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Abstract 
An autonomous reactor platform was developed to rapidly identify a kinetic model for the 

esterification of benzoic acid and ethanol with the heterogeneous Amberlyst-15 catalyst. A five-step 

methodology for kinetic studies was employed to systematically reduce the number of experiments 

required to identify a practical kinetic model. This included i) initial screening using traditional factorial 

designed steady-state experiments, ii) proposing and testing candidate kinetic models, iii) performing 

an identifiability analysis to reject models whose model parameters cannot be estimated for a given 

experimental budget, iv) performing online Model-Based Design of Experiments (MBDoE) for model 

discrimination to identify the best model from a list of candidates and v) performing online MBDoE 

for improving parameter precision for the chosen model. This methodology, combined with the 

reactor platform which conducted all kinetic experiments unattended, reduces the number of 

experiments and time required to identify kinetic models, significantly increasing lab productivity. 
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1. Introduction 
Heterogeneous catalysts are of great value to a wide variety of chemical industries including 

petrochemicals, agrochemicals, bulk chemical production, emission control and the pharmaceutical 

industries, with some reports estimating that catalysts are involved in the production of over 75% of 

all chemical products1. It is also clear that in order for the chemicals industry to meet the ever 

increasing demands to reduce the cost and environmental impact of production that new and 

improved catalysts will need to be developed, studied and optimised. When studying these new 

catalysts one of the major tasks will be to develop intrinsic kinetic models, as possessing a kinetic 

model greatly assists the design of industrial scale reactors and their process control systems, as well 

as offering mechanistic insight into the reaction chemistry2. However, obtaining intrinsic kinetic 

models for heterogeneous catalytic systems is notoriously difficult due to both experimental and 

modelling challenges. Experimentally it is often difficult to design a reactor that allows study of 

intrinsic kinetics without heat and mass transport resistances or non-ideal reactor behaviour. On the 

modelling side it is difficult to identify the correct kinetic model structure from the large number of 

similar rate laws which are possible depending on the different reaction mechanisms (e.g., Langmuir-

Hinshelwood, Eley Rideal), and then often there are a large number of highly correlated parameters 

that are difficult to estimate3. With all these challenges in mind, it is the objective of this work to 

provide a methodology for the rapid identification of kinetic models for heterogeneous reactions.   

Traditionally kinetic studies have been conducted in batch reactors, as this allows the generation of 

multiple data points per experiment and because these reactors are flexible and easy to operate4. 

However, recently flow reactors and in particular micro flow reactors are becoming more popular for 

kinetic studies for a number of reasons including their increased heat and mass transfer5-7, improved 

safety8, and because they are compatible with many forms of online analysis9-14 and they are easier to 

automate than batch reactors for performing a large number of sequential experiments at different 

conditions15-17. Automated flow reactors offer great opportunities for conducting rapid kinetic studies, 

as they can be combined with a variety of design of experiment algorithms in closed loop systems, 

where the reactor platform designs each experiment based on information collected from previously 

conducted experiments, all without user supervision. These closed loop systems have already shown 

much success for “self-optimising” reactors where the reactor platform autonomously finds the 

optimum operating conditions to maximise or minimise given criteria, such as yield or E-factor14, 18-29, 

by using response surfaces and optimisation algorithms, such as the SIMPLEX or SNOBFIT algorithms. 

Similar closed loop systems can also be used for making kinetic studies more efficient, by using Model-

Based Design of Experiments (MBDoE), which designs experiments in the most efficient way possible 

in order to improve model understanding3. The field of MBDoE is well established with numerous 

simulated or offline case studies3, 30-34 demonstrating its many advantages, and with recent advances 

in automation several online applications have also been reported35-40. The two most common aims 

of MBDoE are to design experiments to identify which of two or more candidate models is correct41-44 

and then having chosen a single model, to design experiments that will lead to the highest precision 

in parameter estimation3, 45, 46. In terms of developing kinetic models, a number of papers have 

reported the online use of these techniques in flow and semi-batch reactors, however, to the best of 

the authors’ knowledge these have only been applied to homogenous systems (a Diels-Alder 

reaction35, C-H activation47, aromatic substitution36, esterification38, 40 and to bioreactors37). This work 

presents the first application of closed loop MBDoE for the identification of a kinetic model for a 

liquid/solid heterogeneous catalytic system.  
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Applying online MBDoE to a new system is not always straightforward, especially for an unknown 

catalytic system. There often is the problem of how to design the first experiments when little or no 

information is available about the system. Furthermore, using MBDoE to pursue kinetic models which 

are practically unidentifiable for the given experimental budget, allowable design space and precision 

of the measurements can be a waste of resources and presents another challenge. This second 

problem is particularly relevant to heterogeneous catalysts as the common Langmuir-Hinshelwood 

rate laws have a large number of highly correlated parameters, and where it may be more beneficial 

to pursue a simpler approximated model which is identifiable instead. Therefore, in this work, a 

methodology is presented that covers all stages of kinetic modelling, from initial experiments, 

practical identifiability checks to the application of online MBDoE for model discrimination and 

parameter precision. This is presented using the case study of the esterification of benzoic acid and 

ethanol using Amberlyst-15 as a heterogeneous catalyst.  

2. Modelling & Experimental Methods 

2.1 Background to Modelling and Model-Based Design of Experiments 

2.1.1 Modelling & Parameter Estimation 

A generic model for describing a heterogeneous catalytic reactor consists of a set of algebraic or 

differential equations, a vector of 𝑁𝜃  non-measurable parameters 𝛉, input or control variables 𝐮 and 

state variables 𝐱, that together can be used to predict the values of measurable outlet variables �̂�, as 

shown in Eq 1. 

�̂� = 𝐟(𝐱, 𝐮, 𝛉) (1) 

In order to use a model for predicting the behaviour of a system, it is necessary to identify the value 

of the non-measurable parameters 𝛉. This is achieved by performing parameter estimation using 

experimental data. If the number of experiments conducted is 𝑁𝑒𝑥𝑝, and each experiment consists of 

𝑁𝑚 measurements, then for the ith experiment and the jth measurement the residual 𝜌𝑖𝑗  is defined in 

Eq 2 as the difference between the model prediction �̂�𝑖𝑗  and the experimental measurement 𝑦𝑖𝑗 . 

𝜌𝑖𝑗 = 𝑦𝑖𝑗 − �̂�𝑖𝑗 (2) 

In this work, parameters are estimated using the maximisation likelihood approach48, where values 

for the non-measurable parameters 𝛉 are found which maximise the log likelihood function, 𝛷(𝛉), 

shown in Eq 3. These parameter values are then called the Maximum Likelihood Estimate (MLE) values 

, �̂�. 

max
𝛉

( 𝛷(𝛉)  ) = max
𝛉

( ∑ ∑ −
1

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛(σ𝑖𝑗

2) −
1

2
(

𝜌𝑖𝑗

σ𝑖𝑗
)

2𝑁𝑚

𝑗=1

𝑁𝑒𝑥𝑝

𝑖=1

) 

(3) 

It is assumed that: i) the inputs u are perfectly controlled; and, ii) all residuals are due to measurement 

error, which is a Gaussian distribution with mean of 0 and standard deviation of σ𝑖𝑗
3, 48.  

2.1.2 Goodness of Fit 

The validity of a model can be tested using the 95% 𝜒2 test to determine if the model adequately fits 

the experimental data available.  A 𝜒2 value is computed according to Eq 4 and this number is 
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compared against the 95% reference value obtained from statistical tables for the correct number of 

degrees of freedom (𝐷𝑜𝐹 =  𝑁𝑒𝑥𝑝 ∗ 𝑁𝑚 − 𝑁𝜃).  

𝜒2 = ∑ ∑ (
𝜌𝑖𝑗(�̂�)

𝜎𝑖𝑗
)

2𝑁𝑚

𝑗=1

𝑁𝑒𝑥𝑝

𝑖=1

 

(4) 

If the 𝜒2 value is greater than the reference value this indicates that the data are not compatible with 

the modelling assumptions.    

2.1.3 Parameter Precision and Model Prediction Uncertainty 

Parameter estimates have a standard deviation to measure their precision, which describes how close 

one parameter estimate would be to another if all the experiments were repeated. Parameter 

precision is quantified from the 𝑁𝜃 × 𝑁𝜃 covariance matrix, 𝐕𝛉, which can be approximated (using the 

first term Taylor expansion) by the inverse of observed Fisher information matrix 𝐇𝛉. 

𝐕𝛉 ≅ 𝐇𝛉
−1 (5) 

The elements in the Fisher information matrix are calculated using the approximation shown below 

for the kth lth element, where the term 
𝜕�̂�𝑖𝑗

𝜕𝜃𝑘
 is the sensitivity of the model prediction �̂�𝑖𝑗  with respect 

to parameter k.  

[𝑯𝜽]𝒌𝒍 ≅ ∑ ∑
1

𝜎𝑖𝑗
2 (

𝜕�̂�𝑖𝑗

𝜕𝜃𝑘

𝜕�̂�𝑖𝑗

𝜕𝜃𝑙
)

𝑁𝑚

𝑗

𝑁𝑒𝑥𝑝

𝑖

 

(6) 

From the covariance matrix the 95% confidence interval for the ith parameter is calculated as the 

square root of the variance element 𝑣𝜃,𝑖𝑖, obtained from the diagonal of the covariance matrix, 

multiplied by the student t-value at 95% confidence level for the given number of degrees of freedom, 

as shown in Eq 7. This represents the interval within which it is expected that 95% of the time, 

parameter estimates would fall if the parameter estimation problem was repeated again with new 

experimental data.  

95% 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 = √𝑣𝜃,𝑖𝑖  ∗ 𝑡(95%, 𝐷𝑜𝐹)     for i = 1, … , 𝑁𝜃  (7) 

The t-value for each parameter is calculated by dividing the parameter estimate by the 95% confidence 

interval, as shown in Eq 8. If the t-value is high, that means the parameter estimate is reliable, however 

if the value is low it suggests that the parameter confidence interval may include zero and that the 

parameter statistically may not exist in the model and it may be dropped3. 

𝑡𝑖 =
𝜃𝑖

95% 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖
 for i = 1, … , 𝑁𝜃 

 

(8) 

With the variance-covariance matrix 𝐕𝛉, along with the MLE values �̂�, it is possible to quantify the 

model response uncertainty, which is the uncertainty in the model prediction due to uncertainty in 

the model parameters. This is done by generating a large number of possible parameter sets using a 

multivariate normal distribution which takes into account the correlation between the parameters. 

Then one experiment, designed at some set of control variables u, is simulated for each set of 

parameters. The model responses for each parameter set are recorded and a graph showing the 
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observed frequency of each model response can be created; the spread of this frequency distribution 

indicates the level of model uncertainty. This can be repeated at any set of control variables u, to 

observe how model uncertainty varies within the experimental design space. 

2.1.4 Model-Based Design of Experiments for Model Discrimination 

MBDoE comprises a set of tools for designing experiments in an optimal way, given the information 

available from the model and from already conducted experiments3, 48. In this work, MBDoE tools are 

used both for model discrimination and for improving parameter precision. In both cases it is 

necessary to define the design vector φ, which is a subset of the control vector u, and consists of the 

experimental variables which are to be optimised. Allowable ranges for each experimental variable 

are also defined based on experimental constraints.  

MBDoE for model discrimination between two or more candidate models involves using the models 

and their parameter estimates to assist in designing the optimal experiment for distinguishing 

between the candidate models’ responses. There are a variety of different objective functions that 

can be used to determine the optimum experimental conditions for a discriminating experiment. The 

simplest objective function, the Hunter Reiner criterion, is the difference in predicted values between 

each candidate model41 and is shown in Eq 9 for the case of two candidate models, where �̂�𝟏 and �̂�𝟏 

are both 1 × 𝑁𝑚 matrices containing all the predicted values for model 1 and model 2 respectively, 

and 𝛔 is also a 1 × 𝑁𝑚 matrix containing the standard deviation for each measurement. 

max
𝛗

( 𝜓𝐻𝑢𝑛𝑡𝑒𝑟(𝛗)  ) = max
𝛗

((
�̂�𝟏 − �̂�𝟐

𝛔
)

2

) 
(9) 

However, this simple method relies entirely on the predicted values of each model without taking into 

account the uncertainty of the model prediction, which can potentially lead to a non-optimal design 

of experiments. Uncertainty in model prediction arises due to the fact that the parameter values are 

never exactly known and that each estimated parameter value has an associated uncertainty affecting 

the expected model responses. More sophisticated model discriminating criteria, such as the one 

proposed by Buzzi-Ferraris42-44 take this into account by finding an optimal design vector φ, which 

maximises the divergence between candidate models, while also minimising the uncertainty of the 

model predictions. In this work the Buzzi-Ferraris method of model discrimination is adopted, and the 

information regarding the uncertainty in the parameter distributions is contained in the co-variance 

matrix which is obtained by preforming parameter estimation with previously conducted experiments. 

The design criterion assuming the presence of 2 candidate model structures is shown in Eq 10. 

max
𝛗

( 𝜓𝐵𝑢𝑧𝑧𝑖(𝛗)  ) = max
𝛗

((�̂�𝟏(𝛗) − �̂�𝟐(𝛗))
𝑇

𝐒(𝛗)−1(�̂�𝟏(𝛗) − �̂�𝟐(𝛗))) (10) 

Here, S(𝐮) is the total variance due to covariance of the measurement noise M, and the covariance of 

the model predictions of model 1, P1 and model 2, P2 as shown in Eq 11.  

𝐒(𝛗) = 2𝐌 + 𝐏1(𝛗) + 𝐏2(𝛗) (11) 

The covariance of the measurement noise, M, is a 𝑁𝑚 × 𝑁𝑚 matrix where the diagonal entries are the 

standard deviation for each measurement and the off-diagonal entries are 0. The covariance of the 

model predictions for the kth model, Pk, which is the uncertainty in the model prediction, is in turn 

calculated from the covariance matrix, 𝐕𝜃,𝑘 , and the sensitivity matrix, 𝐐𝐤(𝛗), for that model, as 

shown in Eq 12.  
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𝐏𝑘(𝛗) = 𝐐𝑘(𝛗)𝐕𝜃,𝑘𝐐𝑘
𝑇(𝛗)   for k = 1 and 2              (12) 

The i,jth element of the sensitivity matrix 𝐐𝐤(𝛗) is the partial derivative of the kth model prediction for 

the ith model response variable with respect to parameter j at conditions φ. 

𝐐𝑘(𝛗) =  
𝜕�̂�𝑖,𝑘

𝜕𝜃𝑗 𝑎𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝛗 

  
(13) 

The importance of using a model discrimination objective function which accounts for model 

prediction uncertainty is shown clearly in a hypothetical example shown in Figure 1 where the 

hypothetical response variable is product concentration. In this example the Hunter Reiner method 

will design an optimal experiment at a control variable value of 4. However, this experimental design, 

despite maximising the divergence between model predictions is actually a poor design as the model 

prediction uncertainty zones are overlapping. Instead the optimal design should be at control variable 

equal to 0, where the divergence between models is smaller, but the model uncertainty is also smaller 

and is not overlapping.  

 

Figure 1. Example demonstrating model discrimination, based on example first shown by Box and Hill42.  

2.1.5 Model-Based Design of Experiments for Parameter Precision 

MBDoE can be used to design experiments in order to give the most precise parameter estimates for 

a given model. This is done by calculating the value of the expected covariance matrix �̂�𝜃, after 𝑁𝑑 

new experiments are conducted, by using the additivity of Fisher information, as shown in Eq 14. Here, 

𝐕𝜃,0 refers to the a-priori covariance matrix, as calculated from the already completed 𝑁𝑒𝑥𝑝 

experiments, while �̂� 𝐢 is the expected Fisher information to be collected from 𝑁𝑑 new experiments3, 

48. The expected information matrix for each designed experiment is calculated using the current 

parameter estimate �̂�. 

�̂�𝜃(�̂�, 𝛗) = [𝐕𝜃,0
−1 + ∑ �̂� 𝐢(�̂�, 𝛗)

𝑁𝑑

𝑖=1

]

−1

 

(14) 
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The optimal experimental conditions can then be obtained by minimising a measure of the expected 

covariance matrix. For the minimisation, some scalar quantity is required to describe the covariance 

matrix. In this work the D-optimal criterion is used, where the determinant of the predicted covariance 

matrix was minimised. However, other popular criteria include A- and E-optimal which respectively 

minimise the trace and largest eigenvalue of the predicted covariance matrix3, 48. 

2.1.6 Practical Identifiability for a Given Experimental Budget 

Model identifiability refers to if a model’s parameters can be uniquely estimated, and this depends on 

the model structure and the experimental data available. Identifiability analysis, which has been 

reviewed by Miao et al49, can be broadly divided into structural and practical identifiability. Structural 

identifiability analysis can be conducted by examining the model’s equations and this is unaffected by 

the quality of the experimental data, whereas practical identifiability, which is the focus of this work, 

examines if a model’s parameters are identifiable with a given experimental data set. Generally as the 

number of parameters in a model increase, it gains improved data fitting capabilities at the cost of the 

parameters being increasingly difficult to estimate (reduced identifiability). For a structurally 

identifiable model, practical identifiability is normally improved as more experiments are conducted.  

There are many different ways to study identifiability, Marquardt et al have used linear algebra 

methods to check if unique solutions to model equations exist50 and also by examining the Fisher 

Information Matrix, as identifiability is lost if its determinant approaches zero51. However, in this work 

practical identifiability is assessed for a given experimental budget by simulating the campaign of 

experiments, conducting parameter estimation with the simulated data set and checking if the 

predicted t-values exceed the reference t-value. The proposed procedure for testing a model’s 

practical identifiability for a given experimental budget is shown in a flowchart in Figure 2. The first 

step is to quantify the capabilities of the available experimental set-up; this includes determining the 

allowable design space for the control variables and defining the measurement error for all measured 

model responses. Secondly the maximum number of experiments to be conducted is chosen; this is 

known as the experimental budget and is based on the time and cost to be dedicated to the project. 

Then the experimental campaign can be designed, which is an important step as the experimental 

design influences how much information is obtained from the campaign. While the most rigorous 

method to design the campaign of experiments is to first design a small number of experiments by 

factorial or Latin square design, followed by sequential design of each experiment with MBDoE, this 

can be computationally expensive, especially if there is a large experimental budget, as this requires 

that the parameter estimation and MBDoE optimisation be repeated for each experiment. Therefore, 

it is more efficient to first test the model with a computationally cheap experimental design, such as 

spending the entire experimental budget on a single factorial or Latin square design. If this design 

leads to an unidentifiable model, the process can be repeated with the more thorough MBDoE method 

to identify if better experimental design can improve identifiability, hence saving computational 

resources for only when they are needed. The next step is to choose values for the model parameters 

for each candidate model, so that these parameters can later be used to simulate experiments. An 

educated guess for the values of the model parameters can be made from previously collected 

experimental data, from information available in the literature or from researcher experience. This is 

an important step as the value of the parameters can influence practical identifiability. Therefore, if 

there is very little prior information to estimate parameter values, the model identifiability test can 

be repeated numerous times with different sets of parameters. Finally, with the chosen experimental 

design and parameter estimates, the campaign of experiments should be simulated, with the 
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appropriate level of measurement noise. The data obtained from this simulated campaign is then used 

for parameter estimation, and t-values are calculated for each model parameter. If the t-values for all 

parameters are greater than the reference t-value at 95% confidence level and for the given degrees 

of freedom, the model is declared practically identifiable. However, if any one of the parameter t-

values fails the t-test, the model is declared practically unidentifiable for that experimental data set. 

For practically unidentifiable models the practical identifiability test can be repeated with improved 

experimental designs, through the use of MBDoE, however if it continues to fail the t-test the model 

is considered to be practically unidentifiable for the given experimental set-up and experimental 

budget.  
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Figure 2. Flow chart demonstrating the steps in testing the practical identifiability of a single candidate model for a given 
experimental budget. This procedure should be repeated for each of the other candidate models. 
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2.2 Reaction & Candidate Kinetic Models 
The esterification of benzoic acid and ethanol using the solid acid catalyst Amberlyst-15 (Sigma-

Aldrich), shown in Eq 15, was chosen as the case study for this work, because Amberlyst-15 is known 

to be quite stable preventing any possible problems with deactivation and because there are no 

undesired side reactions.  

𝐵𝑒𝑛𝑧𝑜𝑖𝑐 𝐴𝑐𝑖𝑑 + 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 ⇄ 𝐸𝑡ℎ𝑦𝑙 𝐵𝑒𝑛𝑧𝑜𝑎𝑡𝑒 + 𝑊𝑎𝑡𝑒𝑟 (15) 

Amberlyst-15 is a sulfonic acid, macroreticular polymeric resin based on crosslinked styrene 

divinylbenzene copolymers. The catalyst particles are spherical with particle diameters ranging from 

0.35 mm to 1.18 mm. Each catalyst sphere is composed of a porous network of agglomerates of 

randomly packed gel microspheres, which gives the catalyst a high surface area and porosity52, 53.  

Based on kinetic studies in the literature for similar esterification reactions54, 55, a number of candidate 

kinetic models are assumed for this reaction, including simple power law models (M1) and Langmuir 

Hinshelwood models at various levels of complexity (M2, M3 and M4). Due to the large excess of 

ethanol used (molar ratio greater than 9:1), the reverse reaction is considered to be negligible56.  

𝑟′𝐵𝐴 = −𝑘𝐶𝐵𝐴𝐶𝐸𝑡𝑂𝐻 (M1) 

𝑟′𝐵𝐴 =
−𝑘𝐶𝐵𝐴𝐶𝐸𝑡𝑂𝐻

(1 + 𝐾𝑊𝐶𝑊)2
 

 

(M2) 

𝑟′𝐵𝐴 =
−𝑘𝐶𝐵𝐴𝐶𝐸𝑡𝑂𝐻

(1 + 𝐾𝑊𝐶𝑊 + 𝐾𝐸𝑡𝑂𝐻𝐶𝐸𝑡𝑂𝐻)2
 

(M3) 

𝑟′𝐵𝐴 =
−𝑘𝐶𝐵𝐴𝐶𝐸𝑡𝑂𝐻

(1 + 𝐾𝐵𝐴𝐶𝐵𝐴 + 𝐾𝐸𝑡𝑂𝐻𝐶𝐸𝑡𝑂𝐻 + 𝐾𝑊𝐶𝑊 + 𝐾𝐸𝐵𝐶𝐸𝐵)2
 

(M4) 

In these kinetic models the terms 𝐾𝐵𝐴, 𝐾𝐸𝑡𝑂𝐻, 𝐾𝑊 and 𝐾𝐸𝐵 are the adsorption terms for each species, 

which are parameters to be estimated. In all cases the rate constant, k, is expressed in the re-

parameterised Arrhenius form with two parameters KP1 and KP2 as shown in Eq 16, as this 

dramatically reduces correlation between the pre-exponential factor and the activation energy57. 

Here, T is temperature (K), and TM is the mean temperature of 378.15 K, calculated as the average 

value of the upper and lower temperature limits for this experiment.  

𝑘 = 𝑒𝑥𝑝 (−𝐾𝑃1 −
𝐾𝑃2 ∗ 10000

𝑅
∗ [

1

𝑇
−

1

𝑇𝑀
]) 

(16) 

The original Arrhenius parameters k0 and Ea can be obtained from the re-parameterised parameters 

KP1 and KP2 according to  

𝑘0 = 𝑒𝑥𝑝 (−𝐾𝑃1 +
𝐾𝑃2 ∗ 10000

𝑅 ∗ 𝑇𝑀
) 

(17) 

𝐸𝑎 = 𝐾𝑃2 ∗ 10000 (18) 

When proposing simplified versions of the Langmuir Hinshelwood model (M2 and M3), the adsorption 

terms for benzoic acid and ethyl benzoate were the first to be neglected as the literature reports that 

the these adsorption terms are less significant than the more polar water and ethanol species54, 55. 

When developing a further simplified Langmuir Hinshelwood (M2) model the ethanol adsorption term 

was also removed from the model, because as the concentration of ethanol was in excess, it would be 

approximately constant. 
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2.3 Experimental Set-up 
A bead string reactor, where the reactor internal diameter is only slightly larger than the catalyst 

particle as shown in Figure 3, was chosen for this reaction. A picture of the bead string reactor is also 

shown in the SI. String reactors (bead strings or pellet strings etc.) i) provide plug flow behaviour with 

negligible bypass or axial dispersion58, ii) possess efficient heat transfer due to the large surface area 

to volume ratio58, iii) allow the use of similar superficial velocities to those that are used in industrial 

scale reactors58-61 iv) increased reproducibility between reactors as packing is always uniform58, 59 v) 

ease of scale-up through parallelisation62 and vi) they use industrial sized catalyst pellets instead of 

smaller particles or powders, hence allowing the study of any catalyst pellet skin effects63. The bead 

string reactor consisted of a PTFE tubing (VICI Jour) with external diameter of 1.58 mm and internal 

diameter of 1 mm, into which Amberlyst-15 spheres obtained from the 710-850 µm dry sieve fraction 

were loaded, which due to the swelling of Amberlyst, resulted in an average wet diameter of 825 µm 

as measured by a microscope (VHX-600 Digital Microscope, Keyence), and hence giving a reactor 

aspect ratio (reactor diameter divided by catalyst diameter) of 1.2. A typical reactor was loaded with 

0.1 g of Amberlyst-15 resulting in a catalyst bed length of 30 cm. In order to hold the catalyst in place 

a nickel mesh (Tecan, UK) of 25 µm thickness and 25 µm hole diameter was placed at the reactor 

outlet by compressive force between a PEEK union (Upchurch) and a PEEK ferrule (Upchurch).  

 

Figure 3. A section of the bead string reactor showing the PTFE tubing with 1.58 mm outer diameter and 1 mm inner 
diameter, filled with 0.825 mm diameter Amberlyst-15 spheres. 

In order to confirm that the reactor behaved as a plug flow reactor, a step change Residence Time 

Distribution (RTD) study was conducted at four different flowrates in the area of interest for the kinetic 

study, (10, 20, 40 and 80 µL/min). This RTD study is shown in the Supporting Information, and 

confirmed that the reactor could be reasonably modelled as a plug flow reactor as the vessel 

dispersion numbers ranged from 0.01-0.02. Additionally, an external mass transfer study was 

conducted using the copper dissolution method64 to demonstrate that external mass transfer 

resistances could be neglected for this reaction, full details are shown in the Supporting Information. 

The internal mass transfer resistances were assessed using the Weisz-Prater criterion, which showed 

that there were no mass transfer resistances inside the Amberlyst-15 particles (full details are shown 

in the Supporting Information). However, Amberlyst-15 has a macro-reticular structure where each 

catalyst particle is composed of smaller microspheres, and in the literature there is evidence to suggest 

that there are internal mass transfer resistances inside these microspheres that can only be observed 

if the catalyst is ground to break the smaller microspheres65. As this mass transfer resistance inside 

the microspheres is not accounted for, the models developed in this work can be considered as 
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apparent kinetic models. However, these models are still applicable for reactor design, as long as the 

catalyst particles are not ground into a powder.  

Having confirmed that the reactor had approximately plug flow behaviour and that is was reasonable 

to neglect external mass transfer, the reactor was then modelled using the steady-state ideal plug 

flow equation as shown in Eq 19, where W is the catalyst mass (g), 𝑟′𝐵𝐴 is the rate of reaction of 

benzoic acid (mol g-1 s-1) and 𝑣 is the inlet liquid flowrate (L/s). 

𝑑𝐶𝐵𝐴

𝑑𝑊
=

𝑟′𝐵𝐴

𝑣
 

(19) 

The kinetic experiments were conducted by a closed-loop autonomous reactor platform shown in 

Figure 4, which was previously used with a flow microreactor for the homogenous esterification of 

benzoic acid with sulfuric acid catalyst 40. The experimental set-up consisted of four 5 mL glass syringes 

(Cetoni) being driven by a syringe pump (neMESYS low pressure module, Cetoni) where two syringes 

were filled with a low concentration benzoic acid in ethanol solution (0.85 M) and the other two 

syringes were filled with high concentration benzoic acid in ethanol (1.65 M). Each pair of syringes was 

connected by a T-junction (UpChurch) and the fluids were mixed at a Y-junction (UpChurch) before 

entering the string reactor. By varying the flowrate ratio of the two syringes it was possible to obtain 

any feed concentration desired between the concentrations in the two syringes. Four syringes were 

used instead of just two to increase the volume of reagents available for experiments before the 

syringes emptied requiring the experiment to end. The maximum flowrate allowed was set at 60 

µL/min to prevent the syringes emptying too quickly and a minimum flowrate of 15 µL/min was 

chosen to keep the residence time small enough that an experiment could be completed in a 

reasonable amount of time. The string reactor was submerged in an oil bath which was heated by a 

loop cartridge heater (OMEGALUX FGR 6 foot length, 250 W); the maximum allowable temperature 

was 120 oC, as that is the maximum operating temperature of Amberlyst-15. In order to ensure that 

the reactants reached the reaction temperature before they reached the packed Amberlyst section of 

the string reactor, a section of 7 cm of the tubing was filled with inert glass beads (425-600 µm, Sigma 

Aldrich) upstream of the Amberlyst-15 packed section to act as a preheating section (see the 

Supporting Information for more details). The reactor outlet was connected to the 6-way switching 

valve of a sampler-dilutor (Syrris Asia) to allow online analysis by HPLC before flowing into a pressure 

vessel. The pressure vessel consisted of a 50 mL centrifuge tube with a custom made PEEK top with 

three inlet connections designed to withstand high pressures. In order to prevent evaporation of the 

ethanol solvent, the entire system was pressurised to 6 barg with nitrogen using a mass flow controller 

(SLA mass flow controller, Brooks) and a back-pressure regulator (Swagelok K series, 250 psig). There 

was a liquid pressure sensor (Zaiput, Hastelloy 300 psi, ~10 µL dead volume) placed before the reactor 
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entrance to measure the pressure drop in the reactor and a gas pressure sensor (Honeywell 40PC 250 

psig) connected to the pressure vessel.  

 

Figure 4. Autonomous reactor platform used for the kinetic experiments for the esterification of benzoic acid and ethanol 
using Amberlyst-15 as a heterogeneous catalyst in a string reactor. Red dashed lines indicate LabVIEW controls the 
equipment, blue dashed lines indicate LabVIEW reads the measurement from the equipment. BPR, MFC and P indicate 
back-pressure regulator, mass flow controller and pressure sensor, respectively.   

The outlet concentration of benzoic acid and ethyl benzoate was measured by online HPLC (Jasco LC-

4000) using a 250 mm long, 4.6 mm i.d. ODS hypersil column with 5 µm particle size (Thermo Fisher 

Scientific). The HPLC analysis duration was less than 7 min with a flowrate of 1.25 mL/min of 60:40 

acetonitrile: DI water. The column oven was maintained at 30 oC and the detection was achieved using 

a UV-vis detector at 274 nm. The sampler-dilutor applied a dilution factor of 250 using a mixing chip 

(Micromixer Chip, Dolomite) before injecting a sample to the column. The measurement error was 

determined from replicated experiments, and a constant error model was used with a standard 

deviation of 0.030 M and 0.0165 M for benzoic acid and ethyl benzoate respectively. This error was 

due to the combined error in the measurement system (there was a large dilution factor) and the 

experimental control (accuracy of the syringe flowrates, etc.).  

The experimental system was monitored and controlled by LabVIEW, which controlled temperature, 

feed concentration and liquid flowrate as well as measured the temperature, pressures and the outlet 

concentrations of benzoic acid and ethyl benzoate. The LabVIEW code was used to automatically run 

a campaign of steady-state experiments, which were either chosen in advance by the user, or designed 

automatically using MBDoE methods. Python was integrated in the LabVIEW code to perform online 

parameter estimation and MBDoE. Online parameter estimation was achieved using the Nelder-Mead 

simplex algorithm66, and the initial parameter guess required for this algorithm was based on the 

results of initial experimental data. Online MBDoE for both model discrimination and improved 

parameter precision was performed using the SLSQP (Sequential Least Squares Programming) 

algorithm which requires an initial guess for the design vector. In order to prevent the algorithm being 

stuck in a local optimum, 10,000 guesses for the design vector were generated and simulated, the best 

design vector of these 10,000 screening guesses was determined based on the objective criteria 

(either Eq 10 or Eq 14) and this best design was used as the initial guess for the SLSQP optimiser. This 

screening procedure was performed online every time MBDoE was performed. Additionally, the 



15 
 

LabVIEW code included safety shutdown features, where if the temperature or pressure exceeded a 

certain value or if a syringe emptied, the heaters and syringe pumps would be automatically turned 

off. The various pieces of lab equipment were integrated with LabVIEW through the use of equipment 

drivers. Since there was no driver available for the HPLC system (Jasco), the HPLC was set, using the 

Jasco ChormeNav software, to automatically sample the reactor outlet every 7 min and to send the 

results to an Excel file. As LabVIEW is able to access and read Excel files, this allowed the simple 

integration of a complicated piece of equipment with LabVIEW14. 

2.4 Experimental Design Procedure 
In all kinetic studies, the quality of the models developed in terms of both identifying an appropriate 

model structure and obtaining precise parameter estimates is controlled by the size of the 

experimental design space, the magnitude of the experimental error and the number of experiments 

allowed in the experimental budget. However, through the use of the methodology described in the 

following section and shown in Figure 5, it is possible to get the most out of the available experimental 

set-up in terms of minimising the number of experiments required for kinetic model identification. 

This is a general methodology that can be applied to any kinetic study and not just to this case study.  
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Figure 5. Flowchart showing the experimental methodology that can be applied to any general kinetic study. 

Step 1. Factorial Screening & Catalyst Stability Check. In some cases if there is prior information 

available from the literature, it may be most efficient to immediately begin with MBDoE experiments 
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designed for improved parameter precision and then continue on to step 2. However, if there is no 

prior information about the reaction (which is assumed to be the case for this work), then the best 

start is to perform a traditional design of experiments67. In this case, where there are only three 

control variables (temperature, flowrate and feed concentration), it is reasonable to carry out a full 

factorial design at two levels, consisting of 8 steady-state experiments. Here, the levels for each 

variable were 100 oC and 120 oC, 20 µL/min and 40 µL/min and 1 M and 1.5 M benzoic acid feed 

concentration. However, in more general cases, if there were a larger number of control variables a 

fractional factorial or Plackett-Burman design could be used67. In addition to the factorial screening, 

in order to check the stability of the catalyst, the 1st experiment conducted every day was repeated at 

the end of the day. Furthermore a new reactor was packed at the beginning of every day. 

Step 2. Propose and Test Candidate Rate Laws. Candidate kinetic models can be proposed and tested 

against the initial experimental data collected from the factorial campaign, they can be chosen from 

the literature or suggested by the user. Any candidate model that fails the 95% 𝜒2 test, as calculated 

from Eq 4, or has a parameter estimate whose entire 95% confidence interval is not realistic (e.g. 

negative activation energies), is rejected. All other models proceed to the next step. 

Step 3. Practical Model Identifiability for a Given Experimental Budget. In order to reject models 

which are practically unidentifiable for the available experimental set-up and experimental budget, an 

identifiability analysis is conducted, following the general procedure described in the previous section. 

In this case, the allowable design space is defined as 80–120 oC, 15–60 µL/min and 0.9-1.55 M, and 

then the maximum experimental budget is set at 64 experiments. The parameter values used to 

simulate the experiments are the maximum likelihood estimates obtained from performing parameter 

estimation with the experimental data from step 1, factorial screening. Normally distributed noise 

with standard deviations equal to the level expected in the real experimental set-up is added to all 

simulated experiments.  

Step 4. Online MBDoE for Model Discrimination. In order to identify the correct model from all the 

other candidate models that both fit the preliminary data and pass the practical model identifiability 

test, experiments should be conducted using online MBDoE for model discrimination with the Buzzi-

Ferraris criterion43, 44. Multiple experiments are conducted until all but one model is rejected for failing 

the 95% 𝜒2 test. If it is not possible to distinguish between two or more models after a large number 

of discriminating experiments, it may be because the model uncertainty is too large and hence 

experiments have very little discriminating power. In this case it may be more useful to conduct a 

small number of experiments targeted at improved parameter precision for one of the candidate 

models, so that the model uncertainties can be reduced, hence making discrimination easier. If this 

does not work, the models may be too similar to distinguish for the given design space and the given 

level of experimental error. In this case, one of the models is chosen and brought forward to step 5. 

Alternatively, if all models fail the 𝜒2 test it may be necessary to develop new models. It may be the 

case that all of the suitable models are rejected in the practical identifiability test. If this is the case, it 

is suggested to increase the maximum experimental budget to try and assist more models getting 

through the practical identifiability test.  

Step 5. Online MBDoE for Improved Parameter Precision. With the single chosen model, experiments 

are now designed using online MBDoE for improved parameter precision (see Eq 14), until a desired 

level of parameter precision is achieved, at which point the model is considered identified.  
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Note that the experimental system is capable of automatically performing all of the experimental 

steps in this methodology, steps 1, 4 and 5. However, the system does not automatically switch from 

one step to another. In the case of the factorial experiments in step 1, the platform will automatically 

stop once the final pre-defined experiment is finished, but for steps 4 and 5 where experiments are 

designed online by MBDoE, the system will run an infinite number of experiments unless the user 

intervenes and stops the experiments. Therefore, the user must manually select when to swap from 

discriminating experiments to parameter precision experiments. This decision is aided by the 

parameter statistics displayed on the LabVIEW user interface, which are automatically updated with 

each successive experiment. 

3. Results & Discussion 
Step 1. Factorial Screening & Catalyst Stability Check. The first kinetic experiments conducted were 

a campaign of 8 experiments designed by the factorial method. The experimental conditions are 

shown in Figure 6a, while the outlet concentrations are shown in Figure 6b, and are also reported in 

the Supporting Information. In order to assess the stability of the catalyst, after the 8 experiments 

were completed, a 9th experiment was run at the same conditions as the first experiment. As shown 

in Figure 6b, the outlet concentration of the first and ninth experiment are approximately the same 

indicating that the catalyst is stable and no deactivation is present.  

 

Figure 6. a) The experimental conditions of the 8 steady-state experiments designed by the factorial method. b) The 
outlet concentrations measured from these experiments.  

Step 2. Propose and Test Candidate Rate Laws. Using the data set obtained from the 8 factorial 

experiments, parameter estimates and 95% 𝜒2 tests are calculated for each candidate model. It was 

found that all 4 models passed the 95% 𝜒2 test after the initial 8 experiments and therefore all models 

are brought forward to step 3. The parameter estimates, 95% confidence intervals and 𝜒2 values for 

each candidate model are reported in the Supporting Information. 

Step 3. Practical Model Identifiability for a Given Experimental Budget. The experimental conditions 

designed from the four level factorial design are shown in Figure 7. The results of these simulated 

experiments show that model M3 and M4, which are Langmuir Hinshelwood type models with 4 and 

6 parameters, are practically unidentifiable for a campaign of 64 factorial designed experiments, as 

the predicted t-values for the adsorption parameters are below the t-reference value, as shown in 
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Table 1. Further parameter statistics including the parameter estimates and 95% confidence interval 

values are reported in the Supporting Information.  

 

 

Figure 7. Experimental conditions for the simulated experiments for the practical model identifiability test in Step 3, 
designed by the factorial method.  

Table 1. The predicted t-values for the parameters in each model estimated after parameter estimation with the data 
set obtained from the simulated campaign of 64 experiments designed by a four-level factorial campaign.  

 Reaction Rate Law Predicted t-values (reference = 1.657) Action 

  KP1 KP2 KW KEtOH KBA KEB  

M1 𝑘𝐶𝐵𝐴𝐶𝐸𝑡𝑂𝐻 681 26.6 / / / / Accept 

M2 𝑘𝐶𝐵𝐴𝐶𝐸𝐵

(1 + 𝐾𝑊𝐶𝑊)2
 

 

326 22.0 1.95 / / / Accept 

M3 𝑘𝐶𝐵𝐴𝐶𝐸𝐵

(1 + 𝐾𝑊𝐶𝑊 + 𝐾𝐸𝑡𝑂𝐻𝐶𝐸𝑡𝑂𝐻)2
 

 

8.83 21.4 0.63 0.34 / / Reject 

M4 𝑘𝐶𝐵𝐴𝐶𝐸𝐵

(1 + 𝐾𝐵𝐴𝐶𝐵𝐴 + 𝐾𝐸𝑡𝑂𝐻𝐶𝐸𝑡𝑂𝐻 + 𝐾𝑊𝐶𝑊 + 𝐾𝐸𝐵𝐶𝐸𝐵)2
 0.87 19.6 0.02 0.10 0.10 -0.01 Reject 

For model M3, which failed the factorial designed practical identifiability test, the practical 

identifiability was then repeated using MBDoE to improve the predicted t-values, of the 64 simulated 

experiments, the first 8 were designed using a factorial method and the remaining 56 were designed 

using sequential MBDoE. This was not done for model M4 as model M4 was not even close to being 

practically identifiable for this experimental budget and design space. Due to the introduction of 

random noise in the simulated experiments, the results of these practical identifiability tests vary each 

time the simulation is performed, therefore this procedure was conducted twice using D-optimal 

MBDoE and twice using E-optimal MBDoE. The designed experiments are shown in Figure 8 and the 

predicted t-values for these simulated MBDoE campaigns are reported in the Supporting Information. 

The results show that the predicted t-values for both KW and KEtOH improve, however, they do not 

increase enough to pass the t-test. Therefore, both model M3 and M4 were rejected due to them 

being practically unidentifiable and only models M1 and M2 were brought forward to step 4. This is 
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not an unusual result, as the estimation of all of the adsorption terms in the Langmuir Hinshelwood 

equation is frequently so difficult that the use of simplified Langmuir Hinshelwood rate laws is 

common in the literature54. Furthermore in the cases where studies report kinetic parameters for the 

full Langmuir-Hinshelwood rate law, they usually just report parameter values without confidence 

intervals or t-values55, therefore it is possible that these estimated values are actually estimated poorly 

with large confidence intervals. 

  

Figure 8. Experimental conditions of the 64 simulated experiments sequentially designed by a) D-optimal MBDoE and b) 
E-optimal MBDoE, for testing practical identifiability of model M3. 

The practical identifiability step is important as time is not wasted pursuing models that are not 

identifiable with the available experimental set-up and experimental budget. Therefore, rather than 

pursuing a model which may be the true mechanistic model, such as the 6 parameter Langmuir 

Hinshelwood model M4, instead resources are better spent obtaining a practical model such as the 

simplified 3 parameter Langmuir Hinshelwood model M2, that can describe the reaction behaviour in 

the allowable design space. While it can be argued that simplified models will behave poorly when 

extrapolated outside of the design space they were developed in, this is also the case for true models 

if their parameters are estimated poorly. Furthermore, while simplified model structures give less 

mechanistic information about the behaviour of the catalyst, they can still be used for reactor design 

and process control, as long as the process conditions are within the domain of model validity. 

Therefore, in many industrial applications a simplified model could be sufficient.  

Step 4. Online MBDoE for Model Discrimination. The number of candidate models is now reduced to 

2 after models M3 and M4 were rejected for being practically non identifiable for this experimental 

set-up and budget. In order to distinguish between the remaining two models, model M1 and model 

M2, a campaign of online experiments designed by the Buzzi-Ferraris method of MBDoE for model 

discrimination43, 44 was conducted using the autonomous reactor platform. The initial 8 experiments 

from the factorial campaign were used as preliminary information when designing discriminating 

experiments. The designed experimental conditions are shown in Figure 9, and they are reported 

along with the measured outlet concentrations in the Supporting Information. The statistics after each 

experiment are shown in Table 2, where it can be seen that model M1 can be rejected after just 1 

discriminating experiment as it failed the 95% 𝜒2 test. However, the automated system did not have 

a stop condition to automatically detect when to stop performing model discrimination and when to 

perform MBDoE for parameter precision. Therefore three more experiments for model discrimination 
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were designed online and executed before the user intervened and changed the design criteria to 

MBDoE for parameter precision with model M2.  

 

Figure 9. Experimental conditions of the MBDOE-designed discriminating experiments during Step 4. Numbers indicate 
the order in which experiments were designed and conducted. 

Table 2. The 𝝌𝟐 values obtained by online parameter estimation conducted after each successive model discrimination 
experiment designed online by MBDoE as part of Step 4. In the “Experiments Conducted” column, MD1 to MD4 refer to 
the four experiments designed by online model discrimination.  

Experiments Conducted Model M1  𝝌𝟐/𝝌𝟐ref Model M2  𝝌𝟐/𝝌𝟐ref Action 

8 Factorial 10.5/23.7 7.34/22.4 Accept Both Models 

8 Factorial + MD1 35.4/26.3 13.5/25.0 Reject Model 1 

8 Factorial + MD2 37.6/28.9 17.9/27.6 Reject Model 1 

8 Factorial + MD3 41.9/31.4 24.2/30.1 Reject Model 1 

8 Factorial + MD4 54.7/33.9 26.9/32.7 Reject Model 1 

Interestingly, by examining how the parameter statistics change with each successive experiment for 

the accepted model structure M2 (which are reported in the Supporting Information), it is observed 

that after the 4th discriminating experiment, that all the parameters in model M2 passed the t-test. 

This is significant as passing the t-test for all parameters is frequently used as the criterion for 

identifying a model and ending the experiments.  

Step 5. Online MBDoE for Improved Parameter Precision. The single candidate model, M2, which is 

both practically identifiable and capable of fitting all the experimental data collected, was already 

identified in the model discrimination stage, as all the parameters passed the t-test. However, in order 

to improve the confidence in which the parameters are known, and to hence improve model 

prediction certainty, a campaign of online MBDoE experiments for improved parameter precision 

using the D-optimal criterion was performed by the autonomous reactor platform. The experimental 

measurements from the 8 factorial experiments and the 4 discriminating experiments were provided 

to the MBDoE algorithm to give prior information about the system. The experimental conditions 

designed by the MBDoE algorithm are shown in Figure 10, and are reported in the Supporting 

Information, (along with the measured outlet concentrations and detailed parameter statistics). The 

automated system was stopped by user intervention at the end of a working day, when it had already 
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designed and preformed 8 experiments. The parameter statistics after these 8 experiments, were 

found to have improved significantly compared to their values at the end of the model discriminating 

experiments, with the confidence intervals for parameters KP1, KP2 and KW being reduced from 0.11, 

0.74 and 0.25 to 0.08, 0.45 and 0.2. At this point, the model is declared to be well identified with 

acceptable confidence intervals and no further experiments were considered necessary.  

 

Figure 10. Experimental conditions of the D-optimal MBDOE-designed experiments for improved parameter precision 
during Step 5. Numbers indicate the order in which experiments were designed and conducted. 

The final parameter estimates for KP1, KP2 and KW are converted back to the original form of the 

Arrhenius equation and the final rate expression is shown in Eq 20 where the pre-exponential factor 

k0 was 185.3 L2 g-1 s-1 mol-1, the apparent activation energy Ea was 68.8 kJ/mol and the adsorption 

constant of water KW was 0.53 L/mol. In comparison with the literature, Pipus et al, reported a similar 

activation energy of 69.1 ±0.5 kJ/mol56. Further comparisons of the model parameters cannot be made 

as Pipus et al used a different model structure, they reported that the reaction could be modelled as 

second-order with respect to benzoic acid without any adsorption terms. Other work using a slightly 

different catalyst, Amberlyst-39, reported that the reaction was best described by a Langmuir-

Hinshelwood mechanism with an activation energy of 79.9 kJ/mol55.  

𝑟′𝐵𝐴 =
185.3 ∗  𝑒𝑥𝑝 (−

68800
𝑅𝑇 ) ∗ 𝐶𝐵𝐴𝐶𝐸𝑡𝑂𝐻

(1 + 0.53𝐶𝑊)2
 

(20) 
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The adequacy of the model developed in this work is demonstrated by passing the 95% 𝜒2 test and 

the parity plot in Figure 11. 

 

Figure 11. Parity plot for the model-predicted and experimentally measured concentrations of benzoic acid and ethyl 
benzoate.  

It can be shown that the model prediction uncertainty decreased significantly after conducting the 8 

MBDoE experiments for improved parameter precision, as shown in Figure 12 for one specific 

experimental condition (120 oC, 20 µL/min inlet flowrate, 1 M benzoic acid inlet concentration). This 

figure, showing the observed frequency of response values, is created using the multivariate normal 

distribution method previously described in the Parameter Precision section. Further model 

uncertainty graphs for other experimental conditions are shown in the Supporting Information. If even 

smaller confidence intervals were required it would be possible to continue performing further 

experiments designed by MBDoE, however the expected gain in information with further experiments 

is expected to be diminishing, unless changes to the experimental procedure allowed an exploration 

of a wider design space.  
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Figure 12. Model prediction for model M2 at a reaction temperature of 120 oC, an inlet flowrate of 20 µL/min and a feed 
concentration of 1.5 M benzoic acid and 0.1156 g of Amberlyst-15 catalyst after the factorial (Step 1), model 
discrimination (Step 4) and parameter precision campaigns (Step 5).  

4. Conclusions 
A bead string reactor was used for studying the kinetics of the esterification of benzoic acid and 

ethanol using the heterogeneous Amberlyst-15 catalyst, as it provided plug flow behaviour with 

efficient mass transfer to allow the study of the catalytic kinetics. Due to the macroreticular structure 

of Amberlyst-15 it was not possible to remove internal mass transfer resistances from the 

microspheres that make up the larger catalyst structure, and instead an apparent kinetic model is 

reported. The developed 5-step methodology offered a systematic way to identify practical kinetic 

models and in this case a simplified 3-parameter Langmuir Hinshelwood model was found to be the 

most appropriate kinetic model that combined practical identifiability, while also being able to 

describe the reaction in the experimental design space. The methodology proposed minimised the 

number of experiments required by preventing the pursuit of non-identifiable models, such as a 6-

parameter Langmuir Hinshelwood model. Further reduction in the number of experiments was 

achieved by using online MBDoE for both model discrimination and for precise parameter estimation. 

A single MBDoE designed experiment for model discrimination was found sufficient to distinguish 

between two candidate models. The use of MBDoE for parameter precision gave the desired 

improvement in parameter precision, which then in turn reduced the uncertainty associated with 

model predictions. The use of a closed loop system in this work enabled the use of online MBDoE 

which was a key component of the experimental methodology and resulted in all of the kinetic 

experiments in this work being completed in just three days. Furthermore, the closed loop system also 

offered major time savings as it could be operated unsupervised, freeing up researcher time for other 

tasks. 

Supporting Information 
Images of the bead string reactor, details of the residence time distribution study, details of the 

external and internal mass transfer study, numerical values from the automated kinetic experiments 
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and their associated parameter statistics. This information is available free of charge via the Internet 

at http: //pubs.acs.org. 
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