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Application of the ESMACS Binding Free Energy Protocol
to a Multi-Binding Site Lactate Dehydogenase A Ligand
Dataset
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Vlijmen, Gary Tresadern, and Peter V. Coveney*

Over the past two decades, the use of fragment-based lead generation
has become a common, mature approach to identify tractable starting points
in chemical space for the drug discovery process. This approach naturally
involves the study of the binding properties of highly heterogeneous ligands.
Such datasets challenge computational techniques to provide comparable
binding free energy estimates from different binding modes. The performance
of a range of statistically robust ensemble-based binding free energy calculation
protocols, called ESMACS (enhanced sampling of molecular dynamics with
approximation of continuum solvent), is evaluated. Ligands designed to target
two binding pockets in the lactate dehydogenase, a target protein, which vary in
size, charge, and binding mode, are studied. When compared to experimental
results, excellent statistical rankings are obtained across this highly
diverse set of ligands. In addition, three approaches to account for entropic
contributions are investigated: 1) normal mode analysis, 2) weighted solvent
accessible surface area (WSAS), and 3) variational entropy. Normal mode
analysis and WSAS correlate strongly with each other—although the latter is
computationally far cheaper—but do not improve rankings. Variational entropy
corrects exaggerated discrimination of ligands bound in different pockets
but creates three outliers which reduce the quality of the overall ranking.
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1. Introduction

Over the last two decades the use of
fragment-based lead generation (FBLG) has
become a common, mature, approach to
identify tractable starting points in chemi-
cal space for the drug discovery process.[1]

This methodology involves scanning a li-
brary of low molecular weight compounds,
known as fragments, to see if they bind to
the target of interest. Once binding frag-
ments have been identified they can be
built on to create higher affinity molecules
which, if they modulate protein function
as required, become candidate drugs. One
possible strategy is to link multiple frag-
ments binding to different regions of the
protein. FBLG represents an attractive ap-
plication for in silico binding affinity cal-
culations, but the need to obtain compa-
rable free energy estimates from different
binding modes represents a considerable
challenge for many computationally effi-
cient techniques.
Here, we take this challenge to evaluate

the performance of our range of ensemble
simulation based binding free energy calculation protocols,
called ESMACS (enhanced sampling ofmolecular dynamics with
approximation of continuum solvent).
These protocols have been shown to produce results which

correlate well with experiment (correlation coefficients >0.7) and
provide reproducible uncertainties[2–7] in studies of drugs bind-
ing to a single site. ESMACS is based on the common computa-
tional binding affinity prediction approach known as molecular
mechanics Poisson–Boltzmann surface area (MMPBSA).[8] This
is an approximate post-processing end-state method, which uses
continuum solvent models to reduce the computational cost of
obtaining results. The speed and ease of setup (compared to rigor-
ous free energy calculations) makes MMPBSA an attractive can-
didate for use throughout the drug discovery pipeline. However,
results are generally dependent on the system and bindingmode,
and are perceived to be less accurate than those obtained from
more expensive and theoretically exact alchemical approaches
(such as free energy perturbation, FEP, and thermodynamic in-
tegration, TI)[9,10] that have been used successfully in our labs
for relative prediction of close analogues in drug discovery.[11–14]
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Furthermore, the term MMPBSA as used in the literature per-
mits a wide range of variants which incorporate different sam-
pling strategies (for example, all ligand conformers can be drawn
from simulation of the complex or from independent runs) and
different solvation and entropy terms. Our previous work has
demonstrated that MMPBSA analysis of single simulation tra-
jectories is highly unreliable, with calculations initiated from
the same structures varying by up to 12 kcal mol−1 for small
molecules bound to proteins.[2,5,15] Results vary even more sig-
nificantly for flexible ligands binding to major histocompatibility
complex (MHC).[7] However, the average taken over an ensem-
ble of replica simulations is found to provide reproducible re-
sults in good agreement with experimental ranking (r >= 0.7)
for all these systems. These issues are a result of the underly-
ing lack of reproducibility of classical molecular dynamics, for
which predictions of macroscopic properties, such as the Gibbs
free energy, require ensemble averaging over microscopic states.
Newtonian dynamics are intrinsically sensitive to initial condi-
tions, which manifests as different MD simulations producing
trajectories that diverge rapidly over time no matter how close
their initial conditions are (a consequence of the mixing ergodic
properties of any system that will reach an equilibrium state).[16]

Another limitation of single trajectory MMPBSA is that it does
not account thoroughly for entropic components of the binding
affinity. Here, we investigate both the use of independent simu-
lations to account for ligand and receptor flexibility, and multiple
approaches to incorporating entropic contributions to the bind-
ing free energy.
One target in which FBLG has been employed successfully

is the lactate dehydogenase (LDH) tetramer, which is upregu-
lated in clinical tumors (with high expression linked to poor
prognosis).[17–19] Ward et al.[20] reported the use of X-ray crystal-
lography alongside surface plasmon resonance (SPR) and nu-
clearmagnetic resonance (NMR) based screening to develop frag-
ment hits for the LDHA subunit into lead compounds. In this
work we report a study testing the performance of ESMACS pro-
tocols for datasets including multiple binding sites and ligands
varying in size, charge, and binding mode.

2. Datasets and Computational Protocols

In this section, we describe the ESMACS protocols we employ in
detail and the dataset of 22 LDHA ligands used to test their per-
formance.

2.1. Experimental Dataset and Starting Structures

The LDHA structure used in this study is based on chain A of
PDB ID: 4AJP (truncated to start at residue 16) with consen-
sus water molecules from other X-ray structures incorporated. A
dataset of 22 ligands was studied, structures of which are shown
in Figure 1a. The ligands bind to two distinct locations in the pro-
tein, known as the substrate and adenine sites, respectively (see
Figure 1b). The dataset contains four ligands which bind to the
substrate pocket, nine to the adenine pocket, and nine that bridge
the two sites. Ligand poses were taken from crystal structures

described in Ward et al.[20] Where no crystal conformation was
produced ligands were superimposed on the most similar com-
pound for which an experimental pose was available. This dataset
contained both charged and neutral ligands and ligands of grow-
ing size. All were neutral except: ligands LDHA14, 16–18, and
28 that were assigned −1 charge, and LDHA19–21, 25–27, 29–34
with a charge of −2. For this data set, binding strengths were ob-
tained from Kd measurements derived from BIAcore and NMR
experiments[20] and ranged between −11.0 and −3.1 kcal mol−1.

2.2. ESMACS Binding Free Energy Calculations

The principle behind ESMACS is that many short simulations
provide better sampling of conformational space than single sim-
ulations. It is based on theMMPBSAmethod and facilitates rapid
and reproducible calculations of binding affinities. Our ESMACS
protocols are flexible and allow for the analysis to be tailored to
the target system. In this work, we employ a standard ESMACS
protocol, which consists of running 25 replicas for a total of 6 ns
each, details of which are discussed in Section 2.3.
When two reactants combine at constant temperature and

pressure, the binding affinity is characterized by the change in
Gibbs free energy, ΔG. This is described by the following rela-
tionship:

ΔG =
⟨
Gcomplex

⟩
−
⟨
Greceptor

⟩
−
⟨
Gligand

⟩
(1)

where ⟨Gcomplex⟩, ⟨Greceptor⟩ and ⟨Gligand⟩ are the ensemble average
values of the Gibbs free energy for the complex, receptor (pro-
tein), and ligand, respectively.
Sampling of the complex and its two components can either

be performed independently or derived from simulation of the
complex. The latter approach is more commonly used due to its
improved convergence behavior, a consequence of cancelation
between the noisy terms describing the internal energy of the
ligand, receptor and complex.[21] However, recent work has indi-
cated that adaptation energies associated with confining the re-
ceptor and ligand in a complex can differ significantly even for
closely related compounds.[12]

When both the receptor and ligand contributions are com-
puted from the complex trajectory, we designate this a “1traj pro-
tocol.”When all three contributions derive from independent tra-
jectories we refer to this as a “3traj protocol,” and when only one
of the receptor or ligand contributions do so a “2traj protocol.”
In the latter case, a suffix (either -fl or -fr, for flexible ligand and
receptor, respectively) is added to the protocol name to signify
which component is derived from the independent simulation.
Additional variants involve the use of the average receptor con-
tribution across the complex simulations for all comparable lig-
ands, which is indicated with an -ar (averaged receptor) suffix in
the protocol name.
A summary of all of the protocols and the origin of component

data in each is given in Table 1. The statistical performance of the
pairs of protocols 1traj-ar and 2traj-fr, and 2traj-ar and 3traj, are
the same since the receptor contribution for all cases is a constant
between protein–ligand pairs. Consequently, we do not analyze
the 3traj or 2traj-fr protocols explicitly.
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Figure 1. Chemical structures of ligands from the LDHA dataset and locations of binding sites in the protein structure. The ligands bind in one of three
modes: to the adenine (green) or substrate (blue) sites individually, or bridging between the two (orange). a) Structures for 22 LDHA ligands. b) A
representative bridging ligand (LDHA26) is shown in chemical representation bound to the LDHA protein (shown in cartoon). The moieties bound to
the adenine and substrate pockets are highlighted with green and blue surfaces, respectively.

The binding free energy change calculated by MMPBSA
(ΔGMMPBSA) can be broken down into a number of
components:

ΔGMMPBSA = ΔGMM
ele + ΔGMM

vdW + ΔGMM
int + ΔGsol

pol + ΔGsol
nonpol (2)

where ΔGMM
ele and ΔGMM

vdW are the electrostatic and van der Waals
contributions to the molecular mechanics free energy difference,
respectively,ΔGMM

int is the internal energy contribution, andΔGsol
pol

and ΔGsol
nonpol are the polar and non-polar solvation terms, respec-

tively.
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Table 1. Summary of the origin of component contributions in six ESMACS
protocols; whether they come from the ensemble of simulations run for
the complex (C) or separate ensembles performed for the receptor (R) and
ligands (L). “Constant” refers to the use of a constant, usually the average
value across the studied systems.

Contribution to the binding free energy

Protocol Complex Receptor Ligand

1traj C C C

1traj-ar C Constant C

2traj-fr C R (Constant) C

2traj-fl C C L

2traj-ar C Constant L

3traj C R (Constant) L

The electrostatic free energy of solvation, ΔGsol
pol, is the part of

the calculation described by the Poisson–Boltzmann (PB) calcu-
lation. The pbsa program included with AmberTools was used to
perform the PB calculation (using default parameters: grid spac-
ing of 0.5 Å, internal and external dielectric constants of 1 and
80, respectively). The non-polar solvation free energy contribu-
tion is estimated from the solvent accessible surface area using
the traditional one component method (specified using inp=1 in
the input file). In this approach the surface tension, 𝛾 , is set to
0.00542 kcal mol−1Å−2 and the off-set, 𝛽, to 0.92 kcal mol−1. The
fill ratio parameter was set to 4.0 which does not impact the re-
sults but ensures the stability of the calculations. All simulation
and analysis in this paper is conducted at a temperature of 300 K.

2.2.1. Entropic Contribution to Binding Free Energies

MMPBSA calculations neglect the contribution to binding free
energy from changes in the solute entropy. A computationally ex-
pensive method for accounting for this “configurational entropy”
is normalmode (NMODE) analysis.[22] This can straightforwardly
be incorporated in the binding affinity estimate using the follow-
ing equation:

ΔGtheor = ΔGMMPBSA − TΔSNMODE (3)

The fact that converged normal mode calculations can require
similar computational effort to the underlying simulations has
motivated the creation of the weighted solvent accessible surface
area (WSAS) model.[23] This model was parameterized to repro-
duce normalmode results using calculations of the solvent acces-
sible surface area (SAS) and buried SAS (BSAS) of each atom of
the system. The two types of surface area are weighted according
to atom type, and the sum of the contributions of each atom is
used to estimate SWSAS. This estimate is calculated from

SWSAS =
N∑
i=1

wi(SASi − kBSASi) (4)

where wi is the atom-type specific weighting of the atom i, and
k is a parameter which scales the impact of buried surface area.
BSAS is calculated from the SAS using

BSASi = 4𝜋(ri + rprob)
2 − SASi (5)

Where ri the atomic radius and rprob the probe radius used to de-
termine the SAS. In this work, we compute SAS using the Lee
and Richards algorithm[24] as implemented in the FreeSASA li-
brary (freesasa.github.io).
Another, computationally efficient, alternative approach to ac-

counting for the solute entropy was proposed by Duan et al.[25] In
their formulation, the “variational entropy” can be derived from
the fluctuations of the receptor-ligand interaction energy, Einter.
This energy can be calculated using components of theMMPBSA
calculation

Einter = GMM
ele +GMM

vdW (6)

The fluctuation in interaction energy is then given by

ΔEinter = Einter −
⟨
Einter

⟩
(7)

where angle braces indicate an ensemble average. This is then
used to compute the entropic contribution to binding via

−TΔSvar = kBT ln
⟨
e𝛽ΔE

inter⟩
(8)

where kB is the Boltzmann constant and 𝛽 = 1∕kBT .
In this work, we compare the effect of the inclusion of different

entropy components on the correlation of computed binding free
energy values with experiment. In particular, we study those de-
rived from normal mode analysis, WSAS, and the variational en-
tropy.

2.2.2. Statistics and Uncertainties

All statistics presented are based on their standard definitions
with the exception of the mean unsigned error (MUE). It is well
known that MMPBSA results have a significant offset from ex-
perimental values (typically on the order of 15 to 25 kcal mol−1)
due to a range of factors, in particular, the neglect of entropic
contributions.[26,27] Consequently, we present values corrected for
the systematic (mean signed) error.
We compute uncertainties for all metrics through bootstrap-

ping analysis. This method involves resampling with replace-
ment the N input data points (for example, the replica averages
of ΔGMMPBSA) to provide a new bootstrap sample also containing
N data points. This process is repeated many times (in our case
5000 times) and the statistic of interest calculated for each boot-
strap population. The standard deviation of these values provides
an estimate of the uncertainty associated with an average derived
from a given sample; this is what is quoted as the bootstrap error
measure of our statistics. For correlation coefficients, samples are
drawn from the overall averages for each ligand paired with the
relevant experimental value.
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2.3. Simulation Setup

Simulation system setup, including the creation of a water box
and addition of neutralizing ions, was performed using Amber-
Tools 17.[28,29] Protein parameters were taken from the standard
Amber force field for bioorganic systems (ff14SB).[30] Ligand pa-
rameterizations were produced using the general Amber force
field (GAFF).[23] The primary results of this paper were created
using ligand partial charges generated using the restrained elec-
trostatic potential (RESP) procedure, also part of the Amber pack-
age, from Gaussian 98[31] geometrically optimized inhibitor rep-
resentations. The Gaussian calculations were performed at the
Hartree–Fock level of theory using the 6-31G* basis set. Addi-
tional results are presented in which AM1-BCC partial charges
were generated using Amber alone.
Ensembles of 25 replica MD simulations were conducted

using the package NAMD 2.11[32] for each system (complex, re-
ceptor, or ligand) studied. All simulations were conducted using
the protocol incorporated into the workflow tool BAC.[33] Each
system was minimized with all heavy protein atoms restrained at
their initial positions (with a restraining force constant of 4 kcal
mol−1Å−2). Initial velocities were then generated independently
for each replica from a Maxwell–Boltzmann distribution at
50 K. Each system was virtually heated to 300 K over 60 ps
and subsequently maintained at this temperature using the
NAMD standard, Langevin dynamics approach (employing a
coupling coefficient of 1 ps−1). While heating, the restraints
applied during minimisation were retained. Once the system
reached the correct temperature, the pressure was maintained
at 1 bar using a Berendsen barostat (with a pressure coupling
constant of 0.1 ps). Subsequent to heating, a series of equili-
bration runs, totaling 2 ns, were conducted, during which the
restraints on heavy atoms were gradually reduced. The restraint
reduction occurred in ten 100 ps steps, after each of which the
force constant was halved. Finally, 4 ns production simulations
were executed with snapshots output for analysis every 100 ps.
For all MD simulation steps the long-range Coulomb interac-
tion was handled using the particle-mesh Ewald summation
method (PME),[34] with a nonbonded cutoff distance of 12 Å.
The SHAKE algorithm[35] was employed on all atoms covalently
bonded to hydrogen atoms, enabling a 2 fs time step for all
simulations.

3. Results

First, we investigate the use of ensemble-based multiple trajec-
tory ESMACSprotocols inMMPBSA calculations for this system,
before turning our attention to the inclusion of the approaches
discussed previously to estimate entropic contributions to the
binding energy.

3.1. Standard ESMACS Analysis

A comparison of the performance of the various ESMACS proto-
cols in reproducing the LDHA experimental dataset rankings is
shown in Table 2. All protocols show a strong overall correlation

Table 2. Performance of different MMPBSA-based ESMACS protocols in
reproducing experimental binding free energies, measured by mean un-
signed error (MUE), Pearson’s predictivity index (PI), correlation coeffi-
cient (r2), and Spearman’s rank coefficient (rs). Bootstrapped errors are
provided in brackets where appropriate.

Protocol MUEa) PI r2 rs

1traj 17.82 0.90 0.81 (0.07) 0.82 (0.11)

1traj-ar 22.73 0.90 0.83 (0.07) 0.81 (0.09)

2traj-fl 16.40 0.91 0.79 (0.07) 0.83 (0.11)

2traj-ar 21.21 0.90 0.81 (0.06) 0.82 (0.09)

a)In kcal mol−1 and corrected for mean signed error.

between the computed energies and experimental values, which
is reflected in high Pearson and Spearman coefficients. How-
ever, some caution should be exercised when considering these
metrics as the target dataset consists of three well separated
clusters (corresponding to the different binding modes). No sig-
nificant improvement in either coefficient is made through the
incorporation of independent trajectories for ligand or receptor
into the calculation, suggesting that the ligands may all bind
in a “lock and key” fashion, inducing little if any strain in the
protein or change in ligand conformation. As a consequence of
this, we will focus for the rest of this work on analyzing the 1traj
results.
The comparison of binding free energies obtained from the

1traj ESMACS protocols with the LDHA experimental dataset
is shown in Figure 2. The good quality of the overall ranking is
primarily due to correct separation of the tight binding ligands,
which occupy both binding sites, and those occupying the ade-
nine site. Consistently good rankings are obtained for each sub-
set of ligands defined by the different binding modes (r2 of 0.74
± 0.17, 0.86 ± 0.24, 0.74 ± 0.16 for the adenine, substrate, and
bridging ligands, respectively). This indicates that the method
is not merely able to detect the gross changes that differenti-
ate weak (and smaller) binders from tighter (and larger bridg-
ing) ligands but accounts for more subtle structural features. The
ligands which bind in the substrate pocket (LDHA19, LDHA20,
LDHA21, and LDHA25) do not lie close to the overall trend line
and are assigned much more favorable relative binding affini-
ties than the adenine site binders, despite having similar exper-
imental affinities. This observation applies to the results of all
ESMACS protocols under consideration. These observations are
reflected in the high MUE for all rankings shown in Table 2.
Graphical comparisons of the results obtained for all protocols
with experiment (alongside correlation analysis) are provided in
Supporting Information.
Decomposition of the MMPBSA contribution shows that the

origin of the improved binding of the ligands that bridge both
binding sites compared to the adenine site binders is primarily
electrostatic (see Table 3). This large negative (attractive) contri-
bution overcomes an increased polar solvation penalty. This is
a pattern that is also apparent for the substrate pocket binding
ligands. The majority of the increased affinity of the bridging lig-
ands relative to the substrate pocket binders comes from the van
der Waals contribution.
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Figure 2. Comparison of binding free energies computed using 1traj MMPBSA based ESMACS protocol with experimental data. Ligand datapoints are
colored according to the pocket(s) to which they bind and a dashed gray line indicates the best fit linear regression.

Table 3. Decomposition of the binding affinity calculated using MMPBSA (ΔGMMPBSA) into electrostatic (ΔGele), van der Waals (ΔGvdw), polar (ΔGPB)
and non-polar (ΔGnon-pol) solvation contributions. Ligands which bind in the adenine pocket are shaded green, in the substrate pocket blue and bridg-
ing ligands in orange. Values are taken from the 1-traj ESMACS protocol. Mean energies are in kcal mol−1, with bootstrap standard errors shown in
parentheses.

Drug ΔGele ΔGvdw ΔGPB ΔGnon-pol ΔGMMPBSA

LDHA12 −22.24 (2.88) −26.08 (1.44) 31.70 (2.76) −2.79 (0.09) −16.63 (1.37)

LDHA14 −7.38 (3.51) −20.20 (2.47) 16.95 (2.99) −2.09 (0.19) −10.63 (1.91)

LDHA15 −22.07 (1.26) −24.41 (0.47) 29.64 (1.07) −2.69 (0.02) −16.84 (0.55)

LDHA16 −128.05 (20.62) −27.83 (1.09) 139.37 (18.74) −3.11 (0.07) −16.51 (2.93)

LDHA17 −129.44 (23.77) −32.37 (1.10) 140.88 (21.03) −3.49 (0.10) −20.94 (4.80)

LDHA18 −126.25 (17.66) −31.59 (1.33) 138.33 (16.38) −3.45 (0.08) −19.51 (2.89)

LDHA19 −366.15 (16.55) −4.66 (0.93) 340.18 (12.67) −1.47 (0.04) −30.63 (8.27)

LDHA20 −355.68 (18.63) −21.16 (1.34) 336.91 (15.65) −2.65 (0.06) −39.93 (7.46)

LDHA21 −380.30 (14.25) −24.95 (1.21) 361.13 (12.92) −3.23 (0.06) −44.12 (4.39)

LDHA22 −37.48 (2.82) −31.40 (0.97) 48.87 (2.49) −3.44 (0.04) −20.00 (1.57)

LDHA23 −37.42 (4.25) −35.35 (1.33) 49.65 (3.87) −3.82 (0.09) −23.12 (1.59)

LDHA24 −37.90 (1.39) −38.62 (1.14) 53.48 (2.13) −3.99 (0.05) −23.04 (1.95)

LDHA25 −369.56 (18.16) −22.48 (0.93) 352.67 (16.60) −2.92 (0.05) −39.38 (2.63)

LDHA26 −410.61 (17.42) −56.23 (1.57) 403.40 (14.74) −5.89 (0.07) −63.44 (4.51)

LDHA27 −412.59 (17.72) −59.32 (1.71) 405.24 (15.45) −6.25 (0.08) −66.67 (4.63)

LDHA28 −213.51 (10.36) −55.64 (1.93) 217.22 (6.91) −5.74 (0.09) −51.93 (6.13)

LDHA29 −417.16 (12.66) −53.64 (1.24) 408.53 (9.88) −5.75 (0.06) −62.27 (4.38)

LDHA30 −404.65 (14.89) −54.37 (1.86) 398.85 (13.91) −5.75 (0.07) −60.18 (3.08)

LDHA31 −416.20 (12.51) −57.78 (1.53) 409.05 (10.84) −6.16 (0.07) −64.93 (3.91)

LDHA32 −410.65 (12.59) −57.89 (1.52) 404.70 (11.33) −6.14 (0.08) −63.84 (3.74)

LDHA33 −412.50 (10.39) −54.86 (1.19) 404.86 (10.40) −5.80 (0.04) −62.50 (3.47)

LDHA34 −411.27 (10.85) −59.00 (1.45) 404.40 (9.69) −6.21 (0.06) −65.87 (3.70)
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Figure 3. Comparison of binding free energies computed using 1traj MMPBSA based ESMACS protocol and different charge calculation methods with
experimental data. Results produced with the AM1-BCC and Gaussian/RESP approaches agree for all ligands within error except LDHA12 and LDHA15.

3.1.1. Impact of Ligand Parameterization

For simulations using Amber forcefields, the choice of proce-
dures for ligand preparation is usually whether to use AM1-BCC
or Gaussian/RESP based protocols to determine atom charges in
combination with the GAFF general purpose forcefield parame-
ters. In order to ascertain that our results were not strongly in-
fluenced by this decision we re-ran the 1traj ESMACS protocol
for the full set of ligands using the AM1-BCC charge model. As
shown in Figure 3 the ranking is almost unchanged, with all but
two ligands (LDHA12 and LDHA15) having ΔGMMPBSA values
within error between the two charge models. However, the bind-
ing affinities for both ligands have comparatively small uncer-
tainties associated with them. A systematic difference between
the partial charges is observed between the two parameteriza-
tions in these systems where the oxygen and nitrogen within
the binding pockets have the same charges when prepared us-
ing Gaussian/RESP (approximately −0.64) but differ slightly (ap-
proximately −0.58 and −0.47, respectively) using AM1-BCC. The
correlation coefficients of the results are unchanged, r2 is 0.81
(0.07) and rs 0.82 (0.10), with the grouping of the ligands by bind-
ing mode also preserved.

3.2. Entropic Contributions

Accounting correctly, and computationally efficiently, for the
entropic component of binding free energies remains a chal-
lenge for MMPBSA-based computations. Here, we investigate
the impact of normal mode analysis derived estimates of the
conformational entropy and the variational entropy technique on
the ranking of different ESMACS protocols. The latter method
is a computationally cheap analysis based on the variation of
components of the MMPBSA calculation, while the former

involves an expensive extra post-processing step (obtaining
converged values can use as many CPU hours as the original
simulation). Consequently, we also investigate the use of the
WSAS method for approximating normal mode analysis based
on solvent accessible surface area calculations to reduce this
added expense.

3.2.1. Normal Mode Analysis and WSAS

The overall correlation, shown in (Figure 4a), is not improved
by the incorporation of normal mode estimates of the config-
urational entropy (r2 of 0.80 and rs of 0.80). Furthermore, the
correlations for the ligand binding mode subsets is also similar
(see Supporting information). The deviation from the overall
trend by the substrate pocket ligands is exaggerated slightly by the
incorporation of this contribution with the calculations, particu-
larly for LDHA20 and LDHA21. These ligands are all small and
highly charged, building upon amalonate substructure. Interest-
ingly, the ranking of the bridging ligands improves slightly with
the incorporation of configurational entropy into the ESMACS
calculation, with the weakest binders moving towards the overall
trend.
The WSAS method has an exceptionally strong correlation

with the normal mode results, with r2 of 0.93 and rs of 0.94 (see
inset in Figure 4b). Correlation was also good within sets, with r2

values of 0.76, 0.83, and 0.98 for adenine, bridging, and substrate
subsets, respectively. This is reflected in the similarity of the over-
all rankings incorporating either method with the MMPBSA re-
sults shown in Figure 4. Using the WSAS parameters chosen
here, the separation of the bridging ligands to the weakest bind-
ing adenine pocket ligands is increased by around 20 kcal mol−1.
Despite this, the overall pattern of the three binding modes rela-
tive to one another is not altered.
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Figure 4. Correlation of ESMACS binding free energies using configura-
tional entropy estimates from a) normal modes analysis, b) WSAS (com-
puted with a k value of 0.8), and c) variational entropy. In all subfigures,
the dashed gray line indicates the best fit using linear regression. The cor-
relation between the normal modes and WSAS is shown as an inset in
the latter ranking (Pearson correlation (r2) of 0.93 and Spearman correla-
tion (rs) of 0.94). The ligands bind in one of three modes; to the adenine
(green) or substrate (blue) sites individually, or bridging between the two
(orange). In the first two methods, the values for substrate and adenine
pockets form two distinct clusters, whereas in the variational entropy ap-
proach most are in a single region (in agreement with the experimental
data).

Figure 5. Depiction of interaction of the carboxylic acid moiety of LDHA16
with ARG99 during simulation (both ligand and residue are shown in
chemical representation). Ligands LDHA17 and LDHA18 (varying only in
substitutions of the methyl sidechain attached to the scaffold rings) share
this moiety and these interactions, LDHA12 and LDHA15 have the same
scaffold but do not. The region occupied by the shared scaffold, which
binds to the main adenine pocket, is shown as a translucent cyan surface.
The protein is shown in cartoon representation.

These results suggest that, in terms of ranking ligands, the
WSAS approach offers a viable “drop in” alternative to normal
mode calculations. However, neither approach offers an improve-
ment in this dataset relative to MMPBSA alone. A plausible ex-
planation for the lack of influence of these methods in the LDHA
system is the lack of large domain level motions or flexibility.

3.2.2. Variational Entropy

The impact of the addition of variational entropy into the binding
free energy is shown in Figure 4c. The main difference made is
that the adenine and substrate ligands are brought into line with
the exception of ligands LDHA16-18. This results in a lowered
MUE of 13.86, while rs and PI (0.80 and 0.89, respectively) are
maintained. However, the outliers reduce r2 to 0.71 (0.06).
An intuitive explanation for this can be seen in the variabil-

ity of the ΔGMM
ele as described in Table 3, which indicates that the

variation in electrostatics is much higher for ligands LDHA16-18
than for the other adenine pocket binders. The overall electro-
static contribution is also higher owing to the charged carboxylic
acid moiety on these ligands. On a structural level, the carboxylic
acid protrudes from the main adenine binding site forming tran-
sient interactions with ARG99 (see Figure 5). Given that the varia-
tional entropy is based on the change in interaction energy versus
the average, these intuitively lead to changes in the entropic con-
tribution for thesemolecules. It is likely that in reality these inter-
actions are moderated by solvent effects (including interactions
with individual water molecules) not included in the variational
entropy calculation. Consequently, it appears that we obtain en-
tropic penalties more in line with those obtained for the more
highly charged substrate pocket ligands due to the solvent ex-
posed carboxylic acid. The fact that the binding strength is under-
estimated indicates that our approach is unlikely to generate false
hits but if used uncritically could exclude viable fragments. The
larger compounds that span the entire binding site, and the ma-
jority of fragments in the substrate or adenine sites, remain well
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correlated after the inclusion of the variational entropy correc-
tion. This is in contrast to our previous work on BRD4[36] where
the same correction wasmore detrimental for larger compounds,
a result we attributed tomoremovement in their binding site and
therefore greater variation in interaction energy during the sim-
ulation.

4. Conclusions

We obtain excellent statistical rankings across this highly diverse
set of ligands which contains considerable variation in size,
charge, and binding mode using MMPBSA-based ESMACS
protocols. Such a dataset is not suitable for relative alchemical
methods thus ruling out the use of popular FEP or TI methods.
Alternatives such as absolute perturbationmethods may be plau-
sible, but would also be a challenge given the large and flexible
nature of some of the ligands. Therefore, suitable computational
methods are needed which motivated us to further test our
ESMACS approach, including alternative entropic corrections,
and assessing effects of charge models. The fact that the ranking
is not improved by the use of multiple trajectories shows that
minimal strain was introduced to the protein or ligand upon
binding, indicating a “lock and key” binding mechanism for
all complexes studied. The research we present here provides
a platform for future work which could determine the value of
the entropic components investigated here in systems where
binding involves greater structural rearrangement (which are
best treated using a multiple trajectory approach).
Ligands that bind in different binding sites are separated by

MMPBSA binding affinity estimates even when the experimen-
tal values are close to one another. This is caused by exaggerated
electrostatic interactions in the adenine pocket and bridging lig-
ands compared to those binding the substrate pocket. We investi-
gated whether the separation between groups of ligands could be
mitigated via the incorporation of entropic components into the
binding free energy estimates. Neither normal mode nor WSAS
derivedmeasures of configurational entropy impact the rankings
or groupings of ligands, the WSAS ranking correlating strongly
with the values obtained from normal mode analysis. However,
WSAS can be computed within 30 min on a single core for an
entire ensemble whereas normal mode analysis can take up to
12 h to complete and requires one core per snapshot for this du-
ration. Inclusion of variational entropy into the calculations re-
duces the separation of estimates for drugs binding to the two
different binding pockets, but created three outliers which re-
duced the quality of the overall ranking. The origin of the over-
estimate of the entropy for these ligands appears to be related
to the charge on the solvent exposed carboxylic acid moiety. The
difference between the performance of this approach and nor-
mal mode analysis or WSAS suggests that relevant states of the
LDHA system are distinguished by subtle changes in local inter-
actions rather than global domainmotions. In particular, caution
must be employed when interpreting results for small ligands in
which charged moieties are solvent exposed.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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