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1. Introduction 

Today’s cities are becoming larger and ever more congested. Railways are now more popular than ever before as 
means of commuting into (or out of) cities and passenger numbers are predicted to grow in many countries around the 
world for the foreseeable future. With the increase in passenger numbers over the past decades, and projections that 
this trend is to continue, governments and railway undertakings are therefore eager to increase railway capacity and 
customer satisfaction while at the same time decreasing cost and energy usage. This can be achieved by exploiting 
information and communications technology in control of railway networks. The reason behind this drive is to add 
more capacity and reliability into the railway network by improved usage of current infrastructure and capabilities at 
affordable cost (Department for Transport, 2007a, 2007b). 

Timetabling (or scheduling) and traffic management are two essential elements of railway operations. They allow 
for effective usage of railway resources including infrastructure, crew and rolling stocks. Timetables also inform the 
operators and passengers of the movement of trains. Because railway timetables are based on deterministic running 
of trains and their dwell times at stations, time margins are added to timetables to accommodate unforeseen variations. 
Due to the time taken to compute a new timetable, full recalculation in response to disturbances, in current practice 
train dispatchers rely on their own experience to modify railway operations to recover delays or limit their propagation 
onto other train services. However, the efficiency and effectiveness of these actions is often unknown. In such cases 
deploying automatic re-scheduling tools has been shown to improve performance by limiting delay and returning 
operation to the planned timetable as quickly as possible. 

Real-time regulation of railway traffic aims at ensuring safe, punctual and energy-efficient train operations. These 
Railway Traffic Management (RTM) systems anticipate future conflicts based on current speeds and positions of 
trains and provide suitable control measures. By using this real-time information to assess requirements and 
opportunities, the motion of trains can be controlled advantageously through real-time management of sequencing of 
trains and of acceleration and deceleration of individual trains. This will facilitate response to perturbations and other 
minor deviations from scheduled operation and to major disruptions to expedite recovery; in doing so it will support 
the operation of enhanced timetables that meet the increasing call on rail network capacity by passenger and freight 
operations.  

1.1. Literature review 

A growing literature is available on real-time RTM (Cacchiani et al., 2014; Corman and Meng, 2015; Fang et al., 
2015) which has shown the effectiveness and benefits of using such tools in some particular circumstances. 

Here we distinguish between different types of delays according to the following definitions:  
i) primary delays arise from deviations from normal operation traffic, e.g. longer than expected dwell times,  
ii) consecutive delays are ones caused to other trains from the primary delays, and  
iii) total delays are the sum of all primary and consecutive delays. 
Adenso-Diaz et al. (1999) formulated the real-time timetable and rolling stock re-scheduling problem in cases of 

large disruption to one or more trains as a Mixed Integer Linear Programme (MILP). Because the problem is hard to 
solve using existing MILP solvers, a heuristic was developed to produce feasible solutions that are intended to increase 
the number of passengers transported within the planning period. The model was implemented in practice and 
solutions produced were reported to be appealing. Törnquist and Persson (2007) also formulated the re-scheduling 
problem for large networks as a MILP model which considers reordering and rerouting of trains with the objective of 
minimising train delays. Because MILP solvers could not find feasible solutions within reasonable times, Törnquist 
(2012, 2007) extended this work by presenting a heuristic and reported that good solutions could be calculated quickly.  

Another instance of MILP formulation for re-scheduling was formulated by Pellegrini et al. (2014) with the aim of 
obtaining optimal solutions for re-scheduling and re-routing of trains at a local level. Two objectives were considered: 
i) minimising the largest consecutive delay, and ii) minimising total consecutive delays for all trains. A rolling horizon 
approach was adopted to evaluate the effects of using different planning periods. 

The alternative graph formulation for railway re-scheduling has also been widely reported. This is a discrete 
optimisation formulation which can be used to model re-scheduling problems with no-wait and no-store constraints 
that has been applied to job shops (Mascis and Pacciarelli, 2002). Several works are reported in the literature using 
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the Alternative graph model to formulate the railway re-scheduling problem; among the first, D’Ariano et al. (2007a) 
proposed a branch-and-bound solution algorithm for re-scheduling trains in real-time, where block sections are 
characterised as machines and trains as jobs in the formulation, therefore providing a microscopic view of the railway 
network under consideration. This formulation allows for presentation of railway network safety constraints including 
that at any time, at most one train is present in each block section of the track. Building on their previous work 
D’Ariano et al. (2007b) adopted a blocking time model to evaluate the feasibility of headways between following 
trains, and train speed profiles are updated considering preceding signal aspects. Mazzarello and Ottaviani (2007) 
similarly use the Alternative graph formulation to produce a conflict-free timetable for trains; they also computed 
associated train speed profiles to minimise train energy consumption.  

Corman et al. (2012, 2010a, 2009) extended the work of D’Ariano et al. (2007a) to include local re-routing of trains 
with the objective of minimising the maximum consecutive delay. Corman et al. (2014, 2010b) extended their work 
by introducing a controller that coordinates multiple local areas to control large networks. For a limited number of 
areas, their framework is reported to perform well, but as the planning horizon is extended and the number of local 
areas is increased, good solutions could not be guaranteed.  

Ho et al. (1997) developed and tested a traffic controller for railway junctions using dynamic programming (DP). 
Their method included approximations in the traffic flow model and optimisation process to improve computational 
speed. Their work established DP as a method that is appropriate to model railway junction traffic but not ideal to 
derive optimal solutions in real-time due to the computational effort required.  

Among the few that have investigated and tested RTM methods in stochastic environments, Meng and Zhou (2011) 
employed a macroscopic stochastic programming model to account for the stochastic nature of railway traffic to solve 
a single-track train dispatching problem under uncertain running times and capacity loss durations. The objective 
function adopted for this work was to minimise weighted combination of penalties for earliness and lateness of trains. 
Quaglietta et al. (2013) also tested a re-scheduling approach, formulated using an alternative graph model, under 
uncertainty by employing a Monte-Carlo scheme. Larsen et al. (2013) proposed a framework to evaluate the robustness 
of a re-scheduling solution according to its accommodation of small stochastic variations in running and dwell times 
of trains in the network without increasing output delays; this research showed that allowing for the stochastic nature 
of the railway environment improves performance compared to the first-come-first-served (FCFS) heuristic.  

1.2. Motivations and objectives 

The available literature on RTM shows that comparatively few industrial prototypes of these systems have been 
implemented in practice (Borndörfer et al., 2017; Mannino and Mascis, 2009; Mehta et al., 2010). One significant 
difficulty with the approaches to real-time train re-scheduling is that they are heavily affected by the size of problem 
instances. The complex nature of railway operations means that there are a large number of: i) possible states; ii) 
feasible actions which can be taken; and iii) possible outcomes of making each decision. This means that for congested 
and complex railway networks calculating optimal solutions could be computationally intractable due to the number 
of cases to be considered. Furthermore, most re-scheduling approaches in the literature assume optimisation in an 
ideal environment and report results from testing in simulations configured accordingly. However, the railway 
environment has a highly stochastic nature in which efficiency and accuracy of re-scheduling controls are the essence 
of reliable operations.  

It is therefore desirable to build upon the existing re-scheduling methods to develop frameworks in which 
optimisation can be achieved reliably and in a timely manner as this represent the practical requirements of railway 
operations closely. This will increase the chances of effective implementation of real-time traffic management systems 
in practice.  

One promising method in the field of optimisation and control that has attracted much attention in the recent 
decades is Approximate Dynamic Programming (ADP) due to its effectiveness in tackling stochastic applications 
where the state and action spaces are large (Li and Womer, 2015; Medury and Madanat, 2013; Papadaki and Powell, 
2002; Papageorgiou et al., 2014; Simão et al., 2009; Van Roy et al., 1997; Zhang and Dietterich, 1995). ADP is a 
variant of DP which uses approximation in the evaluation of candidate control decisions. It is often used when the 
robustness of a DP is required but the problem is too complicated for a DP strategy to tackle in an efficient and timely 
manner. The ADP is based on an algorithmic strategy that uses the result of each optimisation to update the current 
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approximation of future performance. Through this updating, the ADP can adapt its optimisation in response to 
changes in the operating environment.  

Although the use of ADP to solve operational railway problems is rare, studies in railway related ADP are emerging 
(Powell and Bouzaiene-ayari, 2007; Šemrov et al., 2016; Yin et al., 2016). An area of research which has similarities 
to the RTM problem is the field of road traffic signal control. Cai et al. (2009) investigated the application of ADP to 
signal control of road traffic, aiming to develop an adaptive controller for online operation. In this work, a linear 
approximation function was employed with parameter values updated during operation using reinforcement learning 
techniques. Two learning techniques were used in this work: Temporal-Difference (TD) learning (Sutton, 1988) and 
perturbation learning (Papadaki and Powell, 2003). The TD method tracks the difference between current 
approximation of performance and values estimated from current state values. This difference is used to update values 
of the parameters in the approximation function. Perturbation learning estimates the gradients of the approximation 
function by perturbing the system state. Despite these different learning methods, Cai et al. found no substantial 
difference between their performance in numerical experiments. 

Given the robustness of ADP in tackling scheduling problems, as is presented in the literature, the objective of this 
paper is to develop an adaptive RTM framework, based on ADP with two distinct learning techniques, to mange 
railway traffic by controlling train sequences at critical points (such as junctions, merges and crossings). The 
framework is then evaluated in a separate high fidelity stochastic simulation environment to investigate its 
performance in the presence of uncertainties that are typical of practical operation. 

The remainder of this paper is organised as follow: In section 2 we introduce ADP and present our learning methods 
in general terms. The ADP frameworks are then developed for the railway re-scheduling problem in section 3. Section 
4 introduces our test case network, discusses the stochastic environment in which our ADP frameworks are tested and 
presents findings from our numerical experiments. We conclude this paper and consider the scope for future research 
in section 5. 

 
Nomenclature 
 
𝑠𝑠 is a vector of system state; 
𝐽𝐽(𝑠𝑠) is the true value function associated with state 𝑠𝑠; 
𝐽𝐽(𝑠𝑠, 𝑟𝑟) is an approximate function of 𝐽𝐽(𝑠𝑠); 
𝑟𝑟 is a vector of functional parameters;  
∆𝑟𝑟 is an adjustment to 𝑟𝑟;  
𝑢𝑢 is a decision vector;  
 

 
 
𝐸𝐸 represents the expectation over random information; 
𝛼𝛼 is a discount factor;  
𝜃𝜃 is a discount rate for cost incurred in the future;  
g(. ) is a one-step cost function;  
𝜙𝜙(. ) is a feature-extraction function;  
𝑒𝑒(. ) is an error function. 
 

2. Approximate Dynamic Programming 

Even though DP provides exact solutions for optimisation over time, it suffers from the ‘curses of dimensionality’ 
(Powell, 2011). This refers to the computational demand involved in calculations of DP which are exponential to the 
size of each of the state space, information space and decision space. In this section, we outline how ADP reduces this 
computational burden while extracting information from each optimisation to adapt to the operating environment and 
so to improve its decisions. Under the concept of reinforcement learning, certain specific techniques of temporal-
difference learning are discussed, which form the basis of the present ADP framework. 

2.1. Dynamic programming 

Let 𝑠𝑠 ∈ 𝑆𝑆 be a vector of state variables of the system, 𝑢𝑢 ∈ 𝑈𝑈 the vector of decision variables, and  g(.)  a function 
that calculates the cost during a step from one optimisation to the next based on the state and decision. Given an initial 
state 𝑠𝑠𝑡𝑡 and future-discount factors   𝛼𝛼𝑖𝑖 (𝑖𝑖 ≥ 0) a dynamic programme over a horizon of 𝑇𝑇 steps calculates a sequence 
of decisions  u  from time step  t  by solving: 
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( )1 0
0

min , , |
T

i t i t i t iu U i
E g s u s s+ + + +

=

 
 
 
 . 

 

(1) 

The optimal performance  J  stating from state  st  at step  t  can be calculated by solving Bellman’s recursive 
equation (Bellman, 1957): 

( ) ( ) ( )( ) 1 1min , ,t t t tu U
J s E g s u s J s u+ +

= + . 

 

(2) 

The backward dynamic programming procedure addresses this by starting from the final time  T , assuming the 
optimal value function 𝐽𝐽(𝑠𝑠𝑡𝑡+𝑇𝑇) is known, and solving equation (2) recursively working backward to the initial state  st  
to obtain the optimal sequence of decisions which would lead to the associated estimate of performance. 

Although equation (2) characterises an elegant way of representing an optimisation problem, it can be 
computationally expensive and therefore is not practical for operational use. The reason for this is the need to consider 
the entire state space to calculate the optimal decision at each step, so that the computational intensity grows 
exponentially with additional state spaces.  

Employment of DP for real-time control is especially onerous. For one, considering the entire state space to the 
end of the planning period at every time step may not be efficient, as plans for future decisions might be varied in light 
of emergence of new information so that decisions planned in the ‘tail’ period may never be implemented. 
Furthermore, complete information on future states might not be available owing to the stochastic environment. 
Although the opportunity will often arise to revise these decisions as their time approaches, calculating them in the 
first place is not necessarily a productive use of computational effort. 

2.2. ADP with linear function approximation  

In DP, the Bellman equation requires that at each step t, for each state in space S with I dimensions, decision in 
space U with K dimensions, and outcome in space O with W dimensions, a value function J be calculated to make an 
optimal decision. Therefore, the computational demand would increase quickly and exponentially as 𝑆𝑆𝐼𝐼 × 𝑈𝑈𝐾𝐾 × 𝑂𝑂𝑊𝑊.  
To address difficulties the consequent difficulties associated with DP, the approximate dynamic programme (ADP) 
approach to decision-making has been developed. This approach works forward in time and employs a greedy 
approach to make decisions using available information in an exhaustive search with explicit evaluation in the short-
term future denoted as  g(.)  together with an approximation 𝐽𝐽(. ) to the value function  J(.)  after that. This means that 
the ADP does not compute the exact value function  J(.) , and so avoids the need to solve equation (2) for each state  
st  at every future time step.  Therefore, we reduce the future extent of the state space considered by replacing the true 
value function 𝐽𝐽(𝑠𝑠) with an approximation  𝐽𝐽(𝑠𝑠, 𝑟𝑟) with parameters  r  but does not represent decisions explicitly. This 
has the effect to make the computational requirement polynomial to the number of state variables, rather than being 
exponential to the size of state space.  

In this forward process, the focus is on the near-future for which information is more reliable and decisions 
imminent. Reinforcement learning is then used to update the parameters  r  of the approximation function 𝐽𝐽(𝑠𝑠, 𝑟𝑟) 
according to the estimated optimal performance after each optimisation. At each time step  𝑡𝑡  we estimate the value of 
the current state with explicit decisions in the near future and using the approximation 𝐽𝐽(. ) to represent performance 
after that, implicitly assuming optimal decisions after time  t+T .  Thus 

( ) ( ) ( )1 1 1
0

min , , ,
T

t i t i t i t i t T t T tu U i
J s E g s u s J s r+ + + + + + + +

=

 
= + 

 
     

 

(3) 
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hence implementing at each time step 𝑡𝑡:   

( ) ( )*
1 1 1

0
arg min , , ,

T

t i t i t i t i t T t T tu U i
u E g s u s J s r+ + + + + + + +

=

 
= + 

 
   

 

(4) 

 

Equation (3) calculates costs  g(.)  only for states  st  that are visited, so reducing the computational burden 
substantially. These explicit cost calculations are moderated by use of the approximation function  𝐽𝐽(. )  to represent 
future costs implicitly.  This is one way in which ADP gains efficiency over backward dynamic programming. We 
adopt a separable linear approximation function for the approximate value function 𝐽𝐽(. ) , which can therefore be 
expressed as: 

( ) ( ), 'J s r r s=  ,                         

 

(5) 

where 𝑟𝑟 =  (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑀𝑀)′ is a column vector with each entry a parameter of the approximation function, and 𝜙𝜙(. ) is 
a features extraction function (or basis function) defined on the state space 𝑆𝑆 and so maps the state to a feature vector 
for which 𝑟𝑟 is the associated parameter vector and 𝑀𝑀 is the number of features used. Tsitsiklis and Van Roy (1997) 
proved that for linear functions 𝐽𝐽(. ), under certain assumptions, this approximation process converges to the unique 
optimal parameter vector 𝑟𝑟∗.  

There are several different methods for updating the parameter vector 𝑟𝑟 (Powell, 2011). In the present work, we 
explore some variants of the temporal difference (TD) learning techniques (Bradtke and Barto, 1996; Sutton, 1988). 
This reduces the difference between the approximated value function 𝐽𝐽(𝑠𝑠, 𝑟𝑟) and the optimised value function 𝐽𝐽(𝑠𝑠), to 
improve the quality of approximations as more state transitions are observed. In the remainder of this section we build 
explore the literature on TD learning and introduce the implementations that were developed for the present 
application. 

2.3. Temporal Difference learning 

The approach of TD learning is to adjust the parameter vector 𝑟𝑟, once after each optimisation, to improve the 
estimated value by using the observed value. This is achieved by comparing the value  𝐽𝐽(𝑠𝑠𝑡𝑡, 𝑟𝑟𝑡𝑡) for the current state  st  
with the optimised value 𝐽𝐽(𝑠𝑠𝑡𝑡) from (3), to construct the measure of discrepancy: 

( ) ( ) ( ),t t t t tr J s J s r= −  

 

(6) 

Combining equations (3) and (6), a temporal difference 𝛿𝛿𝑡𝑡 at time step 𝑡𝑡 is described as:    

( ) ( ) ( ) ( )*
1 1 1

0
, , , ,

T

t t i t i t i t i T t T t t t
i

r g s u s J s r J s r+ + + + + + +
=

= + −    

 

(7) 

In this expression , the future discount factors   < 1  are required because the future estimate  𝐽𝐽𝑡𝑡+𝑇𝑇  is augmented 
by the short-term values  gt+i  before comparison with the immediate estimate  𝐽𝐽𝑡𝑡 .  Standard TD literature adopts the 
quadratic error measure  𝑒𝑒𝑡𝑡(𝑟𝑟) = 𝛿𝛿𝑡𝑡

2(𝑟𝑟)  and calculates the  M  parameter values that would minimise this when 
aggregated over past time steps by solving after each step (4), the  auxiliary optimisation 

( ) ( )
0

minimise
t

t i t ir i
E r e r−

=

= 
 

 
 

                                                                                                   (8) 
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for some positive discounting factors  i  (0 < i < t)  that are non-increasing in  i .  By decreasing rapidly with  i , these 
discounting factors can be used to weight recent discrepancies more heavily with the effect that the objective function 
will emphasise the corresponding operating conditions. 

The solution to (8) can be used to calculate adjustments ∆𝑟𝑟𝑡𝑡 to 𝑟𝑟𝑡𝑡 that would minimise the current aggregated 
discrepancy as: 

( )arg mint tr
r E r r


 = + . 

 

(9) 

For the solution to (9) to be well-defined, M-1 > 0 so that there are at least as many contributions  ei(r)  to the 
minimand as  M ,  the number of parameters in  r .  In the case that additionally M = 0  and the stationarity conditions 
for minimality of the solution are mutually independent, there will be a unique solution (9) to (8).  

In the case that  M-1 = 0 , there will be a continuum of solutions. In such cases, adjusting to  𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 + ∆𝑟𝑟𝑡𝑡  has 
been found to be prone to policy oscillation and overshooting manifested as fluctuating values of  r  (Bertsekas, 2011; 
Wagner, 2014), resulting in poor performance. We experienced this phenomenon while implementing TD for railway 
traffic management. Consequently, when using only current observations (ie 1 = 0), we adopt moderated adjustments  
𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 + 𝜂𝜂𝑡𝑡 ∆𝑟𝑟𝑡𝑡   where  𝜂𝜂𝑡𝑡 ∈ (0, 1) (𝑡𝑡 ≥ 1)  is a decreasing sequence of moderating factors that satisfy the 
following conditions for convergence of  r : 

1
t

t




=

= 
 

2

1
t

t




=

 <  

 
 

(10) 

In this approach, use of rapidly decreasing discounting factors  i  (0 < i < t) that emphasise recent discrepancies 
will lead to greater adaptiveness of the ADP optimisation (3) to current operating conditions. Similarly, greater values 
of  t  allow for greater adjustment to the parameters  r  so can lead to more rapid adaptation of the system but expose 
it to stochastic fluctuations, whilst lesser values of  t  confer greater stability on the values of parameters  r .   

For the cases where M-1 > 0, the TD method applies the following Newton-based adjustment once after each 
optimisation: 
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(11) 

Using the linear form of equation (5) for the approximate value function  𝐽𝐽(𝑠𝑠, 𝑟𝑟) , equation (7) becomes: 
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The optimisation (8) is then quadratic in  r  and is solved exactly, where it can be calculated, by (11) which becomes 
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          (13)    

The initial value 𝑟𝑟0 can be an arbitrary vector, or calculated according to a period of training using historical data. 
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Certain special cases of TD learning arise according to the specification of  i  that are worthy of note. We consider 
these in turn. 

 
One-step TD learning: 1 = 0 .  In this case, only the current discrepancy  t  is considered in calculating rt .  This 

will lead to degenerate solutions whenever M > 1 because the matrix  r
2t  of second derivatives will be singular and 

hence non-invertible: there will be a continuum of solutions  r  to  t (r) = 0  that will minimise t
2  to  0 . In such 

cases, a suitable direction  rt  can be furnished by the gradient as  -rt = -(T+1t+T+1 - t)  with modification factor  
t  calculated either to achieve  t (rt - t rt) = 0 or some proportion of this. This can be solved using the accumulated 
estimate  Ht  of the Hessian matrix  H  in a single Newton step:  
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t t t t t t t j t j
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It can also be solved by using the Moore-Penrose pseudo-inverse  Pt  of the second derivative t t
   of  et , thus  

rt = -Pt t  t , which will give another solution to t (rt + rt) = 0 . 
 
M-step TD learning:  M-1 > 0 ,  M = 0 .  In this case, provided that the information in the  M  discrepancies  i  

(0 < i < M) is mutually independent, then the matrix  r
2t  of second derivatives will be invertible and there will be a 

unique solution  r  to (8) that achieves the global minimum of  0 . 
 
Least squares TD learning: i = 1/t  (0 < i < t) .  This formulation (LSTD) was introduced by Bradtke and Barto 

(1996). After each optimisation (3), LSTD solves for parameters  r  by minimising the sum of squares of all temporal 
differences  i  (0 < i < t)  since the start of operation.  In this case, the objective  
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(15) 

 
of the optimisation  (8) is quadratic in  r  and when  t > M – 1 can be solved in a single Newton step. At this solution,  
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Thus for  t > M , the solution to the minimization (8) is achieved by the single Newton step specified by (13). But 
from (15), 
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 (18)            

This is a proportion  1/t  of the one-step TD change given by (14), so with diminishing influence of subsequent 
discrepancies  t  as  t  increases . 

By incorporating all temporal differences up to step  t , LSTD exploits at each step all the data observed since the 
start of the optimisation process. The weight given to the new information in the discrepancy  t  at each step  t as 
against past information, represented by the modification factors t , varies among the strategies according to the 
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choice of the discount parameters  i  (0 < i < t) .  This is achieved at the computational expense of inverting the 
Hessian matrix  Ht  in equation (18).  

3. Adaptive railway traffic control 

We now present the application of ADP for railway traffic control. We discuss the control environment and the 
state space of the RTM system, as used for optimisation, then set out the algorithmic procedure that solves our RTM 
problem using ADP by employing the techniques derived in the previous section. Thus the control method proposed 
here can adapt according to prevailing traffic conditions on the railway network and calculate decisions accordingly.  

3.1. System dynamics 

Railway traffic is currently regulated using ‘fixed block colour light signalling’, which divides the track into a 
series of fixed longitudinal sections called blocks. The operation of these systems is based on two main principles: 
 
• A train cannot be authorised to enter a block if either it is currently occupied by another train, or one has already 

been authorised to enter it, and 
• The distance separating a train from the next one downstream must always be greater than the braking distance 

required for the following train to stop safely.  
 
Under these systems, the trains are regulated by controlling the colour signal lights positioned to the side or above 

the track, with a green signal indicating movement authority into the next block and a red signal indicating that the 
next block downstream is occupied. In case of three and four aspect railway signalling, yellow signals indicate braking 
for trains as they travel towards a red signal further downstream.  

 

Fig. 1 – Representation of the state-space for a horizon of three trains in ADP. 

In this study, we present a method for sequencing decisions at railway junctions that is intended to minimise the 
total consecutive delays of all trains. This objective function can be modified readily to include other considerations 
such as inclusion of importance weights to prioritise certain trains. In the present study we adopt a variant of the state 
space model for RTM presented by Ho et al. (1997) in which conflict resolution is treated as a multistage process in 
which each stage allows one train to pass through the junction and is characterised by the trains that then remain in 
the control area. 
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Excluding the initial stage, the system should undergo as many stages to the future as the number of trains currently 
in the control area: where this is extensive, the number can be substantial. The possible transformations for three trains 
are shown in Fig. 1. When many trains are present in the control area:, the number of possible states at the intermediate 
stages corresponding to Fig. 1 increases exponentially, making DP impractical as a solution method.  

3.2. Control algorithm 

We consider sequence controls at the time each train enters the designated control area: each such event corresponds 
to a stage of the dynamic optimisation. We therefore apply the general representation of ADP presented in the previous 
section to the adaptive control of railway traffic control, by considering decisions 𝑢𝑢𝑡𝑡 at stage  t  over horizon of  T  
stages to be considered explicitly. We calculate a sequence of decisions 𝑢𝑢𝑡𝑡

∗ by solving:  
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(19) 

 

where each stage cost g(𝑠𝑠𝑗𝑗, 𝑢𝑢𝑗𝑗, 𝑠𝑠𝑗𝑗+1)  (𝑗𝑗 ≥ 0) represents the consecutive delay to all trains under consideration within 
the control area. This is repeated for a sequence of  T  entering trains. In the present case of railway traffic control the 
state 𝑠𝑠𝑡𝑡 is a combination of traffic state and control state at stage  t  ie information on the trains remaining in the control 
area and awaiting movement authority,  and the controls  u  specify the sequence of right-of-way assignments which 
optimises the junction capacity according to g(.). The objective function therefore represents the stage cost functions 
g(sj, uj, sj+1) of equation (19) together with the implicit future costs  𝐽𝐽(. ) .  The resulting optimised value of the 
objective function is the used through equation (8) to update the approximation of the long-term total consecutive 
delays 𝐽𝐽(. ) .  We adopt the rolling approach of implementing only the first of the calculated decisions (ie 𝑢𝑢𝑡𝑡

∗) before 
recalculating (19) at the next stage. 

In this framework, a temporal difference 𝛿𝛿𝑡𝑡 at stage  t  is: 
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(20) 

 

We adopt a linear form (5) for the approximation function  ( ),J s r .  The procedures for TD learning to calculate 

adjustments ∆𝑟𝑟𝑛𝑛 to 𝑟𝑟𝑛𝑛 are then as described in the previous section.  
We developed the explicit stage cost functions  g(si, uj, sj+1) for use in equation (19) and embedded them into a 

separate high fidelity microscopic railway traffic simulator which is configured for railway operations controlled by 
two, three and four aspect signals. Development of this microscopic simulator is to address three points: i) devise all 
feasible sequence permutations for the junction, to avoid resource incompatibility arising from unacceptable train 
conflicts, ii) to calculate the short-term traffic state of the control area under consideration, including train entry and 
exit times for individual block sections, and, iii) to evaluate performance of the ADP framework under different delay 
scenarios.  

The microscopic simulator employs Lomonossoff’s equation to represent train movements inside each block 
section for the specified infrastructure by taking into consideration train characteristics (eg tractive force available), 
signalling system (eg block lengths and signal aspects), interlocking constraints, and station stops. At the heart of this 
microscopic traffic simulator is the calculation of continuous braking curves, which are calculated to stop trains at the 
end of all block sections and stations, and for transitions into lower speed limits. Braking curves calculated for 
scheduled station stops and entry into lower speed limit zones are always respected, though ones to stop trains at the 
end of blocks are only enforced if the next block is occupied. Thus, all safety and operational requirements are 
respected, and infrastructure data and the movement of trains is represented in detail. The temporal resolution adopted 
for this simulator is 0.1 second.  
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Here, we suppose that sufficient real-time data are available for railway systems to anticipate future arrival times 
into the control area. We also suppose that other data are available that describe the probability of events occurring in 
operations, eg distributions for dwell times at stations. Furthermore, we suppose that the latency of the system to 
receive data, calculate plans and deliver optimised sequences to the signaling system is short, ie the communication 
and computation delays are small so that control decisions can be calculated and implemented promptly.  

Subject to this, the adaptive railway traffic control using ADP is summarised in Algorithm 1. In this formulation, 
the movement of the next T trains is represented explicitly, features 𝜙𝜙 based on the arrival times into the control area 
are extracted, and the optimal decision 𝑢𝑢𝑡𝑡

∗ are then calculated using (19). This requires evaluation of performance for 
𝑢𝑢𝑡𝑡

∗, which is then used to update approximation function by comparing the approximation 𝐽𝐽(𝑠𝑠𝑡𝑡, 𝑟𝑟𝑡𝑡) to the optimised 
performance 𝐽𝐽(. ) .  The framework then implements the first part of the calculated plan, ie 𝑢𝑢1

∗ or the first train to be 
given movement authority into the junction, and consider the next T trains, ie t+1 to T+1. The framework then iterates 
through all remaining trains to produce the complete sequence of trains.  

Algorithm 1 - ADP algorithm for adaptive railway traffic control 

Step 1. Initialisation: 
1.1 Choose an initial state 𝑠𝑠0; 
1.2 Initialise parameter vector 𝑟𝑟0; 
1.3 Choose the horizon  T  stages to be calculated explicitly; 
1.4 Set 𝑡𝑡 = 0; 
1.5 Initiate learning rate 𝜂𝜂0 (where required). 
Step 2. Receive current traffic state  s : 
2.1 Set 𝑡𝑡 = 𝑡𝑡 + 1; 
2.2 Extract features 𝜙𝜙(𝑠𝑠𝑡𝑡) from state 𝑠𝑠𝑡𝑡 .  
Step 3. Evaluate control decisions  u : 
3.1 Find the optimal decisions 𝑢𝑢𝑡𝑡

∗ using (19). 
Step 4. Update approximation function  𝐽𝐽(. ): 
4.1 Calculate new observation 𝐽𝐽(𝑠𝑠𝑡𝑡) using (3); 
4.2 Calculated current approximation 𝐽𝐽(𝑠𝑠𝑡𝑡, 𝑟𝑟𝑡𝑡) using (5); 
4.3 Calculate the  T  stage temporal difference  𝛿𝛿𝑡𝑡  at stage  at the current stage  t  using (20); 
4.4  TD learning:  
          Update parameter vector  𝑟𝑟𝑡𝑡  to  𝑟𝑟𝑡𝑡+1 = 𝑟𝑟𝑡𝑡 +∆𝑟𝑟𝑡𝑡   where ∆𝑟𝑟𝑡𝑡 is calculated according to the TD learning  
          strategy adopted ie (14) or (18). 
Step 5. Implement decision: 
5.1 Implement 𝑢𝑢1

∗ ; 
5.2 Update the state from 𝑠𝑠𝑡𝑡 to 𝑠𝑠𝑡𝑡+1(𝑠𝑠𝑡𝑡, 𝑢𝑢𝑡𝑡) using the simulation  
5.3 Return to step 2 if trains remain in the system, otherwise stop. 

 

4. Numerical experiments and discussion  

To evaluate our ADP approach using TD and LSTD learning techniques, infrastructure and operational data for a 
section of United Kingdom’s railway was used to conduct numerical experiments. In this section, we first introduce 
the case study network and discuss challenges and significance of the considered network in terms of mainline 
operations; then, we set out our method for perturbing the timetable and present the stochastic environment in which 
our experiments are conducted. Finally, our results of employing ADP for railway traffic control are presented and 
discussed. In the remainder of this paper we refer to our ADP approaches solely according to their learning techniques 
ie TD and LSTD. 
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4.1. Case study 

Part of the East Coast Main Line (ECML) in the UK is used as an example that represents a high capacity main 
line. The section of network used for our case study is located on the southern part of the ECML between Hatfield and 
Stevenage, runs for approximately 20 kilometres, and includes five stations: Stevenage (major station), Knebworth, 
Welwyn North, Welwyn Garden City and Hatfield. Fig. 2 presents a detailed schematic of the infrastructure layout of 
the considered network which is electrified along its whole length at 25 kV AC and runs on conventional 4-aspect 
signalling.  

The ECML consists of four tracks, one fast and one slow in each direction, for most of its length. The infrastructure 
around the village of Digswell is an exception where four tracks narrow to two tracks over the Welwyn Viaduct that 
carries trains over River Mimram, and through two tunnels north of Welwyn North station. It is on this part of the 
network that High-Speed Intercity services and commuter services with frequent stops must negotiate usage of the 
same tracks. The problem of conflicting requests for use of tracks is exacerbated by commuter trains with planned 
stops at Welwyn North station, which block the line while dwelling at this station. Therefore, efficient management 
of railway traffic on this stretch is of paramount importance to the ECML, as it represents the primary bottleneck on 
the rail link connecting the eastern side of the UK from London and the South East of England to Scotland and the 
North.  

 

 

Fig. 2 – Infrastructure layout of the considered network 

The Welwyn Viaduct is an historic structure that was opened in the mid-19th century and therefore by law cannot 
be altered or demolished, as it is a Grade II listed building. This makes replacement of this known bottleneck 
expensive, time consuming and practically impossible for the infrastructure manager. It is therefore a prime target for 
implementation of such tools as envisaged in the present investigation, and so is ideal for our numerical experiments.      

In our investigation, we simulate the 2018 timetable for a weekday between 7:00 am and 10:45 am. Northbound 
and southbound services do not interact on this network, so can be controlled independently. In this paper, we focus 
on sequencing trains at the bottleneck in Fig. 2 for southbound services (25 High-Speed Intercity services and 5 
Commuter services with frequent stops) that run from Stevenage towards Hatfield and so consider the morning peak 
period on ECML towards London.  

We perturb our timetable by delaying all trains that dwell at Stevenage Station. This includes all commuter services 
with planned stops at Welwyn North Station, as well as some intercity services. Half of the trains are perturbed by 
sampling from a Weibull distribution as Quaglietta et al. (2013) found to be appropriate for this: we adopt shape 
parameter 1.8 and scale parameter 8s, producing mean delays of 7.1 seconds (Fig. 3a). The individual delays can then 
be scaled to generate different traffic scenarios. Of the trains that do not stop at Stevenage, some may be delayed due 
to delayed services dwelling at Stevenage.  

The railway operating environment has substantial stochastic elements, so to assess our framework, we evaluate 
each traffic scenario with Monte-Carlo simulation with 30 combinations of i) dwell times per station, and ii) running 
times per block section that, are generated by random draws from associated probability distributions. In the absence 
of empirical dwell time and sectional running time distributions for our test case, we have assumed the following: 

 
• Station delays: Our case study network includes five stations; of these, all except Stevenage Station are minor 

stations at which a relatively small number of services have planned stops. The dwell times for minor stations are 
generated from a Weibull distribution with 2.56, 20s, 24s as shape, scale and shift parameters respectively. This 
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distribution is reported by Quaglietta et al. (2013) for dwell times at minor stations in the Netherlands and is 
presented in Fig. 3b. The minimum dwell time at a minor station in our test case network is 30 seconds. If a 
sample returns a dwell time less than the minimum dwell time, then 30 seconds is used; taking this into account, 
our mean dwell time at a minor station is 41.8 seconds.  

• Section running time delays: Train drivers vary in their driving behaviour. Factors affecting this include their 
route knowledge and the present weather conditions. Although this variation in behaviour may affect short term 
predictions of traffic state, it is difficult to find a unified probability distribution that represents this. In our study, 
we use a Beta distribution with shape parameters α and β as 5 and 1.5 respectively, shown in Fig. 3c, to represent 
the proportion of the maximum train acceleration that is used by a driver in a block section. Similar to delays at 
minor stations, we set a minimum acceptable proportion as 0.65; therefore, the mean proportion of maximum 
acceleration used on a single block section in our study is 0.79. The purpose of this is to introduce additional 
stochasticity and so to test the robustness of this ADP formulation.  
 

   

(a) (b) (c) 

Fig. 3 – Probability distributions of (a) delays at Stevenage Station without scale factors, (b) dwell times at minor stations, and (c) the 
proportion of the maximum acceleration used by a driver on a block section. 

In this study, the First-Come-First-Served (FCFS) heuristic provides a baseline for comparison of performance. No 
estimate for the globally optimal performance is considered because the computational complexity of RTM makes 
this impractical. All of the control methods were evaluated using realised dwell times and sectional running times, 
whilst the ADP approaches did not use future dwell and running times to calculate control decisions.  

The discount factors 𝛼𝛼𝑛𝑛 for use in (3) and (4) were calculated as 𝛼𝛼𝑛𝑛 = 𝑒𝑒(−𝑛𝑛𝑛𝑛), with the discount rate set at  θ = 0.15 
(ie a discount of 15% for each successive train). An issue in using one-step TD learning is the choice of moderating 
step size 𝜂𝜂𝑡𝑡 in updating the parameters  rt . A common approach in stochastic approximation is to use a stage-varying 
rate: we adopted a constant value for 𝜂𝜂𝑡𝑡 so corresponding to the exponentially weighted variant. 

All numerical experiments were conducted by computer simulation, implemented in Python 3.4 running under 
Windows 10 on a PC configured with Intel Core i7- 4790 CPU and 32 GB RAM. The computational time for TD and 
LSTD are similar. This depends on the choice of  T  in equation (19) to compute the explicit part of the cost function 
g(.) . Computation of 𝑔𝑔(. ) was found to be the most burdensome part of the present ADP framework, where we 
evaluate train movements individually. In this study, we set  T = 3 which translates into a computational time, in the 
stochastic environment, of 1.1 seconds per stage on average. Setting T to 4, 5 and 6 trains was found to increase the 
computational time to 2.86, 6.03 and 11.78 seconds per stage on average, respectively. This is not a specific limitation 
of ADP and arises from the exponential number of explicit calculations for the short-term costs  g(.)  during in the 
stochastic environment. 

4.2. Feature selection 

Among various choices to represent the cost  g  in the objective function of the ADP (1) we considered minimising 
total consecutive delays. There are numerous possibilities for the features 𝜙𝜙 in equation (5) that are extracted from the 



214	 Taha Ghasempour et al. / Transportation Research Procedia 38 (2019) 201–22114 Taha Ghasempour, Benjamin Heydecker / Transportation Research Procedia 00 (2019) 000–000 

state  st  at each stage  t . Although many features that represent the state and can be extracted could be used for 
approximation of the value function 𝐽𝐽(. ), not all combinations will necessarily benefit performance. The choice is 
important as it may affect both effectiveness and computational efficiency of the ADP frameworks. 

To investigate effects of this choice of features    on performance, we simulated a traffic scenario with mean initial 
delay for all trains, measured just downstream of Stevenage Station, as 15 minutes 2 seconds. Combinations of features 
were then tested for LSTD learning under identical conditions to compare performance. We extracted and tested all 
15 combinations of the four features:  

a) scheduled running time of remaining trains in the control area,  
b) train delays as measured just after Stevenage Station,  
c) the time difference between services at the conflict point according to the current plan, and  
d) the service headways according to the current plan.    
 
Fig. 4 presents the mean consecutive delay of all trains when they reach Hatfield Station (Fig. 2) for all 15 

combinations of these features plus performance for 1 controller that uses no features, ie  M = 0  and therefore always 
𝐽𝐽 = 0; the FCFS performance for the traffic scenario was 20.48 seconds and is not shown on the graph as it performs 
substantially worse than any of the points shown in Fig. 4. Most combinations of features perform similarly to or 
worse than none at all (corresponding to a  T  step greedy heuristic without any approximation function 𝐽𝐽(. )): the three 
combinations {a, c}, {a, b, c} and {a, b, d} did improve performance. 

 

Fig. 4 – Performance of various feature combinations (multiple coincident values are indicated by number) 

  
  Of these, the combination {a, b, d} produced the absolute best performance with a mean of 13.78 seconds per 

train followed closely by combinations {a, c} and {a, b, c} that both produced means of 13.79 seconds per train 
compared with the 14.25 seconds per train for the controller that used no features. We adopted the combination {a, c} 
for use because it performs nearly as well as the best combination but uses one fewer feature. The worst performing 
combination was {b, c, d} with 15.4 seconds per train, which is clearly greater than that of the pure greedy algorithm 
that uses no features at all. In all combinations that included both c and d, poor performance was observed. 
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More combinations of features resulted in worse performance than using none at all, which shows the importance 
of appropriate feature selection for ADP. In the next section, we investigate in detail the performance of our 
frameworks using the {a, c} features, therefore we extract scheduled running time of remaining trains in the control 
area (𝜙𝜙1 = 𝑎𝑎) and the time difference between services at the conflict point according to the current plan (𝜙𝜙2 = 𝑐𝑐) 
for the approximate value function   𝐽𝐽(. ) . 

4.3. Performance analysis 

Two traffic scenarios were considered. For each, in total 30,000 train delays were generated from the Weibull 
distribution for Stevenage Station, equating to 2,000 morning peaks. Mean initial delay for all trains as measured just 
after Stevenage Station are 4 minutes 37 seconds for Traffic Scenario A, and 14 minutes 58 seconds for Traffic 
Scenario B. These compare with the mean timetable headway between all services on the shared section of Fig. 2 
which is 4 minutes and 39 seconds. Accordingly, we aim to investigate ADP performance during moderate 
perturbations in traffic scenario A, and instances with more substantial perturbations in traffic scenario B.  

In this section we adopt all of the adjustment  r  for LSTD (ie i=1/t , t =1) and, to compare traffic scenarios A 
and B we only adopt a tenth of the adjustment  r  for TD (ie 1=0, t =0.1). Towards the end of this section, a version 
of TD that adopts all adjustments of  r  (ie 1=0, t =1.0) is also considered.  

              Table 1 - Comparison of performance (seconds) 

  Traffic Scenario A   Traffic Scenario B 
      FCFS TD LSTD  FCFS TD LSTD 

Mean consecutive delay 19.35 14.0 14.0  21.33 15.21 15.22 

Mean train running time 296.19 290.83 290.83  298.83 292.69 292.68 

Mean total delay 295.21 289.85 289.85  918.93 912.80 912.79 

 
Table 1 presents comparison of performance among FCFS, one-step TD and LSTD according to three measures of 

performance for each of traffic scenarios A and B. These show that the proposed ADP approach reduces mean 
consecutive delay of FCFS by about a quarter in these scenarios. The two formulations of LSTD and one-step TD 
achieve almost the same performance, meaning the controls produced using the two learning methods are similar (ie 
they computed the same sequences in almost all cases). This need not mean they calculate the same approximations; 
indeed, the mean absolute error in approximation of value function 𝐽𝐽 in one-step TD was 63.8 for scenario A and 68.3 
for scenario B, whereas for LSTD it was slightly greater at 64.5 for scenario A and 71.2 for scenario B. In both cases 
however, the approximations favoured similar control decisions. The ADP reduced mean consecutive delays by 
around 28%, mean running times by around 2% and mean total delays by around 1%.    

Table 2 – Percentiles of consecutive delay (seconds) 

  Traffic Scenario A   Traffic Scenario B 

Percentile      FCFS TD LSTD  FCFS TD LSTD 

75th
 24.91 17.48 17.47  29.27 19.45 19.45 

90th 46.32 28.91 29.02  50.52 30.82 30.81 

 
As the primary measure for our objective function, mean consecutive delays reveal how one-step TD and LSTD 

contributed towards their principal goal. One interesting observation is the similarity of the mean consecutive delays 
in traffic scenarios A and B. It seems that initial delays do not influence strongly the consecutive delays incurred inside 
the control area; this can also be observed in Fig. 5a and b, which present boxplots for the mean consecutive delays.  

The main improvements in the high values of delay in Fig. 5 can be seen in the 75th and the 95th percentiles which 
are shown in Table 2. It is evident that the two learning techniques are similarly effective in reducing the proportion 
of long consecutive delays compared to FCFS. Of the two ADP methods, LSTD performs marginally better than does 
TD. 
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Table 3 – 75th Percentiles of train running times (seconds) 

Traffic Scenario A   Traffic Scenario B 

FCFS TD LSTD  FCFS TD LSTD 

281.92 253.31 253.31  281.69 251.24  251.25 

 
As an indication of the rate of track occupancy within our test network, we study the running times of individual 

trains inside the control area. Fig. 6 presents boxplots for train running times in traffic scenarios A and B. As with the 
consecutive delays, both TD and LSTD improve running times substantially in the 75th percentile of Fig. 6, as is 
shown in Table 3.  Unlike the mean consecutive delays, there is a long tail in TD and LSTD individual train running 
times of Fig. 6 with substantially greater high extremes. These arise from trains that are further delayed in the control 
area for the sake of gains in the principal objective of network performance. However, these actions may be especially 
unfavorable to certain train services so the objective could be developed further to achieve more equitable solutions. 
The upper quartile (75th percentiles) in Table 3 are smaller than the corresponding mean values in Table 1 for running 
times, as a consequence of a small proportion of high values that are shown in Fig. 6.   

  

(a) Scenario A (b) Scenario B 

Fig. 5 – Distribution of mean consecutive delays. 

  

(a) Scenario A (b) Scenario B 

Fig. 6 – Distribution of individual train running times inside the control area. 
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Once more, in Fig. 6, similar performance can be seen in the two traffic scenarios even though the initial delays 
differ. The similarities in consecutive delays and running times for both traffic scenarios suggests more attention needs 
to be given to train headways resulting from initial delays rather than the initial delays themselves. This can also be 
hypothesised from performances in Fig. 4.  

  

(a)  Scenario A (b)  Scenario B 

Fig. 7 – Evolution and comparison of learning parameters for TD t of 0.1 and LSTD learning. 

  

(a) (b) 

Fig. 8 – (a) Root Mean Square Error of TD with t of 0.1 and 1, as well as LSTD learnings for traffic scenario A, and (b) evolution and 
comparison of learning parameters for TD  with t of 0.1 and 1 for traffic scenario A. 
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The improvements in total delays in Table 1 are relatively small. Because of the ways that railways operate, most 
initial delays may not be recoverable and indeed this is not included in the present objective. It should be noted that 
the improvements in mean consecutive delays, running times and total delays are similar in both traffic scenarios. 
Comparison of Figs 6a and 6b shows that in ADP, on occasion a few trains are delayed substantially with the intention 
to achieve low average delay during the remainder of that run. 

Fig. 7 presents evolution of the parameters  r  under each of the TD and LSTD learning strategies in the two traffic 
scenarios. The parameters approach similar values notwithstanding the different mean entry delays. TD learning 
behaves similarly in both traffic scenarios, whilst LSTD parameters stabilise on larger values in scenario A compared 
to the more heavily delayed scenario B. Part of the reason for this behaviour may be that in traffic scenario A the time 
difference between services at the conflict point according to the current plan (𝜙𝜙2) are smaller and more stable 
compared to traffic scenario B. In the presence of substantial perturbations to trains, greater values of  𝜙𝜙2 are extracted 
from the current state. Recalling that LSTD learning solves for parameters  𝑟𝑟  by minimising the sum of squares of all 
temporal difference errors since the start of operation, it is perhaps not surprising that r values stabilise on smaller 
values for scenario B compared to scenario A. Also, for the same reason, LSTD becomes more stable as time goes on 
compared to TD learning which puts more emphasis on recent observation. 

Depending on the values adopted for the modification parameters  t , TD may be more adaptive than LSTD, and 
as shown in Fig. 8(a), TD achieves smaller errors than does LSTD which suggest that TD tends to approximate the 
value function more accurately. The reason for this may be the nature of one step TD in reacting to short-term changes 
in traffic on the network whereas LSTD stays stable and approximate according to what has been observed from the 
start of the operations. Furthermore, Fig. 8(a) shows that t = 1 achieves smaller errors as it adopts all adjustments to 
r after every observation which means it reacts to changes in traffic more strongly than it does with t = 0.1; this 
however comes at a cost of reduced stability in the parameters as is clear in Fig. 8(b). It has to be noted that TD with 
t =0.1 and t =1 achieved similar performance. Because LSTD has no modification parameter to be tuned, the 
stabilisation in the parameters for LSTD is achieved automatically. There may be a better specification for the 
modification parameters  𝜂𝜂𝑡𝑡 than a constant which could contribute to improved performance. 

 

Table 4 – Mean and standard deviation of parameters for TD with t of 0.1 and 1 for traffic scenario A 

       Mean Standard Deviation 

Parameters            t : 0.1 1 0.1 1 

r(1) 0.063 0.072 0.021 0.060 

r(2) -0.057 -0.067 0.025 0.072 

 
The results and the small difference between approximation and learning values presented in this section show that 

both ADP approaches seem to perform well in railway traffic management with similar potential for benefits in terms 
of operational performance. Tests using the exponentially weighted least squares TD learning approach with  
 {0.5, 0.3, 0.1} gave performance values that are almost indistinguishable from the LSTD approach so are not 
reported in detail here, though greater values of    resulted in greater fluctuations in estimates of the parameters  r  of 
the approximation function. 

5. Conclusions 

This study presents an investigation into an adaptive railway traffic controller for real-time operations that applies 
approximate dynamic programming (ADP). By assessing requirements and opportunities, the controller aims to limit 
train delays by advantageously controlling the sequencing of trains at critical locations in a timely manner. Few in the 
literature have investigated methods that are appropriate for use in stochastic environments. Many suffer from high 
computational complexity, which makes them inefficient or difficult to adopt for practical operation. We therefore 
have developed an ADP framework to reduce the computational burden which in turn confers flexibility in control in 
a stochastic environment that has been tested using a Monte-Carlo scheme. We have formulated our problem as a 
dynamic program and use ADP to approximate the optimised value function, and reinforcement learning techniques 
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to update the approximation. This algorithmic framework reduces the number of states to be evaluated substantially, 
which leads to a corresponding reduction in the computational burden. In this investigation, we explore the variants 
of temporal difference (TD) and least-squares temporal difference (LSTD) learning techniques. Because number of 
features is sufficiently small, the parameters of the linear approximation function can be updated using a closed-form 
expression based on Newton’s method. This avoids the widely used methods of TD learning based on gradient descent 
that have been found to lead to policy oscillation and overshooting. The present investigation found that features of 
the approximation function must be selected carefully, as some possible combinations do not improve performance 
compared to a ‘greedy’ approach in which the criterion for optimisation focuses exclusively on short-term 
performance.  

The numerical tests reported here were based on two traffic scenarios, each equating to 2,000 morning peaks, and 
represent moderate and severe perturbations to trains running on the test network. As the primary measure, the 
objective function of mean consecutive delays was reduced by around 28% using the ADP framework by comparison 
with conventional first-come first-served control. The even greater proportionate reduction in the higher percentile 
points of the distribution of consecutive delays shows that the ADP framework reduces longer delays effectively, 
helping to improve regulation of train services.  

Comparing the TD and LSTD approaches to estimation of parameters in the value approximation function, we 
found similar values between these approaches, though the values estimated by one-step TD fluctuated from moment 
to moment whilst those estimated by LSTD necessarily stabilised because they are calculated using all earlier results 
with equal weighting. The TD estimates can be stabilised to some degree by adopting a weighting with exponential 
decay, so focusing on the most recent caluclations. The error in approximating the value function using TD is smaller 
compared to LSTD in both traffic scenarios, and errors were smaller for both TD and LSTD in the traffic scenario 
with moderate perturbations compared to severe perturbations. We also found that adopting all adjustments to 
parameters r in one-step TD achieved better approximations, although at the cost of reduced stability in the parameter 
estimates.  

The detailed calculation of the cost during a single stage represented by g(.) in equation (19) was found to be the 
most computationally expensive part of the present ADP framework. While testing ADP in a deterministic 
environment we achieved computational times of 0.07 second per stage on average for a lookahead horizon of  T = 3 
trains, compared with 1.1 seconds per stage on average in stochastic environment due to the 30 simulations with draws 
from the distributions for each evaluation of expected performance according to (3). This contrasts with the 
computational time required for FCFS, which was 0.016 second per stage in our experiments.   

To have a fully stochastic framework, this kind of railway traffic control could be formulated as a Markov decision 
process, given that all transition probabilities are known. Such a treatment would be comparable with application of 
the learning approaches described here. Therefore, the present ADP framework can be readily extended to include this 
capability. As an adaptive ADP approach for Railway Traffic Management (RTM), this study has so far focused on 
isolated junctions. The objective of RTM is to achieve good network-wide performance, so the ability of ADP to co-
ordinate network traffic is an interesting topic for further research. The challenge here would be to represent traffic 
state of adjacent control areas effectively and hence extract appropriate features to use in the approximate performance 
function of the local ADP.     
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