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Abstract 

Accurately predicting gas transport in rocks is required for enhancing the accuracy of field 

production models. The mesoscale lattice Boltzmann (LB) method can be implemented to 

predict gas permeability in porous rocks. However, the published LB results for the 

Klinkenberg effect are often inconsistent with the widely used Beskok-Karniadakis-Civan’s 

(BKC) correlation. The culprit of the unphysical effect has been identified in the typically 

implemented boundary conditions (BCs). An improved BC is proposed herein to reliably 

predict gas permeability. Non-equilibrium molecular dynamics simulations are conducted to 

benchmark the proposed approach. The results show that the presented LB predictions for the 

Klinkenberg effect are quantitatively consistent with experimental data and the BKC 

correlation, indicating that the unphysical effects have been minimized. More importantly, a 

numerical consistency is achieved for describing the Klinkenberg effect at molecular through 

macroscopic scales. These observations are relevant for improving our ability to predict gas 

production from tight formations. 
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1 Introduction 

The significance of gas permeability estimation cannot be overstated for hydrocarbon 

gas recovery (Striolo and Cole 2017). The accuracy of large-scale production models for 

the tight formation including shale formation depends on assumptions regarding the 

permeability of the rock mass (Liu et al. 2019, Liu et al. 2019, Rani et al. 2019, Xu et al. 

2019). However, predicting gas permeability through these rocks remains challenging 

because of the need to balance numeral accuracy and computational cost (Apostolopoulou 

et al. 2019, Bonnaud et al. 2012, Bui et al. 2017, Fan et al. 2002, Phan et al. 2016, Qomi 

et al. 2014). Among alternative approaches, lattice Boltzmann (LB) simulations are 

effective in studying fluid transport at intermediate length and time scales (i.e., the 

mesoscale) at a modest computational cost (Fathi et al. 2012, Krüger et al. 2017, Landry 

et al. 2016, Moghaddam and Jamiolahmady 2017, Ren et al. 2015, Succi and Succi 2018, 

Wang et al. 2016, Zhao et al. 2016, Zhao et al. 2016). In this work, we consider the LB 

approach, as described in what follows.  

The lab-measured rock permeability by gas flood is defined as the apparent permeability 

of the rock. When gas flows through a porous medium, a slip velocity could occur on pore 

surfaces and the resultant apparent gas permeability exceeds the rock intrinsic 

permeability, i.e., the permeability that reflects the topology of the pore network regardless 

to the type of the fluid flowing through. The apparent permeability is dependent on the 

Knudsen number (𝐾𝑛), which is defined as the ratio of the mean free path of a gas molecule 

(𝜆) to the characteristic length available to the gas within the transport system (𝑙) (Maurer 
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et al. 2003). The 𝐾𝑛 -dependent permeability is known as ‘Klinkenberg effect’ 

(Klinkenberg 1941). The Klinkenberg effect becomes pronounced as 𝐾𝑛 increases, which 

could occur in shales and tight sandstones (Ziarani and Aguilera 2012). When 𝐾𝑛 > 0.001, 

gas frequently collides with the solid walls and solid-gas interactions become significant 

for determining the apparent permeability (Darabi et al. 2012, Fan and Ettehadtavakkol 

2017).  

In the past decade, the LB method has been applied to simulate fluid flows at finite 𝐾𝑛 

values (Toschi and Succi 2005). It has been recognized that the boundary conditions (BCs) 

are essential for ensuring that LB simulations yield realistic results at such conditions 

(Succi 2016). Some attempts on BCs have been made for the finite-𝐾𝑛 flow in the past 

decades, including the specular reflection BC (Chapman et al. 1990), the diffusive BC 

(Ansumali and Karlin 2002, Niu et al. 2007), the combined BC obtained by full diffusive 

and specular reflection (Tang et al. 2005b), and that obtained by bounce-back and specular 

reflection (Succi et al. 2002).  Perhaps among other BCs, the bounce-back (BB) and 

specular reflection (SR) is of greatest interest for predicting gas permeability in shale rocks. 

This is because the BB+SR BC can apply the non-unitary values of the tangential 

momentum accommodation coefficient (TMAC), which reflects realistic gas-wall 

interactions for gases typically used in shale core-flooding experiments (Maurer et al. 

2003, Wu et al. 2017, Yamaguchi et al. 2017). The BB BC and the SR BC are intended to 

simulate no-slip and infinite gas slip phenomena, respectively.  
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Although some studies (Guo et al. 2008, Tang et al. 2005a) attempted to investigate the 

accuracy on the application of these BCs for finite-𝐾𝑛 flow, direct comparison against MD 

simulation results and experimental permeability data, especially for complex porous 

media, in general lacked. Therefore, the thorough validation of the classical slip BCs for 

finite-𝐾𝑛 flow has been somewhat incomplete. In fact, recent applications to shale rock 

samples (Chen et al. 2015, Li et al. 2018, Zhao and Wang 2019) that implemented the 

combined BB+SR BC yield overestimated Klinkenberg effects compared to the Beskok-

Karniadakis-Civan’s (BKC) correlation (Beskok and Karniadakis 1999, Civan 2010). The 

BKC’s correlation combines the permeability correction correlation from Ref. (Beskok and 

Karniadakis 1999) and the rarefaction coefficient from Ref. (Civan 2010), and is one of the 

commonly applied correlations for the permeability correction factor in tight rocks. To 

date, few studies probe into the reason for such overestimation. It was mentioned that the 

pore network complexity may account for the observed difference, but further validation 

is missing (Chen et al. 2015, Zhao and Wang 2019).  

One major component of the BB+SR BC is the BB part. Previous studies found that the 

BB BC does not always achieve zero velocity at the wall, suggesting that its misuse could 

lead to predicting unphysical slip (Prestininzi et al. 2016, Verhaeghe et al. 2009). The 

unphysical slip introduced by implementing the BB BC is found to depend on fluid 

viscosity (Noble et al. 1995). One approach to overcome the BB BC limitations is the 

consistent hydrodynamic BC (HBC), which can minimize the unphysical slip at the corner 

of the octagonal boundaries (Gallivan et al. 1997). Another approach recently proposed is 
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to control the velocity sets parallel to the solid surface (Meng et al. 2018), which is based 

on the theoretical studies that suggest a no-slip condition could only be achieved when 

local momentum density at the wall is zero (He et al. 1997). We speculate that the reason 

for the overestimation of the Klinkenberg effect when implementing the combined BB+SR 

BC can be due to the unphysical slip from the BB component. For clarity, we thereafter 

name the standard BB (SBB) and the classical combined BB+SR BC as the classical BCs 

for no-slip flow and slip flow in this work.  

This paper addresses two fundamental questions by simulating gas flows through micro-

/nano-porous media via non-equilibrium MD simulations and LB simulation sequentially, 

where MD simulations are used to benchmark the LB results to identify the appropriate 

BCs: (1) whether the LB method is applicable to describe gas flows through micro-/nano-

porous media, and (2) whether the physical phenomena responsible for the Klinkenberg 

effect are consistently described at microscopic, mesoscopic, and macroscopic scales. An 

improved BC is introduced for LB calculations to reproduce non-equilibrium MD 

simulation results. The improved LB formalism is then used to predict apparent 

permeability as a function of 𝐾𝑛, allowing us to assess the reliability of the LB method 

against the BKC correlation, as well as other datasets.  

2 Methods 

The LB method describes the motion of gas particles statistically and simulates the 

spatiotemporal variation of particles’ velocity distribution as governed by the discrete 
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Boltzmann equation (Guo and Shu 2013). The distribution function (𝑓) represents the 

dimensionless mass density of particles with velocity 𝒄 at location 𝒙 and time 𝑡 (Krüger 

et al. 2017). Macroscopic gas properties, e.g., mass density, momentum density, total 

energy density, and flow velocity, can be calculated from weighted summations of the 

discrete velocity distribution.  

 

Fig. 1. Lattice Boltzmann models for gas flow through porous media (PM). (a) D2Q9 velocity sets. (b) 

the MBB BC. (c) the MBB+SR BC. (d) PM1 structure. (e) PM2 structure. Gray filled slabs are impermeable 

solid matrices. Void spaces are indexed pores (e.g., p1) with arrows denoting simulated flow directions.   



7 

2.1 Particle Collision and Propagation 

The LB model implemented in this work is based on a two-dimensional-nine-discrete-

velocity (D2Q9) set, shown schematically in Fig. 1a. Each square lattice is associated with 

nine nodes: Node 9 is at the center of the lattice site, and the others at the center of the 

neighboring lattice sites. Different nodes are assigned a different discrete velocity constant 

vector, i.e., 𝒄𝛼
∗ = [(1,0), (0, −1), (−1,0), (0,1), (1, −1), (−1,−1), (−1,1), (1,1), (0,0)] , 

for 𝛼 = 1,2, … ,9, respectively. Nodes are classified as fluid, boundary, and solid nodes, 

according to the location of the lattice site within the porous medium. As shown in Fig. 1b 

and 1c, the lattice sites in pore spaces are fluid nodes, in which the discrete Boltzmann 

equation applies. Solid nodes are representative of solid slabs, in which the velocity 

distribution remains zero. A boundary node, to which BCs applies, links a fluid and a solid 

node. We use ‘the link-wise boundary node’ where the computational boundary is located 

on the link between the physical boundary and fluid node. 

If the central node (Node 9) is identified as a fluid or boundary node, particle collisions 

occur locally. The velocity distribution after a collision, denoted by 𝑓𝛼
𝑝𝑜𝑠𝑡

, propagates 

along its discrete velocity vector (𝒄𝛼
∗ ) to neighboring nodes. The propagated velocity 

distribution will be the velocity distribution before the next collision, denoted by 𝑓𝛼
𝑝𝑟𝑒

. One 

collision-propagation cycle occurs in a single time step, where each central lattice 

simultaneously receives 𝑓𝛼
𝑝𝑜𝑠𝑡

 from and emits 𝑓𝛼
𝑝𝑟𝑒

 to its eight neighboring lattices. This 

process is governed by the discrete Boltzmann equation, Eq. (1), which models the change 

of velocity distributions during a collision at lattice location 𝒙∗ and time 𝑡∗ (from 𝑓𝛼
𝑝𝑟𝑒

 to 
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𝑓𝛼
𝑝𝑜𝑠𝑡

 on the right-hand-side (RHS)), and a particle propagation to the next lattice location 

𝒙∗ + 𝒄𝛼
∗ 𝛿𝑡∗ at the time 𝑡∗ + 𝛿𝑡∗ (from 𝑓𝛼

𝑝𝑜𝑠𝑡
 on RHS to 𝑓𝛼

𝑝𝑟𝑒
 on the left-hand side). 

𝑓𝛼
𝑝𝑟𝑒(𝒙∗ + 𝒄𝛼

∗ 𝛿𝑡∗, 𝑡∗ + 𝛿𝑡∗) = 𝑓𝛼
𝑝𝑟𝑒(𝒙∗, 𝑡∗) + Ω𝛼(𝒙

∗, 𝑡∗)⏟                

𝑓𝛼
𝑝𝑜𝑠𝑡(𝒙∗,𝑡∗)

 
(1) 

The superscript ‘∗’ in Eq. (1) denotes non-dimensionalized parameters. The discrete 

collision operator Ω𝛼 models the velocity distribution relaxation to its equilibrium values 

( 𝑓𝛼
(𝑒𝑞)

) at node 𝛼 . The linear Bhatnagar-Gross-Krook (BGK) collision operator is 

implemented, where Ω𝛼 = −(𝑓𝛼 − 𝑓𝛼
(𝑒𝑞))/(𝜏∗ + 0.5)  and 𝜏∗  is the dimensionless 

relaxation time. Based on the Maxwell-Boltzmann distribution, the discrete equilibrium 

distribution for the isothermal condition can be expanded in the Hermite polynomials as 

(Krüger et al. 2017): 

𝑓𝛼
(𝑒𝑞)(𝒙∗, 𝑡∗) = 𝑤𝛼𝜌

∗ [1 +
𝑐𝛼𝑖
∗ 𝑢𝑖

∗

(𝑐𝑠
∗)2

+
𝑢𝑖
∗𝑢𝑗
∗(𝑐𝛼𝑖

∗ 𝑐𝛼𝑗
∗ − (𝑐𝑠

∗)2𝛿𝑖𝑗)

2(𝑐𝑠
∗)4

]. (2) 

In Eq. (2), subscripts 𝑖, 𝑗 denote a vector component, e.g., 𝑢𝑖
∗ ∈ {𝑢𝑥

∗ , 𝑢𝑦
∗ }. The local fluid 

mass density 𝜌∗ can be calculated by local lattice velocity distributions in 𝜌∗ = ∑ 𝑓𝛼
𝑞
𝛼=1 . 

The flow velocity 𝒖∗ is calculated from the summation of velocity distributions in 𝒖∗ =

∑ 𝒄𝛼
∗ 𝑓𝛼

𝑞
𝛼=1 /𝜌∗ + 0.5𝛿𝑡∗𝒂∗ , where 𝒂∗  is the dimensionless acceleration vector. 𝑤𝛼  is a 

weighting factor for different nodes and ∑ 𝑤𝛼
𝑞
𝛼=1 = 1. Within the D2Q9 velocity set, 𝑞 =

9, 𝑤9 =
4

9
, 𝑤1,2,3,4 =

1

9
, and 𝑤5,6,7,8 =

1

36
. The non-equilibrium distribution 𝑓𝛼

(𝑛𝑒𝑞)
, as the 

difference between 𝑓𝛼 and 𝑓𝛼
(𝑒𝑞)

, reflects how far the fluid particles are from equilibria. 
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Small for continuum flow, this value can be large for slip (0.001<𝐾𝑛<0.1) and transitional 

flows (0.1<𝐾𝑛<10). 

When discretizing Eq. (1), the velocity space should be projected onto the Hermite space 

with orthonormal bases. The un-projected part of 𝑓𝛼 will cause aliasing errors, which can 

be alleviated by projecting 𝑓𝛼 onto the Hermite space by expanding 𝑓𝛼
(𝑛𝑒𝑞)

 in the Hermite 

polynomials, named as ‘the regularization’ (Zhang et al. 2006). The projected (or 

regularized) 𝑓𝛼
(𝑛𝑒𝑞)

 is denoted by 𝑓𝛼
(𝑛𝑒𝑞)

. Up to the second-rank polynomials, 𝑓𝛼
(𝑛𝑒𝑞)

 reads 

𝑓𝛼
(𝑛𝑒𝑞)

(𝒙∗, 𝑡∗) = 𝑤𝛼 ⋅
(𝑐𝛼𝑖
∗ 𝑐𝛼𝑗

∗ − (𝑐𝑠
∗)2𝛿𝑖𝑗)

2(𝑐𝑠
∗)4

∑𝑓𝛽
(𝑛𝑒𝑞)

𝑞

𝛽=1

(𝒙∗, 𝑡∗)(𝑐𝛽𝑖
∗ 𝑐𝛽𝑗

∗ − (𝑐𝑠
∗)2𝛿𝑖𝑗), (3) 

where 𝑓𝛽
(𝑛𝑒𝑞)(𝒙∗, 𝑡∗) ≈ 𝑓𝛽

(𝑛𝑒𝑞)(𝒙∗, 𝑡∗) = 𝑓𝛽(𝒙
∗, 𝑡∗) − 𝑓𝛽

(𝑒𝑞)(𝒙∗, 𝑡∗) . The Kronecker delta 

𝛿𝑖𝑗 is 1 when 𝑖 = 𝑗 and 0 when 𝑖 ≠ 𝑗. 

2.2 Knudsen Number and Relaxation Time 

Because the characteristic length 𝑙 is often considered as the hydraulic radius (𝑅𝐻), the 

Knudsen number in free space can be defined as (Civan 2010): 

𝐾𝑛 =
𝜆

𝑅𝐻
 

(4) 

However, 𝑅𝐻  can be different for different pore geometries. In this work, gas flow is 

simulated through three porous matrixes (PM): PM1 (Fig. 1d), PM2 (Fig. 1e), and PM3 

(Fig. 6a). We denote either the local pore height of PM1&PM2 or the local pore diameter 
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of PM3 as 𝐻. For PM1&PM2, periodic boundary conditions are applied on the streamwise 

direction, and the pore geometries are treated as slit pores. In such a geometry, 𝑅𝐻  is 

approximated by the height of the pore, i.e., 𝑅𝐻 = 𝐻 (Cengel 2010). For PM3, in which 

we apply non-periodic boundary conditions along the streamwise direction, the pore 

geometries are modeled as circular.  For such geometry, 𝑅𝐻  is the quarter of the pore 

diameter, i.e., 𝑅𝐻 = 𝐻/4 (Cengel 2010).  

To calculate 𝐾𝑛 based on pore structure and gas properties, we use (Zhao et al. 2018) 

𝐾𝑛 =
𝑘𝐵𝑇

√2𝜋𝑎0
2𝑃𝑅𝐻

 
(5) 

where 𝑘𝐵 is the Boltzmann constant; 𝑃 is gas pressure (assumed to equal the pore pressure) 

obtained by atomic number density of gas in the MD system and Peng–Robinson equation 

of state (Dahm and Visco 2014); 𝑎0 is the fluid molecular diameter, approximated as the 

Lennard–Jones parameter 𝜎𝑓𝑓 (Bhatia and Nicholson 2006, Jasper and Miller 2014), e.g., 

for methane 𝜎𝑓𝑓 ≈ 0.373 nm.  

In a confined space, the mean free path is shorter than in free space. The reduction 

factor is modeled as  𝛹(𝐾𝑛) = (1 + 𝑏𝐾𝑛)−1  where 𝑏  is the Bosanquet parameter, 

typically 𝑏 = 3.4 (Kalarakis et al. 2012). A modified Knudsen number 𝐾𝑛′ = 𝐾𝑛𝛹(𝐾𝑛) is 

used for PM1 and PM2. 

The Knudsen number in PM3 includes the porosity ( 𝜀 ) and the dimensionless 

permeability (𝑘) (Wu et al. 2017):  
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𝐾𝑛′′ = 𝐾𝑛′√
𝜀

12𝑘
 (6) 

where 𝑘 =
𝑘𝑖𝑛

𝐻2/32
, 𝑘𝑖𝑛  is the dimensional intrinsic permeability estimated by LB 

simulations, and the conversion factor 𝐻2/32 is the Darcy permeability for the tube (Lake 

1989).  

In the BGK collision operator in Eq. (1), the dimensionless relaxation time (𝜏∗ ) 

characterizes how soon particles will reach local equilibrium state from perturbation during 

collisions (Krüger et al. 2017, Succi and Succi 2018). 𝜏∗ relates to the dynamic viscosity 

(𝜂) in 𝜂 = 𝑐𝑠
2𝜌𝜏∗𝛿𝑡, where 𝜌 is mass density.  𝑐𝑠  is the speed of sound, related to the 

universal gas constant 𝑅, molar mass 𝑀, and absolute temperature 𝑇 as 𝑐𝑠 = √𝑅𝑇/𝑀. In 

Equation (4), 𝑅𝐻 can be expressed in its dimensionless form as 𝑅𝐻
∗ = 𝑅𝐻/𝛿𝑦. The mean 

free path relates to the dynamic viscosity (𝜂) as 𝜆 ≈ 𝜂𝑃−1√𝜋𝑅𝑇/2𝑀 (Guo and Shu 2013). 

Given that 𝑐 = 𝛿𝑦/𝛿𝑡 = √𝜒𝑅𝑇/𝑀 (where 𝜒 is a constant, e.g. 𝜒 = 3 in the D2Q9 velocity 

set), 𝜏∗ is obtained as a function of 𝐾𝑛′: 𝜏∗ = √2𝜒/𝜋𝑅𝐻
∗𝐾𝑛′. 

2.3 The Improved BC for Gas Slippage 

Since solid-gas interactions are reflected as molecular momentum exchanges, i.e., the 

exchange of 𝑓𝛼 coming into, and going out from the fluid domain, BCs at the solid-gas 

interface may not only affect the flow behavior near the interface but also near the pore 

center. By imposing zero flow velocity in the direction of the surface normal but a non-

zero velocity tangentially, the specular reflection (SR) BC yields infinite slip (Cornubert 
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et al. 1991, Guo et al. 2007). The SR BC assumes that 𝑓
𝛼′
𝑝𝑜𝑠𝑡

 of the outgoing 𝒄𝛼′  is 

specularly reflected at the boundary. The reflected velocity is 𝒄𝛼 = 𝒄𝛼′ + 2(𝒄𝛼 ⋅ 𝒏)𝒏, 

where 𝒄𝛼 ⋅ 𝒏 > 0 and 𝒄𝛼′ ⋅ 𝒏 < 0. The velocity distribution becomes  

𝑓𝛼
𝑝𝑟𝑒(𝒙∗, 𝑡∗ + 𝛿𝑡∗) = 𝑓

𝛼′
𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗). (7) 

In Fig. 1c, 𝒄7 is reflected along the direction of 𝒄6 once hitting the bottom solid node, 

𝑓7
𝑝𝑜𝑠𝑡

 replaces 𝑓6
𝑝𝑟𝑒

 in a specular reflection. Similarly, 𝑓8
𝑝𝑜𝑠𝑡

 replaces 𝑓5
𝑝𝑟𝑒

. In LB 

simulations of finite- 𝐾𝑛  flow where gas slip is finite, a classical approach is to 

algebraically combine a no-slip BC (e.g., SBB) with a finite slip BC (e.g., SR). One can 

account for velocity distribution contributions from each BC via a combination fraction 

(𝑟): 

 𝑓𝛼
𝑝𝑟𝑒(𝒙∗, 𝑡∗ + 𝛿𝑡∗) = 𝑟(𝒙∗) ⋅ 𝑓𝛼

𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗) + [1 − 𝑟(𝒙∗)] ⋅ 𝑓
𝛼′
𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗). (8) 

The standard bounce-back (SBB) BC prescribes that at the boundary node, the outgoing 

velocity (𝒄�̅�), once hitting the physical boundary, exchanges the velocity distribution by 

reversing its direction, i.e., the direction of the incoming velocity 𝒄𝛼 . The incoming 

velocity distribution (𝑓𝛼
𝑝𝑟𝑒

) before the next collision is therefore assigned the outgoing 

velocity distribution (𝑓𝛼
𝑝𝑜𝑠𝑡

). That is,  

𝑓𝛼
𝑝𝑟𝑒(𝒙∗, 𝑡∗ + 𝛿𝑡∗) = 𝑓𝛼

𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗), (9) 
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where 𝒄𝛼 = −𝒄�̅�, 𝒄𝛼 ⋅ 𝒏 > 0, 𝒄�̅� ⋅ 𝒏 < 0, and 𝒏 is the surface normal vector from solid to 

fluid. In Fig. 1b, 𝑓7
𝑝𝑜𝑠𝑡

 of outgoing velocity 𝒄7 will replace 𝑓5
𝑝𝑟𝑒

 of the incoming velocity 

𝒄5 before next collision. This velocity distribution inversion takes place only between an 

outgoing velocity and an incoming velocity, in pairs. The rest of the discrete velocities 

considered in our model are parallel to the boundary node, where 𝒄𝛼 ⋅ 𝒏 = 0, i.e., 𝒄6 and 

𝒄8, 𝒄2 and 𝒄4, 𝒄3 and 𝒄1. In the SBB scheme, parallel velocities will not exchange their 

velocity distribution by reversing their direction, but instead by propagating velocity 

distributions from neighboring fluid and boundary nodes instead (Guo and Shu 2013). 

The correct implementation of the combined BC relies on the prerequisite that the no-

slip BC can achieve a physically sound no-slip condition. However, the analytical solutions 

reveal that SBB is insufficient to mirror a no-slip boundary (Meng et al. 2018) since the 

‘uncontrolled’ parallel velocity sets can lead to unphysical slip. When parallel velocities 

propagate, they are subject to acceleration, pressure, and fluid density at inlet and outlet 

boundaries, which may cause a tangential non-zero velocity distribution, and therefore lead 

to unphysical slip. A modified bounce back (MBB) BC is needed to enforce zero slip. One 

approach is to impose that each pair of parallel velocity distributions 𝒄𝛼1  and 𝒄𝛼2  is 

equivalent after the collision (Meng et al. 2018):  

𝑓𝛼1
𝑝𝑟𝑒(𝒙∗, 𝑡∗ + 𝛿𝑡∗) = 0.5 (𝑓𝛼1

𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗) + 𝑓𝛼2
𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗)), (10) 

and  
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𝑓𝛼2
𝑝𝑟𝑒(𝒙∗, 𝑡∗ + 𝛿𝑡∗) = 0.5 (𝑓𝛼1

𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗) + 𝑓𝛼2
𝑝𝑜𝑠𝑡(𝒙∗, 𝑡∗)). (11) 

When handling the parallel velocities, this approach requires identifying the parallel 

velocities at the boundary, which can be tedious in complex PMs. Unfortunately, not 

implementing this approach can negatively affect the accuracy of the results, as discussed 

in Section 0. 

Here the SBB+SR BC is improved by combining MBB and SR BCs to avoid the 

unphysical slip in the SBB scheme while manageable computational costs for conducting 

LB simulations. Specifically, we maintain the SR scheme (Eq. (7)) and the combination 

rule (Eq. (8)) and impose the equivalence of parallel velocities in pairs for the bounce-back 

scheme (Eqs. (9) through (11)).   

To realize the second-order slip in LB simulations, we adopted the following formula 

for the combination fraction 𝑟 (Guo et al. 2007): 

𝑟 = {1 + √
𝜋

6
[

1

4𝐾𝑛∗(𝑅𝐻
∗ )2

+ 𝐴1 + (2𝐴2 −
8

𝜋
)𝐾𝑛∗]}

−1

. (12) 

Equation (9) was originally derived for the classical BC inclusive of standard bounce-back 

and specular reflection, and it holds also for the proposed BC. In deriving Equation (9), as 

shown by others (Guo et al. 2007), all velocity distributions (𝑓𝑖) including the parallel 

velocities are lumped into the streamwise velocity (𝑢). The derived expression of 𝑢 is 

applied to the finite-difference equation to obtain the formula of slip velocity in LB 
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simulations, and the derived LB slip velocity is then compared with the analytical slip 

velocity to derive the expression of 𝑟 as in Equation (9).  

According to the second-order slip condition, the slip velocity (𝑢𝑠) can be expressed 

as  

𝑢𝑠 = 𝐴1𝜆 (
𝜕𝑢

𝜕𝐧
)
𝑤𝑎𝑙𝑙

− 𝐴2𝜆
2 (
𝜕2𝑢

𝜕𝐧2
)
𝑤𝑎𝑙𝑙

, (13) 

where coefficients 𝐴1 = (2 − 𝜎)(1 − 0.1817𝜎)/𝜎 and 𝐴2 = 𝜋
−1 + 0.5𝐴1

2. The tangential 

momentum accommodation coefficient (TMAC), denoted by 𝜎, is a measurement of solid-

gas interactions and corresponds to an average exchange rate between the incident and 

reflected tangential momentum when gas molecules hit the wall, i.e., 𝜎 = (𝜏𝑅 −

𝜏𝐼)/(𝜏𝑤𝑎𝑙𝑙 − 𝜏𝐼) , where 𝜏𝑅 , 𝜏𝐼 , and 𝜏𝑤𝑎𝑙𝑙  are the tangential momentum of reflected 

molecules, incident molecules, and wall surface, respectively (Di Staso 2018). When 𝜎 =

0, specular reflection is present; when 𝜎 = 1, full diffuse reflection occurs. In LB models, 

TMAC is often chosen to be unity (Li et al. 2018, Wang et al. 2017, Yu et al. 2017), which 

assumes full diffuse reflection. However, a recent numerical study indicates that TMAC 

should be non-unitary in porous media (Wu et al. 2017). Experiments also show that 

TMAC values for Helium, Argon, and Nitrogen gases are not unitary in second-order slip 

simulations (Zhang et al. 2012). Since the experimental TMAC for methane is not 

available, we assume the value reported for Nitrogen gas (𝜎 ≈ 0.827) as the value for 

methane in our LB simulations (Yamaguchi et al. 2012). 
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2.4 Gas Permeability of Pressure-Driven Flow 

We simulate gas flow through PM driven by a pressure gradient across the inlet and the 

outlet of the PM, where the external force 𝑭𝛼
∗  is added to Eq. (1).  After being combined 

with Eqs. (2) and (3), Eq. (1) becomes 

𝑓𝛼
𝑝𝑟𝑒(𝒙∗ + 𝒄𝛼

∗ 𝛿𝑡∗, 𝑡∗ + 𝛿𝑡∗) =
2𝜏∗ − 1

2𝜏∗ + 1
𝑓𝛼
(𝑛𝑒𝑞)(𝒙∗, 𝑡∗) + 𝑓𝛼

(𝑒𝑞)(𝒙∗, 𝑡∗) + 𝛿𝑡∗𝑭𝛼
∗ , (14) 

where 𝑭𝛼
∗  is discretized as: 

𝐹𝛼𝑖
∗ =

2𝜏∗

2𝜏∗ + 1
𝑤𝛼𝜌

∗ [
𝑐𝛼𝑖
∗ 𝑎𝑖

∗

(𝑐𝑠
∗)2

+
𝑎𝑖
∗𝑢𝑗
∗(𝑐𝛼𝑖

∗ 𝑐𝛼𝑗
∗ − (𝑐𝑠

∗)2𝛿𝑖𝑗)

(𝑐𝑠
∗)4

]. (15) 

In Eq. (15), 𝐹𝛼𝑖
∗  and 𝑎𝑖

∗ are the component of the force vector 𝑭𝛼
∗  and the acceleration 

vector 𝒂∗, respectively. The acceleration is related to force density (𝑭𝑣
∗ ) in terms of fluid 

mass density (𝜌∗ ): 𝑭𝑣
∗ = 𝜌∗𝒂∗ . The force density equals the pressure gradient in the 

opposite direction, as 𝐹𝑣
∗ = −𝛻𝑃∗. Based on Darcy’s law, directional permeability in PM 

is estimated by average fluid velocity under a pressure gradient: 𝑘𝑖
∗ = −𝑢𝑖

∗𝜂∗/𝛻𝑃𝑖
∗, where 

𝑖 indicates the direction of the measured permeability. 𝜂∗ is the average dynamic viscosity, 

which is calculated by 𝜂∗ = 𝜌∗(𝑐𝑠
∗)2𝜏∗ , where 𝜏∗  is the average relaxation time within 

different pores. Based on the above formulae, permeability is estimated by 𝑘𝑖
∗ =

𝑢∗𝑖(𝑐𝑠
∗)2𝜏∗/𝑎𝑖

∗  (dimensionless) and 𝑘𝑖 = 𝐶𝑥
2𝑘𝑖

∗  (dimensional), where 𝐶𝑥  is the unit 

conversion factor (𝐶𝑙) for length in Table 1. 
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2.5 Model Setup 

Input data in the LB simulations are summarized in Table 1. The fluid kinematic 

viscosity determines the simulation time step 𝛿𝑡. Unit conversion from the dimensionless 

LB environment to the physical system, tabulated in Table 2, is essential for data analysis. 

In our study, the unit conversion factor for the time 𝐶𝑡 is obtained by the conversion of 

kinematic viscosity (𝑣): 𝜂 = 𝜌(𝑐𝑠
∗)2𝜏∗𝐶𝑙

2/𝐶𝑡. To obtain a constant value of 𝐶𝑡, we consider 

that the local 𝜂 in a pore is proportional to its 𝜏∗: 𝜂/𝜂0  = 𝜏
∗/𝜏0

∗, where the subscript ‘0’ 

denotes the value in the reference pore with a height of 1.1 nm. The value of 𝜂0 is obtained 

from the bulk velocity profile in MD results, which is consistent with data from Ref. 

(Lemmon et al. 2019).  

The gas density from MD is used to estimate fluid pressure and 𝐾𝑛′. Local 𝐾𝑛′  is 

calculated for each pore, followed by the calculation of 𝜏∗ in Section 2.2 and 𝑟 as a function 

of 𝐾𝑛′  in Eq. (12). Solid-gas interactions are modeled by specifying the TMAC, as 

described in Section 2.2.  

To initiate LB simulations, structural information of porous media is required including 

pore diameter, dimensions of the PM, and locations of boundary nodes. In Figs. 1d and 1e, 

we show the structures of the porous media used in this work, denoted by PM1 and PM2. 

In PM1, p1 through p4 are congruent micropores where the height 𝐻 =  1.1 nm and the 

pore length 𝐿 =  4 nm; p5 is a mesopore with 𝐻 =  3.8 nm and 𝐿 =  4 nm. In PM2, p1 

& p8, p4 & p2, p3 & p5 through p7 are micropores congruent in pairs. Two PM share a 

similar structure expect a mesopore in PM1 (p5) is subdivided into four micropores in PM2 
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(i.e., p1, p2, p4, p8) by a tilted slab with 60o rotation. Periodic boundary conditions are set 

on the left and right end of PM1 and PM2.  

Uniform square lattices of the side 𝛿𝑥  are set up according to the specified spatial 

resolution. Eq. (14) along with the classical (i.e., SBB and SBB+SR) BCs and the improved 

(i.e., MBB and MBB+SR) BCs is applied to predict gas transport behavior in micro-/nano-

porous media when the flow reaches a steady state. We impose bounce-back BCs (where 

𝑟 = 1 in Eq. (8)) and 𝜏∗ = 1 to simulate intrinsic permeability (𝑘𝑖𝑛) and slip BCs for 

apparent gas permeability. Lastly, we evaluate the Klinkenberg effect by calculating the 

permeability correction factor, i.e., the ratio of apparent to intrinsic permeability 

(𝑘𝑎𝑝𝑝/𝑘𝑖𝑛). 

Table 1. Input data for LB simulations. 

 
PM1 PM2 

Source 
p1 through p4 p5 p1 through p8 

𝑛0 (1/Å3) 0.0058 0.0043 0.0055 MD simulations 

𝜂 (Pa⋅s) 2.20e-05a 4.30e-05b 1.90e-05c MD simulations 

𝛻𝑃 (MPa/nm) 8.060 5.975 7.643 𝛻𝑃 = −𝑭𝑒𝑥𝑡𝑛0 

TMAC 0.827 0.827 0.827 (Zhang et al. 2012) 

a the reference dynamic viscosity 𝜂0 in PM1. 
b calculated by 𝜂 = 𝜏∗𝜂0/𝜏0

∗. 
c the reference dynamic viscosity 𝜂0 in PM2. 

 

To validate the effectiveness of the improved BCs in simulating finite-𝐾𝑛 flow, we 

conducted nonequilibrium MD simulations of methane transport through PM1 and PM2. 

Information regarding the MD models is summarized in the supplementary information. In 
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LB simulations, the pressure gradient −𝛻𝑃 equals to the force density (𝑭𝑣 = 𝜌𝒂). In MD, 

to simulate a pressure-driven flow, each molecule is subject to a constant external force 

(𝑭𝑒𝑥𝑡), where 𝑭𝑒𝑥𝑡 = 𝑭𝑣/𝑛 (Obliger et al. 2016), where 𝑛 is the atomic number density, 

𝑛 = 𝜌𝑁𝐴/𝑀. Therefore, the acceleration term is expressed in 𝒂 = 𝑭𝑒𝑥𝑡𝑁𝐴/𝑀.  To compare 

LB and atomistic MD simulations, the unit conversions for velocity and acceleration are 

performed based on the unit conversions of time and length in Table 2 (Horbach and Succi 

2006, Krüger et al. 2017).   

In supporting information, we show the discrete effect on the improved BCs and the 

convergence of the estimated permeability with time steps. The robustness of the improved 

BCs with low-resolution PM structure images is discussed.    

Table 2. Unit conversion between dimensional and the dimensionless LB systems (Krüger et al. 2017). 

 Dimensional (units) Dimensionless  

Length 𝐿 (m) 𝐿∗ (lua) 

Hydraulic radius 𝑅𝐻 (m) 𝑅𝐻
∗  (lu)  

Lattice side 𝛿𝑥 or 𝛿𝑦 (m) 𝛿𝑥∗ = 𝛿𝑦∗ = 1 (lu) 

Elapsed time 𝑡 (s) 𝑡∗ (tsb) 

Time step 𝛿𝑡 (s) 𝛿𝑡∗ = 1 (ts) 

Lattice velocity 𝑐 =
𝛿𝑥

𝛿𝑡
= √

𝜒𝑅𝑇

𝑀
 (m/s) 𝑐∗ =

𝛿𝑥∗

𝛿𝑡∗
= 1 (lu/ts) 

The conversion factor for distance 𝐶𝑙 =
𝐿

𝐿∗
=

𝑅𝐻

𝑅𝐻
∗ =

𝛿𝑥

𝛿𝑥∗
=

𝛿𝑦

𝛿𝑦∗
 (m) 

The conversion factor for time 𝐶𝑡 =
𝑡

𝑡∗
=

𝛿𝑡

𝛿𝑡∗
 (s) 

The conversion factor for velocity 𝐶𝑢 =
𝐶𝑥

𝐶𝑡
=

𝑢𝑥

𝑢𝑥
∗   (m/s) 

The conversion factor for acceleration 𝐶𝑎 =
𝐶𝑥

𝐶𝑡
2 =

𝑎

𝑎∗
 (m2/s) 

a lattice unit. 
b time step.  
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3 Results 

3.1 Flow Velocity from LB and MD Simulations 

In Fig. 2, we present streamwise velocities obtained from LB and MD simulations for 

gas flowing through PM1 and PM2. Figs. 2a through 2d show dimensional streamwise (𝑥-

directional) velocity profiles along the 𝑦-direction within pores p1 and p5 of PM1, and p6, 

p4, p1 of PM2, respectively. This figure allows us to compare LB results when slip 

(SBB+SR and MBB+SR) and no-slip (SBB and MBB) BCs are implemented. Based on 

gas density and pore structure in MD models, average 𝐾𝑛′ = 0.132 for PM1 and 0.155 for 

Fig. 2. Flow velocity profile. (a) through (d), LB results of dimensional streamwise velocity profiles in 

specified pores. (e) through (h), LB results of dimensionless streamwise velocity profiles are normalized 

by the dimensionless local bulk velocity. See text for a description of the figure. 
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PM2 are used for LB simulations. Different BCs are compared. Under the MBB+SR BC, 

the Mach number is calculated as 𝑀𝑎 = 𝑢𝑥∗̅̅ ̅/𝑐𝑠
∗ = 0.0505 for PM1 and 0.0236 for PM2.  

Visual analysis of the LB results confirms that different BCs yield distinctive flow 

behaviors. Comparing the LB results when no-slip BCs are implemented, we observe that 

the MBB BC yields lower slip than the SBB BC. Approaching the pore center, the 

difference between predictions by MBB and SBB BCs becomes more discernible. This 

implies that errors of numerical slip, if any, at the wall affect the prediction of flow velocity 

in the whole pore.  

Compared to the MD predictions, the LB results obtained with the MBB+SR BC yield 

better match than the SBB+SR BC, both near the wall and in the pore centers. Such a 

difference is more evident than the difference when the MBB and the SBB BCs are applied. 

This highlights the importance weight of the bounce-back scheme in the combined BB+SR 

BCs during LB simulations. Some small deviations are observed between MD and LB 

results obtained when implementing the MBB+SR BC because our LB representation does 

not account for surface roughness as MD models do. When the SBB+SR BC is 

implemented, the LB velocity profiles overestimate the MD results across the whole pore, 

especially in the pore of 1.1 nm height.  

In Figs. 2e through 2h, the profiles of the normalized dimensionless velocity (𝑢𝑥
∗ ) by the 

local ‘bulk’ velocity (𝑢𝑥𝑏
∗ = ∫ 𝑢𝑥

∗𝐻∗

0
𝑑𝑦∗/𝐻∗) are presented. Visual analysis reveals that 

velocity normalization has the effect of minimizing the differences observed when different 

BCs are implemented: evaluating the performance of the BC in LB simulations against MD 
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results therefore becomes difficult and misleading. For example, in both PM1 and PM2, 

implementations of no-slip boundaries, i.e., MBB and SBB, seem to reproduce MD results, 

which is, however, not physical for gas slippage. Significant discrepancies are observed 

between LB results obtained by the MBB+SR BC and MD results near the pore center in 

p5 of PM1 (Fig. 2f), which also indicates that the normalized velocity, although commonly 

applied to validate LB results, may not be as appropriate as the dimensional velocity is for 

the identification of the correct BC.   

 

The velocity distributions in the streamwise direction are presented in Figs. 3a and 3b 

(LB simulations with the MBB+SR BC), and Figs. 3c and (MD simulations). We observe 

 

 

Fig. 3. Flow velocity distribution results of PM1 and PM2 in LB: (a) & (b), and MD: (c) & (d). White 

slabs in MD results represent the regions occupied by the amorphous silica substrates. 



23 

that the velocity distributions obtained from LB and MD simulations compare very well, 

in general. The average streamwise velocities in PM1 are 60.88 m/s and 57.10 m/s in LB 

and MD simulations, respectively, with a relative difference of -7%. LB velocity 

distributions are smoother than MD ones, as expected. This is because LB results show the 

statistical variation of velocity instead of the velocity of individual molecules as in MD 

results. Another finding is that the LB simulation for PM1 yields a symmetric flow velocity 

distribution (Fig. 3a) while MD results show a somewhat less symmetric flow behavior. 

This is because we approximate the same bulk gas density in all micropores of PM1 in the 

LB simulations, while in MD simulations, we observe more gas molecules accumulated in 

the inlet of the micropore p3 and p4 due to an entropy barrier (Phan and Striolo 2019), 

which reduces the average velocity of gas molecules in downstream of the mesopore p5.  

In PM2, LB and MD results (Figs. 3b and 3d) are locally and globally consistent. 

Average streamwise velocities are 28.61 m/s and 29.50 m/s in LB and MD results, 

respectively, with a relative difference of 3%. As the pore structure in PM2 includes a tilted 

solid rectangular obstacle in the middle, asymmetric velocity distributions are expected. In 

highly constricted spaces between p4 and p8, as well as p1 and p2, velocity maxima are 

observed in both MD and LB results. Comparing the velocities in those constricted areas 

indicates that LB simulations yield a higher flow velocity than MD. This is possibly due to 

the slightly different morphology of the solid substrate. In the MD models, we model 

amorphous silica, the surface of which causes some local backflow near the surface sites 

where gas molecules are bounced back in the direction opposite to the main streamwise, 

which reduces the average values of gas molecules velocity near the surface.   
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3.2 Gas Permeability and Klinkenberg Effect 

Figs. 4a and 4b summarize permeability estimates from LB and MD simulations at the 

average 𝐾𝑛′ = 0.132 in PM1 and 0.155 in PM2, respectively. The 𝑘𝑎𝑝𝑝 predicted for PM1 

(Fig. 4a) is 1.957e-07 µm2 (MD), 2.033e-07 µm2 (LB with the MBB+SR BC), and 2.801e-

07 µm2 (LB with the SBB+SR BC). The relative difference between LB and MD results is 

-4% and 43% by the MBB+SR and the SBB+SR BCs, respectively. We estimate 𝑘𝑖𝑛 as 

1.065e-07 µm2 and 1.131e-07 µm2 by implementing the MBB and SBB BCs, respectively, 

 

Fig. 4. Permeability estimates from MD and LB simulations with different BCs. (a) & (b), comparisons 

of 𝑘𝑖𝑛  and 𝑘𝑎𝑝𝑝   estimated by the MD and LB simulations with different BCs. (c) & (d), the relative 

difference of the estimated apparent permeability by SBB and MBB BCs as a linear relation of 𝐾𝑛′ where 

the relative difference is calculated by (𝑘𝑎𝑝𝑝
(𝑆𝐵𝐵+𝑆𝑅) − 𝑘𝑎𝑝𝑝

(𝑀𝐵𝐵+𝑆𝑅)) 𝑘𝑎𝑝𝑝
(𝑀𝐵𝐵+𝑆𝑅)⁄ × 100%.  
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which gives a relative difference of 6%. Because of computing power limitations, we 

cannot obtain intrinsic permeability data from MD simulations at 𝐾𝑛′ → 0. Permeability 

results for PM2 are presented in Fig. 4b. 

We conducted a series of LB simulations to study the variation in 𝑘𝑎𝑝𝑝 as a function of 

𝐾𝑛′, where different gas densities are used. The results are shown in Fig. 4a for PM1. 

Through linear regression, we find the estimated apparent permeability increases with 𝐾𝑛′ 

linearly with statistical accuracy 𝑅2 = 0.9938 and 0.9942 by the MBB+SR BC and the 

SBB+SR BC, respectively. The linear relations can be found in the supplementary 

information. As shown in Fig. 4c, the relative differences between 𝑘𝑎𝑝𝑝
(𝑆𝐵𝐵+𝑆𝑅)

 and 

𝑘𝑎𝑝𝑝
(𝑀𝐵𝐵+𝑆𝑅)

 show a linear relation with 𝐾𝑛′. Similar trends are found for PM2, as shown in 

Figs. 4b and 4d. 
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In Fig. 5a, we compare the Klinkenberg effect as predicted by the LB simulations that 

implement the MBB+SR and SBB+SR BCs. In this figure, the permeability correction 

factor (𝑘𝑎𝑝𝑝/𝑘𝑖𝑛) is plotted against 𝐾𝑛′. Numerical results predicted by the classical BCs 

are higher than those by the improved BCs when 0.013 ≤ 𝐾𝑛′ ≤ 0.291. Due to the wall 

effect, the 𝐾𝑛′will reach an upper limit (e.g., ≈0.29 for 𝑏 = 0.34) beyond which no more 

𝑘𝑎𝑝𝑝/𝑘𝑖𝑛 values are obtainable (Kalarakis et al. 2012). To predict 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛 in a broader 

 

Fig. 5. LB results of 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛  obtained in this work using classical BCs and the improved one 

proposed here. (a) compared against published LB results using classical BCs: results 1 (Zhao and Wang 

2019), results 2 (Li et al. 2018), and results 3 (Chen et al. 2015). (b) compared against experimental data: 

shales (Moghaddam and Jamiolahmady 2016),  tight sandstones (Ziarani and Aguilera 2012),  and a single 

nano-pore (Velasco et al. 2012). (c) compared against predictions from non-LB approaches: 1) the fractal 

permeability with the second-order gas slip (Song et al. 2018); 2) the BKC’s correlation (Beskok and 

Karniadakis 1999, Klinkenberg 1941); 4) LBE solutions (Loyalka and Hamoodi 1990, Wu et al. 2017); 5) 

DSMC results (Borner et al. 2017). 
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𝐾𝑛′  range, linear regressions are performed, shown in Fig. 5a. These relations are 

duplicated in Figs. 5b and 5c for further comparisons. 

In Fig. 5a, we also compare selected LB results from literature (Chen et al. 2015, Li 

et al. 2018, Zhao and Wang 2019). These studies either implemented the SBB+SR BC, or 

applied the SBB BC first to estimate 𝑘𝑖𝑛 and then the second-order slip analytical solution 

to estimate 𝑘𝑎𝑝𝑝. Albeit scattered over a broad range, those results converge to our linear 

regression for the classical BCs when 0.1 ≤ 𝐾𝑛′ ≤ 10. In contrast, the linear relation 

predicted by the improved BCs indicates lower 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛 values. Fig. 5b shows the trend 

of 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛 versus 𝐾𝑛′ reported from core-flooding experiments. Our improved LB BC 

yields a better match with the consistent trend from the sampled data than the classical BCs 

do. 

In Fig. 5c, we compare the LB results against some recent non-LB approaches including 

fractal permeability models, empirical correlations, and numerical solutions (i.e., solutions 

of the linearized Boltzmann equation (LBE) and the direct simulation Monte Carlo 

(DSMC)). Most of the results presented were obtained using Argon and Nitrogen gases as 

the carrier fluid. We applied a TMAC of 0.827 in our LB simulations, which is in the range 

of TMAC values for Argon and Nitrogen gases (Yamaguchi et al. 2017, Zhang et al. 2012). 

We find that when 0.01 ≤ 𝐾𝑛′ ≤ 10, the fractal permeability model, the BKC correlation, 

and solutions of the linearized Boltzmann equation agree with the linear relation predicted 

by the improved BC. Other models, i.e., DSMC and the Klinkenberg’s correction, are 

found to predict lower values than the linear relation for different reasons. Firstly, our LB 
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simulations simulate the flow at the temperature of 338 K while the presented DSMC 

results were obtained at 310 K. The DSMC results imply that the Klinkenberg effect 

decreases as temperature decreases (Borner et al. 2017). Secondly, our LB simulations 

predict the second-order slip while the Klinkenberg’s correlation assumes first-order slip 

(Ghanbarian and Javadpour 2017). Studies find that the first-order slip assumption fails in 

the transitional flow region where 𝐾𝑛′ ≥ 0.1 (Hadjiconstantinou 2005, Hadjiconstantinou 

2006). 

 

Fig. 6. Uniform solid slabs are randomly distributed within the PM3 in order to simulate complex pore 

structure pathways. Porosity is 𝜀 = 0.54 and the intrinsic permeability is estimated by implementing the 

MBB BC as 𝑘𝑖𝑛 = 4.50e-08 (µm2) (converged at 15000 ts).   

 

3.3 Application of the Improved BC to Complex Porous Media 

Recent studies (Chen et al. 2015, Li et al. 2018, Zhao and Wang 2019) suggest that the 

reason for the overestimation of the Klinkenberg effect by using the SBB+SR BC is due to 

the complexity of pore structure. To investigate the impact of the structure of PM on the 

Klinkenberg effect, we applied the improved BC proposed here to a more complex pore 
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network, which we identify as PM3 and whose structure is illustrated in Fig. 6a. Flowing 

pathways within PM3 are more tortuous than those within PM1 and PM2. The pore size 

follows a lognormal distribution where the mean is 3.7 nm and the logarithmic standard 

deviation is 0.384. Gas atomic density and viscosity in the 3.8 nm-sized pore (p5 in PM1) 

are used as the inputs for the flow simulation through PM3. The effective Knudsen number 

for PM3 is evaluated as in Equation  (6). 

In Fig. 6b, the estimated values of  𝑘𝑎𝑝𝑝/𝑘𝑖𝑛  versus 𝐾𝑛′′ are evaluated at 𝐾𝑛′′ =  

0.0967, 0.1894, and 0.5304,  and the values fall onto the linear regression curve predicted 

for PM1 and PM2 and the BKC’s correlation. We find that when the 𝐾𝑛′′ is evaluated, the 

trend of 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛 does not depend on the configuration of individual pores but presents a 

universal fashion, a result which is also implied by the core-flooding experimental results 

obtained from different core samples shown in Fig. 5b and a DSMC study in Ref. (Yang 

and Weigand 2018). The good agreement between the estimated 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛 and the BKC 

correlation shows a strong applicability the MBB+SR BC to the gas flow through complex 

pore structures.   

4 Discussion 

Because recent applications of LB simulations fail to reproduce the Klinkenberg effect 

when gas flows through micro-/nano-porous media, it is reasonable to question whether 

the mesoscale LB simulations can be improved to achieve numerical consistency. In this 
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work, we leveraged atomistic non-equilibrium molecular dynamics (MD) simulation to 

improve the accuracy of simulating the finite-𝐾𝑛 flow by the LB method.  

We found that MD simulations (Fig. 2) help identify the correct slip BCs in the LB 

simulation setup. We showed that when the improved BCs are implemented, the LB 

simulations of the gas transport and the Klinkenberg effect are quantitatively consistent 

with MD in terms of flow velocity and permeability. The improved BCs reasonably predict 

the dimensional velocity as in MD; yet the classical BCs where the parallel velocities at 

the solid-gas interface are not properly addressed can lead to unphysical slip (Figs. 2a 

through 2d). Additionally, LB simulations with the improved BCs proposed here can 

quantitatively reproduce the permeability estimates from MD; while the LB simulations 

with the classical BCs (Figs. 4) overpredict the permeability. We also found the unphysical 

slip in the SBB BC cannot be numerically canceled out when one calculates the 

permeability correction factor, as the ratio of 𝑘𝑎𝑝𝑝
(𝑆𝐵𝐵+𝑆𝑅)/𝑘𝑖𝑛

(𝑆𝐵𝐵)
 (Fig. 5). 

Numerical comparisons of permeability correction factors from multi-scale source data 

(Fig. 5) testify the improvement achieved when implementing the improved BCs in LB 

simulations. The LB models implementing the classical BCs, both in this work and in the 

literature (Chen et al. 2015, Li et al. 2018, Prestininzi et al. 2016, Zhao and Wang 2019), 

significantly overestimate 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛  in the transitional flow region. When implementing 

the MBB+SR and MBB BCs, LB models can fairly well reproduce 𝑘𝑎𝑝𝑝/𝑘𝑖𝑛  values for 

ultra-tight rock, e.g., shale, and nanofluidic data for 0.01 ≤ 𝐾𝑛′ ≤ 10  (Fig. 5b). This 
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shows the extended applicability of the improved LB method from continuum to 

transitional flow simulation.  

Additionally, the LB simulations with improved BCs yield a general agreement with 

other classical non-LB approaches in estimating the permeability correction factor, 

especially the widely used BKC’s correlation, which has been reflected in the results of 

PM1 and PM2 when 0.01 ≤ 𝐾𝑛′ ≤ 10 (Fig. 5b) and more complex PM, e.g., PM3, when 

0.01 ≤ 𝐾𝑛′′ ≤ 10 (Fig. 6b). 

Admittedly, alternative approaches have been proposed to improve the LB model for 

describing the finite-𝐾𝑛 flow including using multiple relaxation times (MRT) (Tao and 

Guo 2015, Wang et al. 2018), and high-order velocity sets (Kim et al. 2008). However, the 

approach proposed in this work has the distinct advantage to be relatively simple, which is 

coupled with the single relaxation time (SRT) and the widely implemented D2Q9 velocity 

set. The computational requirements of SRT are modest. Compared to MRT, SRT is much 

simpler in mathematical form and more computationally efficient. Studies showed that “a 

carefully optimized MRT will cost 10%-20% computational overhead than SRT model” 

(Succi and Succi 2018). Over the past decade, many debated whether MRT or SRT should 

be preferred. That MRT can outperform the SRT model in stability and accuracy is under 

the assumption that an optimum parameter set is found for conducting calculations within 

the MRT approach. However, as there is no universal guideline to find the optima, the 

superiority of MRT scheme cannot be taken for granted (Succi and Succi 2018). Lastly, 

studies show that high-order velocity set may not always be effective in improving the 
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accuracy of LB method; the improved accuracy is not guaranteed by the increase of the 

velocity set order but depends on the flow type and the choice of the Gauss–Hermite 

quadrature (Kim et al. 2008, Meng and Zhang 2011). This, in turn, requires the prerequisite 

effort to testify the optimum order of the velocity set for a certain type of application.  

5 Conclusions 

In summary, the applicability of the LB method for slip and transitional flows in tight 

gas rocks, e.g. shale rocks, has been extended by addressing the slip boundary condition. 

Throughout this paper, the classical BC against an improved BC proposed here have been 

compared extensively in terms of dimensional flow velocity and permeability. Our results 

demonstrate that the improved BC is physically sound. Although widely applied 

throughout the past decade, classical BCs do not seem always suitable to simulate the 

finite-𝐾𝑛 gas flow, e.g., shale gas transport, within the LB method. This work also provides 

quantitative analysis concerning the overestimation of the Klinkenberg effect reported in 

previous studies for gas permeability, and it suggests that computational limitations 

inherent to the standard bounce-back (SBB) scheme may be the reason for the observed 

deviation compared to experiments. The results obtained when the improved BC is 

implemented are validated against multi-scale source data. The results suggest that the 

proposed mesoscopic approach is a computationally inexpensive and robust numerical tool 

to support core-flooding measurements and can unfold the consistent Klinkenberg effect 

observed from a multi-scale perspective. Because of its reliability, combined with modest 
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computational cost, the method proposed here could be valuable for predicting the 

permeability of tight rock masses, including shale formations, which is essential for 

enhancing the accuracy of production models often used in the sector. 
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