different futures may trigger

the selection of different interventions and hence examines the implications of fu-

ture uncertainty. In this long-term water resource planning problem, sequential

decisions are made at multiple stages over time. Early stage decisions are based

on long term supply-demand forecasts whose accuracy decreases over time. The

multistage optimisation model formulation allows adjusting earlier stage decisions

in later stages. This way the model compensates for the impact of earlier decisions

made under supply-demand forecast inaccuracy.

In the London case study, the scenario tree is made based on the state of the world

as known in 2015; from that vantage point the future is described via six supply

scenarios for 2020. In this case-study, if the planner in 2015 considers that the

supply-demand balance in 2020 is most likely, based on their best forecasted esti-

mate, to be between 10.5 ML/d and -32.5 ML/d, then set 4 is the best intervention

response (Figure 3.4). This short-term set of investment interventions is optimally

obtained using a scenario tree that considers the longer term future and hence the

interventions associated with this set of interventions delineate the best response

to uncertainty. The proposed approach is significant because least-cost scheduling
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Table 3.4: Six alternative sets of interventions (S1 - S6) for planning decision
period 2020-2024, new capacity in planning decision period 2020-2024 (ML/d),
planned capacity (ML/d) and percentage of supply-demand scenarios where

each set of interventions is activated

Interventions S1 S2 S3 S4 S5 S6
i1 2
i2 8
i3 6
i4 5 5
i21 150 150 150
i25 60
i28 150 150 150
i37 9 9
PDP 2020-2024 capacity 180 210 150 14 0 0
Planned capacity 330 210 150 164 150 0
Scenarios 2% 7% 29% 22% 13% 27%

of water supply infrastructure is required of English water utilities, and there is

wise-spread support at the policy level for improving it to consider flexibility and

adaptivity.

Table 3.4 shows that forty percent of the 100 supply scenarios were directed to the

top two paths (set 5, set 6) where no extra capacity is needed in planning decision

period 2020-2024. However, in set 5, an intervention is planned to be delivered in

planning decision period 2025-2029 to meet the future demand for water beyond

the five-year period.

The remaining sixty percent are directed into paths where London water capacity

is increased by selecting alternative interventions. When supply deficit is greater

than 10.5 ML/d, intervention i28 is always selected with increasing utilisation,

the amount of water supplied from an intervention, as levels of existing supply

decrease. Figure 3.5 shows the utilisation of interventions i28 of 150 ML/d capacity

and intervention i4 of 5Ml/d capacity indicating that small schemes are selected to

postpone the activation of large schemes in case water supply in 2020 is no greater

than 2,036.4 ML/d.

In set 4, intervention i28 is replaced by i21 in planning decision period 2020-2024
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Figure 3.5: Utilisation of interventions based on levels of existing supply in
planning decision period 2020-2024.

as an alternative intervention of type Effluent Reuse with 150 ML/d (see Table

3.4). The two interventions have equal capacity but contrasting intentional usage

in terms of the amount of water produced. Intervention i21 has a relatively lower

cost to build and a higher cost to operate and is considered to be a provisional con-

tingency scheme. Contingency schemes are not expected to have a high capacity

utilisation, resulting in an excess capacity due to their higher operational cost com-

pared to the average cost of taking the water from alternative water sources. Due

to their higher operational cost, these schemes can be substituted if less expensive

interventions are available in the future.

Conversely, intervention i28 is an irreversible long-term intervention (once built,

it is used for the rest of the modelled time-horizon) with an expected high util-

isation rate given its relatively higher construction costs but lower operational

costs. This indicates that the selection of schemes is decided on the basis of the

estimated required water utilisation under different future uncertainty. In doing
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so, overspending on capital is avoided. When the lower operational costs outweigh

the savings in the capital expenditure due to higher utilisation then the long-term

intervention i28 is selected. Decision on ’long-term’ intervention i28 is however

delayed on the three paths that begin with set 4, set 5 and set 6 of investment

interventions in 2020. Instead, the modelling suggests to replace this with activa-

tion of the contingency intervention i21 in set 4 and set 5, and no interventions

activation in set 6. Interventions i1, i2 and i3 are only selected in the path that

begins with set 1 in 2020, as these contingency schemes are only required when

the supply-demand balance is expected to be less than -179.7 ML/d.

A key strength of ROA is the opportunity it provides for exploiting learning over

time. For example, Figure 3.6 shows that if the estimated supply-demand gap is

greater than 16.0 ML/d, there is no need to make an investment in the current

planning decision period. This flexibility is valuable because by not selecting an

intervention now and deferring it to the next planning period, asset managers

avoid the costs of building an intervention until it is needed later.

The results, shown as a coloured bar chart in Figure 3.7, depict the frequency of

activation of interventions in nodes at each time step on a scale from 0% (white)

to 100% (black). A high percentage of activation denotes that the selection of this

intervention is robust across a number of supply-demand scenarios. For instance,

as shown in Table 3.4 in the S1 set of interventions, i1, i2 and i3 are all contingency

interventions of small capacities which get activated at t2 in the most extreme

scenarios that correspond to 2% of all scenarios in t2 . As shown in Figure 3.4,

these extreme scenarios where S1 is selected at t2, pass through one node. Since,

interventions i1, i2, i3 are selected only in S1, they have an activation frequency of

11% (1 out of 9 nodes) in Figure 3.7 in t2. By the end of the planning period, unlike

interventions i2 and i3, i1 has an increased activation frequency. This implies that

contingency interventions i2 and i3 are only selected in extreme scenarios while

activation of i1 is more robust across a number of supply-demand scenarios i.e.

intervention i1 will also be activated in less extreme scenarios.
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Figure 3.6: Set of interventions in planning decision period 2020-2024 for each
decision path using supply threshold values.

3.4.2 Computational insight on the metrics used to evalu-

ate the implementation of ROA

The calculations of the two metrics, namely Expected Value of Perfect Informa-

tion (EVPI) and Value of Stochastic Solution (VSS), in multi-stage problems are

explained below. These metrics were developed for the case of two-stage prob-

lems (Birge and Louveaux, 1997), and have been extended to multistage problems

(Escudero et al., 2007).

For the minimisation model the following inequalities are satisfied,
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Figure 3.7: Frequency of activation of interventions in supply scenarios
(nodes) at each time step.

WS ≤ AP ≤ EV, (3.16)

where WS denotes the expected value of the objective function obtained by replac-

ing all random variables by their expected values; WS is known in the literature

as the wait-and-see resolution value. AP denotes the optimal solution value to the

adaptive multi-stage stochastic problem presented in this chapter. EV denotes the

expected result of expected value problem and measures how the optimal solution

of the expected value problem performs allowing the other stages decisions to be

chosen optimally as functions of different scenarios.

From equation 3.16, EVPI and VSS are calculated as follows,

EV PI = AP −WS, (3.17)



Chapter 3 61

V SS = EV − AP. (3.18)

To calculate the EVPI, non-anticipativity constraints are relaxed at each time

step so that decisions are made with perfect information about the future. From

Equation 3.17, the difference AP −WS displays the value of perfect information.

From Equation 3.18, the difference EV − AP , known as the VSS, indicates the

benefit of finding different solutions for each scenario by solving the stochastic

program than to assume lack of uncertainty.

In the work of (Escudero et al., 2007) those parameters are generalised to the

multistage case explained below. Let the expected result in t of using the expected

value solution, denoted by EVt for t = 2, . . . , T , be the optimal value of the

AP model, where the decision variables until stage t − 1, (x1, . . . , xt−1), are

fixed at the optimal values obtained in the solution of the average scenario model.

For any multistage stochastic program, the following relations hold:

EVt+1 ≤ EVt ∀t = 1, ..., T − 1,

0 ≤ V SSt ≤ V SSt+1 ∀t = 1, ..., T − 1.

VSS is defined in t, denoted by V SSt, as

V SSt = AP − EVt ∀t ∈ T.
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3.4.3 Metrics for flexibility and adaptivity assessment

Two metrics used in stochastic programming problems (Birge and Louveaux, 1997;

Escudero et al., 2007) are introduced, namely, Value of the Stochastic Solution

(VSS) and Expected Value of Perfect Information (EVPI), to measure the adap-

tivity and flexibility of the decisions suggested by the ROA formulation. VSS

is calculated by replacing the uncertain variables with their expected values and

measuring the performance of this expected value problem to future uncertainty.

EVPI is estimated by comparing the solution of the ROA-based approach with

the optimal solution for the wait-and-see problem with perfect information. The

next section gives mathematical detail on the calculations of VSS and EVPI.

In the context of this example, VSS indicates the difference of implementing ROA

via a multi-stage stochastic program that explicitly allows adaptation to different

future conditions via a distribution of uncertain future supply instead of using the

average supply values in each stage. VSS quantifies the cost of not recognising the

uncertainty and hence ignoring the adaptivity advantage ROA provides. For the

London case study, VSS is £113,206,815 discounted over the 50 years planning

period. VSS estimates the value of adaptivity by quantifying the cost of ignoring

uncertainty by Thames Water that can be avoided by adaptive plans to chang-

ing future conditions. For the London case study, the VSS result is significant

when it is compared to the total investment NPV cost of £737,648,067. That

is, VSS corresponds to 15.4% of the total NPV cost. This relatively high VSS

value is an indication that supply uncertainty is an important factor in London’s

supply-demand problem where adaptive solution to changing future can mitigate

its consequences.

EVPI measures the value of information in planning under uncertainty. EVPI

estimates how important, in the context of uncertainty, evolution of information

over time is and therefore it indicates the value of a wait-and-see decision; how

valuable it is to know the future before making a decision. In the context of ROA
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implementation, EVPI is a measure of valuing flexibility of delaying irreversible

investment commitments and taking early provisional actions until new informa-

tion is available. For the London case study, EVPI is £44,092,250 discounted over

the 50 years planning period which is 6% of the total NPV cost. EVPI estimates

that the value of waiting to gain more information corresponds to 6% of total

NPV. Even this small percentage reflects a significant value for the implementa-

tion of large irreversible long-term interventions given their large socioeconomic

and environmental impacts.

3.4.4 Sensitivity to scenario tree

It is relevant to explore the sensitivity of results to the use of different scenario

trees as well as the characteristics of the uncertainty set used to create the trees.

Two types of sensitivity analysis have been performed. First, the consequences of

generating and using alternative scenario trees in the analysis is investigated. The

London case study was run using thirty different and randomly generated scenario

trees from the stochastic London supply distribution making sure that each tree

has the same uncertainty source data but has a different structure, i.e., different

number of nodes at each time step as well as different branching structure. Then,

a second type of sensitivity analysis is performed, to investigate the consequences

of using random subsets of the full set of scenarios. Each tree was generated using

a different subset of supply scenarios randomly sampled from the full set of 100

scenarios.

The results of both types of sensitivity analysis, shown as a bar chart in Figure 3.8

and Figure 3.9 respectively, depict the activation frequency of the interventions

in planning decision period 2020-2024. It can be appreciated from both types of

sensitivity analysis that most interventions suggested by the multi-stage optimi-

sation planning have a high frequency of selection (more than 75%) indicating the

quality of the interventions’ activation recommendation regardless of whether a

different scenario tree (first type of sensitivity analysis) or different subsets of the
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Figure 3.8: Activation frequency of interventions in planning decision period
2020-2024 using 30 scenario trees.

full set of scenarios were used (second type of sensitivity analysis). Other types

of sensitivity analysis could include understanding the impact of using different

relative tolerances by varying the relative distance between the constructed tree

and the original stochastic process.

3.4.5 Limitations of the approach

The proposed approach is an extension of least-cost supply-demand planning

(Padula et al., 2013a) aiming to optimise for flexibility and adaptivity in addi-

tion to cost when investing in infrastructure under supply uncertainty. Planning

resources via the yield or ‘deployable output’ concept implies simplifying the prob-

lem by comparing a single value of annual regional supply with an annual demand.

Although the use of regional annual supply and demand balancing is conceptually

simple, these aggregate quantities are difficult to validate (Hall et al., 2012). Unlike

simulation-based optimisation approaches that have become routine for analysing

water policies (Brown et al., 2015), the proposed optimisation model does not rely
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Figure 3.9: Activation frequency of interventions in planning decision period
2020-2024 using 30 subsets of the full set of scenarios.

on simulating alternative observable outcomes, such as the frequency with which

customers are predicted to experience water shortages.

The analysis uses supply uncertainty data from the UKCP09 weather generator

that addresses GCM uncertainties. Although the GCM-based climate projections

are obtained from the most credible climate change information available, concerns

in the assignment and use of probabilities to these future climate change scenar-

ios have been raised (Maier et al., 2016). These climate models use numerous

assumptions about how the future will unfold (Taner et al., 2017) which impact

results. For instance, climate projections are contingent on greenhouse gas (GHG)

emissions scenarios and future reductions in atmospheric aerosols (Stouffer et al.,

2017) which are unknown. Such assumptions impact the probability distributions

in climate model outputs which in turn will impact the supply probabilities and

the findings of the analysis in the proposed approach (Dessai and Sluijs, 2007).

Another limitation of least-cost supply-demand planning is that plans are opti-

mised using a single least cost objective, requiring all aspects of system perfor-

mance to be monetized, leading to potentially imbalanced decisions (Matrosov
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et al., 2015). Using a single objective might prevent the finding of good solutions

(Kasprzyk et al., 2015).

3.5 Conclusion

This chapter described how a least cost scheduling approach for water infrastruc-

ture investment planning, used currently at national scale in England, can be

extended to explicitly enable flexibility and adaptivity given future supply uncer-

tainty. The ROA concept using scenario trees over a predefined planning horizon

with distinct decision points has been applied to allow rebalancing of the supply-

demand system at intermediate stages. A compact scenario tree is generated to

approximate the stochastic supply representing an ensemble of plausible futures.

At each time step of the planning horizon, an optimal set of interventions is identi-

fied in each node of the scenario tree according to plausible source yield scenarios.

Supply-demand gap threshold values are used to determine which path to follow in

order to minimise the net present value cost of investments. The staged decision

process provides the planner with adaptive solutions that their implementation

can be delayed and replaced as information on future supply-demand balance is

gradually revealed.

The proposed flexible and adaptive approach is applied to London’s water supply

planning problem. In the appraisal process, 47 interventions of different capacities

(ranging from 1.5 ML/d to 150 ML/d) and alternative types (e.g. wastewater

reuse, desalination, reservoirs) are considered. The 50-year planning period us-

ing 100 equally probable supply scenarios identified six optimal sets of investment

interventions for the planning decision period 2020-2024. Depending on the fore-

casted short-term supply-demand balance, the planned capacity expansion ranges

from 0 ML/d (no intervention) to 330 ML/d (as a result of activation of 7 in-

terventions). The results show that the large forecasted gap between supply and
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demand in London is being bridged through ‘long-term’ (maintained after selec-

tion) interventions and through ‘contingency schemes’ when the gap is smaller.

The results demonstrate the benefits of ROA to enable adaptive and flexible

decision-making in water resource planning. These are quantified using the VSS

and EVPI metrics showing that, respectively, ignoring adaptive planning costs

15.4% of the total NPV and flexible decision-making has a value of 6% of the total

NPV of London’s water supply system. The introduction of the novel decision-

relevant metrics of adaptivity and flexibility evolved their definition in the context

of adaptive water resources planning. Sensitivity of results to the use of different

scenario trees as well as the characteristics of the uncertainty set used to create

the trees are assessed. They point towards high quality intervention activation

selections by the proposed model.
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Application and comparison of

alternative approaches to capacity

expansion planning problem

4.1 Introduction

Least cost capacity expansion has been widely applied in water resource manage-

ment problems to determine the interventions and their commitment time over

a planning horizon. The objective is to minimise the total investment and the

operating costs associated with the selected set of interventions while meeting the

water demand. Capacity expansion models can be deterministic assuming one ver-

sion of the future or stochastic where different future uncertainties around supply

and/or demand (due to climate change and demographic change for instance) are

considered.

Without the consideration of uncertainty, the solutions proposed by the capacity

expansion models could result in water deficit or redundant capacity (Chung et al.,

2009).

69
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Deterministic water resources planning approaches that consider a single future

are not suitable to address the uncertainty challenges. Stochastic models can

address uncertainty in alternative ways, by seeking robustness (i.e. insensitivity to

changes in future conditions) as well as adaptivity (i.e. ability to respond to future

conditions). Robust approaches seek plans that perform satisfactorily well across

a broad range of plausible climate conditions (Wilby and Dessai, 2010). Notable

work of Lempert (2003); Lempert et al. (2006); Matrosov et al. (2013); Taner et al.

(2017); Borgomeo et al. (2018) are in this category. Flexible approaches allow

for learning over time enabling plans to cost-effectively adapt as more accurate

information becomes available. The work of Haasnoot et al. (2013); Charlton and

Arnell (2011); Paton et al. (2014); Woodward et al. (2014b); Beh et al. (2015a);

Maier et al. (2016) are examples of this category.

Comparison of optimisation algorithms in the water resources field have demon-

strated that for a given problem, a particular implementation of an approach can

be found to outperform others (Kollat and Reed, 2006; Reed and Kollat, 2013). As

a certain approach can be found to perform better on a certain problem compared

to others, it is the characteristics of the problem being solved that determine when

an approach may perform better than others (Maier et al., 2014).

In order to be able to compare the performance of different least cost capacity

expansion approaches, appropriate performance assessment metrics need to be

used. Despite cost minimisation being the single objective, water planners also

seek to avoid inefficient use of infrastructure investment (Rosenberg et al., 2008).

An important measure of economic efficiency is the rate of the unused capacity in

urban water supply facilities (Lee, 2010).

This chapter compares the performances of four least cost planning approaches

namely deterministic, two-stage, Robust Optimisation (RO) and Real Options

Analysis (ROA) (as introduced in Chapter 3) on the basis of cost and unused

capacity. With the exception of the deterministic, all other approaches consider

multiple future scenarios to account for supply uncertainty. Although all four
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approaches aim to minimise costs, they address uncertainty in different ways,

seeking either robustness or flexibility.

The results obtained by the conventional deterministic least cost scheduling and

the three multi-scenario techniques are compared and validated, demonstrating the

effectiveness of each approach. The next section describes the problem formulation

of the alternative optimisation approaches. Section 4.3 presents the case study

application of the four alternative approaches in solving the London’s urban water

resources planning problem and in Section 4.4 a discussion of the case study’s

results is presented. Finally, Section 4.5 concludes the chapter.

4.2 Methods

4.2.1 Problem formulation

The water resource management problem solved by each of the four least cost

planning approaches is formulated using an aggregated method. In the aggre-

gated problem formulation, supply capacity and demand are described as single

values of probability functions for each year of the forecast to enable mathematical

programming approaches to identify optimal scheduling of interventions. The sup-

ply demand forecasts correspond to an aggregated Water Resource Zone (WRZ), a

sufficiently interconnected supply area where all residents face the same likelihood

of supply shortfalls and within which, resources can be managed as a coherent

unit.

The solution to the problem describes which actions should be taken at each deci-

sion point over the pre-specified planning period. Figure 4.1 (a) shows an example

of a single path structure over a planning period consisting of four time steps while

Figure 4.1 (b) shows the structure of a simple scenario tree, where scenarios rep-

resent multiple future paths over the same planning period. In both cases, at each

decision node, the optimisation approach activates a set of interventions to solve
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Figure 4.1: (a) A single path structure with 4 decision nodes (represented
with letters A-D) defining a planning period consisting of four time steps. (b)
A simple scenario tree structure with 14 decision nodes (represented with letters
A-N) defining a planning period consisting of four time steps. The parameters
si are the scenarios and gi are the supply-demand gap values that show which

path to follow.

the water resources planning problem. Fixed planning approaches solve the single

path structure to produce a fixed schedule i.e. a single optimised investment plan

consisting of a set of interventions where the optimal timing of each element of the

plan is suggested. Flexible planning approaches solve instead a scenario tree to

obtain an adaptive strategy i.e. a number of alternative branches and optimised

plans under plausible future scenarios along with a reference supply demand gap

metric that indicates the conditions under which a particular plan is the most

suitable.

In this section, the optimisation formulations of the fixed planning approaches

(deterministic, RO, two-stage) and the flexible ROA planning approach (multi-

stage stochastic) used in the comparison study are presented.

4.2.2 Deterministic approach

The deterministic approach is formulated as mixed integer linear programming

optimisation problem (Birge et al., 1996) as follows:
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min z =
∑
t,i

p

(1 + r)t
[Ci(dSt,i − dSt−1,i) (4.1)

+ Fi × dSi + Vi × Si]

s.t.
∑
i

St,i + eSi,t ≥ Dt + ht ∀t (4.2)

St,i ≤ dSt,i × cSt,i ∀t, i (4.3)

dSt,i ≤ dSt+1,i ∀t, i (4.4)

St,i ≥ 0 (4.5)

dSt,i ∈ 0, 1. (4.6)

The binary variable dSt,i denotes the activation of an optional supply source and

the real variables Si,t and eSi,t indicate the extent of annual use of optional and

existing supply sources respectively. The single objective is the minimization of

discounted capital, fixed and variable costs (equation 4.1) subject to constraints.

The mass balance constraint 4.2 ensures that demand for water is met in every

year of the planning period. A buffer ht is added to demand Dt to account for the

uncertainty around supply and demand. Constraint 4.3 ensures that utilisation of

supply interventions is up to its capacity while constraint 4.4 keeps an interventions

on after its activation.

4.2.3 Robust optimisation approach

The RO formulation of the problem is as follows (Shapiro et al., 2009):
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min z =
∑
t,i

1

(1 + r)t
[Ci(dSt,i − dSt−1,i) (4.7)

+ Fi × dSt,i + Vi × St,i]

s.t.
∑
i

St,i + ESt,i ≥ Dw
t ∀t, w (4.8)

St,i ≤ dSt,i × cSt,i ∀t, i (4.9)

dSt,i ≤ dSt+1,i ∀t, i ∈ Ir (4.10)

St,i ≥ 0 (4.11)

dSt,i ∈ 0, 1. (4.12)

The binary variable dSi denotes the activation of an optional supply source and

the real variables Si,t and eSi,t indicate the extent of annual use of optional and

existing supply sources respectively. The single objective is the minimisation of

discounted capital, fixed and variable costs (equation 4.7) subject to constraints.

To make the solution robust even under the worst-case scenario, the mass balance

constraint 4.8 requires that demand for water is met in every plausible future

scenario w. Constraint 4.9 ensures that utilisation of supply interventions is up to

its capacity while constraint 4.10 keeps an intervention on after its activation.

4.2.4 Two-stage stochastic approach

The two-stage stochastic programming problem is formulated as (Shapiro and

Homem-de Mello, 1998):
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min z =
∑
t,i

1

(1 + r)t
[Ci(dSt,i − dSt−1,i) (4.13)

+ Fi × dSt,i + Vi × St,i +
∑
w

pwBw
t ]

s.t.
∑
i

St,i + ESt,i +Bw
t ≥ Dw

t ∀t, w (4.14)

St,i ≤ dSt,icSt,i ∀t, i (4.15)

dSt,i ≤ dSt+1,i ∀t, i ∈ Ir (4.16)

St,i ≥ 0 (4.17)

Bw
t ≥ 0 (4.18)

dSt,i ∈ 0, 1. (4.19)

The objective of the two-stage stochastic programme (equation 4.13) is to minimise

the sum of the first stage costs and the expected value of the random second stage

costs where recourse decisions are made after observing the random output. The

first stage decision variables are the binary supply intervention activation dSt,i

variable and the utilisation variable St,i denoting the amount of water supplied

from an intervention. They correspond to investment and operation decisions over

the planning horizon.

The second stage wait-and-see recourse action variable Bw
t is linked to the ex-

pected deficit costs and is delayed until more information is available as scenarios

unfold. The consequences of potential supply shortage due to variations in water

availability are being penalised by a user defined scarcity cost Bw
t . The scarcity

cost variable is scenario-dependent and must be replicated for each scenario w.

Constraint 4.15 sets the available supply and constraint 4.16 forces an intervention

once activated to remain active at later stages. Intervention activation constraints

are non-anticipative stating that the first-stage decision should not depend on the

scenario which will prevail in the second stage. In this case, dSt,i does not depend
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on each scenario w and is effectively determined before any information regarding

the uncertain data has been obtained. On the other hand, Bw
t , the second-stage

variable, is determined after observations regarding scenario w have been obtained.

In essence, the goal of a two-stage model is to identify a first-stage solution that

is well positioned against all possible observations of scenarios w.

4.2.5 Multi-stage stochastic approach

The formulation of the ROA approach as a multi-stage stochastic mathematical

programme is as follows (Heitsch and Römisch, 2009):

Let N be the set of nodes on a scenario tree and Nt be the set of nodes belonging

to stage t. For a node n ∈ N , n−1 and n+1 denote the predecessor and successor

nodes respectively on the scenario and with pn the probability that node n is

realised. For a node n ∈ N and scenario s ∈ Ω, Ωn is the set of nodes belong to

scenario s.

min z =
∑

n∈Nt,i∈I

pn
(1 + r)t

[cCi × (dSn,i − dSn−1,i) + fCi × dSn,i + vCi × Sn,i],

(4.20)

s.t.∑
i∈I

Sn,i + eSn ≥
∑
t∈T

Dt, ∀n ∈ Nt, (4.21)

Sn,i ≤ aSl,t,i, ∀t ∈ T, n ∈ Nt, i ∈ I, l ∈ Ωn, (4.22)

aSl,t+λi,i ≤ dSn,i × cSi, ∀t ∈ T, n ∈ Nt, i ∈ I, l ∈ Ωn, (4.23)

aSl,t,i = 0, ∀i ∈ I, t ∈ T ∧ t ≤ λi, n ∈ Nt, l ∈ Ωn, (4.24)

dSn,i ≤ dSn+1,i, ∀n ∈ N, i ∈ I, (4.25)

where n is a node, t denotes time (stages), i is an intervention, pn is the probability
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that node n is realised, r is the discount rate, eSn,i denotes levels of existing supply

from intervention i, cCi is the undiscounted capital cost of intervention i, cFi is

the undiscounted fixed operational cost of intervention i, cVi is the undiscounted

variable operational cost of intervention i, Dt is demand in time t, cSn,i is the

maximum capacity of intervention i in node n, λi is the construction time period for

intervention i, dSn,i is the activation of intervention i for node n, Sn,i is the supply

from intervention i for node n, aSn,t,i is the associate supply on the intervention i

to supply on node n in time t.

The optimisation model minimises the expected cost of investments discounted

back to the present. Constraint 4.21 makes sure the supply balances the demand

in each node of the tree. Constraints 4.22 - 4.24 allow an intervention to be

utilised up to its capacity considering its construction period, λi, before its acti-

vation; constraint 4.22 sets an earliest year for the yield, constraint 4.23 sets the

available supply to associate with construction period and constraint 4.24 prevents

yield from being used during the construction period. Constraint 4.25 forces an

intervention once activated to remain active at later nodes of the tree.

The two-stage stochastic programme gives a solution, which works as a results of

recourse to the uncertainty defined by the scenarios. That is to say, two-stage

stochastic programming does not seek a solution on each scenario node and hence

its solution does not provide adaptivity on each stage despite considering the

recourse to the set of uncertain future. Conversely, in the multi-stage stochastic

program, a recourse decision is made at the beginning of each time period allowing

for flexibility to be exercised.



Chapter 4 78

4.3 Case study

4.3.1 London urban water supply system

The four alternative optimisation approaches are applied to solve the London ur-

ban water supply demand problem. The London urban supply system is located in

the Thames River Basin, an urbanised basin with a population of around 12 mil-

lion resulting in a density four times higher than that of the rest of England. Water

supply in the basin is managed by private water utilities at a WRZ level, defined

as a zone with a forecasted supply demand position where water users experience

the same risk of supply failure. The London WRZ has the most challenging supply

demand balance in Thames Valley and is managed by Thames Water Utilities. In

this zone, there is a significant supply-demand deficit throughout the planning

period which requires investment to maintain security of supply (UKWIR, 2016).

The deficit is predominantly driven by reductions in raw water availability due

to the impacts of climate change in combination to population growth (Thames

Water, 2018).

Every five years Thames Water Utilities is required to produce a water resources

management plan, a strategic long-term plan where the company sets out how

they intend to maintain the balance between supply and demand for water for

their customers. To reflect that, the 50-year planning period was divided in 5-year

time steps forming 10 discrete time periods t. In its 2019 water resources man-

agement plan (Thames Water, 2018), Thames Water used a least economic cost

deterministic optimisation model as a baseline approach (in combination with ex-

tended approaches that included simulation models) to identify the preferred plan

capable of maintaining the aggregated supply-demand balance. The alternative

approaches of identifying a least cost plan by considering multiple supply sce-

narios are compared against the deterministic formulation which is equivalent to

the baseline existing practice and in compliance with the national water planning

regulations in the UK (UKWIR, 2016).
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A feasible set of interventions is used as an input to the optimisation modelling,

subsets of which define the alternative proposed portfolios of investment. The list

of interventions considered in the London case study and their estimated costs

and capacities are shown in Table A.1 in Appendix A. Financial costs include

the capital expenditures incurred to build each intervention as well as operational

expenditures. The NPV is calculated using a discount rate of 4.5% (Thames

Water, 2018) in accordance with the HM Treasury ‘Green Book’ (Treasury, 2003)

discount rates.

Interventions are irreversibly created with a significant possibility of regret poten-

tially leading to costly unused capacities. Modular interventions offer the option

to build them in phases, expanding their capacity at a future stage if required.

The modular interventions entail a higher initial construction cost compared to

non-modular counterparts. For instance, interventions i19 and i22 in Table A.1

in Appendix A correspond to the same effluent reuse investment option, of equal

capacity. However, the capital cost of intervention i22 is higher compared to i19

showing the premium required for having an expandable capacity. The ROA ap-

proach, can evaluate if the benefit of having the option to expand the capacity

in the future outweighs the additional upfront cost of building interventions in

phases as decisions are made in multiple stages (a synthetic example of a modular

intervention demonstrating this ROA principle can be found in Erfani, Pachos

and Harou (2018)). The ‘fixed plan’ approaches are not relevant in this case since

investment decisions are made at the beginning of the planning period and are

fixed and not reviewed at each decision point.

4.3.2 Modelling for comparison

Figure 4.2 shows the flowchart of the two-step methodology for performing the

comparison between the different programme appraisal optimisation techniques.

In the first step, a 50-year plan is obtained by each approach where a set of in-

terventions is activated at each 5 year time interval. Except for the deterministic
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approach that considers a single deterministic future for supply and demand, the

alternative supply demand balance models (Two-stage, RO and ROA) are run

under 100 individual supply scenarios, derived from the supply uncertainty dis-

tribution for London as shown in Figure 3.3, and a single (most likely) demand

scenario. In step 2, the relevant interventions selected in the first five years (ob-

tained in step 1) are fixed i.e. the set of interventions activated in step 1 remain

activated in step 2. This is achieved through an additional constraint that forces

the binary decision variables for the selection of a subset of interventions (If ) in t1

to be 1 (equation 4.26). All the supply demand balance models are then run un-

der the same multiple individual supply scenarios and the single demand scenario.

The reported NPV cost and average unused capacity over the 50-year planning

period of each run is averaged across the 100 plans for calculating the two met-

rics for comparison. Since the ROA approach produces a number of alternative

optimised plans for each plausible future scenario (branch), the average cost and

unused capacity is calculated based on the cost for each plan and the percentage

of scenarios that go through that branch (equations 4.27 and 4.28).

dSt1,i = 1 ∀i ∈ If (4.26)

Cost =
∑
b∈B

Costb × wb (4.27)

UnC =
∑
b∈B

UnCb × wb (4.28)

where b is a set of interventions (plan) selected for a particular branch as suggested

by the Real Options approach and w is the percentage of scenarios that go through

that branch.
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Figure 4.2: Flowchart of methodolody to compare cost and unused capacity
between alternative optimisation approaches.
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4.3.3 Water security

It is relevant for planners to consider potential water security issues of the future

water supply system. Two types of droughts are identified for the London case

study which are possible under future climate change scenarios, severe and ex-

treme. Table 4.1 shows the values for the frequency of occurrence of severe and

extreme conditions as well as the surplus capacity required to avoid imposing Level

4 restrictions (that include rota cuts and standpipes) during each type of drought

(Thames Water, 2018). Imposing such restrictions is believed to have detrimental

consequences for London and the national economy (Thames Water, 2018). The

probability of Level 4 failure under severe and extreme conditions is defined as

(Thames Water, 2018):

nSt =

1, if SCt ≤ SRS

0, otherwise

∀t (4.29)

nEt =

1, if SCt ≤ SRE

0, otherwise

∀t (4.30)

PS =
∑
t

nSt
FS

, (4.31)

PE =
∑
t

nEt
FE

, (4.32)

Water security (WS) is then calculated as:

WS = 1− (PS + PE) (4.33)
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Table 4.1: Levels of drought (severe and extreme), frequency and surplus
required to meet demand.

Drought Frequency Surplus required
Severe 200 70
Extreme 500 140

where PS and PE are the probability of failure under severe and extreme condi-

tions respectively, t is a year of the planning period, SCt is the surplus capacity

in year t, SRS and SRE denote the surplus required to avoid a drought under

severe and extreme conditions and FS and FE denote their frequency of occur-

rence. Lower PS and PE values indicate a higher water security under severe and

extreme drought respectively.

4.4 Results and discussion

4.4.1 Comparing the performance of alternative optimisa-

tion approaches

A comparison of the proposed investment portfolios of four different optimisation

approaches is conducted for the London case study. All strategies seek to de-

fine the optimal investment plan to solve the forecasted supply-demand gap. The

traditional deterministic, two-stage and RO strategies propose a fixed portfolio

(schedule) across the planning horizon without the flexibility to review the plan

at discrete decision points. Conversely, the ROA, explicitly values and rewards

flexibility unlike the fixed planning approaches, by choosing initial portfolios that

can adapt to several branches of the tree that manifest only later. This flexibility

allows planners to respond in a timely manner to supply changes, by delaying in-

terventions until the future supply levels are known. Therefore regret is minimised

if future reveals differently.
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Table 4.2: Three alternative sets of interventions for Planning Decision Pe-
riod 2020–2024 (ML/d), new capacity in Planning Decision Period 2020–2024
(ML/d) and planned capacity (ML/d) for deterministic, two-stage and robust

methods.

Interventions Deterministic Two-stage Robust
i1 2 2
i2 8
i3 6 6
i4 5
i11 15
i21 150 150 150
i25 60
i28 150 150
i36 2
i37 9 9 9
DPD 2020–2024 cap 73 180 180
Planned cap 223 330 330

Table 4.2 shows the activation of interventions for the fixed plan approaches in

Planning Decision Period (PDP) 2020–2024, which produce a single optimised

investment plan. The short-term plans suggested by the two-stage and RO ap-

proaches lead to equal volumes of capacity increase for the planning decision period

2020–2024, as a result of activation of six (i1, i2, i3, i4, i28, i37) and four (i3, i11,

i28, i37) interventions respectively. In both plans, intervention i21 is planned to

be delivered in planning decision period 2025–2029 to meet the future demand for

water beyond the 5-year period, resulting also in equal planned capacity.

Instead of a single investment plan, ROA produces an adaptive strategy. Table

4.3 shows the activation of interventions for each of the six paths as defined by

plausible future scenarios (sets of interventions S1-S6). A path is selected if the

forecasted supply demand gap is less than its corresponding threshold value. The

results in Table 4.2 indicate that capacity in London is planned to increase by

330 ML/d in both RO and two-stage approaches. Compared to the ROA, this

is equal to the capacity added in the path selected when the supply-demand gap

is forecasted to be less than the most severe threshold (S1 in Table 4.3) which

corresponds to only 2% of the 100 supply scenarios. Such approaches plan for the

worst-case scenario potentially building excessive water capacity in the network.
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Table 4.3: Six alternative sets of interventions (S1 - S6) as suggested by the
Real Options approach for planning decision period 2020–2024, new capacity in
planning decision period 2020–2024 (ML/d), planned capacity (ML/d) and per-
centage of supply-demand scenarios where each set of interventions is activated

Interventions S1 S2 S3 S4 S5 S6
i1 2
i2 8
i3 6
i4 5 5
i21 150 150 150
i25 60
i28 150 150 150
i37 9 9
PDP 2020–2024 capacity 180 210 150 14 0 0
Planned capacity 330 210 150 164 150 0
Scenarios 2% 7% 29% 22% 13% 27%

Figure 4.3 shows the overlap between the selection of activated interventions sug-

gested by deterministic, two-stage, RO and ROA. In order to make the Venn

diagram interpretable in comparing the results of the alternative methods, the

activated interventions across all sets (S1-S6 in Table 4.3) of the ROA are dis-

played rather than for each individual set. From this figure, it can be noted

that the interventions suggested by ROA were to a large extent suggested also by

Two-stage. In contrast, both deterministic and RO methods suggested the activa-

tion of ‘unique’ interventions (i36 and i11 respectively) that were not shared with

the other approaches. The diagram in Figure 4.3 also shows that interventions

i21 and i37 are activated in all four methods while i3 and i28 are selected in all

three multi-scenario methods that consider uncertainty (Two-stage, RO, ROA).

The high frequency of selection of these interventions across alternative methods

implies that their activation is insensitive to supply uncertainty.

The deterministic approach does not account for supply uncertainty and, as ex-

pected, a deficit is shown in the London zone (see Table 4.4). The benefit of the

responsiveness of the ROA is shown in Figure 4.4. The average unused capacity

across the 50 year planning period of the interventions activated in the two-stage
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Figure 4.3: Overlap among the selection of interventions as suggested by
alternative optimisation approaches for the planning decision period 2020–2024.
The activated interventions across all six investment paths (S1 - S6 from Table
4.3)) are shown as suggested by the Real Options approach. See Table A.1 in

Appendix A for a full definition of these interventions.

Table 4.4: Summary of costs, average unused capacity (UnC) and average
deficit (Def) across the 100 scenarios for the alternative optimisation approaches,

based on the interventions selected in each 50-year plan.

Method Cost(£m) UnC(ML/d) Def(ML/d)
Deterministic 854.8 833 45.8
Real Options 721.8 415 -
Two-stage 1,098.9 1,565 -
Robust 1,103.5 1,558 -

and RO approaches is 1,565 ML/d and 1,558 ML/d respectively across the plan-

ning period while the ROA achieves a largely reduced average unused capacity of

415 ML/d. The difference in levels of utilisation can be attributed to the ability

of the ROA to allow for adaptation lowering the risk of unnecessary investment by

delaying any decisions to invest until necessary as information becomes available.

The benefit of the ROA is also reflected in the investment cost. The two-stage and

RO strategies obtain the highest NPV cost which is significantly higher compared

to the ROA differing by 35% (Table 4.4). The considerable increase in cost of

these methods is due to the fixed intervention strategies they propose that tend to

overinvest in large redundant capacity to be built into the water resource system

in order to ensure that supply is secure under any possible future supply scenario.
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Figure 4.4: Comparison of cost and unused capacity between alternative op-
timisation approaches based on interventions selected over the entire 50-year

planning period.

The average values over the 100 scenarios is derived to quantify the benefit of adap-

tation, for both cost and unused capacity. Average values (instead of maximum)

are used to investigate the impact of optimising plans over multiple paths.

In practice, water infrastructure planners could avoid planning for the worst case

scenario by waiting until improved uncertainty estimates become available with

time. Flexible plans allow for such staged decision-making by periodically review-

ing and adjusting plans to actual climate change impacts in water supply since

submission of final Water Resource Management Plans occurs one year before the

plan is due to come into action. The comparison of the London case study results

validate that ROA dominates the alternative approaches both in terms of cost and

unused capacity. Following the results, it is evident that there is benefit in wait-

ing to allow for improvements around supply uncertainty in the case of London’s

urban water resources planning problem.
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Table 4.5: Water security scores for each optimization approach calculated
based on the probability of Level 4 failure under severe (PS) and extreme (PE)
droughts. A water security score value closer to one indicates that a plan is

more to a severe or extreme drought.

Approach PS PE PS+PE Water security
Deterministic 0.005 0.018 0.023 0.977
Robust 0.000 0.010 0.010 0.990
Two-stage 0.000 0.010 0.010 0.990
Real Options 0.030 0.018 0.048 0.952

4.4.2 Water security assessment

The water security assessment in this section evaluates and compares how reliable

each plan, as proposed by the four optimisation approaches, is to different types

of droughts (as defined in 4.3.3) that might occur under climate change.

Figure 4.5 shows the surplus (or unused) capacity values of each of the four plans

throughout the 50-year planning period. The dotted lines indicate the surplus

required to avoid drought under severe and extreme conditions. Capacity surplus

in the two-stage and RO plans are projected to be higher than the surplus required

for severe droughts during the planning period and therefore PS is zero (as defined

in equation 4.31). In year 2040, capacity surplus is projected to be less than the

surplus required for extreme droughts and PE is calculated to be 0.01 (as seen

in Table 4.5). The large quantities of unused capacity in the plans suggested by

two-stage and RO approaches provide a safety buffer which increases the level

of water security that the company is able to provide under severe and extreme

droughts, calculated to be 0.99 (as per equation 4.33).

Conversely, ROA aims to delay commitment to large interventions that build re-

dundant capacity either by exercising different interventions or through incremen-

tal implementation. The plan suggested by the ROA approach operates with an

unused capacity that is below the surplus required to avoid extreme conditions

during the entire planning period. By 2040 the unused capacity is also below the

surplus required to avoid severe conditions. This results in lower water security

compared to two-stage and RO approaches, with a probability of failure under
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Figure 4.5: Levels of average unused capacity across scenarios for deterministic
(UnC-D), robust optimisation (UnC-RO), two-stage (UnC-TS) and real options
(UnC-ROA) approaches and surplus required to avoid drought under severe

(SRS) and extreme (SRE) conditions.

severe and extreme conditions of 0.952 (as shown in Table 4.5). This suggests that

there is a trade-off between cost and risk of drought under severe and extreme

conditions, as defined by the water security metric. Based on this information,

a water manager may decide if the risk is tolerable or whether further manage-

ment actions are required to increase water security. Tolerable risk thresholds may

change over time depending on which future risks materialise (Yohe et al., 2010).

The deterministic plan operates with an average unused capacity that through-

out the planning period is always between the threshold for severe and extreme

conditions, except for year 2020 where it is below both thresholds. However, from

Table 4.4 it is noted that the deterministic plan would result in deficit under some

scenarios as this approach does not account for supply uncertainty.
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Table 4.6: Scores (on a 0-4 scale) for risk around lead time and supply contri-
bution for each intervention selected across the four methods. LTR: Lead time

risk, YR: Yield Risk

Code Resource Type Intervention Name LTR YR
i1 Aquifer Recharge AR - HARS (Hornsey) 0.06 2.50
i2 Aquifer Recharge AR Kidbrooke 8Mld (SLARS) 0.05 2.55
i3 Aquifer Recharge AR Merton 6Mld (SLARS) 0.08 3.16
i4 Aquifer Recharge AR SLARS - Streatham DOav 5Mld 0.06 3.70
i11 Desalination Long Reach 1.44 0.24
i21 Effluent reuse Beckton RO 150 ML/d 1.28 0.24
i25 Effluent reuse Deephams RO 60 ML/d 0.9 0.24
i28 Effluent reuse Mogden RO 150 ML/d Sunbury 1.28 0.24
i36 Groundwater Addington 1.24 4.00
i37 Groundwater Southfleet/Greenhithe (disagg) 0.8 4.00

4.4.3 Deliverability assessment

There is uncertainty associated with the lead times required for implementing

water infrastructure investments and the final yield of supply sources i.e. the

amount of water that can be deployed from an intervention once it has been

delivered. In Table 4.6 the scores express the relative risks on a scale from 0 (low)

- 4 (high) relating to risk of time delay or final yield upon construction. These are

shown for the interventions selected across all optimisation methods and are used

to evaluate the deliverability effects within the programme appraisal process. The

input data for the deliverability assessment was provided by Thames Water.

It can be seen that large interventions such as desalination plants and effluent reuse

schemes have a relative higher uncertainty around the time required for completion

of construction while interventions that rely on groundwater abstraction display a

higher relative risk around the volume of water they can provide. The short-term

(i.e. interventions selected in the next 5 years) Deliverability Risk (DR) of a plan

is evaluated according to which interventions are selected in the PDP 2020–2024.

The DR of each plan is calculated as per equation 4.34 (Thames Water, 2018):

DR =
t=1∑
t,i,s

dSt,i,s × (LTi + Yi), ∀i, s (4.34)
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Figure 4.6: Deliverability risk (DR) assessment showing the confidence that
the programme suggested by each approach will deliver on time the volume of

water that it is expected to.

where the binary variable dSt,i,s denotes the activation of an optional supply source

i in time t in scenario s, LTi and Yi is the lead time risk and yield risk of inter-

vention i respectively.

Figure 4.6 shows the short-term deliverability assessment of each plan as suggested

by the four optimisation methods. The ROA plan has the lowest DR score (2.4)

indicating that there is greater confidence that the programme suggested by ROA

will deliver on time the volume of water that it is expected to. The low deliverabil-

ity risk compared to the alternative approaches can be attributed to the ability

of the ROA to produce multiple strategies that reduce unnecessary investment.

Unlike the investment plans proposed by the ‘fixed plan’ approaches which do

not change across the scenarios, ROA produces a set of six alternative investment

plans that is selected according to which scenario s occurs. For instance, as shown

in Table 4.3, the empty set of interventions S6 that suggests a ‘do nothing’ strat-

egy is activated in 27% of scenarios. By not activating any interventions, the DR

value corresponding to the scenarios s of S6 is zero (as defined in equation 4.34).

The fixed plans suggested by the RO, deterministic and two-stage approaches have

higher DR scores (12.8, 15.3 and 20 respectively). As suggested by the colour

bar chart, while for the two-stage plan the deliverability risk can be attributed

predominantly due to the possibility of reduced final yield, the deliverability risk

of the RO plan is primarily due to the possibility of delay in the delivery of the

new resource options. This shows the impact that a different set of interventions

for the short-term period has on water planners’ confidence that water will be
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delivered on time and in the volume that is expected to.

4.4.4 Limitations of comparison

Despite cost effectiveness being an important factor, stakeholders are increasingly

asking for strategic planning approaches that consider wider benefits. Although

alternative metrics such as water security and deliverability are reported post-

optimisation, the optimisation formulation does not necessarily identify the solu-

tions with highest water security or deliverability. Therefore, not including these

metrics as an objective in the optimisation problem could be considered a limita-

tion.

This is possible in simulation approaches that use a water resource network model

to estimate network performance (such as surface water storage, water use, energy

use, and operating costs) at each user-defined time-step. Water security, in this

case, can then be represented by reliability (frequency of failures metric) and

resilience (duration-failure) metrics that can be explicitly minimised to form part

of the information used for the solution decision. A system simulation formulation,

as shown in Chapter 5, reduces the need for problem simplification (Maier et al.,

2014) as system performance can be calculated using multiple criteria without

the need to translate non-commensurable metrics into a single monetary and is

therefore widely used in multi-objective water resources problems (Reed et al.,

2013). By defining water security or reliability as an objective in multi-objective

evolutionary algorithm coupled with simulation, it is possible to explicitly optimise

for those values.

4.5 Conclusions

This chapter presents a comparative analysis of four alternative optimisation tech-

niques in water resource capacity expansion. Although all approaches seek to
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minimise investment costs, future climate change uncertainty is addressed differ-

ently. More specifically, the deterministic method is formulated based on a single

forecasted future realisation without accounting for uncertainty. Conversely, Two-

stage, RO and ROA consider multiple scenarios to address uncertainty by seeking

robustness and flexibility.

The comparison study is demonstrated using the London water supply system.

As expected, the deterministic plan that does not account for uncertainty would

result in deficit under dry climate scenarios. This limitation of the deterministic

method was overcome by the multi-scenario approaches that identified plans that

can handle future supply uncertainty, avoiding a water deficit over the 50-year

planning period in all 100 supply scenarios considered.

In contrast to deterministic, RO and two-stage approaches that produce fixed

plans, ROA can optimise plans over multiple paths defined by plausible future

scenarios and produce an adaptive strategy where decisions are made sequentially

over time. The ability to review the plans make ROA well suited to explore the

implications of modular interventions.

The performances of the proposed plans were compared in terms of required in-

vestment costs and unused capacity. The differences between the performances of

the approaches applied to the London case study are evident. It was shown that

adaptive plans performed better both in terms of cost (saving more than £377

million by reducing NPV cost by 35%) and unused capacity (avoiding more than

720 ML/d of unused capacity) compared to fixed plans proposed by two-stage and

RO approaches. Two-stage and RO strategies perform poorly compared to ROA

due to the fixed investment plans they suggest which do not allow for adaptation,

building excessive capacity to the network. This demonstrates the benefit that the

adaptive planning can bring to the water resource management decision-making

process. Unlike Chapter 3, where the cost of not recognising uncertainty and the

value of information were quantified, the comparison study in this chapter showed
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how the adaptive approach performs compared to alternative methods that con-

sider uncertainty. To perform the comparison, additional evaluation metrics were

used in order to explore the implications of adaptive planning.

To compare the performance of the proposed plans beyond cost and unused capac-

ity, two alternative performance metrics were derived and evaluated. The water

security metric evaluates the ability of a proposed investment program to maintain

supply during two types of drought. It was shown that the level of water security

under severe and extreme conditions for the fixed plans proposed by two-stage

and RO approaches was calculated to be 0.99 while the adaptive plans achieved a

lower 0.9522. The deliverability metric estimates the risk that a programme will

deliver sufficient water on time for the short-term planning period. The effects of

different courses of actions, as suggested by each approach, are compared using

the two metrics. The results of the water security assessment suggest that there is

a trade-off between cost and risk of drought under severe and extreme conditions.

The ROA aims to lower excess investment producing plans that are less reliable

to severe and extreme droughts compared to two-stage and RO approaches. The

deliverability assessment indicates that ROA, by optimising plans over multiple

paths, increase the confidence that the expected volume of water will be delivered

on time. In comparing the performances of the single objective optimisation ap-

proaches, water security and deliverability metrics are reported post-optimisation.

Chapter 5, demonstrates how in multi-objective approach, such a reliability metric

can be defined as an objective that is explicitly optimised. As explained in the

next chapter, simulating the water resource network model allows for the defini-

tion of a different reliability metric compared to the one used in this comparison

study.
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Trade-off informed adaptive water

resources planning under

uncertainty

5.1 Introduction

Planning future interventions in water resource systems faces unprecedented chal-

lenges due to rising concerns about climate change, socioeconomic growth and

increased urbanisation (Milly et al., 2008; Brekke et al., 2009; Fant et al., 2016).

The performance of future water resource system services are impacted by the

uncertain nature of long-term supply and demand. Unpredictable changes in wa-

ter demands and future hydrological flows and their potentially amplified hydro-

logic variability increases the risks of future water supply failures (Arnell et al.,

2013; Hegerl et al., 2018) and the sophistication required to prevent them (Salas

et al., 2018). Equally, both service providers (utilities, river basin organisations,

etc.) and their customers and stakeholders have grown in sophistication, increas-

ingly demanding their interests be considered in the decision-making process (Carr

et al., 2012; van Bruggen et al., 2019). This complex planning problem motivates

95
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the need for water resources planning approaches that enable strategic long-term

decision-making.

Certain needs of water planning have increasingly become clear: the desire to

replace simplified aggregated least-cost capacity expansion approaches (Padula

et al., 2013b) and consider multiple objectives (Hitch, 1960; Banzhaf, 2009; Reed

et al., 2013; Paton et al., 2014; Kasprzyk et al., 2013) to achieve multi-dimensional

efficiency (i.e. the ability to appropriately trade-off the benefits implied by the

best solutions). Also, in the face of different types of uncertainties with different

levels of predictability, robustness (i.e. the ability to perform satisfactorily over a

range of future conditions) and adaptivity (i.e. the ability to perform effectively

under uncertainty) have become core objectives of water planning (Dessai and

Hulme, 2007; Charlton and Arnell, 2011; Castelletti et al., 2010; Reed et al., 2013;

Wise et al., 2014; Maier et al., 2014; Kwakkel et al., 2015; Herman and Giuliani,

2018). These are addressed in turn.

To better capture stakeholder values, water resources management can be strength-

ened by multi-criteria approaches which help reconcile multiple and often compet-

ing water interests. Performance measures of interest when evaluating water in-

tervention options include ones that describe economic, social and environmental

impacts as well as water supply security metrics such as reliability and resilience.

A water supply development plan, for example of a water utility, will typically pro-

pose a set of supply augmentation and/or demand reduction (water conservation)

interventions over a planning time horizon. The ‘capacity expansion’ problem is

a classic one of water resources engineering (Yakowitz, 1982; Luss, 1982; Padula

et al., 2013b). Plans optimised to a single scenario are likely to have sub-optimal

performance in other scenarios (Ben-Haim, 2006; Huskova et al., 2016) so in robust-

ness approaches (Lempert, 2003; Lempert et al., 2006) multiple plausible futures

are simulated concurrently to evaluate plans (Kang and Lansey, 2012a). Because

many designs are possible, optimisation helps automate the search for efficient

and robust water supply portfolios for capacity expansion (Kasprzyk et al., 2013;
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Mortazavi-Naeini et al., 2014; Huskova et al., 2016) and determine the optimal

scheduling of water supply interventions (Beh et al., 2015b).

Insensitivity (robustness) to future conditions can be achieved either through a

static approach, that seeks to produce a fixed plan that performs well under a range

of plausible futures or through an adaptive approach where multiple strategies,

each optimal for different trajectories or ‘pathways’ (Haasnoot et al., 2013), are

developed to dynamically address uncertainty over time, allowing for modifications

to investment strategies as new information about uncertain conditions becomes

available (Charlton and Arnell, 2011; Paton et al., 2014; Woodward et al., 2014b;

Beh et al., 2015a; Maier et al., 2016). Most previous work in the timing of water

resource interventions has been static, with limited ability to adapt to evolving

uncertainty.

Uncertainty about future conditions such as supply and demand can be represented

in the search process probabilistically or via scenarios. Probabilities can be used

if stationarity around the stochastic processes such as hydrological variability and

demand growth is assumed (Milly et al., 2015; Borgomeo et al., 2018). Much of the

work in the area of non-probabilistic water resource analysis focused on developing

robust designs under an ensemble of plausible supply conditions (Lempert et al.,

2006). In this case, uncertainty is represented as a set of alternative future states

of the world (Mahmoud et al., 2009) where relative likelihoods are not considered,

at least initially. Examples include identifying long-term adaptation measures,

such as water supply infrastructure sequencing, where robustness is considered

either post-optimisation (Kasprzyk et al., 2013; Mortazavi-Naeini et al., 2014; Beh

et al., 2015a) or explicitly as an objective within a multi-objective optimisation

framework (Mortazavi-Naeini et al., 2015; Beh et al., 2017).

In other studies the likelihood of different future states is explicitly weighted via

probabilities. For instance, Basupi and Kapelan (2013) seek optimal decision

making under future demand uncertainty. Marques et al. (2015) use a multi-

objective optimisation model for the design of water distribution network using
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Real Options Analysis (ROA) concepts where scenarios that form the paths of a

decision tree are assigned different probabilities. Woodward et al. (2014b) assign

probabilities to the range of flooding scenarios where climate change uncertainty

is significant to develop long-term flood risk strategies using ROA and multi-

objective optimisation. In urban water management studies, probabilistic risk of

exceeding the target frequency of water use restrictions has been used to evaluate

the possible cost–benefit trade-offs associated with adaptation (Borgomeo et al.,

2016).

Few applications have aimed at adaptive scheduling of interventions in long-term

water resource planning. Such adaptive strategies could be implemented either

using a rule-based system that seeks to optimise the rules that dictate the ac-

tivation of the next action on a pathway (Haasnoot et al., 2012; Ranger et al.,

2013; Kwakkel et al., 2015), or a time-based system where plans are reviewed pe-

riodically, allowing adaptation at fixed time intervals over the planning horizon

(Marques et al., 2015; Beh et al., 2015a; Erfani, Pachos and Harou, 2018). Lim-

itations of Erfani, Pachos and Harou (2018) are that plans are optimised using

a single least cost objective and that simulation is not performed and therefore

tangible outcomes cannot be assessed and evaluated (Padula et al., 2013b; Brown

et al., 2015).

The proposed approach is a multi-objective multi-stage optimisation formulation

that flexibly activates, delays, and replaces interventions to adapt to the future

uncertain gap between supply and demand. The proposed Real Options Analysis

(ROA) method finds threshold values of demand given an ensemble of plausible

equally likely hydrological flow scenarios, above which it is optimal to invest in a

certain combinations of investment options. A scenario tree is optimally built that

uses a range of demand scenarios to represent future uncertainties with multiple

decision stages to allow for frequent and regular modifications to the investment

strategies. Strategies are identified to satisfy different levels of demand as projected

through the use of the scenario tree, over a long-term planning period (50 years).

The candidate sets of investment options are evaluated against multiple transient
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hydrological scenarios, ensuring plans are robust to a wide range of hydrological

scenarios. Two objectives are used to explore the trade-off between financial and

resilience indicators under level of service constraints which consider the frequency

of failures in the simulated futures. The approach is applied to a real-world case

study of planning London’s water resource and supply system.

The next section describes the two steps of the proposed approach, the scenario

tree construction and the adaptive optimisation formulation. Section 5.3 presents

the case study application to Thames Water’s London supply zone and in section

5.4 the case study’s results are discussed. Section 5.5 concludes the chapter.

5.2 Adaptive and flexible multi-objective formu-

lation

5.2.1 A hybrid approach to representing supply and de-

mand uncertainty

The proposed method simulates alternative plans under a range of scenarios as

structured by a decision tree. Water demand uncertainty is represented prob-

abilistically in the decision-tree, and water supply uncertainty is considered by

using an ensemble flow scenarios, typically considered equally likely.

These river basin simulations are coupled to a Multi-Objective Evolutionary Al-

gorithm (MOEA) to automate the identification of adaptive long-term water re-

sources plans while considering multiple objectives. In the first step, a decision

tree using probabilistic demand information is generated whose branches represent

possible demand values between decision stages, defining an ensemble of plausible

future water demand scenarios for the entire planning period (see section 5.2.2 for

details on how the tree is generated). The tree allows for implementation of ROA

optimisation as the option to invest is reserved for future stages (Erfani, Pachos
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and Harou, 2018). In the second step, linked simulation and multi-objective op-

timisation identify adaptive Pareto-optimal investment plans whose intervention

implementation is based on demand thresholds at specified planning intervals at

each decision stage under plausible demand uncertainty defined by the demand

scenarios.

MOEAs are heuristic global search algorithms that emulate the process of natural

evolution and are known for their ability to optimise over multiple objectives

(Coello et al., 2007; Nicklow et al., 2009). When more than one objective is

considered, MOEAs produce a set of solutions that cannot be further improved in

one objective without simultaneously reducing performance in one or more other

objectives (Coello et al., 2007). The term ‘Pareto-approximate’ is actually the

correct one to reflect the fact that an approximation to the “true” Pareto optimal

set is seeked as in complex ‘real-world’ problems this remains unknowable (Herman

et al., 2014).

5.2.2 Scenario tree approximation of demand uncertainty

The first stage of the approach involves generating a scenario tree that defines

future demand scenarios and their probabilities over a planning horizon. A discrete

time horizon T is considered in which decisions in relation to which interventions

should be implemented are made at a number of decision points t ∈ T , spaced

at regular time intervals (e.g., 5 years). The demand scenario tree is extracted

out of the uncertain demand space as shown in Figure 5.1. The tree is generated

automatically rather than manually using a fast-forward iterative greedy algorithm

that aims to minimise a so-called probability distance between the uncertainty sets

(Gröwe-Kuska et al., 2003). The algorithm optimally creates a scenario tree based

on the original uncertainty space by successively bundling tree nodes into a single

node while maintaining the probability of the original distribution. A scenario is

defined as the unique path from the root node to one of the terminal nodes of the

tree. The probability of a scenario occurrence is calculated as the multiplication
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Figure 5.1: Original demand uncertainty approximated using a scenario tree.

of associated transition probabilities starting from the root leading to the terminal

node. A more detailed description of the construction algorithm and its benefits

can be found in Section 3.2.1 of Chapter 3.

The scenario tree is particularly appropriate for cases where planning is performed

regularly over discrete time intervals, as is often the case in regulated water sup-

ply systems. Scenarios are grouped into sets that share common past decisions up

until a certain point, before they diverge into subsequent branches as the future

manifests. An example of a demand scenario tree for a 21-scenario problem is

shown in Figure 5.2 (it is also drawn out in Figure 5.1). The decision in t1 is

the same for all scenarios as the future at that point is not yet known (Mulvey

and Ruszczyński, 1995). According to the tree, at t2, demand uncertainty is repre-

sented by three decision nodes. Solving the tree will require that the three possible

investment decisions be the same within some subgroups of scenarios which are

indistinguishable based on the information available up to that point. It can be

seen that the subgroups of scenarios S1 - S9, S10 - S12 and S13 - S21 share common

investment decisions at t2. This is enforced by non-anticipativity constraints that
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• Scenario 21

• • • • • • • • Scenario 20

• Scenario 19

• • • • Scenario 18

• • • • • • • • • Scenario 17

• Scenario 16

• • • • • • • • Scenario 15

• • • • Scenario 14

• • • • • Scenario 13

• • • • • Scenario 12

• • • • • • • • • • Scenario 11

• • • • • • Scenario 10

• • Scenario 9

• • • • • • • Scenario 8

• • Scenario 7

• • • • • • Scenario 6

• • • • • • • Scenario 5

• • • • • Scenario 4

• • • • • • • Scenario 3

• • • Scenario 2

• • • • • • • Scenario 1

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

time steps: t1 - t10

Demand growth scenarios: Scenario 1 - Scenario 21

•  : node

Figure 5.2: Scenario tree extracted from demand uncertainty.

ensure investment decisions at time t only utilise any information that is available

up to this stage. The proposed methodology exploits the tree structure to provide

flexibility in allowing initial water resource investment decisions to adapt to future

changes in water demand (Erfani, Pachos and Harou, 2018). This staged decision

process enables the virtual planners (implied by this model-based approach) to

modify or delay investment plans as information on future demand is gradually

revealed.

5.2.3 Simulation based optimisation

Once the decision tree is defined, a MOEA is used to identify adaptive investment

decisions at each stage of the tree. Figure 5.3 shows a flowchart of the proposed

approach considering multiple demand scenarios and realisations of future flow
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time-series. In step 1 the MOEA generates an initial random population of candi-

date adaptive plans. Each adaptive plan consists of a set of activated interventions

at each node of the decision tree subject to the decision tree structure. This implies

all scenarios that contain the same node in stage t must share common investment

decisions in stage t. In step 2, this information is passed to a water resource system

simulator in addition to other input variables such as inflows, network composition,

operating rules, etc. The water resource system simulator predicts flow and stor-

age at system nodes (reservoirs, junctions, abstractions, aquifers, treatment and

desalination plants, etc.) and links (rivers, pipes, water transfers) using a weekly

time step over a simulated time horizon. In this study, the computationally effi-

cient Interactive River Aquifer Simulation (IRAS-2010) model is used which has

been shown to emulate a model maintained by the Environment Agency regulator

(Matrosov et al., 2011).

Supply uncertainty is considered through repeated runs of the tree over an ensem-

ble of equally probable future flow scenarios; (Section 5.3.2 gives more details on

the supply scenarios used in this study). That is, simulation is performed for each

demand scenario of the tree over multiple future flow scenarios, each representing

a unique climate scenario. To maintain hydrological consistency of a supply sce-

nario, the same scenario is used in one simulation from start to finish (see Section

5.3.2 for more details).

Each simulation outputs performance metrics that are then weighted across all

considered scenarios and passed to the MOEA as objective values (step 3). Until a

user-defined stopping criteria is satisfied (explained in Section 5.3.3), the algorithm

generates a new population (a set of portfolios of alternative water infrastructure

and demand management interventions) at each node in the tree by performing

crossover and mutation operations (step 4). As the MOEA algorithm converges

a trade-off of Pareto-approximate (or non-dominated) adaptive plans is revealed

(step 5).
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Figure 5.3: Methodology flow chart for optimising the decision tree using
Genetic Algorithm and simulation.

5.2.4 Formulation

The problem formulation is described as the following multiobjective optimisation

problem:
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Optimise F (x) = (fCost, fRes), (5.1)

s.t.

ck ≤MFFk, ∀k ∈ K, (5.2)∑
i∈ME

dSn,i ≤ 1, ∀n ∈ Nt, (5.3)

dSn,i ∈ {0, 1}, ∀n ∈ Nt, i ∈ I, (5.4)

where x is a vector representing a set of supply and demand interventions node,

dSn,i is a binary variable denoting if intervention i in portfolio x is selected (1) or

not (0) in node n on the decision tree, ck is a constraint associated with Level of

Service (LoS) k setting an acceptable maximum frequency of imposing the associ-

ated water-use restrictions on customers, MFFk is the value of maximum failure

frequency allowed for LoS k, and ME represents the set of mutually exclusive

interventions.

The first objective (Equation 5.2) minimises the total capital and operational cost

of implementing new supply and demand interventions in a portfolio. The cost

is annualised and discounted with discount rate r over the planning time horizon

and weighted by the probability pn of the future scenarios (Equation 5.5)

fCost =
∑

n∈Nt,i∈I

pn
(1 + r)t

× tCi
DLi

× dSn,i. (5.5)

where tCi is the total discounted cost (capital and operational) of implementing

intervention i in node n at time stage t, pn is the probability that node n is re-

alised and DLi is the design life of intervention i. The costs are normalised to each

intervention’s expected design life by dividing the investment cost of each inter-

vention by its expected lifetime. The use of total investment cost per year allows

for equal comparison between interventions that have unequal design lives. The

second objective is to maximise system resilience which is defined by how quickly
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the system recovers from a failure (Moy et al., 1986). The average discounted

maximum duration of the failure across all scenarios is then minimised (Equation

5.6)

fRes = (1 + r)−t
∑

s∈S,n∈Nt

max(Ds,n). (5.6)

where Ds,n is the duration of failure in scenario s in node n. A definition of a

failure is problem dependent; the failure is defined in the case study section below.

5.3 Case study

5.3.1 Background

The proposed multistage multi-objective optimisation is applied to the London ur-

ban water supply area, which is located in the Thames basin of southeast England.

The water supply is managed by Thames Water, a privately owned water utility

serving 15 million customers across London and the Thames Valley. The region

is characterised by a high population density compared to the rest of England,

and facing a projected 25% increase in population by 2040 (Thames Water, 2014;

Environment Agency, 2013). However, the actual population growth is uncertain

making it a suitable case study to investigate the use of the proposed approach.

Furthermore, water utilities and regulators in England and Wales are recently

considering a move from a traditional single-objective least cost optimisation ap-

proach (UKWIR, 2012; Padula et al., 2013b) to identifying a “best value” plan

that balances multiple performance criteria and seeks adaptivity (Thames Wa-

ter, 2018). Hence, the proposed approach could be of particular interest to water

utility planners in the UK and beyond.

This study considers 11 new supply and 4 new demand management interventions
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for the London water resource system shown in Table 5.1. Each option has char-

acteristics related to its ability to provide water, construction period, design life

and mutual exclusivity. Unlike aggregated supply-demand modelling approaches

where interventions’ contributions to supply expansion or demand reduction is

a single number in the optimisation (Padula et al., 2013b; Erfani, Pachos and

Harou, 2018), in this approach supply interventions and their operating rules are

simulated over time whilst demand management options reduce aggregate annual

demand.
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Table 5.1: Supply and demand management interventions considered in the London case study. RE: release or reduction to average
annual demand in ML/d, EXP: release in ML/d for expanded capacity of modular reservoir, CP: construction period in years, DL:

design life in years, ME: mutual exclusivity.

Intervention Code RE/EXP CP DL ME
Supply interventions

Supply Option 1 SP1 267 10 80 SP2, SP1m
Supply Option 1 modular SP1m 176/267 10 80 SP2, SP1
Supply Option 2 SP2 300 12 60 SP1, SP1m
Supply Option 3 SP3 26 5 60 -
Supply Option 4 SP4 60 6 60 SP5
Supply Option 5 SP5 60 6 60 SP4
Supply Option 6 SP6 150 6 60 SP7
Supply Option 7 SP7 150 6 60 SP6
Supply Option 8 SP8 17 12 60 -
Supply Option 9 SP9 15 4 25 -
Supply Option 10 SP10 150 6 25 -

Demand interventions
Demand Management 1 DM1 50 0 25 -
Demand Management 2 DM2 165.1 0 60 -
Demand Management 3 DM3 11.6 0 25 -
Demand Management 4 DM4 88.7 0 60 -
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Release from supply options during droughts occurs, when London’s aggregate

reservoir failure reaches a failure state according to the seasonal Lower Thames

Control Diagram (LTCD) (refer to Matrosov et al. (2011)). Release from reservoir

and groundwater options, which are modelled as having limited storage, is subject

to available storage while desalination and reuse options release water indefinitely

as long as the system remains in failure. The storage capacity of modular supply

interventions can be expanded at a future stage by paying a relevant expansion

cost. For instance, supply option 1 an be built with a fixed (SP1) or modular

(SP1m) storage capacity, listed in Table 5.1 as two separate interventions that

are mutually exclusive, i.e., at most one of the two interventions can be selected.

For the modular option, the utility has to pay a premium upfront to reserve the

right for further expansion (see Section 3.2.4 for a synthetic example of a reservoir

option demonstrating this ROA principle).

A failure associated with the resilience objective (Equation 5.6) occurs when the

London Aggregate Storage level drops below a certain threshold (LTCD level 3)

and a non-essential water use ban is imposed. The aim of the objective is to

minimise the duration of the imposed water use ban. The minimum level of service

is set to 90% constraining the LTCD level 3 failure occurrence to not exceed one

in 10 years on average (Constraint 5.2). The financial costs are net present values

(NPV) of capital and operational expenditures incurred by implementing new

interventions and using them given a discount rate, taken here to be 4.5% (Thames

Water, 2018). The results of this study are indicative and should not be considered

prescriptively as Thames Water’s most recent plan Thames Water (2018) uses

a more detailed simulation model, includes the latest proposed option designs,

includes requirements to supply neighbouring water utilities, and considers more

objectives.
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5.3.2 Considering uncertainty in climate projections

To adequately illustrate water resource systems’ behaviour during the eventual

increased future droughts that may occur due to climate change, future supply

uncertainty is represented by a consistent set of transient climate change forced

daily river flow and monthly groundwater levels for the UK (Prudhomme et al.,

2013) and are available from the National River Flow Archive (NRFA) online

database. The scenarios represent equally probable hydrological flows and are de-

rived from the set of transient climate projections obtained from the Met Office

Hadley Centre Regional Climate Model (HadRM3-PPE) by dynamically downscal-

ing the global climate model. The dataset consists of an ensemble of 11 equally

probable flow time-series for the Thames basin between 1950 and 2098 (Prud-

homme et al., 2013). In this study, a 50-year segment of the full time-series (2020

- 2070) is used to assess the performance of the water supply resource system on

a weekly time-step.

The 11 members of the hydrology ensemble are independent and therefore time-

series associated with one ensemble member can only be compared with the same

ensemble member time series for a different time slice (Prudhomme et al., 2013).

That is, each future flow scenario represents a unique climate scenario and there-

fore once a simulation begins under one scenario, that same scenario must be used

until the end of the planning period. For this reason, each branch in the decision

tree represents a possible water demand level while future climate change impacts

on supply are considered by optimising the demand decision tree over the ensemble

of 11 future flow scenarios. This way, the hydrological consistency of each supply

scenario is maintained while results are robust to supply uncertainty in that they

are capable of withstanding different climate change projections.

Both supply and demand uncertainty are considered through iteratively optimising

a demand decision tree over an ensemble of future flow scenarios. For instance, in

the first optimisation run, the mathematical programming formulation in Section
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5.2 is solved on the demand scenario tree as depicted in Figure 5.2 using hydro-

logical data of the future flow scenario 1. In the second run, the demand tree is

solved using the future flow scenario 2 etc.

5.3.3 Computational experiment

The Epsilon-Dominance Non-dominated Sorting Genetic Algorithm II (e-NSGAII)

(Kollat and Reed, 2006) that has been shown to effectively solve complex many-

objective optimisation problems (Reed et al., 2013) is used. The algorithm em-

ploys epsilon-dominance archiving of high-performing solutions allowing the user

to specify the required significant precision for each objective value. The ε value

represents the minimum magnitude of change in the objectives that the user is

interested to control the resolution of the solution set (Laumanns et al., 2002),

with higher ε values resulting in a coarser resolution of the full Pareto front.

The multi-objective optimisation is run ten times each starting from a unique pop-

ulation using different random seed value to best approximate the Pareto front.

Previous studies have used similar number of seeds to reduce the computational

burden while ensuring that the influence of random number generation on the

results is insignificant (Huskova et al., 2016). The initial population size was set

to 512 and the algorithm operator parameters were chosen according to previous

study recommendations (Kollat and Reed, 2007b; Matrosov et al., 2015). Each

optimisation was run for 25,000 function evaluations or until a convergence metric

was satisfied. Table 5.2 summarises the algorithm parameters including the ob-

jective ε values used for the case study. The ε values were selected to capture the

minimum level of precision desired in differentiating between the performance of

one portfolio alternative and another in each objective (1000 and 0.1 for cost and

resilience respectively).
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Table 5.2: Algorithm parameters and objective ε values for the London case
study

Algorithm parameters Values
Initial population size 512
Population scaling factor (for injection) 0.25
Number of generations per run 50
Probability of crossover pc 1.0
Probability of mutation pm 0.5
Distribution index for SBX crossover 15
Distribution index for polynomial mutation 20
Objectives Epsilon
f(Cost) 1,000 k£
f(Resilience) 0.1 weeks

To determine each run’s convergence a variance-based metric (Sinha et al., 2014;

Erfani, Mokhtar and Erfani, 2018) η is used which is defined by,

η =
σ2
Vic

σ2
Vio

(5.7)

where σ2
Vic

and σ2
Vio

denotes the variances of objective i (cost, resilience) in the

current (c) and initial (o) population, respectively. A value of η close to zero

indicates that the optimisation has converged. The search is terminated using

two user-specified criteria: the algorithm terminates when η ≤ ηstop ensuring that

the run has satisfactorily converged or when the maximum number of function

evaluations has been reached. The latter one is used as an upper bound for the

number of iterations necessary to ensure the convergence, stopping the algorithm

with an acceptable solution close to the optimal solution.
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5.4 Results and discussion

5.4.1 Solving the multi-objective water resource planning

problem

Figure 5.4 (a) shows the Pareto-approximate adaptive plans (as defined in Section

5.2.3) produced by non-dominated sorting of the ten runs using different random

seeds. Each point represents a unique Pareto-approximate adaptive plan propos-

ing a set of investment options for each decision node of the scenario tree over

the 50-year planning period. The investment cost is lower for adaptive plans with

lower resilience implying that a higher acceptable level of resilience requires more

investment. For example, Adaptive Plan 1 exhibits the lowest costs while Adaptive

Plan 2 displays a balance between the two conflicting objectives. More risk-averse

decision makers that desire high resilience may select Adaptive Plan 3 where fi-

nancial performance (low cost) is traded in to obtain higher resilience. However,

the cost to achieve a certain level of risk aversion could be considered excessive

and requires consideration. For instance by comparing Adaptive Plans 2 and 3,

as shown in Figure 5.4, a 0.22 reduction in weeks of non-essential use ban results

in a £150 million increase in cost. Figure 5.4 (b) and (c) show the convergence

behaviour of the MOEA algorithm, displaying the average objective values at each

iteration and their variance respectively. As shown, the value of η (defined in sec-

tion 5.3.3 ) drops sharply over the initial generations and convergence is achieved

for both objectives in less than 50 generations. While cost converged smoothly

after only 30 generations, resilience requires almost 50 generations.



C
h
ap

ter
5

114

Figure 5.4: (a) Plot of the epsilon-nondominated Pareto optimal set. Each Adaptive Plan corresponds to a 50-year plan. The
objective function values for cost and resilience reduction are shown. The direction of preference (minimisation) is downward. The
ε value for resilience allows to generate 5 adaptive plans. (b) Average cost and resilience values at each iteration (c) Variance-based

stopping criterion check, η, over generations. The algorithm terminates when η ≤ ηstop.
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The planning formulation maximises level 3 resilience (by minimising the length

of level 3 failures). Level 3 failures are themselves constrained not to occur more

frequently than once every 10 years.

For illustrative purposes, the extremities of the Pareto front as shown in Figure 5.4

(a) (Adaptive Plan 1 and Adaptive Plan 3) and a balanced adaptive plan towards

the centre (Adaptive Plan 2) are chosen to reflect different preferences of decision

makers. The investment trajectories for the three selected adaptive plans of the

Pareto front are shown in Figure 5.5. The tree consists of 21 possible investment

trajectories for each adaptive plan based on the demand scenarios depicted in

Figure 5.2. Decisions to invest in or delay a set of interventions are made at the

beginning of each time interval t. The decision points are spaced at 5-year time

intervals and therefore an activated intervention, depending on its construction

period, comes online either at the same or in a future time period.
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Figure 5.5: Resulting investment trajectories for three selected optimal Adaptive Plans for the short-term period (next 15 years).
At each stage, a decision to activate a portfolio of supply demand interventions (A1-A4) or delay investment (D) is made. Each
portfolio consists of a combination of interventions and is Pareto optimal if a demand scenario occurs. The demand threshold values
in Ml/d on each arc show which path to follow out of the 21 demand scenarios (Scenario 1 - Scenario 21). Results do not incorporate

all data from TWUL’s latest plan.
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Figure 5.5 details the short-term (t1 - t4, i.e. decisions made in 2020, 2025 and

2030) investment decisions of the three adaptive plans (represented by black, grey

and white boxes), showing whether a portfolio that consists of a combination

of interventions is activated (A1-A4) or delayed (D) at the beginning of each

5-year time interval under different demand scenarios differentiated by demand

thresholds.

The term ’adaptive plan’ is introduced in this chapter to describe a plan that

can adapt to evolving uncertainty over time, given a particular preference of the

decision maker on the cost-resilience trade-off. That is, two adaptive plans can

have the same set of interventions activated in a given time step, but can evolve

differently through the planning period, based on the preferred cost-resilience per-

formance.

Each adaptive plan consists of a set of activated interventions at each node of the

decision tree subject to the decision tree structure

The potential supply-side and demand-side water resource options that can be

activated at each node of the tree are detailed in Table 5.1. Demand threshold

values displayed on each branch indicate which path is optimal for a given demand

at each interval. For instance, if the planner considers that demand for water in

2025 is most likely to be less than 2,030 ML/d (low demand growth), then the

lower path is the best intervention response. If demand is between 2,030 ML/d and

2,084 ML/d (moderate demand growth) then the middle path is optimal, whilst

if demand is 2,084 ML/d or greater (high demand growth) then the upper path

should be selected.

The most pressing concern of water planners is short-term investment decisions,

i.e., what to do now. However, these near-term decisions must be compatible with

future investments and the resulting investment trajectories of which they are a

part must demonstrate long-term water supply security under different future sce-

narios. Initial investment trajectories resulting from differing near-term decisions



Chapter 5 118

can follow a range of future branches based on future decisions. The decision de-

termining which subsequent branch a planner should follow can be taken as new

information on demand growth becomes available. This results in adaptive invest-

ment planning where initial investment decisions can be postponed and adjusted

according to future possible demand conditions.

The decision tree approach results in ”wait-and-see” strategies which seek to delay

the implementation of interventions until they are required and as more informa-

tion about the future becomes known. The ability to defer investments enables

planners to reduce overall intervention costs. For example, as seen in Figure 5.5,

for all 3 adaptive plans, the decision in 2025 (t2) to invest (increase supply or

reduce demand) is postponed until later stages if demand is expected to be low.

Only if demand in 2025 is expected to be moderate or high should planners invest

in actions (infrastructure or demand management).

Each adaptive plan has alternative sets of interventions scheduled for implemen-

tation. For instance, as shown in Figure 5.5 in the moderate demand scenario the

expensive Adaptive Plan 3 activates portfolio A1 while investments in Adaptive

Plans 1 and 2 are delayed. In the high demand scenario, the cheapest Adaptive

Plan 1 activates the intervention corresponding to portfolio A1 while in Adaptive

Plans 2 and 3 the set of interventions in portfolios A2 and A3 are activated re-

spectively. At the next decision stage (t3), a delay in investment for the lower

path is recommended. In the middle path, portfolio A1 is activated in Adaptive

Plan 2 while in Adaptive Plan 3, the previously activated portfolio A1 from t2

is expanded to portfolio A4. In the upper path, the previously selected interven-

tions remain active without further investment. In practical applications, at the

next decision stage (i.e., 5 years later) the optimisation should be performed again

with the newly available demand scenarios that could be different compared to

the original ones (Creaco et al., 2013).

To gain more insight on how the Pareto-approximate adaptive plans differ, in Fig-

ure 5.6 the short-term (t1 - t4) investment decisions for two demand interventions,
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Demand Management 1 (DM1) and Demand Management 4 (DM4) is plotted. It

can be seen that if demand in t2 is high (top path), DM1 is activated in t2 in all

3 adaptive plans showing that the selection of this intervention is robust across

adaptive plans that represent different trade-offs between the two objectives. Con-

versely, at the top path, DM4 is only activated in the more expensive Adaptive

Plan 3 with higher resilience in t2.
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Figure 5.6: Investment trajectories for interventions Demand Management 1 (DM1) and (b) Demand Management 4 (DM4) for
three selected optimal Adaptive Plans for the short-term period (next 15 years). At each stage, a decision to activate (A) or delay

(D) a set of supply demand interventions is made. The demand threshold values in Ml/d on each arc show which path to follow.
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If demand growth in t2 is moderate (middle path), DM1 in not activated in the

more cost-efficient Adaptive Plan 1 while in Adaptive Plans 2 and 3 DM1 is acti-

vated in t3 andt2 respectively. In the middle demand path, DM4 is not activated

in any adaptive plan until the end of the short-term planning period.

If demand in t2 is low (bottom path) then none of the two demand interventions

are activated until the end of the short-term planning period. Leakage reduction

is selected in all adaptive plans above a certain demand growth and implemented

early on in the planning period while MET is present only in more costly adaptive

plans with higher resilience. This effect can be attributed to the short lead time

but large costs of leakage reduction and metering. In those scenarios, the pressing

need to increase supply or reduce demand forces adaptive plans to adopt these

interventions.

As later in the planning period more interventions become available, water supply

interventions are preferred. As shown in Figure 5.5, in the moderate demand

scenario, by t3, the demand intervention implemented in the first decision stage

is no longer adequate to meet a certain level of system resilience. This is the

case of Adaptive Plan 3 that seeks high resilience, where a sypply option (SP9) is

implemented by expanding portfolio A1 to portfolio A4.

Figure 5.7 depicts the activation frequency of the interventions across the 21 de-

mand scenarios in each time step for the long-term planning problem. The combi-

nation of interventions in each adaptive plan, the time of their implementation as

well as its activation frequency across the scenarios is plotted. Demand Manage-

ment 1 (DM1) has the highest frequency of activation and is activated early on in

all three adaptive plans. This suggests this demand intervention is robust across

the cost-resilience trade-off as well as supply demand uncertainty. Supply option

2 (SP2) is activated in all three adaptive plans towards the end of the planning

period. This shows a large supply scheme is not needed until later (t7 given the

data used). In Adaptive Plans 1 and 2 less interventions are selected compared to

the more expensive and more resilient Adaptive Plan 3. DM1 and SP2 are selected
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across all adaptive plans showing that demand management should be put in place

early and a large supply scheme towards the end of the planning period.
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Figure 5.7: Activation frequency of interventions across the 21 demand scenarios for the long-term plan. Activated interventions
include supply option 2 (SP2), supply option 4 (SP4), supply option 8 (SP8), supply option 9 (SP9), Demand Management 1 (DM1),

Demand Management 2 (DM2), Demand Management 4 (DM4). Results do not incorporate all data from TWUL’s latest plan.
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5.4.2 Metrics for flexibility and adaptivity assessment

Two metrics used in stochastic programming problems (Birge and Louveaux, 1997;

Escudero et al., 2007), namely Value of the Stochastic Solution (VSS) and Ex-

pected Value of Perfect Information (EVPI), are translated into decision-relevant

metrics of adaptivity and flexibility in water planning decisions. To examine the

implications on adaptivity and flexibility across the cost-resilience trade-off, the

same three adaptive plans (i.e. Adaptive Plans 1, 2 and 3) are compared from the

previous section. Each adaptive plan corresponds to a 50-year adaptive investment

plan. By calculating the VSS and EVPI values, the three adaptive plans on the

Pareto front are compared in terms of their ability to adapt to changing conditions

and the value gained from delaying irreversible investment commitments respec-

tively. This follows Erfani, Pachos and Harou (2018) who use the VSS and EVPI

metrics to quantify the benefits of adaptivity and flexibility for a single objec-

tive multistage stochastic mathematical programming approach to water resource

planning.

VSS is calculated for each adaptive plan by replacing the decision variables (i.e.

activation of intervention in each planning interval) with expected values and

comparing the cost requirements between the two. By fixing the first stage in-

terventions and solving for all the scenarios, the MOEA will generate a new set

of Pareto adaptive plans. EVPI is estimated by computing the cost difference

between the expected value with perfect information and the expected value with

current information for each Pareto adaptive plan. In order to allow for the cost

comparison for VSS and EVPI calculations, adaptive plans that have the same

level of system resilience r are selected. Section 5.4.3 gives mathematical detail

on the calculations of VSS and EVPI for the multi-stage formulation.

The VSS and EVPI for the three individual adaptive plans, expressed as a percent-

age of the total cost of each adaptive plan, are shown in Figure 5.8. In the context

of this case study, VSS illustrates the difference of using the multi-stage approach

applied here which explicitly allows for adaptation to different future demand
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Figure 5.8: VSS and EVPI values as percentage of the total cost for three
selected optimal Adaptive Plans.

conditions instead of considering the average demand values in each stage. VSS

quantifies the cost of not recognising the uncertainty and therefore ignoring the

adaptivity advantage. For the London case study, VSS, expressed as a percentage

of the total cost, is higher for the most resilient Adaptive Plan 3 (58,7%) compared

to Adaptive Plan 1 (20.2%) and Adaptive Plan 2 (13.1%). This indicates that, for

high resilience plans especially, an adaptive approach has considerable financial

value.

EVPI measures the value of information for planning under uncertainty and gives

an upper bound on the value of undertaking further research in order to eliminate

the uncertainty surrounding the decision about which set of interventions is opti-

mal. In the context of this case study, EVPI indicates how much it is worth to

invest in better demand forecasting. Again, the higher EVPI for Adaptive Plan 3

(28.9%) compared to Adaptive Plan 1 (8.5%) and Adaptive Plan 2 (8.6%) shows

that for the more resilient and costly adaptive plan, there is high value in investing

in demand forecasts.
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5.4.3 Computational insight on the metrics used to evalu-

ate the multi-staged MOEA

The calculations of the expected value of perfect information (EVPI) and the value

of the stochastic solution (VSS), in multi-stage problems are explained below.

These two metrics were developed for the case of two-stage problems (Birge and

Louveaux, 1997), and have been extended to multistage problems (Escudero et al.,

2007). Their values in a multi-stage framework with two objectives are calculated,

for each Pareto approximate solution individually (see Section 3.4.2 for details on

the calculations of EVPI and VSS in multi-staged problems).

VSS and EVPI are calculated using the cost values of the solutions that corre-

spond to a given level of system resilience r. VSS is calculated by solving the

“mean-value” problem resulting in a Pareto set of first stage solutions. EVPI

is determined by computing the cost difference between the expected value with

perfect information and the expected value with current information.

This sequence of non-negative values represents the cost of ignoring uncertainty

and not providing adaptive solution to future condition until stage t in the decision

making of multistage models. VSS and EVPI in multistage problems are then

calculated as,

V SS =
∑
t∈T

V SSt, (5.8)

and,

EV PI =
∑
t∈T

EV PIt. (5.9)
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5.5 Conclusions

This chapter proposed a multi-objective multi-stage approach for identifying adap-

tive water investment plans under probabilistic demand uncertainty and given

multiple plausible supply futures. A multi-objective evolutionary algorithm was

used to optimise future interventions for each node of a decision tree built to rep-

resent probabilistic demand uncertainty optimised over multiple equally probable

hydrological flow scenarios. The obtained Pareto-approximate investment plans

are adaptive and robust to the effects of supply demand balance uncertainty. De-

mand growth threshold values inform decision makers which investment trajectory

would be best to follow to optimise cost and resilience of the water supply system.

The plans are adaptive in that commitments being made in the short-term allow

for a multiple choice of future commitments based on how the future demand

growth unfolds.

The approach was applied to the London’s (UK) water supply system. Given a

scenario tree made of 21 future demand scenarios, 11 transient hydrological flow

scenarios and two conflicting stakeholders’ objectives, the cost of new interventions

and the resilience of the system were optimised under level of service constraints.

The possible new investments considered included 11 supply interventions (of type

reservoir, transfer, waste water reuse, desalination) and 4 demand interventions

(of type active leakage control, mains repair, efficiency, metering).

Resilience considers the average maximum number of weeks of non-essential ban

use. The results showed that a small increase in system resilience, requires a

high increase in costs. To operate with a resilience value of 4.77 weeks requires

£47 million of investment while to operate with resilience of 4.37 weeks requires

£208 million. To illustrate the benefits of the adaptive multi-objective multi-stage

approach, three Pareto-approximate adaptive plans were selected and compared.

Depending on which decision path is chosen, according to the forecasted short-term

demand growth, an adaptive plan is selected based on the user’s preference on the
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cost-resilience performance. Each adaptive plan suggests whether interventions

should be delayed or activated.

Investments are postponed for the future when demand in 2025 is expected to be

below 2,084 ML/d. If demand in 2025 is higher than 2,084 and below 2,141 ML/d

then the user has the option to delay investment or implement demand manage-

ment 1 (DM1) based on their preferred cost-resilience performance. If demand

in 2025 is higher than 2,141 ML/d, new interventions need to be implemented to

maintain desired levels of service. All three selected optimal adaptive plans im-

plement demand management 1 (DM1) at the top path of the tree showing that,

under higher demand conditions, the selection of this intervention is robust across

adaptive plans that represent different trade-offs between cost and resilience.

The flexibility and adaptivity assessment of the three adaptive plans, quantified by

their VSS and EVPI values, show that considering supply demand uncertainty in

London’s supply-demand problem is important. Resource managers can lessen the

consequences resulting from uncertain levels of future supply-demand gap through

adaptive planning and improved demand forecasts. For more costly adaptive plans

that provide higher system resilience, this becomes more critical. VSS shows that

for the most resilient adaptive plans, adaptive investment decisions to demand

uncertainty reduce NPV by 58.7% EVPI estimates that for the most resilient

adaptive plan the value of delaying investments by waiting to gain more accurate

information is 28.9% of total NPV.

The multi-objective multi-stage optimisation in this study required running the

simulation model for 25,000 function evaluations with each function evaluation run

over 21 demand and 11 hydrological scenarios for each of the 10 random seeds,

requiring a total of 57.75 million simulation model runs. Following Huskova et al.

(2016), and to limit the number of function evaluations necessary for the optimi-

sation to converge, each intervention had a fixed capacity (Table 5.1). Alternative

capacities for the same interventions could be added as new interventions if just

a few sizes are being considered. Fully optimising the capacity of interventions
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across their entire range could result in more adaptive plans but is left for future

work.





Chapter 6

Conclusions

6.1 Summary and conclusions

Uncertainty in future supply and demand conditions motivates novel decision-

making approaches that inform water managers which alternative combinations of

interventions would be best to choose given stakeholder priorities. Most previous

work in the scheduling of water resource interventions has focused in static ap-

proaches as part of which a single, fixed investment strategy is developed with lim-

ited ability to adapt to evolving uncertainty. This thesis has argued that adaptive

water resources planning approaches that endeavour to develop multiple flexible

investment strategies are useful in the face of a highly uncertain future. The flex-

ible strategies are assigned to different plausible future paths and can respond to

increased knowledge about future conditions by adjusting intervention schedules

over the planning period.

This work contributes to the advancement of adaptive water resources planning

by proposing new decision-making approaches that explicitly enable adaptivity to

future uncertainty through the use of ROA concepts and scenario trees. The thesis

started off by demonstrating in Chapter 3 how a least-cost scheduling approach

for water infrastructure investment planning, used currently at national scale in

131
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England, can be extended to enable adaptivity given future supply uncertainty.

The stochastic supply is approximated by a compact scenario tree representing an

ensemble of plausible futures. Chapter 3 shows how the proposed approach allows

the planner to rebalance the supply-demand system at distinct decision points

defined by the scenario tree, resulting in adaptive solutions whose implementation

can be delayed and replaced as information on future supply-demand balance is

gradually revealed.

To evaluate the implementation of ROA, two metrics are introduced: the Value

of the Stochastic Solution (VSS) and the Expected Value of Perfect Information

(EVPI) that quantify the value of adopting adaptive and flexible plans respec-

tively. The analysis showed that by considering uncertainty, adaptive investment

decisions avoid £100 million NPV cost, which corresponds to 15% of the total

NPV. The EVPI demonstrates that optimal delay and early decisions have £50

million NPV, 6% of total NPV.

In Chapter 4 the proposed adaptive approach of Chapter 3 as well as alternative

‘fixed plan’ optimisation approaches are applied to a real-world utility to solve

the water supply capacity expansion problem to perform a comparison. The per-

formances of the proposed plans were compared in terms of required investment

costs and unused capacity which demonstrated the benefit that the adaptive plan-

ning can bring to the water resource management decision-making process. The

results from the case study suggest that the proposed adaptive planning approach

managed to reduce NPV cost by 35%, compared to alternative optimisation ap-

proaches that produced fixed plans, saving more than £377 million. To compare

the performance of the proposed plans beyond cost, two alternative performance

metrics, water security and deliverability were derived and evaluated. The results

of the water security assessment suggest that there is a trade-off between cost and

risk of drought under severe and extreme conditions. The deliverability assessment

indicates flexible approaches that optimise plans over multiple paths, increase the

confidence that the expected volume of water will be delivered on time.
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Although alternative metrics are reported post-optimisation these are not included

as an objective in the optimisation problem. Limitations of the least cost ap-

proaches used in the comparison study in Chapter 4 can be considered that plans

are optimised using a single objective and therefore tangible outcomes cannot be

assessed and evaluated without translating non-commensurable metrics into a sin-

gle monetary. To address these limitations, Chapter 5 presents a multi-objective

multi-stage approach for identifying adaptive water investment plans under prob-

abilistic demand uncertainty and given multiple plausible supply futures. Two ob-

jectives are used to explore the trade-off between financial and resilience indicators.

The obtained Pareto-approximate long-term investment plans are adaptive and ro-

bust to the effects of supply demand balance uncertainty. Furthermore, Chapter 5

demonstrates that by considering supply demand uncertainty in London’s supply-

demand problem, water planners can lessen the consequences resulting from future

uncertainty through adaptive planning and improved demand forecasts. The flex-

ibility and adaptivity assessment of the alternative adaptive plans show that for

more costly adaptive plans that provide higher system resilience, this becomes

more critical. The results indicate that, in the case of the most resilient plans, by

being adaptive to demand uncertainty, total NPV is lowered by 58.7% The value in

delaying investments by waiting for more accurate supply and demand estimates

is 28.9% of total NPV. The methods presented in this thesis quantify the value of

adopting adaptive and flexible plans by deriving flexibility and adaptivity metrics

which are used to give a definition to flexibility and adaptivity in the context of

water resources management.

In this thesis, the methods presented were applied to London’s urban water supply

system. The results of this study are indicative and should not be considered

prescriptively as they are based on a simplified representation of Thames Water’s

system. Thames Water’s most recent plan (Thames Water, 2018) includes the

latest proposed option designs, includes requirements to supply neighbouring water

utilities, and considers more objectives.
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Chapter 4 shows that it is important to recognise the limitations of ‘fixed plan’ op-

timisation approaches demonstrated by the favourable performance of the adaptive

plans compared with those fixed at the beginning of the planning horizon. This

thesis argues for aiming to explicitly seek adaptivity and flexibility in water in-

vestment planning through the use of decision trees that reflect different scenarios

that may occur during the planning horizon. Due to computational complexity

in accounting for all possible scenarios that represent future uncertainty in real-

world applications, uncertainty is approximated by a decision tree involving a

smaller number of scenarios through the use of a reduction technique (developed

by Gröwe-Kuska et al. (2003)).

The decision trees display the most appropriate set of intervention measures at

several planning horizon time steps depending on how the future unfolds. Invest-

ment decisions have to be made for each time interval of the decision tree resulting

in multiple investment trajectories. Threshold values are optimised to determine

which intervention trajectory is best to follow, given a future projection. The use

of ROA principles enables the flexibility within the decision trees to be valued and

thus account for the future uncertainties of demand growth and climate change.

While future supply demand forecasts are expected to change, the methods pre-

sented in this thesis seek to inform present investment decisions, which therefore

have to be based on present forecasts. In practical applications, at the next deci-

sion stage (i.e., 5 years later) the optimisation should be performed again with the

newly available demand scenarios that could be different compared to the original

ones (Creaco et al., 2013).

The optimisation objectives in Chapter 5 are explicitly based on the physical

performance of the system since performance metrics such as supply reliability and

resilience are calculated through a simulation. However, the interaction between

the water management actions and their influence on hydrological variables was not

explored. An integrated modelling approach could be used to address this two-way

feedbacks between hydrological and human processes. Socio-hydrological models

have already been applied in the context of flood risk management, exploring the
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interplay between the impact of human interventions on drought and flood events

and human responses to hydrological extremes (Di Baldassarre et al., 2015, 2017).

In a water resource management context, examples include addressing reservoir

effects, i.e., when increasing water supply leads to higher water demands which

eventually reduce the reservoir’s initial water supply improvement (Di Baldassarre

et al., 2018).

6.2 Limitations and future research

This thesis has mainly focused on the development of new water management

planning methods that explicitly seek adaptivity and flexibility when investigat-

ing the implementation of a range of feasible interventions. The limitations of the

proposed methods, related to their modelling formulation and applicability, pro-

vide guidance for future research with regards to methodological extensions and

demonstration of their wide applicability in terms of problem scope.

The proposed methods are applied in the context of urban supply capacity ex-

pansion using a single case study, London’s urban water supply system. Applying

the proposed methods to alternative planning problems may reveal other observa-

tions not found in this study. Future work will include tailoring and applying the

methods presented in this work to other water resources problem domains such as

water distribution system design and flood management. Furthermore, alternative

and more complex real-life case studies could be used considering a wider range

of intervention measures as well as scenarios of future conditions not discussed in

this work that would result in different decision tree structures.

The methodologies presented in this thesis can effectively identify adaptable solu-

tions for long-term planning under uncertain future changes. However, the prob-

lem formulation (e.g. objectives, constraints, and decision variables) is assumed

to remain constant throughout the long-term period. Given the many and evolv-

ing competing water interests and stakeholder objectives, this is unlikely to be
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the case. Consequently, future research could explore the incorporation of meth-

ods that enable the problem formulation to be changed over the planning period

(Maier et al., 2014; Piscopo et al., 2015).

Although flexibility and adaptability are reported post-optimisation by calculating

the VSS and EVPI values, the optimisation formulations of the proposed methods

do not necessarily identify the most flexible and adaptive solutions. Therefore,

not including these as objectives in the optimisation problem could be considered

a limitation. Future work might therefore explore the implications of including

flexibility and adaptability objectives in the optimisation formulation. However,

that would move towards providing decision makers with a single solution rather

than a set of optimal paths (Beh et al., 2015a).

Future work could also address challenges posed by conflicting economic, social and

environmental objectives. Environmental performance, in the case of London’s

water supply problem, can be defined as a measure of how well the ecological

flow of the Thames is maintained (Matrosov et al., 2015). The proposed multi-

objective adaptive model introduced in Chapter 5 could be extended to consider

such an environmental objective. That would allow alternative system designs

to be evaluated considering performance measures that maximise environmental

metrics while minimising economic costs.

In an extension of this work, the impact of modularity in the selection of interven-

tions could be explored. Modular designs of large infrastructure projects exhibit

built-in options, that can be implemented later if required. Based on a real options

approach, the methods introduced here quantify the value in allowing flexibility

in the implementation of large infrastructure projects. While modularity enables

flexibility into the design of water resource infrastructures, it does not come for free

as the costs of modularising go up as the number of modules increases (Baldwin

and Clark, 2000). The proposed methods could be used to understand the impact

of different levels of modularity in the selection of interventions. Insights gleaned

from this sensitivity analysis may be useful in formulating design capabilities by
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suggesting appropriate number of increments of large modular interventions.





Appendix A

Details for the interventions

considered in the London case

studies

This appendix presents the alternative supply interventions considered in the case

studies of Chapter 3 and Chapter 4. The 47 inteventions are listed in Table A.1.

Table A.1: List of available water resource interventions to supply London

considered in the appraisal process. EY: Estimated yield (capacity) in Ml/day.

CAP: Capital costs in £m, OP: Operational costs in £m

Code Resource Type Scheme Name EY CAP OP

i1 Aquifer Recharge HARS (Hornsey) 2 4.1 0.3

i2 Aquifer Recharge Kidbrooke 8Mld (SLARS) 8 51.9 2.3

i3 Aquifer Recharge Merton 6Mld (SLARS) 6 22.9 1.4

i4 Aquifer Recharge SLARS - Streatham 5Mld 5 18.3 1.1

i5 Desalination Estuary South 50 ML/d 50 435.2 7.9

i6 Desalination Estuary South 100 ML/d 100 548.2 14.1

i7 Desalination Estuary South 150 ML/d 150 644.8 20.0

i8 Desalination Estuary South 50 ML/d ph 1 50 471.2 7.5

139



Appendix 140

Table A.1 continued from previous page

i9 Desalination Estuary South 100 ML/d ph 2 50 142.1 6.5

i10 Desalination Estuary South 150 ML/d ph 3 50 142.1 6.5

i11 Desalination Long Reach 15 81.6 3.2

i12 Desalination Estuary North 150 ML/d 150 505.5 17.0

i13 Effluent reuse Abbey Mills ROS 50 ML/d 50 238.4 6.6

i14 Effluent reuse Abbey Mills ROS 100 ML/d 100 320.1 10.6

i15 Effluent reuse Abbey Mills ROS 150 ML/d 150 423.3 15.6

i16 Effluent reuse Abbey Mills ph 1 50 ML/d 50 309.4 5.8

i17 Effluent reuse Abbey Mills ph 2 upgrade to

100 ML/d

50 93.3 5.1

i18 Effluent reuse Abbey Mills ph 3 upgrade to

150 ML/d

50 93.3 5.1

i19 Effluent reuse Beckton 50 ML/d 50 204.5 2.0

i20 Effluent reuse Beckton 100 ML/d 100 260.9 3.6

i21 Effluent reuse Beckton 150 ML/d 150 323.6 5.3

i22 Effluent reuse Beckton ph 1 50 ML/d 50 236.5 2.0

i23 Effluent reuse Beckton ph 2 upgrade to 100

ML/d

50 71.3 1.8

i24 Effluent reuse Beckton ph 3 upgrade to 150

ML/d

50 71.3 1.8

i25 Effluent reuse Deephams 60 ML/d 60 124.4 3.4

i26 Effluent reuse Hogsmill 15 ML/d 15 75.7 3.3

i27 Effluent reuse Hogsmill 35 ML/d 35 110.4 4.6

i28 Effluent reuse Mogden 150 ML/d Sunbury 150 360.1 13.5

i29 Effluent reuse Mogden ML/d Sunbury ph 1 50 263.2 5.1

i30 Effluent reuse Mogden ML/d Sunbury ph 2 50 79.4 4.4

i31 Effluent reuse Mogden ML/d Sunbury ph 3 50 79.4 4.4

i32 Effluent reuse Mogden (Staines) 150 ML/d 150 566.0 19.0
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Table A.1 continued from previous page

i33 Effluent reuse Mogden 50 ML/d Stains ph 1 50 413.7 7.1

i34 Effluent reuse Mogden 100 ML/d Stains ph 2 50 124.8 6.1

i35 Effluent reuse Mogden 150 ML/d Stains ph 3 50 124.8 6.1

i36 Groundwater Addington 1.5 2.7 0.3

i37 Groundwater Southfleet/Greenhithe 9 20.0 1.1

i38 Reservoir Abingdon 100 ML/d 100 1,206.0 3.8

i39 Reservoir Abingdon 125 ML/d 125 1,431.2 6.5

i40 Reservoir Abingdon 150 ML/d 150 1,450.0 4.3

i41 Reservoir Abingdon 50 ML/d ph 1 50 1,009.2 1.6

i42 Reservoir Abingdon 100 ML/d ph 2 50 336.4 1.3

i43 Reservoir Abingdon 150 ML/d ph 3 50 336.4 1.3

i44 Reservoir Abingdon 75+75 ML/d ph 1 75 1,216.7 3.0

i45 Reservoir Abingdon 75+75 ML/d ph 2 75 1,216.7 5.5

i46 Transfer Vyrnwy (158 ML/d) 158 271.9 17.9

i47 Transfer Vyrnwy (242 ML/d) 242 413.4 23.1
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Liu, C., Fan, Y. and Ordóñez, F. (2009). A two-stage stochastic programming

model for transportation network protection, Computers & Operations Research

36(5): 1582–1590.

Loucks, D. P., Stedinger, J. R., Haith, D. A. et al. (1981). Water resource systems

planning and analysis., Prentice-Hall.

Lourenço, T. C., Rovisco, A., Groot, A., Nilsson, C., Füssel, H.-M., Van Bree, L.

and Street, R. B. (2014). Adapting to an uncertain climate.

Luss, H. (1982). Operations research and capacity expansion problems: A survey,

Operations research 30(5): 907–947.



References 156

Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, H. A., Marglin, S. A., Fair,

G. M., Bower, B. T., Reedy, W. W., Manzer, D. F., Barnett, M. P. et al. (1962).

Design of water-resource systems.
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