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Abstract  

Parkinson’s disease (PD) is a genetically complex disorder. Multiple genes have been shown 

to contribute to the risk of PD, and currently 90 independent risk variants have been identified 

by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, 

and GBA) have been shown to contain variability across a spectrum of frequency and effect, 

from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in 

GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such 

as PD and Lewy body dementia (LBD). These variants, which reduce or abolish enzymatic 

activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in 

the field is what other genetic factors that influence GBA-associated risk for disease, and 

whether these overlap with known PD risk variants. 

Using multiple, large case-control datasets, totalling 217,165 individuals (22,757 PD cases, 

13,431 PD proxy cases, 622 LBD cases and 180,355 controls), we identified 1,772 PD cases, 

711 proxy cases and 7,624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We 

performed a genome-wide association study and analysed the most recent PD-associated 

genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to 

replicate our findings in two independent datasets, including the personal genetics company 

23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall PD 

genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA 

variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this 

signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin 

B) are the most significant contributors. Risk variants in the CTSB locus were identified to 

decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic 

interaction between GBA and CTSB and GBA p.N370S neurons were shown to have decreased 

Cathepsin B expression compared to controls. These data provide a genetic basis for 

modification of GBA-associated PD risk and age at onset, although the total contribution of 

common genetics variants is not large. We further demonstrate that common variability at 

genes implicated in lysosomal function exerts the largest effect on GBA associated risk for 

disease. Further, these results have implications for selection of GBA carriers for therapeutic 

interventions. 
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Introduction 

Heterozygous functional GBA variants are one of the most common genetic risk factors for 

Parkinson’s disease (PD) and Lewy body dementia (LBD), found in 3-20% of patients in 

different populations (Blauwendraat et al. 2018b; Gan-Or et al. 2015c; Guerreiro et al. 2018; 

Lesage et al. 2011; Rivas et al. 2018). In a homozygous or compound heterozygous state, GBA 

variants may cause Gaucher disease, an autosomal recessive lysosomal storage disorder. GBA 

encodes the lysosomal enzyme glucocerebrosidase (GCase), and it is hypothesized that loss of 

GCase activity leads to a reduced ability to degrade α-synuclein, encoded by SNCA. 

Aggregated, misfolded α-synuclein protein deposits in the form of Lewy bodies and Lewy 

neurites are the pathological hallmarks of PD and LBD.  

Notably, GBA variants that do not cause Gaucher disease but do confer increased risk for PD 

and LBD have been identified. It is hypothesized that while these variants result in reduced 

GCase activity, the activity is not low enough to cause Gaucher disease. Multiple rare GBA 

variants have been described in PD in different populations. More common variants include 

p.E326K, p.T369M, p.N370S and p.L444P, whose frequencies vary with ethnicity and are each 

found on different haplotypes (Blauwendraat et al. 2018b; Leija-Salazar et al. 2019). In some 

ethnicities, such as the Ashkenazi Jewish population, certain GBA variants are found in about 

5% of unaffected individuals, and 17-20% of PD patients (Gan-Or et al. 2008; Ruskey et al. 

2019; Sidransky et al. 2009). 

In European populations, the p.E326K risk variant is found in approximately 2% of the general 

population (https://gnomad.broadinstitute.org/). However, the majority of GBA variant carriers 

will not develop PD, implying that there are other genetic and/or environmental factors that 

affect the penetrance of these variants. Studies that have examined the penetrance of GBA 

variants in carriers suggest it is age-related and is typically between 10-30% (Anheim et al. 

2012; Rana et al. 2013). Furthermore, penetrance differs across GBA variants, with high-risk 

variants leading to earlier disease onset compared to lower risk variants (Gan-Or et al. 2015a). 

Interestingly, it was demonstrated that various GBA variants, including p.E326K, p.T369M and 

p.N370S have similar effects on GCase activity in humans, reducing it by 18-46% on average 

(Alcalay et al. 2015). Additionally, genotype-phenotype studies have shown that PD patients 

with GBA variants have an earlier age at onset (AAO), faster disease progression, and higher 

rates of non-motor symptoms, such as rapid eye movement (REM) sleep behaviour disorder 

https://gnomad.broadinstitute.org/
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(RBD), autonomic dysfunction, hallucinations and cognitive decline, compared to those with 

non-GBA associated PD (Gan-Or et al. 2018).  

 

In recent years, GBA has become a prominent target for therapeutic development, and the first 

gene-specific phase 2 clinical trial in PD is currently ongoing for GBA-positive PD patients 

(ClinicalTrials.gov Identifier: NCT02906020). One of the concerns in performing such a trial 

is that, despite the randomization for treatment and placebo groups, these groups will remain 

unbalanced in terms of factors that affect their progression, which can be a significant 

confounder of trial outcome (Leonard et al. 2018). In addition, it is likely that future preventive 

clinical trials will also target populations that are at high risk for Lewy body diseases, such as 

GBA risk variant carriers with prodromal symptoms. Therefore, identifying factors that can 

affect the penetrance and clinical presentation of GBA-associated PD will be crucial for trial 

design. Furthermore, modifiers of penetrance AAO may also become drug targets.  

 

In the current study, we gathered data from multiple sources, including the International 

Parkinson’s Disease Genomics Consortium (IPDGC) and the UK Biobank (UKB), to identify 

GBA variants in both cases and controls and used 23andMe and whole-genome sequencing 

data for further validation. Subsequently, we used genome-wide association studies (GWAS) 

and genetic risk scoring to identify genetic variants that modify the penetrance and AAO of 

GBA-associated PD. We then examined protein levels of the top hits in forebrain neurons 

differentiated from iPS cells of individuals with and without GBA variants. 

 

Materials and methods 

Genotyping data 

International Parkinson Disease Genomics Consortium genotyping data 

Genotyping data (all Illumina platform based) was obtained from International Parkinson’s 

Disease Genomics Consortium (IPDGC) members, collaborators, and public resources 

(Supplementary Table 1 and 2). All datasets underwent quality control separately, both on 

individual-level data and variant-level data before imputation as previously described 

(Blauwendraat et al. 2019; Nalls et al. 2018). Refer to Supplementary data for a detailed 

description of data processing. 

For GWAS analyses, variants passing the following post-imputation criteria were included: R2 

> 0.8, minor allele frequency > 0.05, and genotype missingness < 0.15 across subsets. Case-
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control GWAS were performed using RVTESTS with default settings (Zhan et al. 2016) using 

logistic regression with sex, age (if not available the mean age of all data was used), principal 

components (PC) 1-5, and dataset origin as covariates. AAO GWAS was performed in GBA 

carriers only using RVTESTS linear regression with AAO as a continuous phenotype and sex, 

PC 1-5 and dataset origin as covariates. Cases without age information were excluded from the 

AAO GWAS, and individuals with two GBA variants were excluded from all analyses to 

prevent bias (Supplementary Table 2).  

 

Lewy body dementia genotyping data 

LBD cases and controls were genotyped for ongoing projects at the Neurodegenerative 

Diseases Research Unit (NDRU) using the NeuroChip genotyping array (Illumina, San Diego, 

CA, USA). Genotyping was performed as previously described (Blauwendraat et al. 2017). All 

cases met the McKeith criteria for probable or definite disease (McKeith 2006). For more 

details on this dataset, see Supplementary Table 2. Genotype quality control, processing, and 

analysis was performed similar to the above described IPDGC genotype data. For analyses, 

variants that passed the following post-imputation criteria were included: imputation R2 > 0.8 

and minor allele frequency > 0.05. Case-control analyses were performed using RVTESTS 

using logistic regression on genotype dosages with sex, and PC 1-5 as covariates. Age was not 

used since the majority of the individuals had only age of death information available. 

 

McGill GBA genotyping data 

Ashkenazi Jewish PD cases were genotyped at McGill University using the Illumina Human 

OmniExpress Array + custom SNPs of the NeuroX array (Nalls et al. 2015b). Sanger 

sequencing or targeted next-generation sequencing confirmed GBA p.N370S status. For more 

details on this dataset, see Supplementary Table 2. GBA variant carriers from the McGill dataset 

included samples from Columbia University, NY, USA (Alcalay et al. 2015) and Sheba 

Medical Center, Ramat Gan, Israel (Ruskey et al. 2019). Genotype quality control, processing, 

and analysis was performed similar to the above described genotyping data.  

 

UK Biobank data 

Imputed UKB genotype data (v3) was downloaded (April 2018) under application number 

32663 (Bycroft et al. 2018; Sudlow et al. 2015). All European ancestry individuals (based on 

code 22006) were screened for the common GBA coding variants p.E326K, p.T369M (both 

directly genotyped) and p.N370S (imputed R2=0.81). PD cases were identified using ICD10 
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code “G20” from data fields 41202 (Diagnoses - main ICD10), 41204 (Diagnoses - secondary 

ICD10) and 40002 (Contributory (secondary) causes of death: ICD10). Additionally, self-

report PD cases were included from data field 20002 with code “1262”. “Proxy” PD cases were 

included by using individuals who reported a parent with PD (paternal PD, data field 20107 

and maternal PD, data field 20110) which have been previously shown to share genetic risk 

with PD cases (Nalls et al. 2018). Controls were set as people with no report of PD, no parent 

with PD and no sibling with PD (data field 20111). Covariates were obtained from the data 

fields: genetic sex (22001) batch (22000), age of recruitment (21022), and Townsend index 

(189). Individuals were filtered for relatedness (PIHAT>0.125) based on the pre-imputed data. 

Imputed genotypes were converted to PLINK2 .pgen files using PLINK2 (version v2.00) and 

filtered for missingness (<0.05) and minor allele frequency (>0.05), Hardy-Weinberg 

equilibrium of P ≥1E-6 in controls and imputation quality (R2 > 0.8). GWAS was performed 

using PLINK2 logistic regression with covariates including batch, age of recruitment, 

Townsend index, and 5 PCs created using FlashPCA (Abraham et al. 2017). All UKB analyses 

were performed using population controls with age of recruitment ≥60 and for GBA carrier 

case-control analyses, the case-control ratio was set to 1:9 by randomly selected controls. 

 

Additional datasets 

Additional results for variants of interest were obtained from 23andMe and whole-genome 

sequencing data obtained from various resources. Analyses were performed using similar and 

identical methods as described above. Associations in 23andMe were performed using logistic 

regression correcting for age, sex, genotyping platform (v4 or v5) and 5 PCs. Genome-

sequencing data was obtained from multiple ongoing projects at the Laboratory of 

Neurogenetics, see Supplemental Data for a detailed description. Sample sizes can be found in 

Supplementary Table 3. 

 

Genetic risk score analyses 

To assess the influence of the genetic risk score (GRS), we calculated the GRS using the effect 

sizes from the most recent PD GWAS variants (Nalls et al. 2018) (see Supplementary Table 

4). Note that most of the data are included in the latest PD GWAS, however, for the calculation 

of the GRS in the UKB data we excluded the UKB summary statistics. Overall, at least 65 of 

these variants of interest were imputed with high quality (R2 > 0.8) in the included datasets, 

allowing for a maximum of 15% variant missingness across any constituent data subset due to 

differing genotyping backbones. For the IPDGC dataset, rs356182 was replaced by rs356219, 
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due to a higher imputation quality (R2 > 0.82 and D' 0.959 between variants in the IPDGC 

reference panel). Variants from the GBA locus and LRRK2 p.G2019 were excluded from the 

GRS in analyses including GBA carriers only. The GRS was calculated and processed using 

PLINK (v1.90) for each individual as described previously (Nalls et al. 2015a). To make the 

scale of analyses relating to the PD-GRS more easily interpretable, PD-GRS were converted 

to Z-scores. GRS associations were performed with a logistic regression in R (v3.5.1) using 

case-control status or linear regression with AAO as the outcome phenotype. As covariates, we 

included: sex, age (in case-control status comparison only), the first 10 PCs, and the dataset 

origin (due to the fact that the IPDGC data is derived from multiple sources see Supplementary 

Table 2). Area under the curve risk predictions based on the GRS were performed using the 

pROC package (Robin et al. 2011). 

 

Additional analyses 

GBA variants were annotated using ANNOVAR (Wang et al. 2010). Nucleotide positions in 

GBA were based on build hg19 and amino acid positions were based on NM_001005742. Note 

that historically these GBA variants are also known as p.E365K → p.E326K (rs2230288), 

p.T408M → p.T369M (rs75548401), and p.N409S → p.N370S (rs76763715). Where possible, 

association results were meta-analysed with METAL (v.2011-03-25) using default settings 

(Willer et al. 2010) or using the metaphor R package (2.0) using fixed effects models 

(Viechtbauer 2010). We excluded SNPs with a heterogeneity I2 statistic > 80% and variants 

that were present in only one GWAS. Limited population stratification was seen despite low 

sample numbers in some GWAS (Supplementary Table 5). Differences in AAO between GBA 

variants was tested using linear regression in R using AAO as the dependent variable, 

correcting for sex, PCs 1-5, and the dataset origin as covariates. Conditional GCTA-cojo 

analyses (Jian Yang et al. 2011; J. Yang et al. 2012) were performed to identify whether there 

were multiple independent signals in loci of interest, using the previously described IPDGC 

reference panel (Blauwendraat et al. 2019; Nalls et al. 2018). Genetic interaction analyses were 

performed using R (version 3.5) using an interaction term created using SNP1+1 * SNP2+1, 

followed by a regression using both variants and covariates (PC1-5, sex and age if available).  

Exploratory gene expression values and functional annotation of identified risk variants were 

obtained by mining datasets including: the largest brain eQTL study to date (Qi et al. 2018), 

the GTEx QTL portal V7 (https://gtexportal.org/) (Consortium 2013) and the NABEC dataset 

(phs001300.v1.p1, (Gibbs et al. 2010)). LocusZoom  (Pruim et al. 2010) and LocusCompare 

plots (B. Liu et al. 2019) were generated for the regions of interest and were compared to the 

https://gtexportal.org/
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latest published PD GWAS. Single-nuclei RNAseq expression of three frozen prefrontal cortex 

samples and four frozen hippocampal samples were obtained from dbGaP accession 

phs000424.v8.p1 (Habib et al. 2017). Data was processed using Seurat and genes of interest 

were highlighted to explore expression patterns (Butler et al. 2018). 

GBA variant validation 

To validate the genotyping and imputation of GBA variants, we obtained next-generation 

sequencing (targeted resequencing and genome sequencing) data from two parallel IPDGC 

projects. GBA carrier genotypes were merged using PLINK (v1.90) with both the resequencing 

and whole genome sequencing data. Overlapping individuals were identified using > 0.9 

PIHAT values. Additionally, the majority of the PROBAND dataset individuals were Sanger 

sequenced for the full GBA gene as described elsewhere (Malek et al. 2018). In the McGill 

dataset, GBA variants were confirmed using Sanger sequencing or targeted next generation 

sequencing as previously described (Ruskey et al. 2019). Overall, the concordance rate between 

the imputed/genotype data and the sequence data for the presence of at least one p.N370S and 

p.T369M allele was 100% and for p.E326K was 98% and 94% in the next-generation and 

Sanger sequencing data, respectively (see Supplementary data for more details).  

 

Induced pluripotent stem cells and neuron analysis 

Forebrain neuron differentiation 

Induced pluripotent stem cells (iPSC) from the Parkinson’s Progression Marker Initiative 

(PPMI) were selected based on their genotype at GBA and rs1293298 then differentiated to 

forebrain type neurons. iPSCs were grown in E8 media (ThermoFisher) on Matrigel until 90% 

confluent. When cells grew to confluence they were transitioned to N3 media (50% 

DMEM/F12, 50% Neurobasal with 1x Penicillin-Streptomycin, 0.5x B-27 minus vitamin A, 

0.5x N2 supplement, 1x Glutamax, 1x NEAA, 0.055mM 2-mercaptoethanol and 1ug/ml 

Insulin) plus 1.5uM Dorsomorphin (Tocris Bioscience) and 10uM SB431542 (Stemgent). 

Media was replaced every day for 11 days. On day 12 Dorsomorphin and SB431542 were 

removed and cells continued to be fed each day with N3. N3 was supplemented with 0.05uM 

Retinoic acid from days 16 through 20. The differentiating cells were split 1:2 with Accutase 

and seeded with ROCK inhibitor onto Poly-L-ornithine (Sigma), fibronectin (2ug/ml) and 

laminin (0.2ug/ml) coated plates on day 20. Cells were then fed daily with N4 media (same as 

N3 plus 0.05uM Retinoic acid, 2ng/ml BDNF and 2ng/ml GDNF) until day 26 when they were 

frozen in synthafreeze. Vials were thawed as needed in N4 media. Differentiation state was 
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confirmed by immunocytochemistry for neuronal markers Beta-III Tubulin (Novus 

Biologicals, NB100-1612) and MAP2 (Santa Cruz Biotechnology, sc-20172) with nuclei 

counterstained for Hoechst 33342 (ThermoFisher Scientific, H3570).  

 

Protein analysis 

Protein lysates were collected in buffer with 20 mM TrisHCl pH 7.5, 150mM NaCl, 1mM 

EDTA, 0.3% Triton 10% Glycerol, 1x protease inhibitors, and 1x phosphatase inhibitors and 

run as previously reported (Blauwendraat et al. 2018a) on 4-20% Criterion TGX gels (Bio-

Rad) in Tris-glycine running buffer and transferred to nitrocellulose membranes (Bio-Rad) 

using the Trans-blot Turbo system (Bio-Rad). Membranes were blocked in Odyssey Blocking 

buffer (LI-COR) diluted by 50% in PBS. Primary antibodies for Cathepsin B (Abcam, 

ab92955) and α-synuclein (BD Biosciences, 610787) were incubated overnight at 4 degrees. 

Primary antibody to β-III Tubulin (Novus Biologicals, NB100-1612) was incubated for one 

hour at room temperature. LI-COR secondary IRDye antibodies were incubated 1 hour at room 

temperature. Proteins were visualized on the Odyssey CLx Imaging System (Licor) and 

quantified using Image Studio Lite (Licor). 

 

Results 

Initial data overview 

In total we included 21,478 PD cases and 24,388 controls from IPDGC datasets; 1,176 PD 

cases, 13,431 proxy PD cases, and 155,325 population controls from the UKB dataset; 103 

GBA p.N370S PD cases from the McGill dataset; and 622 LBD cases and 782 controls from 

the NDRU dataset (Supplementary Table 2). In the HRC reference panel, 10 coding GBA 

variants are present (Supplementary Table 6), with varying imputation qualities since common 

variants are more easily imputed than variants with lower frequencies. Additionally, some GBA 

variants were directly genotyped in some datasets (Supplementary Table 1). The three most 

common variants (p.E326K, p.T369M and p.N370S) had the highest quality, we therefore 

selected these three variants for all subsequent analyses. This resulted in a total of 1,772 GBA 

carriers with PD, 81 with LBD, 711 PD proxy cases, and 7,624 control GBA carriers. We 

excluded individuals carrying two GBA variants to ensure conservative estimates and reduce 

bias due to the association with Gaucher disease (Supplementary Table 2). All included GBA 

variants (p.E326K, p.T369M and p.N370S) have previously been shown to be enriched in cases 

in all datasets.  
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Parkinson’s disease genetic risk score modifies disease risk in GBA carriers  

Exploring the potential effect of PD case-control GWAS loci, we calculated the PD-GRS, both 

including and excluding GBA variants and LRRK2 p.G2019S for all three datasets. To compare 

the effect size associated with the GRS, we examined four groups within each dataset: controls 

without a GBA risk variant, PD cases without a GBA risk variant, controls with a GBA risk 

variant, and PD cases with a GBA risk variant. Additionally, for the UKB dataset, we included 

proxy-PD cases (having a parent with PD) (Figure 1). As expected, the GRS is significantly 

associated with risk in GBA-negative PD cases compared to controls and interestingly, also in 

the NDRU-LBD dataset (Figure 1 and Table 1). This effect is highly similar between GBA 

carrier controls and GBA carrier cases, when excluding GBA and LRRK2 variants from the 

genetic risk score (Figure 2 and Table 1). This effect is consistent in subsets based on all three 

GBA variants (Supplementary Figure 1). Although this was not significant in the (smaller) 

p.N370S group, the direction and effect size were highly similar to the other GBA variants 

(Supplementary Figure 1, ranging ORs from 1.31 to 1.55). Notably, we do not observe a 

consistent difference in genetic risk between PD or LBD cases with and without GBA variants 

when excluding GBA and LRRK2 in the genetic risk (Table 1). 

When assessing the predictive power of the GRS in GBA positive cases versus GBA positive 

controls (excluding GBA and LRRK2 variants in GRS calculations), these values were slightly 

lower compared to the reported predictive power of the GRS in PD cases as previously 

described by Nalls et al (Nalls et al. 2018) (AUC=0.651, 95%CI 0.617-0.684), with AUC of 

0.614 (95%CI 0.591-0.637) in the IPDGC dataset and 0.622 (95%CI 0.561-0.684) in the UKB 

dataset (Supplementary Table 7 and Supplementary Figure 2-4). As expected, the NDRU-LBD 

dataset performed poorer than the PD cases with an AUC of 0.570 (95%CI 0.540-0.600), 

supporting the notion of partial overlapping and shared genetic risk between PD and LBD. 

 

SNCA and CTSB loci as genetic modifiers of disease risk in GBA carriers  

To identify potential genetic modifiers of GBA-associated PD penetrance, we performed a 

GWAS comparing PD patients with GBA variants and controls with GBA variants. We first 

examined the association using all three GBA variants together (p.E326K, p.T369M and 

p.N370S) in the IPDGC and the UKB dataset, followed by a meta-analysis of both. After meta-

analysing the GBA data in both datasets, no genome-wide significant variants were identified 

(Supplemental Figure 5).  
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When solely examining the 90 PD variants previously identified in a PD case-control GWAS 

(Nalls et al. 2018), variants in two PD loci passed Bonferroni multiple test correction for 

association with PD, SNCA and CTSB. The strongest association was observed with rs356219 

in the SNCA locus (meta-P=9.26E-07, OR=1.375, CI95%=1.211-1.563, Table 2 and 

Supplemental Figure 6). In addition to SNCA, the CTSB locus rs1293298 (meta-P=9.74E-06, 

OR=0.725, CI95%=0.629-0.836, Table 2 and Supplemental Figure 7) was also significantly 

associated with GBA penetrance after correction for multiple testing (Supplementary Table 8). 

Additional investigation of these two variants was performed in the 23andMe PD case-control 

dataset and in a WGS dataset (Table 2). Meta-analyses of these results showed an increase of 

significance level for the CTSB variant (P=6.34E-6) and a genome-wide significant P-value 

(P=2.23E-11) for the SNCA variant (Table 2 and Supplemental Figures 9 and 10). The majority 

of these effects are mostly driven by p.E326K carriers likely due to the larger sample size, but 

the effect size was consistent for each of the three variants when tested individually in the 

IPDGC dataset (Supplementary Table 9, Supplementary Figure 6 and 7). 

 

Evidence for a potential genetic interaction between CTSB and GBA 

Interestingly, the OR of the CTSB variant rs1293298 association in the GBA GWAS is about 

3-fold lower compared to the PD case-control GWAS (Table 2, (Nalls et al. 2018) OR =0.911, 

CI95%=0.891-0.932 (Supplemental Figure 8), while for the SNCA variant this was not the case. 

This suggests a potential interaction between CTSB and GBA. Examining this possibility 

further resulted in a significant interaction term after meta-analysing effects of the IPDGC and 

UKB data (Table 2). As expected, no consistent significant interaction term was identified 

between SNCA and GBA (Table 2, Supplemental Figure 11). Replication of these results was 

investigated in the 23andMe and LNG Genomes data for both interactions. In both datasets the 

interaction terms were not significant, although the direction of effect was the same for CTSB 

x GBA (Table 2 and Supplemental Figure 12). 

 

Genetic dissection of the CTSB GWAS locus 

To evaluate the potential molecular mechanism for increased risk of PD in GBA carriers, we 

explored gene expression and eQTL datasets for the two significant associated loci, SNCA 

(rs356219) and CTSB (rs1293298). For the SNCA locus, several previous reports showed that 

risk variants in this locus likely increase SNCA expression (Pihlstrøm et al. 2018; Soldner et al. 

2016). For the CTSB, no comprehensive assessment has yet been performed. In both the PD 
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GWAS and the GBA GWAS, rs1293298 appears to be the index variant and both GWAS 

signals appears to be highly similar (Figure 3 A,B,C).  

The protective allele (A) of the CTSB variant rs1293298 increases CTSB expression in the brain 

in both GTEx and NABEC datasets and was significant in the latest meta-analyses of brain 

eQTL data (Supplementary Table 10). Results from the NABEC dataset suggest that specific 

isoforms of CTSB are differentially regulated and the QTL effect is mainly for the most highly 

expressed transcript (isoform: uc003wuq.3, Supplementary Figure 13). Interestingly the QTL 

signal shows high correlation with the PD GWAS signal (Figure 3D). 

Exploring post-mortem brain-derived single nuclei RNAseq data showed that CTSB is mainly 

expressed in neurons and microglia in a pattern that is similar to SNCA expression 

(Supplementary Figure 14). This suggests that the biological effects of these variants possibly 

takes place in these cell types, which is in line with pathology and previous literature. We 

attempted to examine GBA expression levels, but they were too low to assess. 

Given the function of Cathepsin B (encoded by CTSB) as lysosomal protease, which is of 

interest for PD pathogenesis in general (McGlinchey and Lee 2015), we explored other 

members of the cathepsin family for: 1) genetic association in the most recent PD GWAS; 2) 

genetic association in GBA GWAS and 3) the presence of an eQTL at each locus. In addition 

to the peak at CTSB, only CTSE has a PD GWAS peak in close proximity, however this locus 

is already nominated as the NUCKS1/RAB29 locus (Supplementary Table 11). Interestingly, 

for almost all cathepsins a brain eQTL has been identified. However, with the exception of 

CTSB, none of the eQTLs were associated with PD (Supplementary Table 11). These results 

suggest that expression differences in other cathepsins, including CTSD and CTSL which were 

previously suggested to degrade alpha-synuclein (McGlinchey and Lee 2015), do not modulate 

risk for disease.  

 

Cathepsin B and α-synuclein levels in iPSC-derived neurons from GBA carriers and non-

carriers 

We examined the potential relationship between GBA and CTSB using PPMI iPSCs 

differentiated to forebrain neurons. For this analysis we used iPSCs from individuals with and 

without the GBA p.N370S variant to interrogate Cathepsin B and α-synuclein protein levels in 

the context of GBA variants. All lines used were heterozygous for rs1293298 at the CTSB locus 

and neuronal differentiation was confirmed by immunocytochemistry for β-III tubulin and 

MAP2 (Supplementary Figure 15). Previous work has shown that Cathepsin B protein is highly 

cleaved and processed before becoming active (Chan et al. 1986; Ritonja et al. 1985). The 
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protein can be cleaved to a final heavy (24 kDa) and light chain (5 kDa) or they can remain 

uncleaved and run at 29 kDa. Processing of Cathepsin B is cell type dependent (Chen et al. 

2019) and in our cells we see a double band pattern corresponding to the heavy plus light chain 

and the heavy chain alone. When quantifying both bands we observed a significantly lower (P 

= 0.0291; unpaired t-test, n=6) level of active Cathepsin B protein in GBA variant carriers 

compared to cells without GBA variants (GBA WT = 0.528 ± 0.0930; GBA p.N370S = 0.263 ± 

0.0467) (Figure 4). These results show that the GBA variant carriers have reduced levels of 

active Cathepsin B which may result in even lower lysosomal protease activity and increased 

accumulation of protein aggregates in neurons. Although the forebrain neurons carrying the 

GBA variant did not have increased levels of α-synuclein (Supplementary Figure 16) it is 

possible that the overall reduction in lysosomal proteases allows for a faster accumulation of 

α-synuclein aggregates as neurons age. 

 

Genetic modifiers of age at onset in GBA associated Parkinson’s disease cases 

Information on AAO was available for the majority of the IPDGC GBA PD cases (89.9% 

n=1353 cases, average=60.54 years, SD=11.42). Cases with two GBA variants (either 

homozygous or compound heterozygous, n=38) had a lower AAO compared to single variant 

carriers; however, no statistically significant difference was detected (P= 0.107; linear 

regression, Beta=-2.93 years, SE=1.82, two GBA variant case average=56.81, SD=10.50 vs 

single GBA variant case average=60.54, SD=11.42). The AAO of GBA PD cases is 

significantly lower compared to non-GBA PD cases (linear regression, P=9.70E-06, Beta=-

1.43, SE=0.324, GBA PD case average=56.81, SD=10.50 vs non-GBA case average=60.54, 

SD=11.42). On average p.N370S cases had the earliest AAO followed by p.E326K and 

p.T369M (Figure 5C). Of note, the LRRK2 p.G2019S variant was also identified in 14 GBA 

carriers (9 p.N370S and 5 p.E326K carriers) and did not seem to influence the AAO P=0.44 

(Linear regression, Beta=2.41, SE=3.15, GBA-PD-LRRK2 p.G2019S carriers average=63.86, 

SD=10.87 vs GBA-PD-non-LRRK2 p.G2019S average=60.29, SD=11.80), which is consistent 

with previous findings, although power was limited given the small number of included 

individuals (Yahalom et al. 2018). 

 

To identify potential GBA AAO modifiers, we performed a GWAS using AAO as phenotype 

in all GBA positive PD cases (n=1,353). No genome-wide hits were identified, most likely due 

to the relatively low sample size. When investigating previously identified PD loci, no variants 

passed Bonferroni correction. However, nominally significant signals were identified for 
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several PD loci, including SNCA and TMEM175 (Supplementary Table 12). Similar to PD in 

general, the PD-GRS is significantly associated with a lower AAO in GBA carriers (Figure 5A) 

(Blauwendraat et al. 2019). This effect was mainly driven by p.E326K carriers. However, both 

p.T369M and p.N370S carriers also show the same trend towards lower AAO with a similar 

effect size that is close to significance likely due to lower sample numbers (Figure 5B). This 

association was similar in an independent p.N370S Ashkenazi Jewish ancestry dataset, again 

demonstrating the same general trend and similar effect size. A meta-analysis of the three tested 

GBA variants resulted in a significant P-value of 0.0050 (Figure 5, Supplementary Figure 17). 

 

Discussion 

In the current study, we analysed multiple large datasets to examine whether genetic variants 

affect the penetrance and AAO of GBA-associated neurodegeneration. Our data show that at 

least 7% of the European PD population carries a common protein coding GBA risk variant 

versus ~4.5% of the general population. It is noteworthy that this number is an underestimation 

because in some datasets p.T369M and p.N370S were not genotyped or reliably imputed, and 

rarer disease-linked GBA variants were not captured. For LBD, these numbers are likely to be 

higher as seen in the NDRU-LBD dataset with ~13% of the LBD cases carrying a GBA variant.  

 

One of the major findings of this study is that PD and LBD cases with GBA variants often also 

carry a substantial number of other PD associated risk variants, which modify disease risk and 

AAO. The GRS is significantly higher in cases with a GBA variant compared to controls with 

a GBA variant (Table 1) with effect sizes that are very similar to general PD compared to 

controls. These findings suggest that GRS could be considered when designing clinical trials 

for GBA-PD/LBD. Pre-trial genetic analysis could assist in stratifying patients according to 

PD-related genetic variants, on top of GBA. Therefore, future clinical trials involving GBA 

carriers should include a comprehensive genetic assessment prior to enrolment, as previously 

suggested (Leonard et al. 2018). Disease predictions based on current genetic knowledge 

should be combined with non-genetic data, such as family history and pre-symptomatic 

phenotypes including REM-sleep behaviour disorder and smell test to maximize disease 

prediction (Nalls et al. 2015c). 

 

The link between PD and lysosomal pathways has already been established by both genetic and 

functional studies (Gan-Or et al. 2015b; Robak et al. 2017; Ysselstein et al. 2019). Moreover, 
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in the latest PD GWAS (Nalls et al. 2018) numerous lysosomal and autophagy-related genes 

were associated with PD, emphasizing the central role of the lysosomal-autophagy pathway in 

disease. Interestingly, the two main loci identified that influence disease risk in GBA carriers 

are variants in close proximity to SNCA and CTSB (rs356219 and rs1293298), both implicated 

in the lysosomal autophagy pathway. The SNCA locus is well-studied and the current 

hypothesis is that variants in this locus increase SNCA expression of either total α-synuclein or 

specific mRNA isoforms, resulting in an increased risk of PD (Pihlstrøm et al. 2018; Soldner 

et al. 2016).  

 

For the CTSB locus, no functional studies have been performed to dissect this locus in PD to 

date, although several genetic studies have nominated CTSB as causal gene in this region via 

either QTL analyses or Mendelian randomization  (Li et al. 2019; Nalls et al. 2018). Therefore, 

it remains unclear whether CTSB is the causal gene in this locus. However, there is evidence 

linking CTSB to PD pathways. In this study, we see a decrease in active Cathepsin B protein 

levels in iPSC-derived neurons from GBA variant carriers compared to non-carriers, suggesting 

a further reduction in lysosomal protease function in these cases. Depletion of TMEM175, 

another lysosomal gene associated with PD, significantly decreases protein expression and 

enzyme activity of Cathepsin B in rat hippocampal neurons (Sarah Jinn et al. 2017; S. Jinn et 

al. 2019). Cathepsin B has also been suggested to be involved in α-synuclein lysosomal 

degradation (McGlinchey and Lee 2015). Moreover, ceramide, which is one of the lipids 

produced by GCase, has been shown to be an activator of Cathepsin B-related pathways (F. 

Liu et al. 2016). Overall, these results fit with the general model that GBA risk variant carriers 

have impaired lysosomal function due to reduced or abolished GCase activity (Alcalay 

(Alcalay et al. 2015). The independent associations of the SNCA and CTSB loci with GBA 

associated PD suggest that increased SNCA expression and/or decreased CTSB mRNA 

expression may further impair lysosomal function, resulting in an increased risk of PD. 

Additionally, we identified that Cathepsin B protein levels are reduced in p.N370S neurons 

compared to wildtype. Overall, these findings suggest that Cathepsin B might play a larger role 

in PD than previously thought and that increasing CTSB/Cathepsin B levels could be a potential 

therapeutic strategy. However, extensive functional in vitro and in vivo work is needed to 

validate these effects. 

 

Despite the large datasets included in this study, it has several limitations. First, only one 

genome-wide significant locus was identified (SNCA) after meta-analysing with the replication 
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datasets, most likely due to the lack of power caused by the relatively low number of GBA 

variant carriers available. However, when we sought to reduce the burden of genome-wide 

correction by examining previously implicated PD risk loci, a significant association with the 

CTSB locus was identified. Second, the majority of the analyses were based on aggregated 

genotype data derived from several different genotyping arrays and centers/countries. As such, 

some datasets did not contain data on all three of the GBA variants of interest. It is also 

important to consider that different centers/countries might have used different measures of 

AAO or age at diagnosis and that included controls may develop PD at a later age. However, 

using the current data, we are still able to identify large effects, such as those driven by the 

GRS. Larger future initiatives specifically focused on GBA carriers will resolve these 

limitations and are needed to confirm these associations. Third, because the majority of the 

data included here were also used in the most recent PD GWAS meta-analysis (Nalls et al. 

2018); there could be a bias towards the identification of known PD risk signals in this GBA 

dataset. We addressed this potential bias by looking for replication in several datasets that have 

not been included in the most recent PD GWAS meta-analysis, such as the UKB PD cases, the 

LBD dataset and the McGill GBA dataset. Unfortunately, we did not have a replication dataset 

for the GBA AAO results, so these results require replication in an independent dataset. Fourth, 

some datasets might have excluded known GBA carriers prior to genotyping, which would 

result in an underestimation of total GBA carriers and the associated risk estimates. Of note, 

another relatively common GBA variant p.L444P (rs421016) is currently not imputable, since 

it is not included in the HRC reference panel and is in a complex region of the genome with a 

highly similar pseudogene. Finally, the functional data presented in Figure 4 suggests a 

functional interaction between GBA and CTSB, however it does not functionally validate the 

expression changes associated with the rs1293298 variant. Additional, larger experiments are 

needed to further explore these findings. 

 

Despite these limitations, several conclusions can be drawn from our results. First, the risk of 

PD in GBA carriers is influenced by specific variants at loci that are known to be associated 

more generally with PD risk, including SNCA and CTSB, the latter possibly through interaction 

with GBA. In addition, GBA associated risk is significantly affected by the GRS; however, the 

total contribution of the GRS is not large. In other words, common genetic factors do not fully 

explain the partial penetrance of GBA variants in PD, hence rare variants, environmental and 

aging-related factors probably contribute to GBA penetrance. Furthermore, variants in known 

PD loci, such as SNCA and TMEM175, as well as the GRS, might affect the AAO of GBA-
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associated parkinsonism at a similar scale compared to the effect seen in typical PD. Overall, 

these results confirm the importance of the lysosomal pathway in PD and further supports CTSB 

and SNCA as interesting candidate genes for functional analysis in both GBA-associated and 

general PD. 

 

 

Figures and Tables 

 

Table 1: Associations between the Parkinson disease genetic risk score and case-control 

status. Genetic risk score associations performed per group. ORs are based on a Z-score scale 

as described in the methods. UKB= UK Biobank, SE=standard error * For these associations, 

the GBA region and LRRK2 p.G2019S were excluded when calculating the genetic risk score. 

 

Table 2: Meta-analyses of significant GWAS signals and interaction effects. Two variants 

were significant after correction of multiple testing: rs356219 (SNCA) and rs1293298 (CTSB) 

in the initial used datasets. Additional datasets were assessed and overall both P-values became 

more significant. The interaction effects between the two variants and GBA was not replicated 

in the external datasets. 

 

Figure 1: Parkinson disease genetic risk score boxplots divided by disease status and 

GBA carrier status. Genetic risk score differences between GBA negative controls, GBA 

negative Parkinson’s disease or Lewy body dementia cases, GBA positive controls and GBA 

positive cases. In each dataset, a highly similar effect is observed clearly separating the 

subgroups. 

 

Figure 2: Parkinson disease genetic risk score boxplots divided by disease status and GBA 

carrier status excluding GBA in the genetic risk score calculation. Genetic risk score 

differences between GBA negative controls, GBA negative Parkinson’s disease or Lewy body 

dementia cases, GBA positive controls and GBA positive cases when excluding the GBA region 

and LRRK2 p.G2019S from the calculations. In each dataset, a highly similar effect is observed 

clearly separating the cases and controls. However, there is no clear separation between GBA 

cases and GBA negative cases or GBA negative controls and GBA positive controls. 
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Figure 3: Genetic dissection of the CTSB locus. A) LocusZoom plot of the CTSB region from 

the latest PD GWAS (Nalls et al 2019). B) LocusZoom plot of the CTSB region from the latest 

current GBA carrier GWAS. C) LocusCompare plot of the CTSB region showing high 

correlation between the PD GWAS (x-axis) and the GBA carrier GWAS (y-axis). D) 

LocusCompare plot of the CTSB region showing high correlation between the PD GWAS (x-

axis) and the brain QTL data (Qi et al 2019) (y-axis). 

 

Figure 4: Cathepsin B protein expression is decreased in iPSC derived neurons from GBA 

p.N370S carriers. Forebrain neurons differentiated from patient iPS cells with GBA mutations 

have decreased Cathepsin B protein expression. A) Representative Western blot showing 

protein levels of active Cathepsin B (CTSB, 24 and 29 kDa) and neuron associated β-III 

Tubulin (50 kDa) in forebrain neurons differentiated from individuals with and without PD-

associated GBA variants (n=2 lines from each genotype;  all lines tested are heterozygous at 

rs1293298). B) Quantification of the mean active Cathepsin B protein levels relative to β-III 

Tubulin shows a significant decrease (* P<0.05; unpaired t-test, n=2 lines of each genotype 

with 3 technical replicates each) in Cathepsin B levels in forebrain neurons differentiated from 

GBA p.N370S carriers compared to neurons from WT GBA carriers. M = protein marker; error 

bars represent standard error of the mean. Note that both the heavy chain and heavy plus light 

chain bands were quantified in this analysis.  

 

Figure 5: Parkinson’s disease genetic risk score significantly influences the age at onset 

of GBA positive cases. A) Parkinson’s disease cases carrying a GBA variant were grouped by 

ages and a clear and significant decline was seen for the genetic risk score. B) The effect size 

was similar across all tested GBA variants (estimates relate to the rare allele). C) When plotting 

the AAO distribution of all tested GBA variants, p.N370S Parkinson’s disease cases had an 

earlier AAO followed by p.E326K and p.T369M. 
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