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The Biomarker Study to Identify the Acute Risk of a Coronary
Syndrome (BIOMArCS) is a prospective, observational study that
has been designed to study the evolution of blood biomarkers in
post-acute coronary syndrome (ACS) patients. In our recently
published study “Temporal evolution of Myeloperoxidase and
Galectin 3 during 1 year after acute coronary syndrome admission”
[1] in the American Heart Journal, we demonstrated that repeatedly
measuring MPO and Galectin-3 does not aid to differentiate
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1. Data

The data shared is generated from a dataset containing 844 patients enrolled in BIOMArCS
(Biomarker Study to Identify the Acute Risk of a Coronary Syndrome) between 2008 and 2015 in 18
hospitals in The Netherlands (https://data.mendeley.com/datasets/yt6gxhrgvm/1). This data has been
collected to investigate the correlations between high frequency measured biomarker levels and
clinical outcomes in the first year after hospital admission for ACS. In this Data-In-Brief article, we
provide details on data collection and data analysis, and we provide a detailed description of baseline
characteristics and the distribution of sampling moments.

- Fig. 1. Details on patient enrolment and blood sampling
- Fig. 2. BIOMArCS study flow chart
- Fig. 3. Distribution of blood sampling over time of the case-cohort
- Table 1 shows in detail the BIOMArCS in- and exclusion criteria
- Table 2 describes the baseline characteristics of the complete BIOMArCS cohort and the random
sample that was used to construct the case-cohort (see Fig. 2)

- Table 3: presents the baseline characteristics of the endpoint cases and endpoint-free patients who
compose the case-cohort

- In a public repository, we made available a dataset containing baseline characteristics, the time-to-
event data and the high frequency measured MPO and Galectin 3 measurements of the BIOMArCS
patients included in the case-cohort
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Fig. 1. Details on patient enrolment and blood sampling.
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Fig. 2. BIOMArCS study flow chart. * Available blood samples prior to the moment of the study endpoint.

Fig. 3. Distribution of blood sampling over time of the case-cohort.
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2. Experimental design, materials, and methods

2.1. Prospective data collection

Our dataset contains the detailed patient and biomarker data from BIOMArCS (Biomarker Study to
Identify the Acute Risk of a Coronary Syndrome). BIOMArCS is a prospective, observational study that
has been designed to evaluate the evolution of blood biomarkers in relation to the occurrence of repeat
cardiac events in post-acute coronary syndrome (ACS) patients [2]. BIOMArCS was conducted during
2008e2015 in 18 hospitals in The Netherlands.

Detailed information on the in- and exclusion criteria and study procedures are provided in Table 1.
Briefly, patients aged�40 years who were admitted with an ACS and had �1 cardiovascular risk factor
were eligible. Preferably, patients were enrolled during hospital admission, but inclusion at the first
outpatient visit post-discharge (usually 4e6 weeks later) was allowed. Venipuncture was performed at



Table 1
Inclusion and exclusion criteria.

A patient must meet all the following inclusion criteria
1 Age �40 years
2 Complaints of typical ischemic chest pain, lasting 10minutes ormorewithin the preceding 24 hours prior to presentation
3a

3b

ECG: (non)persistent ST segment elevation >1$0 mm in two or more contiguous leads, or dynamic ST segment
depression >1$0 mm in two or more contiguous leads, OR
Biochemical evidence of myocardial injury: CK-MB or (high-sensitivity) Troponin I or (high-sensitivity) Troponin T
elevation according to the applicable ESC guidelines of non ST-elevation acute coronary syndromes

4 Presence of at least 1 of the following risk factors: age �75 years, diabetes, prior cardiovascular disease, prior
cerebrovascular disease and prior peripheral arterial disease.
In addition, the following characteristics counted as half a risk factor (i.e. two of these are required for inclusion): age�65
years in men, age �70 years in women, hypertension, hypercholesterolemia, current smoking, microalbuminuria,
positive family history of coronary artery disease

5 Written informed consent
A patient cannot be included in case of any of the following exclusion criteria
1 Myocardial ischemia precipitated by a condition other than atherosclerotic coronary artery disease
2 Left ventricular ejection fraction <30%, or end-stage congestive heart failure (NYHA class III or IV)
3 Renal dialysis, or severe chronic kidney disease with measured or calculated GFR (Cockroft-Gault or MDRD4 formula) of

<30 ml/min/1$73 m2

4 Co-existent condition with life-expectancy <1 year or otherwise not expected to complete follow-up
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admission, discharge, and subsequently every 2 weeks during the first half-year and monthly there-
after. Follow-up blood sampling was terminated permanently after coronary artery bypass grafting
(CABG), hospital admission for heart failure, or a deterioration of renal function leading to an estimated
glomerular filtration rate (eGFR) < 30 ml/min/1.73 m2, since circulating biomarker concentrations may
be significantly influenced by these conditions. It was optional to terminate blood sampling after the
study endpoint was reached.

2.2. Endpoint definition and adjudication

The endpoint in our dataset was defined as the first event of the composite of cardiac death,
myocardial infarction, or unstable angina requiring urgent coronary revascularization within 1 year.
Event adjudication was performed by a Clinical Event Committee (CEC) consisting of two experts. In
case of disagreement, a third expert was consulted and consensus was sought. It is important to realize
that study patients were extensively seen by research personnel during follow-up, not only for veni-
puncture, but every time also for an interview regarding anginal complaints, intercurrent hospitali-
zations, and changes in medication etc. Hence, data on most follow-up events could be derived in the
medical dossier at the participating site. Otherwise, discharge letters, ECGs, clinical lab and cathlab
reports were retrieved from the site of treatment. CEC members were given full access to all clinical
data. The CEC members were blinded for all biomarker data collected for the purpose of the BIOMArCS
study.

2.3. Blood sampling and analysis

Details on blood sampling are presented in Fig. 1. We obtained a median of 17 (25th-75th percentile
12e20) repeated blood samples per patient. Blood samples were first handled on-site and then stored
at�80 �Cwithin a median of 82 (25th-75th percentile 58e117)minutes after withdrawal. We collected
whole blood, citrate plasma, EDTA plasma, serum and DNA. Series of samples were subsequently
transported under controlled conditions to the Erasmus MC, Rotterdam, for long-term storage.

Biomarkers were analyzed batch wise in a central laboratory and in a blinded fashion, after data
collectionwas completed and study endpoints had been adjudicated. Thus, any influence of biomarker
values on patient management and endpoint adjudication (and vice-versa) can be excluded, while
batch-to-batch variations are avoided.

The MPO and Galectin-3 measurements that have been made available in the accompanying
dataset, were measured in serum samples. MPO was measured with a 384-ELISA plate (Nunc, Thermo



Table 2
Baseline characteristics of complete cohort and random sample.

Complete cohort Random sample Patients with daily
sampling on day 1e4

Number of patients 844 150 68
Age, year 62.5 (54.3e70.2) 62.7 (55.0e71.0) 62.4 (54.9e70.8)
Man 657/843 (77.9) 118 (78.7) 53 (77.9)
Cardiovascular risk factors
Diabetes Mellitus 196/834 (23.5) 26 (17.3) 14 (20.6)
Hypertension 463/834 (55.5) 79 (52.7) 35 (51.5)
Hypercholesterolemia 411/834 (49.3) 75 (50.0) 26 (38.2)
Current smoker 337/833 (40.5) 64 (42.7) 25 (36.8)
Body mass index 28.0 (5.9) 27.6 (3.8) 27.4 (3.8)
History of cardiovascular disease
Myocardial infarction 224/833 (26.9) 45 (30.0) 11 (16.2)
CABG 83/834 (10.0) 13 (8.7) 4 (5.9)
PCI 218/833 (26.2) 41 (27.5) 8 (11.8)
Stroke 75/834 (9.0) 19 (12.7) 5 (7.4)
Peripheral vessel disease 74/834 (8.9) 10 (6.7) 7 (10.3)
Presentation on admission
GRACE risk score 96 (78e119) 110 (88e130) 112 (94e132)
Heart rate (N ¼ 833) 75 (19) 73 (17) 79 (18)
SBP, mmHg (N ¼ 831) 140 (27) 137 (27) 134 (25)
Diagnosis
STEMI 430/832 (51.7) 69 (46.0) 36 (52.9)
NSTEMI 314/832 (37.7) 58 (38.7) 27 (39.7)
Unstable angina pectoris 88/832 (10.6) 23 (15.3) 5 (7.4)

PCI performed 676/783 (86.3) 116/139 (83.5) 52/63 (82.5)
Medication recorded at first assignation 7 days post discharge
Aspirin 758/797 (95.1) 136/144 (94.4) 56/61 (91.8)
P2Y12 inhibitor 758/797 (95.1) 132/144 (91.7) 56/61 (91.8)
Vitamin K antagonist 55/797 (6.9) 10/144 (6.9) 5/61 (8.2)
Statin 768/797 (96.4) 138/144 (95.8) 58/61 (95.1)
Beta-blocker 718/797 (90.1) 123/144 (85.4) 58/61 (95.1)
Ace inhibitor or ARB 662/797 (83.1) 121 (84.0) 59/61 (98.7)

Categorical variables are presented as number (percentage). Continuous variables with normal distribution are presented as
mean (SD) and as median (25th-75th percentile) otherwise.
ACE: angiotensin converting enzyme; ARB: angiotensin II receptor blocker; CABG: coronary artery bypass grafting; CAD: cor-
onary artery disease; DBP: diastolic blood pressure; GRACE risk score: Global Registry of Acute Coronary Events risk score;
NSTEMI: non-STEMI; PCI: Percutaneous coronary intervention; SBP: systolic blood pressure; STEMI: ST-elevation myocardial
infarction.
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#460372), with a lower limit of detection of 609 pg/ml. The corresponding 10% coefficient of variation
was 5.7%. GAL-3 was measured with a custom built Luminex immune-assay validated in the University
Medical Centre Utrecht, the Netherlands. The corresponding lower limit of quantification was 0.06
pg/ml, the upper limit of quantificationwas 1000 pg/ml and the reference sample value was 158.43 pg/
ml. The inter-assay coefficient of variation of the used GAL-3 custom build assay was 13.9% and the
intra-assay coefficient of variation was 14.45%.

2.4. Case cohort approach to analyze the long-term temporal evolution of biomarkers

BIOMArCS enrolled a total of 844 patients of whom 45 reached the study endpoint. Consequently,
the ratio of patients who reached the study endpoint to those who did not was 1:17.8, which, from
statistical point of view, implies an overly large number of endpoint-free patients. For cost-efficacy
reasons, we preferred to limit the amount of biomarker tests in endpoint-free patients, while main-
taining all available information in study endpoint cases. Furthermore, we required to leave open the
possibility of creating multiple-biomarker models describing absolute risks. Based on these consider-
ations, we chose a case-cohort analysis. In order to maintain the statistical power of the full cohort, we
chose a sampling proportion of at least 10% [3], and an endpoint to non-endpoint ratio of at least 1:3.



Table 3
Baseline characteristics of endpoint cases and endpoint-free patients.

Endpoint cases Endpoint-free patients p-value

Number of patients 45 142
Age, year 67.4 (57.1e76.5) 62.6 (55.0e70.9) 0.075
Man 36 (80.0) 111 (78.2) 0.79
Cardiovascular risk factors
Diabetes Mellitus 17 (37.8) 24 (16.9) 0.003
Hypertension 22 (48.9) 77 (54.2) 0.53
Hypercholesterolemia 20 (44.4) 72 (50.7) 0.46
Current smoker 17 (37.8) 60 (42.2) 0.52
Body mass index 27.2 (3.7) 27.8 (3.8) 0.36
History of cardiovasvular disease
Myocardial infarction 14 (31.1) 43 (30.3) 0.92
CABG 11 (24.4) 12 (8.5) 0.004
PCI 14 (31.1) 38 (27.0) 0.59
Stroke 9 (20.0) 16 (11.3) 0.13
Peripheral vessel disease 10 (22.2) 9 (6.3) 0.004
Presentation on admission
GRACE risk score 121 (98e141) 109 (88e130) 0.022
Heart rate 75 (16) 73 (17) 0.59
SBP, mmHg 145 (24) 138 (27) 0.095
DBP, mmHg 72 (3) 81 (17) 0.48
Diagnosis 0.46
STEMI 16 (35.6) 65 (45.8)
NSTEMI 22 (48.9) 56 (39.4)
Unstable angina pectoris 7 (15.6) 21 (14.8)

PCI performed 34 (87.2) 109 (82.6) 0.50
Medication recorded at first assignation 7 days post discharge
Aspirin 45 (100) 132 (93.0) 0.20
P2Y12 inhibitor 44 (96.8) 128 (90.4) 0.37
Vitamin K antagonist 5 (9.7) 11 (7.9) 0.57
Statin 44 (96.8) 136 (95.6) 0.46
Beta-blocker 42 (93.5) 121 (85.1) 0.72
Ace inhibitor or ARB 41 (90.3) 120 (84.2) 1.00

Categorical variables are presented as number (percentage). Continuous variables with normal distribution are presented as
mean (SD) and as median (25th-75th percentile) otherwise.
ACE: angiotensin converting enzyme; ARB: angiotensin II receptor blocker; CABG: coronary artery bypass grafting; CAD: cor-
onary artery disease; DBP: diastolic blood pressure; GRACE risk score: Global Registry of Acute Coronary Events risk score;
NSTEMI: non-STEMI; PCI: Percutaneous coronary intervention; SBP: systolic blood pressure; STEMI: ST-elevation myocardial
infarction.
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The case-cohort designwas first described by Prentice in 1986 [4], and has since been discussed from
various viewpoints, including sampling of the sub cohort, analysis methods and comparison with the
nested case-control design [5]. Nowadays, the case-cohort design is accepted as a useful tool in the
epidemiological armamentarium to obtain valid effect estimates [6]. Although it is notwidely used in the
medical literature, it has been applied in several landmark epidemiological studies, such as ARIC, EPIC
and MORGAM [5,7,8]. As Sharp et al. state: ‘The main advantage of the case-cohort study design over a
cohort study is that full covariate data are only needed on the cases and sub cohort individuals, not all the
original cohort, potentially saving time and money if measures such as biomarkers or genotypes are
required’ [9]. When appropriate sampling and analysis methods are applied, the case-cohort provides
unbiased estimates of relative (effect) measures - in our case hazard ratios [10]. An advantage over a
nested case-control study is that it also enables unbiased estimations of absolutemeasures, such as risks,
hazards, etc. In addition, the same random sub cohort can be used for studying different outcomes with
different case definitions, rather than identifying a new set of controls for each separate outcome.

A random sample of 150 patients was selected from the full dataset of 844 patients, which included
8 patients who reached the study endpoint. Hence, the ratio of study endpoint cases to endpoint-free
patients was 8:142 (5.3%), which is similar to 45:844 (5.3%) in the full dataset, as expected. In Table 2,
the baseline characteristics of the patients included in the random sample (150) can be compared with
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the entire cohort (844). Hereafter, the random sample was enriched with the remaining 37 endpoint
cases, so that the case-cohort analysis set consists of (all) 45 endpoint cases and 142 endpoint-free
patients. Table 3 shows the differences in baseline characteristics between patients in whom the
endpoint occurred and those who remained endpoint-free.

As depicted in Fig. 2, we analyzed all 268 blood samples that were collected in the endpoint cases
before themoment of the endpoint, which implies a median of 5 (25th-75th percentile 2 to 8) repeated
samples per patient. We further analyzed 1210 blood samples in event-free patients, which was a
random selection of 60% of all collected blood samples in these subjects, and implies a median of 9
(25th-75th percentile 6 to 11) repeated samples per patient. Fig. 3 depicts the number of available
measurements per moment in time for both patients inwhom the endpoint occurred and in those who
remained endpoint-free.

2.5. Data model to analyze the long-term temporal evolution of biomarkers

In order to investigate the associations between the high frequency measured biomarkers and
clinical events in our dataset, we had to combine temporal evolvement patterns of the biomarkers with
time-to-event data. For this purpose, we combined linear regression with Cox proportional hazard
regression. Linear regression is a powerful instrument to model the temporal evolvement of
biomarkers, accounting for clustering of data within a patient. Cox proportional hazard (PH) regression
is a well-developed instrument to model a time-to-event process in relation with a biomarker,
accounting for its time-dependent nature. However, since both processes are correlated, the use of
independent models can cause biased estimates [11]. Instead, in order to obtain valid inferences for the
relation between the temporal evolvement of a biomarker and the incidence of the primary end point,
the longitudinal- and event processes should be jointly modelled [12].

We applied Bayesian semiparametric joint models for that purpose [13]. We developed linear
mixed-effects (LME) models to describe the underlying patient-specific longitudinal biomarker
trajectories B(t). To allow for non-linear trajectories we used cubic splines functions, whereas the
number and position of knots were biomarker specific. Age, sex, and variables regarding cardiovascular
risk and -history were included as determinants.

With respect to the time-to-event process, we assumed that the risk of the primary end point
depends on the underlying, actual value of the biomarker at time point t. Consequently, the hazard
function was modelled as h0(t)*exp(B(t)). To enable subject-specific survival predictions, the baseline
hazard h0(t) was specified using a B-splines approach.

We developed joint models for each specific biomarker. Log-transformations were applied on
biomarker values to assure normal distributions of regression residuals. More specifically, the unit of
analysis was the Z-score of the log-biomarker - which was obtained by subtracting the mean value and
dividing by the standard deviation on the log-scale - in order to allow a direct comparison of the effect
of the separate markers. We present our results as hazard ratios (HR) and corresponding 95% confi-
dence intervals (CI) for a 1 SD difference of the biomarker on the log-scale. Obviously, the risk of the
primary end point might be influenced by age and clinical risk factors (Table 3), whereas biomarker
levels might be influenced by kidney function. Therefore, all HRs were adjusted for GRACE risk score
(for death or myocardial infarction in 6 months after discharge) and creatinine value.

The LME models that we developed did not only provide unbiased estimates B(t) of the level of a
biomarker at time point t, but also of its instantaneous rate of change (or: slope) B’(t) at t, which,
mathematically, correspondswith the first derivative of B(t). Sincewe specifically aimed to study change
patterns, we not only determined HRs for the biomarker level but also for its instantaneous slope.

R statistical software (version 2.15.0, available at: www.r-project.org) was used for advanced
statistical analyses, in particular the package JMbayes. All statistical tests were two-tailed and
p-values <0.05 were considered statistically significant.

2.6. Patient selection and data model for the analysis of biomarker stabilization

By design, a series of 68 BIOMArCS patients - their characteristics are presented in Table 2 - un-
derwent additional blood sampling at day 1e4, with the aim to study the evolution of biomarker

http://www.r-project.org
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changes early after ACS admission. Insights into these evolvements allows us to differentiate between
‘normal’ post-ACS biochemical profiles and a divergent profile potentially caused by (an upcoming)
repeat ACS. A total of 49 patients were not included in the case-cohort. For the analysis of ‘normal’
post-ACS biomarker profiles, we combined their samples with the 142 endpoint-free patients from the
case-cohort. Consequently, 191 patients were available, who contributed a median of 8 (IQR 5e10)
repeated samples per patient, totaling 1507 measurements (Fig. 2). We chose to exclude study
endpoint cases from this analysis to avoid ensuing distortion of biomarker stabilization patterns.

We used LME models to describe the average biomarker stabilization patterns. In these models,
time was entered as the independent variable, and the biomarker value as the dependent variable.
To allow non-linearity in the association between time and the biomarker value, up to two cubic
splines were placed on different time points. For optimal placing of these splines, we used Akaike's
information criterion and Bayesian information criteria. Finally, to allow for individual variation,
random slopes and random intercepts were included in the models.

For the first 50 days after the index ACS, and based on the fitted LME models, we determined the
patient-averaged biomarker value, the number of days on which this value was above the specified
population reference, and the time until stabilization. Stabilization (on group level) was defined as a
difference in average biomarker level of less than one percent between two consecutive days.

2.7. Explanation of variables in dataset

The dataset containing baseline characteristics and the MPO and Galectin-3 measurements of the
patients included in the case-cohort has beenmade available in a public repository. The data is given in
a long-format in which each measurement is placed in a new row. Thus in example, for a patient who
has had seven sampling moments, there are seven rows.

In the variable names, Hx is short for history. GRACERisk is the GRACE risk score calculated based on
the post discharge model as developed by Eagle et al. [14]. For this score the variables age, pulse,
systolic blood pressure, initial serum creatinine, positive initial enzymes, ST segment depression, past
MI, past congestive heart failure, and in-hospital percutaneous coronary intervention are combined
into a single score. DaysOfVenePuncture is the number of days since the index event at which the blood
sample was taken. DaysVenePunctureToEvent is the number of days until the event or moment of
study discontinuation in patients without event. The remaining variables are self-explanatory.

In a second dataset (baselineBIOMArCS), the baseline characteristics of all patients included in the
BIOMArCS are presented.
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